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Abstract—As many-objective optimisation algorithms mature
the problem owner is faced with visualising and understanding a
set of mutually non-dominating solutions in a high dimensional
space. We review existing methods and present new techniques
to address this problem.

We address a common problem with the well known heatmap
visualisation, that the often arbitrary ordering of rows and
columns renders the heatmap unclear, by using spectral seriation

to rearrange the solutions and objectives and thus enhance the
clarity of the heatmap. A multi-objective evolutionary optimiser
is used to further enhance the simultaneous visualisation of
solutions in objective and parameter space.

Two methods for visualising multi-objective solution objectives
in the plane are introduced. First, we use RadViz and exploit
interpretations of barycentric coordinates for convex polygons
and simplices to map a mutually non-dominating set to the
interior of a regular convex polygon in the plane, providing an
intuitive representation of the solutions and objectives.

Second, we introduce a new measure of the similarity of
solutions—the dominance distance—which captures the order
relations between solutions. This metric provides an embedding in
Euclidean space, which is shown to yield coherent visualisations
in two dimensions.

The methods are illustrated on standard test problems and
data from a benchmark many-objective problem.

I. INTRODUCTION

The recent trend towards investigating many-objective prob-

lems, problems with four or more conflicting objectives, has

brought with it several difficulties [1]. One impediment to

understanding the results of a many-objective optimisation is

visualising the set of solutions produced. In a multi-objective

context, problems consisting of two or three objectives, an

intuitive visualisation is obtained from scatter plots of the

solutions in objective space, allowing the decision maker

to identify the trade-off between objectives. However, the

relationships between even three variables can be difficult to

comprehend when plotted in two dimensions, and it is not

usually possible for the decision maker to comprehend four

or more spatial dimensions visually. The goal of this paper is

to introduce methods that permit a decision maker to explore

the results of an evolutionary algorithm applied to solving a

many-objective optimisation problem to aid the selection of a

solution and illustrate relationships between solutions, as well

as between objectives.
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There are many multivariate data visualisation methods,

some of which have been applied to the visualisation of many-

objective solution sets. Some of these, for example parallel

coordinate plots [2] and heatmaps [3], result in a visualisation

from which all of the original data can be recovered, however

often they can be difficult to interpret because solutions

are overlayed or arbitrarily ordered. Other methods, such as

principal component analysis [4] and Neuroscale [5] compress

the dimensionality of the population into a 2-dimensional

space so that it can be visualised with standard techniques,

such as scatter plots [6]. With these techniques it is not

possible, using the visualisation alone, to recover the original

objective values of the solutions it illustrates, and so poten-

tially useful information has been lost. Section II reviews the

application of these methods, and others, to visualising many-

objective populations. In [7] we suggested novel methods for

ordering a many-objective population in order to facilitate a

more comprehensible visualisation without the need to remove

objectives. Here we introduce new visualisation techniques

for displaying many-objective mutually non-dominating sets

to facilitate understanding about the relationships between

the constituent solutions. We begin by presenting techniques

to enhance the clarity of the popular heatmap method and

show how it can be used to visualise both objective and

parameter space components of solutions without discarding

any objectives.

Despite the loss of potentially important information, di-

mension reduction methods often produce a useful visualisa-

tion and it is especially appealing to visualise solutions in

the plane as paper and computer screens are two-dimensional

and humans are adept at interpreting planar diagrams. General

dimension reduction methods, such as principal component

analysis, Self Organising Maps [8] and Neuroscale, are igno-

rant of the mutually non-dominating nature of solutions lying

on an estimate of the true Pareto front of a many-objective

problem and in general do not preserve the dominance rela-

tions between individual solutions. We therefore examine two

visualisation methods suited to mutually non-dominating data.

In the first we use RadViz [9] to map the objective axes to the

vertices of a planar polygon. We provide a new derivation of

the RadViz projection, exploiting interpretations of barycentric

coordinates for convex polygons and for simplices in many

dimensions, which indicates how it is useful for mutually non-

dominating sets. In the second planar visualisation method we

introduce a new similarity measure—dominance distance—

between solutions, based on their relative dominance. Using

metric multi-dimensional scaling, dominance distance yields
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an embedding of the solution set in Euclidean space which is

linearly projected to a two- or three-dimensional visualisation

space. The RadViz method preserves the identity of the

objectives in the visualisation, while the second may be viewed

as a method that clusters together solutions that have a similar

relation to other solutions in the set.

Throughout this paper we are concerned with visualising

the solutions to the M -objective minimisation problem which

is succinctly stated as

minimise y = (f1(x), . . . , fM (x)), (1)

where the functions fm(x) map the P -dimensional parameter

vectors x to objectives (there may also be constraints). We

assume that the parameters and objectives are real valued so

that x ∈ X ⊆ R
P and y ∈ R

M . The result of a minimisation

is generally a set of solutions P = {xk}Kk=1
and the cor-

responding objectives F = {yk}Kk=1
which approximate the

Pareto set and Pareto front respectively. Regarded as a set of

M -dimensional coordinate points, the elements of F are not

dominated and thus mutually non-dominating and by extension

the elements of P are also regarded as non-dominated and

mutually non-dominating. We denote by ykm the value of the

k-th solution on objective m.

The techniques we present in this paper are illustrated on

sets of mutually non-dominating solutions for several many-

objective problems. The first is a set of solutions to a 9-

objective problem, optimising the design of a waveform for

a Pulsed Doppler Radar, proposed as a prototypical many-

objective problem [10]. We also use populations of solutions

to test problems, visualising problem instances of DTLZ2 and

DTLZ6 [11], as well as WFG3 and WFG8 from the Walking

Fish Group suite of test problems [12]. These examples are

introduced in detail later in the paper.

The remainder of the paper is structured as follows. Section

II reviews a selection of visualisation methods, although we

do not aim to provide an exhaustive review, concentrating

instead on methods that have been used for the visualisation

of estimated Pareto fronts. Section III introduces seriation for

enhancing heatmaps, applying it to the reordering of solutions

in Section III-A and for reordering objectives in Section III-C;

Section IV demonstrates the joint seriation of two spaces so

that heatmaps of both parameter and objective spaces can be

visualised together. We then present two methods for reducing

the dimensionality of a solution set. In Section V we use

RadViz to map solutions to the interior of a polygon in the

plane and in Section VI we use multi-dimensional scaling in

conjunction with a new dominance-based metric. Conclusions

are drawn in Section VII and future work is discussed.

II. MANY-OBJECTIVE SET VISUALISATION

A variety of methods have been employed to cope with

visualising the increasing number of objectives found in in-

dustrial and scientific optimisation problems. In this section,

we review the principal methods.

For illustration, Fig. 1 presents examples of some of the

existing many-objective visualisation methods. The examples

all show the objective-space mapping of solutions F = {yk}

generated by running a basic population-based multi-objective

evolutionary algorithm (MOEA) for 5,000 generations, main-

taining an elite archive of non-dominated solutions throughout

the process. Specifically, the algorithm was a (µ+λ)–evolution

strategy (ES) in which each of the µ parent solutions produced

a single child solution at each generation; µ = 100 and

λ = 100. The child solutions were mutated with an additive

Gaussian mutation (σ = 0.1, mutation probability 1/P ) and

the archive was used to maintain the current approximation of

the true Pareto front. We used the well-known test problem

DTLZ2 [11], and generated results for M = 2, 3, 5 objective

instances of the problem; the number of parameters was

P = 10+(M−1) as recommended by [11]. With the exception

of Figs. 1(a) and 1(b), all of the examples use 768 solutions

from 5-objective archive. By construction, the Pareto front is

known to be the portion of a spherical shell of radius 1 lying

in the positive orthant. The solutions are quite well converged;

for the 2-objective instance the median distance from the true

Pareto front is 5.48 × 10−4. For the 3-objective archive the

median distance is 3.15×10−3, and for the 5-objective archive

5.38× 10−2.

Probably the most common method for visualising solutions

in a multi-objective context is to produce a scatter plot on 2- or

3-dimensional axes, where each axis represents an objective.

Examples are shown in Fig. 1(a) (two objectives) and 1(b)

(three objectives)1 and clearly show the spherical nature of

the estimated front. Solutions have been coloured according

to the objective m on which the solution is performing “best”

as follows. In order to avoid biases due to the differing scales

on which the objectives are measured, the solutions were

ranked on each objective separately; we denote the rank of

solution yk on the m-th objective by rkm with 1 being the

best rank and K the worst. Then solution yk is coloured

according to the objective for which rkm is minimum. As

Fig. 1(b) shows, this colouring tends to colour neighbouring

solutions in the same colour and gives some indication of the

nature of a region of objective space. Although this provides

relatively little additional information for 2 and 3 objectives,

the same device considerably enhances the interpretability of

many objective visualisations [6].

A. Many-objective Methods

Two of the earliest methods identified for use in many-

objective optimisation were parallel coordinate plots [13],

[14], [2] and pairwise coordinate plots [15]. A parallel coor-

dinate plot presents each solution yk as graph of ykm versus

objective m with the values connected by lines. Whilst this is

easily extended to any number of objectives, as Fig. 1(c) shows

for the 5-objective DTLZ2 solutions, the plots are often too

cluttered to be of use. A pairwise coordinate plot compares

each pair of objectives as a 2-dimensional scatter plot, as

shown in Fig. 1(d). This is useful for revealing correlated and

anti-correlated pairs of objectives and provides information

on the pairwise interactions between objectives. However, the

1In order to enhance the clarity of the visualisation, one solution has been
omitted from Fig. 1(b). This solution was an outlier and scaled the axes so
that the remainder of the solutions were difficult to see.
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(a) 2-objective scatter plot
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(d) Pairwise coordinate plot
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(i) Neuroscale

Fig. 1: Examples of some of the visualisation methods reviewed in Section II. The solutions shown are for a 5-objective DTLZ2 archive
(with the exception of 1(a) and 1(b), which are 2- and 3-objective problem instances, respectively) generated using a basic MOEA. The
solutions represent the non-dominated archive after 5000 function evaluations. Solutions are coloured according to which objective has the
highest rank: 1 = red, 2 = blue, 3 = green, 4 = cyan, 5 = black.

fact that the points representing a particular solution in each

plot are not visually linked together means that it is generally

difficult to perceive relations between solutions. While it is

mechanically easy to extend to any number of objectives, the

number of plots M(M−1)/2 rapidly becomes overwhelming.

Heatmaps are frequently used to visualise large multivariate

datasets (see for example [16]) and have recently been used

for multi-objective populations [3], [17], [18], [19], [20]. In a

heatmap objectives are represented as columns, solutions by

rows, and relative values as ‘heat’ represented by colour. Fig.

1(e) presents a heatmap of the 5-objective DTLZ2 archive. The

arbitrary ordering of solutions means that it can be difficult

to observe relationships between the various solutions and

objectives. Schemes for reordering the rows and columns

of a heatmap to present a clearer view of a multi-objective

population, which we discuss later, have been proposed [3],

[17]. In addition, in order to be of use, the objectives must

be on the same scale. One way in which this is done is by

normalising values to similar ranges; for example, in [17]

linear scaling of the solutions for each objective to [0, 1]
before assigning colours is recommended. In Fig. 1(e) the

objectives are all on roughly the same scale, so no scaling
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was done before assigning colours; nonetheless, the heatmap

is dominated by the cooler colours. We present methods which

use the full range of colours and place similar solutions

together to enhance a visualisation of both objective space

and parameter space in Sections III–IV.

B. Dimension Reduction for Visualisation

Since scatter plots provide such an intuitive visualisation

of multi-objective solutions, an obvious course of action is

to project the solution archive into 2 or 3 dimensions and

draw a scatter plot. We briefly review dimension reduction

methods which have been used for visualisation of many-

objective solutions in this manner.

Probably the most common linear dimension reduction

technique is principal component analysis (PCA, [4]), which

identifies the directions of objective space that capture the

maximum amount of variance in the solutions. Fig. 1(f) shows

the PCA projection of the 5-objective DTLZ2 solutions into

the two-dimensional space spanned by the first two principal

components. The projection has identified the two directions

in objective space which retain the most variance and are

therefore the best linear approximation to the original archive

in a mean squared sense. However, as the colouring shows,

the solutions are overlayed in such a way that it is difficult

to distinguish among them and the coherence of neighbouring

solutions evident in the multi-objective examples (Figs. 1(a)

and 1(b)) is absent here. Of course, some information must be

lost in projecting into a lower dimensional space, but we note

that PCA is oblivious to the mutually non-dominating nature

of these solutions.

Three nonlinear methods that have been used for visualising

many-objective solutions are Self Organising Maps (SOM)

[8], Generative Topographical Mapping (GTM) [21] and Neu-

roscale [5]. All three of these methods aim to preserve local

structure between objective-space solutions.

The SOM [8] is a topographically-arranged network of in-

teracting transformation functions, whose response (displayed

as a degree of excitation of all the component nodes) varies

depending upon the network input. In the basic formulation

(as used in e.g. [22], [6]), the SOM defines a mapping from

the input space onto a two-dimensional array of nodes. Each

node in this array has an associated M -dimensional reference

vector w, and these nodes are compared to any input, y, to

the network, in a parallel fashion. Abstractly, the SOM seeks

to find some best matching node to y, denoted wc, whose

response should be maximised given the input. Additionally,

the learning algorithms incorporated in SOMs seek to instill a

local relationship between neighbouring nodes, such that nodes

that are spatially close to one another in the network topology,

should also be concerned with adjacent regions of input space.

One interpretation of this approach presented in [8] is to view

the trained SOM as a nonlinear projection of the probability

density function of the M -dimensional input into the two-

dimensional display provided by the network.

Fig. 1(g) illustrates the reference vectors associated with

a SOM of the 5-objective DTLZ2 archive. Each hexagon

represents one of the reference vectors in the trained mapping,

and each vector has been coloured according to the objective

of the reference vector which has the best value (determined by

comparing the reference vector to the training data, and seeing

which of its objective values would have the best rank in this

data). From the distribution of colours in the visualisation it is

clear that the reference vectors have been distributed across the

Pareto front and provides a coarse-grained spatially coherent

representation.

The Generative Topographic Mapping (GTM) [21] is an al-

ternative to the SOM which provides a generative probabilistic

model allowing the likelihood of new data to be assessed and

incorporated. It represents the data as a nonlinear mapping to

the high-dimensional data space of a topographically ordered

low-dimensional latent space. The data is then visualised as

its projection into the latent space. The nonlinear mapping is

achieved by a constrained mixture of radial basis functions and

a Gaussian noise model accounts for discrepancies between

the noise-free mapping from latent space to data space and the

observed data. The likelihood corresponding to this generative

model is then maximised using the expectation-maximisation

algorithm in order to learn the model parameters and the

latent visualisation. Fig. 1(h) shows the visualisation of the 5-

objective DTLZ2 front by GTM; individuals have been broadly

clustered into similar groups, as indicated by the colouring, but

there is an imperfect separation into distinct, topographically

coherent regions.

Neuroscale [5], [23] has also been used for many-objective

visualisation [6], [24]. It also uses radial basis functions

to form a nonlinear mapping projecting an M -dimensional

individual y into a Q-dimensional individual ŷ using topo-

graphical information derived from considering the distances

between solutions. The radial basis functions are arranged as

a neural network whose inputs are the high-dimensional solu-

tions and the outputs are the corresponding low-dimensional

solutions. The network weights are adjusted in order to min-

imise the Sammon stress [25]:

K
∑

k

K
∑

j>k

(

dkj − d̂kj

)2

, (2)

in which dkj is a distance between the individuals k and j in

M -dimensional objective space and d̂kj is a distance between

the corresponding individuals in the Q-dimensional space.

This metric is minimised when the distances between pairwise

individuals in the original objective space and the embedded

space are the same. Fig. 1(i) demonstrates the application of

Neuroscale to the visualisation of the 5-objective DTLZ2 front.

Solutions have been coloured by the objective on which they

best perform, but like PCA, segregation into distinct regions

is unclear. Closely related to Neuroscale is a method in which

solutions are embedded in a 3-objective space by minimising

the Sammon error [26]. This embedding is then presented to a

decision maker as an interactive virtual environment that can

be explored for knowledge discovery.

Clustering approaches have also been used, for example, to

visualise the results of multi-objective nurse scheduling, Fuzzy

C-Means Clustering was used to cluster solutions [27]. The

axes onto which the data were then projected were identified
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using Fuzzy Multiple Discriminant Analysis by finding the

projection that maximises the ratio of within-class scatter and

between-class scatter.

The prosection method [28] visualises a population by

compressing the objectives using prosections. A prosection is

the projection of individuals within a section of the objective

space into a low-dimensional space; in two dimensions, so-

lutions are projected onto a line running through the section

and intersecting the origin. The projections of solutions onto

the line defining the section are then rotated through the

angle between the projection line and one of the axes so

that a dimension is removed. Reducing the dimensionality in

this way has the advantage that if one solution dominates

another then its prosection projection dominates the others

projection. However, two mutually non-dominating solutions

may be projected so that one dominates the other. Additionally,

it is currently only possible to visualise populations of four

objectives or fewer. Another method [29] which seeks to pre-

serve dominance relationships first projects the non-dominated

solutions onto the positive quarter of a circle centred on the

origin. Then a greedy procedure is used to find the position

of each dominated solution that best preserves the dominance

relationships of the original population.

Most of the visualisation methods reviewed in this section

tend to suffer from one of two problems. They are either

lossless and present the entire set of objectives, which often

results in a lack of clarity, or they make a dimension reduction

which loses information about the dominance relations be-

tween solutions. While the prosection method does not always

suffer from these problems, it is currently only applicable to

problems comprising four objectives or fewer. Methods for

enhancing the clarity of (lossless) heatmaps by reordering the

solutions have been investigated by [3] and [17], and in the

following section we investigate spectral methods for reorder-

ing the solutions, objectives and parameters in a combined

heatmap visualisation of both parameter and objective space.

In later sections we investigate dimension reduction methods

that attempt to minimise the loss of dominance information.

III. SERIATION OF HEATMAPS

As illustrated in Fig. 1(e), a heatmap represents the data as

a grid of pixels whose colours indicate values on a scale from

maximal (hot) to minimal (cold). In [3] the use of a heatmap

for presenting both the objective and parameter space views

of solution sets in multi-objective optimisation is presented.

More recently, a heatmap was incorporated into an interactive

multi-objective particle swarm optimisation algorithm [18].

Heatmaps are a particularly useful method for visualising

solution sets to many-objective problems because they allow

the trade-off between objectives to be observed, providing

important information to a decision maker. Their scalability,

both in terms of solutions and objectives, means that they can

visualise large populations of solutions to problems defined

in terms of large numbers of objectives. In addition, this

information is available without having to compress or discard

objectives, meaning that no information is lost in the visu-

alisation process and the original data is recoverable, unlike

techniques such as PCA in which dimensionality compression

discards potentially useful information.

Whilst heatmaps can convey useful information, we identify

two problems: the presence of one or two larger objectives

values in the data means that the full range of colours may not

be used; and, more seriously, arbitrary ordering of the solutions

and objectives in the heatmap hampers its interpretability. Hi-

erarchical clustering has been proposed to ameliorate this [3];

in this paper, we apply a spectral method to seriate solutions

and objectives, placing similar solutions and objectives close

to each other.

The goal of seriation is to construct a permutation over

individuals such that similar individuals are placed close

together, and dissimilar individuals far apart. Seriation has

a long history with early uses in archeology to establish a

chronological ordering of artifacts based on the similarity

of their features [30], and in sociology for grouping similar

people together [31]. An important advance was made in [32],

which introduced a spectral method for finding an approximate

solution to the seriation problem. For an extensive historical

review of seriation see e.g. [33]. Here we use seriation to

reorder the set of non-dominated solutions to a many-objective

problem in both objective space and parameter space, with the

aim of placing similar solutions and objectives close to each

other in the heatmap thus visualising the trends and exceptions

from the trends present in the solutions.

Rather than visualise the objective values ykm themselves,

we rank the solutions on each objective to obtain rkm, the

rank of the k-th solution on the m-th objective. We denote

the vector of M ranks for an individual solution by rk =
(rk1, rk2, . . . , rkM ). This ranking has two principal benefits.

First, the values to be displayed by assigning a colour should

be on a common scale [3]. Ranking the solutions brings them

onto the same range, 1 ≤ rkm ≤ K, without damaging the

dominance relations between solutions, so that rk ≺ rj iff

yk ≺ yj . Second, provided there are no tied ranks, each

ranked value occurs exactly M times, so that each colour in

the heatmap occurs M times, thus using the full range of

colours equally. This is equivalent to histogram equalisation

(e.g., [34]) for each objective and avoids the problem with

linear scaling of objectives, apparent in Fig. 1(e), that detail

is lost because a few large values force the majority of the

heatmap to be displayed in cool colours. Using ranks has the

disadvantage that the ranks must be recomputed if the solution

set changes. However, the cost of recomputation is small and

in this paper we confine our deliberations to static solution

sets with K solutions.

A. Seriation of Solutions

The similarity between solutions can be measured in a vari-

ety of ways, and we examine rank-based similarity measures

below. For a set of K solutions we begin by constructing a

K ×K similarity matrix A describing the similarity between

solutions rk and rj based on the squared difference between

the corresponding ranks:

Akj = 1− 1

M(K − 1)2

M
∑

m=1

(rkm − rjm)
2
. (3)
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Since the greatest difference in ranks, which occurs when two

objectives are anti-correlated, is K − 1, it is guaranteed that
∑K

m=1
(rkm − rjm)

2 ≤ M(K − 1)2, so that 0 ≤ Akj ≤ 1.

In order to place similar solutions together, we seek a

permutation over the solutions π that minimises:

gy(π) =

K
∑

j=1

K
∑

k=1

Aij(πk − πj)
2. (4)

The objective function gy(π) is minimised when similar

solutions are placed close together, and dissimilar solutions far

apart. In general, this is NP-hard because the permutation is

discrete [32]. Instead, [32] suggests an approximation obtained

by relaxing the permutation π to a continuous variable v and

minimising:

h(v) =

K
∑

j=1

K
∑

k=1

Akj(vk − vj)
2 (5)

with respect to v. This relaxed objective is subject to two

constraints. Firstly, to ensure that adding a constant to all vk
does not change the order of the individuals the constraint
∑

k vk = 0 is imposed. Also, in order to avoid the trivial

solution in which all vk = 0, we demand that
∑

k v
2

k = 1. The

solution to the constrained problem can be found with linear

algebra. Briefly, the problem is rewritten as h(v) = vTLv,

where L is the graph Laplacian [35], [36] of A defined as

L = D − A with D the diagonal matrix whose elements

are Dkk =
∑

j Akj . Then eigenvectors of L correspond to

stationary points of h(v) [35]. The smallest eigenvalue of

L is zero, with the corresponding eigenvector having equal

elements. A discrete permutation is recovered from the Fiedler

vector [35], the eigenvector corresponding to the smallest non-

zero eigenvalue of L, by ordering the individuals such that the

individual with the k-th smallest value in the Fiedler vector

occupies the k-th position in the permutation. At first sight

locating the Fiedler vector requires a full eigendecomposition

of L, however, the Fielder vector may be identified as the

eigenvector corresponding to the largest eigenvalue of the

complementary graph Laplacian matrix, which may be effi-

ciently found by the power method [37]. Although this method

might be necessary for large populations, for the applications

addressed here the matrix decomposition is computationally

inexpensive (although O(K3)) and very much faster than

exhaustive search which requires O(K!) operations, rendering

it infeasible for K ' 10.

B. Illustration

Throughout this paper, we use a running example dataset

drawn from the domain of many-objective optimisation.

Hughes applied the MSOPS algorithm [38] to the problem

of designing an appropriate set of waveforms that can be

transmitted by a Pulsed Doppler Radar to simultaneously

measure the velocity and distance of a target [10]. To do this,

Hughes optimised a schedule of Pulse Repetition Intervals

(PRIs), which are the times between transmission of radar

pulses. The P parameters x consist of a set of PRI values and

Hughes has provided for results for P = 4, 6, 8, 10 and 12.

These parameters map onto an objective vector y consisting

of M = 9 objectives which characterise different aspects of

the radar signal, together with a final objective which is the

total transmission time for the waveform.

• Objectives 1 and 2 measure the median range and velocity

before the schedule is not decodable.

• Objectives 3 and 4 measure the median range and velocity

before the schedule has blind regions.

• Objectives 5 and 6 measure the minimum range and

velocity before the schedule is not decodable.

• Objectives 7 and 8 measure the minimum range and

velocity before the schedule has blind regions.

• Objective 9 is the time required to transmit the total

waveform in milliseconds.

The first 8 objectives are to be maximised, and the 9th to

be minimised, however in the datasets [39] all objectives

have been organised for minimisation. We use 200 randomly

sampled solutions of the 11938 solutions in the 12 PRI archive

containing the current approximation of the Pareto front as

identified by the MSOPS algorithm.

Fig. 2 shows a heatmap of the radar data. The left hand

panel shows the solutions in their original order, where each

solution, rk in rank coordinates, comprises a row of the

heatmap. The colour-scale extends between 1 and 200 because

with 200 solutions the ranks lie in this range. The central

panel shows the seriated heatmap: clearly similar solutions,

shown by similar colours, have been grouped together aiding

interpretation.

The similarity matrices A before seriation and after se-

riation, with the rows and columns permuted according π,

are shown in Fig. 3. In the seriated case, highly similar (red)

solutions have been aligned along the diagonal, meaning that

the permutation has placed them close together.

C. Seriation of Objectives

Although the seriation of individual solutions shown in Fig.

2(b) brings similar individuals together, the interpretability

of the heatmap can be further enhanced by placing similar

objectives together. To do this, we follow the same procedure,

but using the following M × M similarity matrix, which

measures how similar the m-th and n-th objectives are in terms

of the average squared difference in ranks of the solutions on

those two objectives:

Smn = 1− 1

K(K − 1)2

K
∑

k=1

(rkm − rkn)
2
. (6)

Fig. 2(c) shows the result of seriating the heatmap in Fig. 2(b)

with respect to the objectives. Although in this case it would

be feasible to exhaustively test all the 9!/2 permutations,

spectral seriation is significantly faster. As can be seen, similar

objectives have been placed next to each other, grouping all

of the range-based objectives (objectives 1, 3, 5, 7) on one

side of the heatmap and the velocity-based objectives (2, 4, 6,

8) on the other. Interestingly objective 9, which measures the

transmission and decoding time is placed with the velocity-

based objectives and is clearly well-correlated with objectives

2 and 4. Also it is clear that objective 6 (minimum velocity
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(b) Seriation of (2a) w.r.t. Solutions
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(c) Seriation of (2b) w.r.t. Objectives

Fig. 2: Heatmaps of the radar dataset [10]. (a): objectives of the solution set in original order (converted to ranks); (b): solutions after
seriation using similarity matrix A, placing similar solutions together; and (c): solutions after seriation of objectives ordered to place similar
objectives together using similarity matrix S (3). Note that seriating objectives has grouped those objectives relating to range (1, 3, 5, 7)
together, as it has with those relating to velocity (2, 4, 6, 8). The numbering on the left hand side of (c) highlights the best (blue) and worst
(red) solution for each of the 9 objectives.
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Fig. 3: Similarity matrices of the Pulsed Doppler Radar data during
seriation. Left: original similarity matrix, A. Right: A with rows and
columns permuted according to the π found by seriation. Seriation
collects the similar (dark red) solutions so that they lie close to the
diagonal, and pushes the dissimilar solutions (cooler colours) to the
edge.

before schedule cannot be decoded) is least well correlated

with either group, with small values occurring in combination

with large and small range and velocity objectives. We em-

phasise that neither of these observations about the character

of the non-dominated solution set as a whole could have been

made from the original heatmap (Fig. 2(a)).

D. Rank-based Objective Seriation

Rather than the squared Euclidean distance used in the

similarity (6), natural metrics for measuring the similarity

between permutations or ranks are Spearman’s footrule [40],

[41], [42] and Kendall’s τ metric [43]; here we examine their

use in seriation.

Note that the ranks of the solutions on a single objec-

tive m can be written as a K-dimensional vector ρm =
(r1m, . . . , rKm), which is a permutation of the integers

1, . . . ,K.2 Spearman’s footrule is the city block distance

between two permutations [42]. Given permutations of the m-

th and n-th objectives, ρm and ρn, Spearman’s footrule is the

summed absolute difference between the positions of solutions

in the two permutations:

Dmn =

K
∑

k=1

|rkm − rkn| . (7)

The maximum possible value of the metric Dmax is

Dmax =

{

K2/2 K even

(K + 1)(K − 1)/2 K odd.
(8)

We therefore define a similarity between permutations ρm and

ρn as:

Smn = Dmax −Dmn. (9)

2Note that ρm is K-dimensional vector of ranks corresponding to objective
m, while rk is the M -dimensional vector of ranks pertaining to solution yk .
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TABLE I: Comparison of the permutations produced using spec-
tral seriation with Euclidean distance, Kendall’s τ and Spearman’s
footrule similarities, against optimum quality found by exhaustive
search. Each row of the table shows the quality of the permuta-
tion found using a particular similarity matrix evaluated using the
objective function g(π) for the corresponding column. Bold entries
indicate that the best possible quality has been located by the spectral
method.

gEUC(π) gTAU(π) gSPF(π)

πEUC 7.9038× 102 5.2483× 106 2.6398× 106

πTAU 7.9053× 102 5.2477× 106 2.6445× 106

πSPF 7.9038× 102 5.2483× 106 2.6398× 106

Kendall’s τ metric considers how the pairwise ordering

of individuals differs between permutations. If the relative

ordering between individuals k and j on objectives m and n
is unchanged (rkm > rjm and rkn > rjn or rkm < rjm and

rkn < rjn) then a cost is defined as τkj(ρm,ρn) = 0; other-

wise, if the pairwise relative order is different, τkj(ρm,ρn) =
1. The costs are summed to arrive at the overall metric:

τmn =

K
∑

j=1

K
∑

k=1

τkj(ρm,ρn). (10)

Here we have assumed that there are no tied ranks, but

alternative formulations are available to cope with tied ranks

[44]. The maximum value of the τ metric, τmax, occurs when

ρm is the reverse ordering of ρn, and is:

τmax = K(K − 1)/2. (11)

Kendall’s τ , like Spearman’s footrule, is a metric and increases

in value as the two permutations become more dissimilar. We

therefore define a similarity:

Smn = τmax − τmn. (12)

To demonstrate the use of permutation metrics for comput-

ing similarity and seriation, we seriated the objectives in a vari-

ant of the radar data. The new dataset consisted of the original

9 objectives together with two additional objectives inserted

at random positions in the data. The first additional objective

yA was produced by averaging two existing, well correlated,

objectives (objectives 1 and 3): ykA = (yk1 + yk3)/2. The

second additional objective yB consists of uniform random

noise; this objective is therefore expected to be uncorrelated

with the rest of the data. We expect that seriation will move the

well-correlated objective close to the objectives from which it

was constructed, while the uncorrelated objective is expected

to be placed away from the correlated groups. The result of

seriating this new dataset is shown in Fig. 4. As can be seen, in

all cases the well-correlated objective (objective A) is placed

next to both of the objectives upon which it is based. In

addition, the uniform random objective (objective B) is placed

in the middle of the heatmap, between the two groups of well

correlated objectives.

Returning to the original 9-objective radar archive, it is

feasible to evaluate all of the 9!/2 distinct permutations of

objectives in order to examine the quality of the approximate

solution under the three metrics. Table I presents the results of

this analysis. If gS(π) =
∑

m

∑

n Smn(πm−πn)
2 is the qual-

ity function to be minimised, then each row of the table gives

the quality of the permutation which was found by spectrally

seriating with the similarity matrix for that row (equations (6),

(12) and (9)), but with the quality g(π) evaluated using the

similarity matrix for the corresponding column; for example,

on the first row, πEUC is the permutation found by spectrally

seriating according to the Euclidean distance metric. We then

consider the quality of this permutation using the Euclidean

similarity matrix and the similarities based on Kendall’s τ
and Spearman’s footrule. Qualities highlighted in bold indicate

that the permutation is the best found by exhaustive search.

Reassuringly, as indicated by the bold diagonal entries, for

each of the similarity matrices, the spectral seriation has

located the best permutation. However, as the spectral method

is an approximation this will not always be the case, especially

for more objectives. Interestingly we note that the Euclidean

and Spearman’s footrule similarities perform identically and

the only difference with the Kendall’s τ seriation is the

reversed order of objectives 9 and 4 (see Fig. 4). We observe

that, as here, seriations according to Spearman’s footrule and

Kendall’s τ are usually very similar, perhaps unsurprisingly

in light of the inequalities τmn ≤ Dmn ≤ 2τmn [42]. In

general we recommend Spearman’s footrule for its simplicity

and speed of calculation.

IV. JOINT SERIATION OF DECISION AND OBJECTIVE

SPACES

In the previous section we showed how spectral seriation

can be used to reorder objective space heatmaps to en-

hance their interpretability. It is often of interest to view

the parameter space solutions {xk} alongside their objective

space counterparts. Examples of visualisations that incorporate

information from both parameter and objective space are [3]

and [45]; the method proposed in [3], employing a heatmap,

is of particular interest and we discuss it later in this section.

In this section we show how to simultaneously optimise the

parameter space and objective space views. We assume that the

parameters are real valued xkm ∈ R which allows meaningful

distances between parameters to be calculated. As with the

objective space case, it is necessary to normalise the parameter

values so that the heatmap uses the full range of colours to

represent them.

A straightforward way of jointly seriating parameter and

objective space is shown in Fig. 5 for a population of solutions

to the test problem WFG8 from the standard Walking Fish

Group test problem suite [12]. The population comprises 200

solutions to a 10-objective instance of the problem, where the

number of parameters is 38. The solutions were sampled from

the known Pareto optimal set. Here, the solutions yk have

been seriated in objective space with respect to objectives

(reordering the columns) and then solutions (reordering the

rows), which yields the heatmap shown in the lower right-

hand panel of Fig. 5.3 Then, solutions xk in parameter space

3Note that the same result would have been obtained by seriating first with
respect to solutions (rows), and then by objectives (columns).
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(c) Spearman’s footrule
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(d) Kendall’s τ metric

Fig. 4: Seriation according to different metrics. The radar data has been modified to include an objective produced by summing objectives 1
and 3 (objective A) and an objective entirely comprised of uniform random noise (objective B). Prior to seriation of objectives, the solutions
have been seriated to produce the population shown in (a).

have been reordered to match the order of the solutions in

the seriated objective space (that is, the rows of the bottom

lefthand panel), and finally the parameters (columns) were

seriated to place similar parameters close to each other. As

is common for many test problems, the parameters of WFG8

are grouped into two types. In this instance of the problem,

18 of the parameters are position parameters, which control

the region of the Pareto front on which the solution lies. The

remaining 20 are distance parameters, controlling the distance

of the solution from the Pareto front. As can be seen in the

figure, the distance parameters have been grouped together

in the centre of the heatmap. The position parameters, which

consist of a uniform spread of values, have been moved to

the sides of the heatmap. In a similar manner to objective

space seriation, the order of parameters was seriated by using

spectral seriation to approximately minimise

gx(π) =
K
∑

j=1

K
∑

k=1

Λkj(πk − πj)
2. (13)

The objective function gx(π) requires a parameter space

measure of the similarity of solutions. Since ranking solutions

in parameter space is meaningless we measure the parameter

space similarity of solutions xk and xj using their correlation

or the well-known cosine similarity:

Λkj =

∑

p xkpxjp
√

∑

p x
2

kp

∑

p x
2

jp

, (14)

which is the cosine of the angle between xk and xj . We also

provide an example later using the negative mean difference

of solutions

Λkj = −
∣

∣

∣

∣

∣

P
∑

p=1

(xkp − xjp)

∣

∣

∣

∣

∣

(15)

which has the effect of placing solutions with parameters of

the same magnitude together. However, particular optimisation

problems may suggest alternative measures of parameter space

similarity to those used here.

As Fig. 5 shows, the resulting ordering of parameter-

space solutions (induced by the objective space ordering of

solutions) has in general placed those solutions with larger

parameter values together at the top of the heatmap and the

seriation has revealed a clear correlation of larger parameter

values with solutions which optimise objective 10 well, while

the remainder of the objectives are best optimised by small

parameter values. Clearly, however, reordering the parameter

space solutions by the objective space seriation has not in-

duced the same improvement in clarity as we have previously

demonstrated in objective space; in a perfect reordering, all of

the large-parameter solutions would reside in the top half of

the heatmap, and all of the small-parameter solutions would be

placed near the bottom. We discuss an approach to resolving

this later in this section. The seriation of parameters has,

however, produced a good result. Later in this section we show

a similar seriation for solutions to the radar data.

Fig. 6 presents the same data, this time using the visuali-

sation method presented by [3]. Here, unlike the method we

propose, the objectives and parameters are visualised with a

single heatmap, and the columns of the heatmap are clustered

so that both objectives and parameters are reordered together.

Solutions are clustered with single linkage hierarchical clus-

tering based on the Euclidean distance between their nor-

malised objective values. Similarly, objectives and parameters

are clustered together. As in Fig. 5, the distance parameters

have been gathered together, however the position parameters

and objectives are intermixed. This makes observation of the

trade-off between objectives more difficult and we prefer a

visualisation that keeps the two spaces separate. Additionally,
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(b) After seriation

Fig. 5: Seriation of both objective and parameter spaces for the WFG8
test problem. The upper panels show heatmaps of parameter space
(left) and objective space (right). The lower panels show the result of
first seriating the objectives, followed by the solutions according to
their objective space similarity (bottom right). The resulting solution
ordering is then applied to the solutions in parameter space, and the
parameters themselves are seriated to yield the bottom left heatmap.

the need to cluster both spaces together requires that a common

normalisation for parameters and objectives be found.

Whilst the example in Fig. 5 was seriated according to

objective space solutions, after which parameter-space solu-

tions were reordered to match the objective-space seriation,

it could justifiably be done the other way around. However,

there is clearly a trade-off between the quality of the solution

orderings in parameter and objective spaces. The simultaneous

clustering method [3] obscures the trade-off, giving unknown

relative weights to parameters and objective spaces. Here we

therefore seek to simultaneously optimise the ordering in both

by using a two-objective evolutionary algorithm to locate the
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Fig. 6: A heatmap of the WFG8 parameters and objectives, reordered
with hierarchical clustering as proposed by [3]. As in the other
heatmaps presented here, a row represents a solution and a column is
either an objective or a parameter (columns representing an objective
are marked on the abscissa). Solutions were clustered with single
linkage clustering based on the Euclidean distance between nor-
malised objective values, and objectives and parameters are clustered
together. Dendrograms show the clustering for solutions (on the left)
and objectives and parameters (top).

approximate the Pareto front between gy(π) and gx(π) (cf. (4)

and (13)).

We use a (µ + λ)–evolution strategy with a passive elite

archive to explore the trade-off between the quality of the

ordering in the two spaces as described in Algorithm 1.4

A population of µ permutations is maintained and at each

generation is mutated to generate λ offspring, which are

evaluated under the two objective functions (lines 5 and 6).

Non-dominated permutations are added to the elite archive

E and any permutations which the new entrants dominate

are removed (line 7). The best µ permutations of a Pareto

sorting [47] of the union of the parent and child populations are

retained to form the parent population for the next generation

(line 8).

Mutation was achieved by block transposition, in which

a block of elements are swapped with a second block of

elements, and shuffle transposition, in which the elements in

a block are shuffled at random [48]. Half of the time a single

randomly-chosen method was used; otherwise both methods

were used in a randomly chosen order. In all cases the block

length was randomly chosen in the range [1, ⌊K/10⌋].
The population was initialised with permutations generated

by seriating using a convex combination of the objective and

parameter space similarities:

Sη = ηA+ (1− η)Λ (16)

4This differs from the (µ + λ)–evolution strategy variants of the popular
Pareto Archived Evolution Strategy [46], which use an active archive.
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Fig. 7: Optimised trade-off between seriation quality in parameter space gx(π) and objective space gy(π) for the WFG8 solution set. The
main panel shows the initial solutions from seriation using the similarity matrix Sη (16) as plus symbols (also shown in the insert) and the
combined estimated Pareto front from 10 runs of the evolutionary optimiser. The heatmaps on the right-hand side of the figure correspond
to optimised solutions marked on the main panel by large circles. The top and bottom visualisations are the solution orderings found by the
MOEA which best optimise the parameter space ordering and objective space ordering respectively. The central heatmaps show a solution
towards the centre of the Pareto front. Objectives and parameters have also been seriated independently. Parameter space seriation has grouped
parameters x roughly into those which control the distance of a solution from the true Pareto front and those which control the angular
location of a solution on the front.

Algorithm 1 Multi-objective (µ+ λ)–evolution strategy with a passive elite archive for seriation.

1 : {πi}µi=1
:= initialise permutations() Initialise µ permutations

2 : {vi}µi=1
:= {(gx(πi), gy(πi))}µi=1

Evaluate the permutations in terms

of the seriation qualities

3 : E := extract nondominated({(vi,πi)}µi=1
) Initial estimate of the Pareto set

4 : for t := 1 : s For s generations

5 : {π′
i}λi=1

:= mutate({πi}µi=1
) Mutate parents to create children

6 : {v′
i}λi=1

:= {(gx(π′
i), gy(π

′
i))}λi=1

Evaluate children

7 : E := update elite archive(E, {v′
i}λi=1

, {π′
i}λi=1

) Update estimate of the Pareto set

8 : {(vi,πi)}µi=1
:= sort and extract({(vi,πi)}µi=1

∪ {(v′
i,π

′
i)}λi=1

, µ) Combine the populations, sort, and

extract the µ highest ranked

9 : end

with η chosen at equal intervals from η = 0 to η = 1, so that a

range of permutations is produced from those focusing entirely

on parameter space similarity to those focusing entirely on

objective space. In the results presented here the population

size was 100, and we set µ = λ, so each parent is mutated

into a single child.

Fig. 7 shows the combined non-dominated permutations

from 10 runs for the 200 WFG8 solutions and objectives

used previously. As the main panel shows, the solutions after

optimisation are very close to the initial solutions found via

equation (16).

The inset panel shows the objectives resulting from the

seriations of Sη used to initialise the evolutionary popula-

tion, together with the gx(π) and gy(π) corresponding to

200 randomly chosen permutations. Clearly the initialisation

using Sη provides a very good approximation to the trade-

off between gx(π) and gy(π) as identified by the MOEA.

Although the MOEA has improved the front slightly, its main

effect in this case has been to remove dominated members

of the seeded initialisation set and to fill in the gaps in the

initialisation set. Whilst it is useful for a decision maker to

have a full Pareto front on which to base their selection of
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Fig. 8: Optimised trade-off between seriation quality in parameter space gx(π) and objective space gy(π) for the radar data. The main panel
shows the initial solutions from seriation using the similarity matrix Sη (16) as pluses (also shown in the insert) and the combined estimated
Pareto front from 10 runs of the evolutionary optimiser. The heatmaps on the right-hand side of the figure correspond to optimised solutions
marked on the main panel by large circles. The top and bottom visualisations are the solution orderings found by the MOEA which best
optimise the parameter space ordering and objective space ordering respectively. The central heatmaps show a solution towards the centre
of the Pareto front. Objectives and parameters have also been seriated independently.

operating point, the MOEA has failed to uncover much beyond

the original initialisation set, although of course the dominated

solutions corresponding to low objective-space qualities gy(π)
have been eliminated. The heatmaps on the righthand side of

the main panel show the seriations produced by solutions along

the Pareto front approximation. The top heatmaps represent

the solution highlighted at the top of the approximate front

which is the best ordering with respect to parameter space.

The bottom heatmaps show the solution highlighted at the

bottom of the approximate front, namely the best objective

space ordering found and are essentially the heatmaps shown

in the bottom row of Fig. 5. The middle heatmaps represent

a compromise between the objective space and parameter

space coherence. There is a clear reduction in seriation quality

when parameter space is ordered in terms of objective space

similarity and vice versa. However, it may be worth accepting

this compromise in order to be able to view the two spaces

together.

We also demonstrate the result of optimising the joint

seriation of parameters and objective vectors for the radar

data. Fig. 8 presents the result of this optimisation, and

was produced by following the same procedure as that used

to produce Fig. 7 – this time utilising the negative mean

difference as the parameter space solution similarity (15).

As before, the MOEA was seeded with 100 permutations

obtained from seriating Sη for linearly spaced η and the non-

dominated permutations from the union of 10 runs are shown.

Like the WFG8 population, the MOEA has found permutations

which have only a marginal improvement over the initialised

seriations of Sη . For this particular problem, however, it is

clear to see that seriating solutions in objective space also

leads to a good ordering of solutions in parameter space (and

vice versa) and that either seriation is difficult to improve

upon. This indicates a strong correlation between solutions

and objective vectors, providing useful information to the

problem owner and we emphasise that this radar problem

is a real problem rather than a synthetic test problem. We

also draw attention to the marked improvement over random

permutations when using spectral seriation with any of the Sη .

It is not always possible to achieve an ordering that simulta-

neously groups like solutions in parameter space and objective

space. Nonetheless these two examples illustrate that a seri-

ation which compromises between parameter space grouping

and objective space grouping can be a helpful visualisation,

particularly as it allows the investigator to assess objectives

and parameters together.

Although on a limited number of examples, these results

indicate that seriation of convex combinations of A and Λ

provides a very good indication of the approximation to the

Pareto front achieved by the MOEA. We note that there may

be examples where a MOEA can improve more significantly

on the convex combination defined in (16). Here we have
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used the cosine similarity and negative mean difference for

measuring the proximity of parameter vectors, however, the

choice of similarity is less clear than for objective space, where

conversion to ranks simplifies the choice. Other similarity

measures may be more useful for other specific problems,

particularly for categorical parameters for which there is no

natural ordering.

Visualising both the parameter and objective spaces together

can be useful for a decision maker, and this section has pre-

sented a lossless technique for producing such a visualisation.

As heatmaps are not restricted in terms of dimensionality or

the number of solutions that they can represent, they are an

important tool for the many-objective optimisation community,

and we have outlined a simple technique for enhancing their

clarity to support their use in decision making. In addition to a

relatively low computational complexity, the spectral seriation

method is flexible in that it allows the choice of a similarity

measure that specifically suits the type of optimisation to be

visualised.

V. VISUALISATION IN THE PLANE

Visualising solutions as points in the two-dimensional plane

is appealing and intuitive. People are well adapted to under-

standing maps and diagrams in which physical proximity of

points indicates that the points are similar, and Gestalt theories

suggest how the human perceptual system can organise group-

ings of points into perceptually significant clusters. Methods

such as PCA, SOM, Neuroscale and the GTM are all general

purpose dimension reduction techniques that can be used

to represent M -dimensional objective vectors as coordinates

in the plane; they all attempt, explicitly or implicitly, to

preserve in the plane the distances between points in the

original M dimensions. These methods for general data are

however ignorant of the mutually non-dominating nature of

the solutions to multi-objective problems. In this section and

section VI we examine two techniques for obtaining planar

representations of a set of solutions which use the mutually

non-dominating nature of the solutions.

The first method is closely related to RadViz [9], [49]

which, along with related methods, has been extensively used

for visualising multivariate data in “radial” coordinates [50],

[51]; see [52] for an insightful derivation of the properties

of RadViz and related “normalised radial visualisations”. A

frequently used analogy for understanding RadViz involves

“anchor points” which are chosen on the circumference of a

circle in the plane. Each of these anchor points is associated

with a coordinate in the high dimensional space. The point

to be visualised is imagined to be connected to the anchor

points by springs whose stiffness is proportional to the point’s

corresponding high-dimensional coordinate; it is visualised in

the plane by the location at which the spring forces are in

equilibrium. To our knowledge RadViz has not be used for

visualising sets of mutually non-dominating solution objec-

tives. In this section we therefore give a new derivation of the

RadViz algorithm using barycentric coordinates and emphasise

why it may be useful for visualising mutually non-dominating

sets.

y1

y2

y3

λ3

λ2

λ1

O

y

ŷ

Fig. 9: Projection of a point y onto the simplex defined by
{λ1, λ2, λ3}; y is projected to ŷ.

Put simply, barycentric coordinates are used to map solu-

tions from M dimensions to the interior of a regular planar

polygon with M vertices. Without loss of generality, we

assume that the solutions yk to be visualised are all non-

negative (ykm ≥ 0 for all k,m). Then the simplex defined by

the numbers {λm : λm > 0}Mm=1
is the portion of the (hyper-)

plane that lies in the positive orthant and which intersects the

coordinate axes at distances λm from the origin, as illustrated

in Fig. 9. The simplex is therefore the segment of the plane

in the positive orthant defined by

n · y = d ym ≥ 0, m = 1, . . . ,M (17)

where the elements of the unit vector n normal to the simplex

are nm = d/λm and the perpendicular distance to the origin

d can be found as

d−2 =

M
∑

m=1

λ−2

m . (18)

We project the mutually non-dominating set of solutions onto

the simplex by:

ŷk = yk/(yk · n). (19)

Importantly, note that a mutually non-dominating set remains

mutually non-dominating after projection onto the simplex, so

dominance relations are preserved by this projection. However,

since all points on the ray from the origin through y are

projected to ŷ this projection obscures the relations in general

sets of points.

The ŷk are now mapped to the plane using barycentric

coordinates as follows. Barycentric coordinates are well known

for triangles, but the idea is readily generalised to convex

polygons in the plane and to simplices in more than two

dimensions such as the vertices of the simplex described above

[53], [54]. Let λm = (0, . . . , λm, . . . , 0) be the position vector

of the m-th vertex. Then the barycentric coordinates of ŷ are
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defined as the weights ωm so that

ŷ =
M
∑

m=1

ωmλm (20)

with the constraints that ωm ≥ 0 and
∑

m ωm = 1. When

ŷ is close to vertex λm then ωm is large and the other ωn,

n 6= m, are small. If, instead, the {λm}Mm=1
define the vertices

of a convex polygon in the plane, then the ωm correspond to

the weights that must be placed at the vertices in order to

balance the polygon on a spike at ŷ. Note that there is a

redundancy in the M barycentric coordinates because M − 1
of them completely determine the remaining one through the

constraint that they sum to 1; in an M -dimensional space this

may be viewed as arising from the constraint that ŷ is confined

to the (M − 1)-plane of the simplex.

The vector of the first M − 1 barycentric coordinates

corresponding to ŷ is found as

ω1:M−1 = B†(ŷ − λM ) (21)

where B is the M × (M − 1) matrix whose m-th column is

λm −λM , and B† ≡ (BTB)−1B denotes the pseudo-inverse

of B. Then ωM = 1−
∑M−1

m=1
ωm.

Let vm, m = 1, . . . ,M be the vertices of a regular polygon

P in the plane, centred on the origin:

vm =

[

cos(2π(m− 1)/M)
sin(2π(m− 1)/M)

]

. (22)

An M -dimensional point in the simplex ŷ is mapped to the

point z in P that has the same barycentric coordinates ω as

ŷ, namely

z = Vω (23)

where V is the matrix whose columns are the vectors vm.

The vertices of P are identified with the objectives to be

minimised. Thus a solution yk that has a large value ykm for

the m-th objective will be mapped close to the m-th vertex

vm. Solutions which have approximately equal values on all

objectives will be mapped close to the centre of the polygon.

There remains an additional degree of freedom because

the identification of which vertices of P correspond to which

objectives has not been made. If P is an M -dimensional

permutation matrix, then (23) may be modified to

z = VPω (24)

where we are at liberty to choose the permutation. Since

the vertices may be considered to lie on a circle and clock-

wise and anti-clockwise permutations are equivalent there are

(M − 1)!/2 distinct permutations. Methods such as VizRank

[55], which are used for visualising data labelled into classes,

use heuristic search to locate permutations which give good

separations of the classes in the visualisation plane. Here

solutions do not belong to naturally defined classes5 although

it would be possible to search for permutations which yield

good clusters in the visualisation. A further possibility to

determine the order of the objectives around the vertices of

5One possibility would be to assign labels according to the objective on
which the solution has best rank, as done to colour solutions in Fig. 1.

P is to minimise a stress measuring how well near-neighbour

distances are preserved in the projection into P; see [5] and

[56] for examples of this approach in other contexts. Here

we elect to order the objectives around the polygon so that

similar objectives are placed near to each other. Empirically

we find that this tends to place solutions which are near

neighbours in objective space close to each other in the

planar representation. As above, we use Spearman’s footrule

to measure the similarity of two objectives, fm and fn, by the

sum of the absolute differences between the ranks of solutions

on those two objectives:

Smn = Dmax −
K
∑

k=1

|rkm − rkn| (25)

This periodic seriation problem may be solved in a similar

manner to the linear seriation already described [57].

In summary, the visualisation is found by projecting y

to ŷ on the simplex using (19), which allows barycentric

coordinates ω to be found via (21), after which the coordinates

in the plane z are calculated with (24). The order of the

vertices is chosen by periodic seriation using (25) to measure

the similarity of objectives.

The computational complexity of the projection (dominated

by finding the pseudo-inverse (21)) and seriation is O(M3).
For the numbers of objectives typically involved in many-

objective optimisations the computation is sufficiently fast to

be incorporated in interactive tools.

Fig. 10 shows the visualisation of three examples from well-

known test problems. The problem DTLZ6 [11] has a Pareto

front comprising several disconnected “cushions”; the four

clusters are evident in the visualisation of 500 solutions on the

true Pareto front shown in Fig. 10(a) for M = 3 objectives.

If the planar representation zk of a solution yk lies close to

vertex vm then the objective ykm tends to be large, or the

objectives on the opposite vertices are small. Solutions with

similar values for all objectives tend to be mapped close to

the centre of the polygon.

The solutions are coloured by their average rank:

r̄k =
1

M

M
∑

m=1

rkm. (26)

The visualisation reveals the symmetry between objectives

y1 and y2. It is clear that very good (low, blue) average

rank solutions are achieved only at the expense of large y3;

likewise intermediate average rank solutions (average rank

≈ 230, coloured cyan) are found close to the y3 – y1 and

y3 – y2 edges which correspond to small values of y2 and y1
respectively. However, the projective nature of the visualisation

means that it is unable to uncover the distinct clusters in

the DTLZ6 problem with M = 4 objectives, as shown in

Fig. 10(b) (none of the alternative permutations of the vertex

order are more successful). Nonetheless, it does reveal the

symmetry between objectives y1 and y3 and the distinguished

axis y4, and in conjunction with the average rank colouring,

permits the decision maker to explore regions of low and high

rank solutions. As a final test problem example we show in

Fig. 10(c) the visualisation of the degenerate front for the
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Fig. 10: Visualisation in the plane using RadViz. Vertices of the polygon are labelled by the objective to which they correspond. A solution
close to a vertex m tends to have a large ym, while solutions with approximately equal objectives lie close to the centre of the polygon.
Solutions are coloured by their average rank.
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Fig. 11: Visualisation in the plane of the radar data solutions. Vertices
of the polygon are labelled by the objective to which they correspond.
Solutions are coloured by their average rank. The best and worst
solutions for each objective are labelled in blue and red respectively.
A solution close to a vertex m has a large ym.

Walking Fish Group problem WFG3 with 5 objectives. As

the visualisation clearly shows this front is a one-dimensional

curve through objective space, terminating on the y5 axis. The

visualisation maps straight lines in objective space to straight

lines in the visualisation plane [52].

Fig. 11 shows the 200 solutions of the 9-objective radar data

used earlier mapped to the interior of a nonagon. As before

solutions are coloured according to their average rank, and

the best and worst solutions for each objective are labelled in

blue and red respectively. Clearly there is some information

loss resulting from the projection onto the plane and the ykm
themselves cannot be simply read from this diagram, but the

representation places solutions with similar objective values

close together in the plane. As before, solutions which have a

poor value on objective m tend to be placed close to vertex

vm, while solutions which have a good value for an objective

tend to be placed opposite that objective, for example in this

plot the best solutions for y6 and y8, which also have low

average rank. We note also that solutions with extreme values

of the objectives tend to be placed around the “edges” of the

visualisation in keeping with the intuition that the extremes lie

on the edges. The grouping of similar objectives together with

periodic seriation further enhances interpretability because if

a solution tends to have large values for a group of objectives

it can be placed close to that group.

The choice of values for the λm determining the simplex in

objective space clearly affects the visualisation, however we

find that it is insensitive to the precise choice; for example,

setting λm to be the mean or median of ykm makes the

visualisation relatively invariant to scaling of the objectives.

Rather than a linear scaling, however, we prefer to transform

the set to “rank coordinates” rkm as described above for

heatmaps. This was done to produce Figs. 10 and 11. Choosing

the λm = λ for all m then treats objectives equally and the

precise value of λ is irrelevant.

Diagrams such as Fig. 11 have their greatest utility in

interactive tools that allow the decision maker to interrogate

particular solutions.6 Understanding and choice of a particular

solution is also be facilitated by colouring the solutions as in

the figures, where solutions are coloured by their average rank

(26). Low average rank tends to indicate those solutions which

achieve relatively good objective values on all objectives, and

may be promising candidates for decision makers seeking a

trade-off between objectives. We have investigated colouring

with a variety of alternative measures of solution quality, such

as preference ordering [58] and the power index [59], [60],

[61], [62] adapted for use with many-objective populations

[7]. Overall we find that the average rank, which is equivalent

to the outflow ordering [63], [7], is simple to compute and

provides the same qualitative information as alternatives.

6An interactive tool is available from http://emps.exeter.ac.uk/staff/reverson
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Fig. 12: Planar visualisation of convex outwards (left) and concave
(right) sets with 3 (top) and 5 (bottom) objectives. Solutions are
coloured by average rank.

The average rank also provides an interesting interpretation

of the projection of the rank coordinates rk onto the simplex.

As described above (cf. Fig. 9 and equation (19)), a solution

yk in ranked coordinates rk is projected onto the simplex to r̂k
by contracting it by a factor γk = ‖r̂k‖/‖rk‖ = rk · n where

n is the unit vector normal to the simplex. If, as suggested

above for rank coordinates, the simplex is chosen with all

the λm equal, then n = 1/
√
M , where 1 is a vector of 1s.

Consequently γk = rk · 1/
√
M ∝ r̄k, the average rank. Thus

the average rank of a solution is proportional to the factor by

which the solution (in rank coordinates) must be contracted in

order that it lies on the simplex. Solutions with low average

rank are close to the simplex, whereas solutions with high

average rank are distant from the simplex.

This observation can be used to infer some information

about the configuration the solutions. Solution sets which are

convex outwards (such as the Pareto front for the DTLZ2

problem shown in Fig. 1(b)) have low average rank solutions

towards the edge of the set, while low average rank solutions

tend to be on the periphery when the set is concave. This is

illustrated in Fig. 12 for 3 and 5-dimensional solutions lying

on convex and concave fronts:7 clustering of the high average

rank solutions in the centre of the convex is evident, while

high average rank solutions tend to be closer to the edges for

the concave case.

VI. DOMINANCE DISTANCE FOR MULTIDIMENSIONAL

SCALING

The planar visualisation method presented in the previous

section is an explicitly geometric construction that transforms

the corners of the simplex in objective space to the vertices

7Solutions on the convex front in three dimensions lie on the positive octant
of a spherical shell centred on the origin. Solutions on the concave front lie
on the negative octant of a spherical shell centred on the origin and then
translated by (1, 1, 1). Likewise for 5 objectives.

of a polygon. Although this method, unlike general dimension

reduction methods such as PCA, GTM, Neuroscale and the

SOM, takes account of the mutually non-dominating nature

of the solutions, it does not take into account the relations

between objectives. Here we define a new measure of the

similarity of solutions, which attempts to capture the degree

of dominance between solutions. This “dominance distance”

is then used to embed the solutions in Euclidean space via

metric multidimensional scaling (MDS) [64], [65].

Although the solution sets to multi- and many-objective

problems comprise mutually non-dominating solutions, for

generality we consider sets of points {yk}, some of which may

dominate others. We regard two points yk and yj as similar

if they both dominate a third point yp or are both dominated

by yp or are both mutually non-dominating with yp. Refining

this idea, we define the similarity of yj and yk relative to yp

as proportional to the number of objectives on which yj and

yk have the same relation (greater than, less than, or equal)

to yp. Thus

S(yk,yj ;yp) =
1

M

M
∑

m=1

[

I((ypm < ykm) ∧ (ypm < yjm))

+ I((ypm = ykm) ∧ (ypm = yjm))

+ I((ypm > ykm) ∧ (ypm > yjm))
]

(27)

where I(p) is the indicator function that is 1 when the

proposition p is true and 0 otherwise. The second term in

(27) accounts for exact equality on an objective; although this

occurrence is very rare with real-valued objectives it may arise

with integers or as the result of rounding during measurement,

see for example [66]. We define the distance relative to yp as:

D(yk,yj ;yp) = 1− S(yk,yj ;yp). (28)

The dominance distance is obtained by averaging

D(yk,yj ;yp) across all the elements of the set:

D(yk,yj) =
1

K − 2

K
∑

p=1

p/∈{k,j}

D(yk,yj ;yp). (29)

Theorem 1: The dominance distance (29) is a metric.

Proof: It is clear from (27) that D(yk,yj) = D(yj ,yk).
Since the maximum value of the sum in (27) is 1, 0 ≤
S(yk,yj ;yp) ≤ 1 and therefore D(yk,yj ;yp) ≥ 0 and

D(yk,yj) ≥ 0. It is easily checked by direct substitution

in (27) that S(y,y;yp) = 1 for all yp, so D(y,y) = 0.

Conversely, S(yj ,yk;yp) = 1 for all yp only if ykm = yjm
for all m. Thus D(yk,yj) = 0 iff yk = yj .

To see that D(·, ·) obeys the triangle inequality we associate

with yj and yk strings bj and bk of length M on an alphabet

of the symbols {−1, 0,+1}, so that a −1 in position m of the

string for yk indicates that ykm < ypm, a +1 if ykm > ypm,

and 0 if ykm = ypm. For example, with M = 7 objectives:

m 1 2 3 4 5 6 7

bj −1 −1 +1 +1 −1 +1 0
bk −1 +1 −1 +1 +1 +1 −1
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Fig. 13: Dominance distance MDS visualisations of the DTLZ6 test
problem. Solutions are coloured by their average rank. The grey lines
indicate the edges of the axis-parallel bounding box of the data which
meet at the global best point. The best and worst solutions on each
objective are labelled by that objective in blue and red respectively.

Here yj is greater than yp on objectives 3, 4 and 6, and yj7 =
yp7, while yk is greater that yp on objectives 2, 4, 5 and 6.

Then M × D(yk,yj ;yp) is the Hamming distance between

the strings bj and bk, namely the number positions in which

their symbols disagree. In the example D(yj ,yk;yp) = 4/7.

The Hamming distance is well known to be a metric which

shows that D(·, ·) is also a metric.

A further characterisation of the dominance distance is

provided by noting that with one objective (M = 1) the

distance is just the sum of the difference in the ranks:

D(yk, yj) = |rk − rj |. Consequently

D(yk,yj) =
1

M

M
∑

m=1

|rkm − rjm| (30)

so the distance between individuals is measured by the average
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Fig. 14: Dominance distance MDS visualisations of the radar data. In
Fig. 14a solutions are coloured by their average rank, whilst in Fig.
14b they are coloured by the objective for which they have the best
rank, as were solutions in the example visualisations shown in Fig. 1.
The grey curves indicate the edges of the axis-parallel bounding box
of the data which meet at the global best point. The best and worst
solutions on each objective are labelled by that objective in blue and
red respectively.

magnitude of the difference in their ranks on each objective.

Note that this is not the magnitude of the difference of their

average ranks. Equation (30) provides an efficient method

of calculating D(yk,yj) compared with a straightforward

application of (27) and (29).

Since D(·, ·) is a metric, obeying the triangle inequality, the

matrix with elements Dkj ≡ D(yk,yj) is a Euclidean distance

matrix [67], [68] and there exists a set of points zk ∈ R
K

separated by Euclidean distances ‖zk − zj‖ = Dkj .

If F = ZZT is a decomposition of

F = −1

2

(

I − 11T

K

)

D

(

I − 11T

K

)

(31)
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then the rows of Z are coordinates of the points that generate

D. Metric multi-dimensional scaling [69], [64], [65] finds a

spectral decomposition of F, which is positive semi-definite,

and projects the embedding onto the principal eigenvectors

of F, thus retaining the best linear approximation (in a least

squares sense) to the full embedding. Spectral decomposition

of F has a computational complexity of O(K3), however,

projections of several hundred points can easily be achieved in

a second and if necessary the procedure might be made more

efficient by finding only the principal few eigenvectors of F.

Fig. 13(a) shows 500 3-objective DTLZ6 solutions pro-

jected onto the principal two eigenvectors of F. As before

solutions are coloured by their average rank. Also marked

are the best and worst solutions for each objective and the

edges of the axis-parallel bounding box which contains the

solutions which meet at the global best point [70], namely

(mink(yk1),mink(yk2), . . . ,mink(ykM )); these edges are par-

allel to the coordinate vectors in the M -dimensional space.

The visualisation reveals the symmetry between objectives

y1 and y2, with y3 a distinguished objective. Note that the

worst solutions on each objective are mapped close to the

ends of bounding box axes, while the best solutions are op-

posite these ends, indicating that the visualisation is providing

a topographic representation from the dominance distance,

which is itself based only on the greater than or less than

relations between solutions. It is clear from the visualisation

that good average rank (dark blue) corresponds to poor values

of y3 and good y3 solutions are only obtained by having a

poor average rank. Note that although the distinct clusters are

not evident, the average rank shows that there are isolated

patches of high and low rank. The original clusters are not

visible because the dominance distance discards raw distance

information, favouring instead information about the relative

quality of solutions.

Fig. 13(b) shows solutions from the 5-objective version of

the test problem. It is apparent that the visualisation has iden-

tified a remarkably similar structure and symmetry inherent

in the solution set despite the additional two objectives. The

last objective y5 is again distinguished and there is a good

correlation between objectives y1 and y2 (the bounding box

axes are mapped almost on top of one another), and between

y3 and y4.

The dominance distance visualisation of the degenerate

WFG3 solutions (cf. Fig. 10(c)) maps the solutions to a single

line along the coordinate axis with solutions arranged by

average rank along it, and there is only a single non-zero

eigenvalue of F.

Fig. 14 shows the dominance distance visualisation of 200

radar data solutions. As indicated by the bands of colour,

which represent bands of similar average rank, in Fig. 14(a) the

method has produced a diagram which groups similar solutions

together, allowing a decision maker to identify groups of

solutions which have similar relations to other solutions in

the set. Here the low-average rank solutions are located along

the top of the “crescent” of solutions. There are bands of

solutions with similar average rank running along the length of

the “crescent”. Those at one end of the “crescent” are related

to other solutions in ways more similar to each other than

those at the other end; that is, solutions at one end all tend

to be greater than or less than other solutions on the same

objectives. Note that the bounding box axes, which are more

distant from the front than in the DTLZ6 front, are grouped

into those associated with range (objectives 1, 3, 5 and 7) and

those associated with velocity (objectives 2, 4, 6 and 8). It

is interesting to note that the axis for y9 has been placed

close to y4 and near to the y2, y8 and y6 axes, which is also

the result of seriating the objectives for heatmap visualisation

(cf. Fig. 2(c)). The visualisation shows that the low average

rank solutions are associated with good values for y2, y6 and

y8, while the best solutions for the other objectives, located

near the horns of the crescent, have high average rank and

are close to (or identical to) solutions which are very poor on

other objectives.

We emphasise that this spatial arrangement in the visual-

isation plane reflects the similarity of order relations among

solutions, rather than their spatial configuration in objective

space. Nonetheless, as the colouring by best objective shows

in Fig. 14(b), visualisation by dominance distance tends to

group solutions that are close in objective space.

Here 54.3% of the variance in the K-dimensional em-

bedding is retained in the 2-dimensional projection onto the

plane. Projection onto the third eigenvector of F captures

an additional 5.5%, but visualisation and interpretation of

the three-dimensional representation is more cumbersome.

One avenue that might be explored to further reduce the

dimensionality is to use the Isomap [71] or similar nonlinear

dimension reduction methods to look for non-linear manifolds

in the data.

VII. CONCLUSION

We have presented a variety of methods for visualising the

many-objective mutually non-dominating sets being produced

by current multi- and many-objective evolutionary algorithms.

Heatmaps are a standard, well-understood visualisation

method used in many areas. Here we have shown how their

interpretability may be greatly enhanced by spectral seriation

of both the objectives and the solutions in order to place

similar objectives and similar solutions together. Seriation

in parameter space facilitates understanding of the effect

of decision variables on solutions. A straightforward multi-

objective evolutionary algorithm gives small improvements

over spectral seriation and suggests that in many cases the

convex combinations of the objective and parameter space

similarity matrices will yield orderings close to the seriations

found by the multi-objective evolutionary algorithm, which

will be important for using the method to monitor the progress

of optimisations.

Throughout this paper we have emphasised the use of

ranks rather than the raw objective values themselves. Use

of rank coordinates captures the dominance relations between

solutions and removes unknown relative scaling information in

a natural way. It also means the visualisation produced is much

less fragile to the insertion or removal of an individual because

the net effect is to vary the range of the ranks by one rather

than the potentially large range and scaling shifts with raw
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values. Furthermore the relative order of a ranked solution is

only affected at the insertion point, unless it is directly adjacent

to the new solution or removed solution, its neighbours will

be unchanged, and the largest rank shift any solution will

experience on an objective is one. That said, we point out that

if the solutions all have nearly equal values, ranking magnifies

the small differences between them; in this case it will be

important to ensure that the differences are significant. As a

by-product ranking also performs histogram equalisation of

the objectives so that the full colour scale is used. Use of

ranks leads naturally to measures such as Spearman’s footrule

and Kendall’s τ for measuring the similarity of objectives; we

prefer Spearman’s footrule for its computational simplicity and

ease of interpretation.

Two planar visualisation methods of the solutions were

presented. RadViz, exploiting interpretations of barycentric

coordinates in objective space and the visualisation plane,

provides an intuitive visualisation of the objective locations,

and places solutions in relation to them. With many objectives

the information compression that must occur to map the

solutions onto the interior of a polygon is severe and can lead

to potentially confusing placement of the solutions. However,

the relationship between solutions and objectives is often

easier to comprehend than in other point-based representations.

The introduction of the novel measure of solution similarity

based on order relations with other solutions in the set permits

an embedding of the solution set in Euclidean space. Standard

linear and non-linear dimension reduction methods can then be

used to visualise the solutions in two or three dimensions. We

emphasise that the dominance distance measures how similarly

two solutions relate to the rest of the set and thus provides a

key to further analysis. The dominance distance can be used

to cluster solutions and, in sets containing individuals that

dominate other individuals, it identifies an axis describing the

Pareto ranking structure [66]. Current work is exploring its use

for identifying structure, such as outliers, within the solution

set.

Visualising many-objective solutions in two or three dimen-

sions inevitably necessitates a loss of information and it is

likely particular methods or combinations of them will be more

effective for particular problems; indeed it is very unlikely

that a single method will work well for all problems. The

methods presented here are designed to put a suite of tools at

the many-objective investigator’s disposal. Spectral seriation

and the planar visualisation methods rely on linear algebra

and matrix eigendecomposition. They are thus computationally

cheap, especially in comparison with the computational effort

required to obtain the solutions, and are sufficiently fast to be

incorporated in interactive tools.

In this paper we have discussed the visualisation of static

populations and important future work will be to develop

methods for the effective visualisation of changing popula-

tions as an optimisation evolves. As a first step the methods

presented here are generally cheap enough to be recomputed

afresh each time the population changes. Also, small changes

in the population produce small changes in the visualisation

and both the RadViz and dominance distance methods can

straightforwardly incorporate new solutions that were not used

in determining the original visualisation. However, additional

work is required on effective dynamic visualisation methods

that link the temporal evolution of individuals.

Finally, we point out that although these visualisations may

aid understanding of the global structure of the solution set,

work remains to be done on characterising the local structure,

for example: where are the “knees” in many-objective Pareto

fronts?
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