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A model illustration should present the model accurately and give 
a precise picture of the implemented model. Illustrations created 
manually using a computer present the mental image in the mind 
of the artist, and this might differ from the implemented model. 
Illustrations created automatically from the same piece of code which 
generates the network model avoid this disparity. This has two advan-
tages: First, the researcher can use the illustrations to verify the model 
setup, thus making sure the model is implemented as desired, and 
second, the illustrations can be used as a starting point for the model 
description to ensure a correct description of the model.

The aim of an illustration is to convey specifi c information via 
the visual channel to the reader. Beck took the complex tube maps 
and simplifi ed them by removing information to more effectively 
convey the specifi c information of greatest interest to the subway 
users. Travelers interested in the geography had to look elsewhere 
for that information. The same principles should be applied to 
illustrations of neuronal network models. A better defi nition of 
what to display in illustrations will help both authors and readers of 
neuronal network model papers to better understand the model.

Tufte (1983, p. 191) characterizes the designer’s task such:

What is to be sought in designs for the display of information is the 
clear portrayal of complexity. Not the complication of the simple; 
rather the task of the designer is to give visual access to the subtle 
and the diffi cult – that is, the revelation of the complex.

Faced with a publication practice marked by unsatisfactory 
illustrations of neuronal network models, we take on the role of 
the designer (Simon, 1996) to change this situation for the better 
by devising new types of network diagrams.

We suggest to split model illustrations into two parts. Box-and-
arrow diagrams provide an overview of the network structure. To 
present details, we propose Connectivity Pattern Tables (CPTs) as a 

INTRODUCTION

For decades, maps of the London Underground showed the tracks as 
colored lines on top of a geographic map. That was until Underground 
employee Harry Beck came up with a new way of illustrating the 
tracks. He realized that the traveler was more interested in how to 
get from A to B than in the geography above ground, and in 1931 he 
presented the fi rst diagrammatic map of the Underground without 
reference to the geography. The travelers embraced the new illustra-
tion, and his fi nal design from 1960 is very similar to modern-day 
maps of mass transit systems around the world (Garland, 1994).

In publications on neuronal network models, an illustration of 
the model serves as crucial support to the textual description of the 
model. Most readers turn to fi gures fi rst when studying a scientifi c 
publication. Figures should therefore be given the same attention 
upon creation as words (Briscoe, 1996). In the last few years the inter-
est in network descriptions in general has increased, as indicated by 
the establishment of a task force on a standard language for neuronal 
network model descriptions under the auspices of the International 
Neuroinformatics Coordinating Facility (INCF) and several meetings 
on the topic (Cannon et al., 2007; Djurfeldt and Lansner, 2007).

Model illustrations typically show the model components as 
geometric shapes, and connections are marked by arrows. The level 
of detail of the connectivity may vary in such “box-and-arrow dia-
grams”, as illustrated in Figure 1A. For simple network models with 
few connections, box-and-arrow diagrams work well. For complex 
networks with many connections, the number of lines increases and 
line-crossings become unavoidable, resulting in cluttered illustra-
tions such as Figure 1B. Purchase (1997) showed that line-crossings 
greatly impact the aesthetic of an illustration and that they should 
be kept to a minimum. Also, in the common way of illustrating 
neuronal network models, there is rarely information on the spatial 
structure of the connections.
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new way of illustrating the existence and properties of  connections. 
CPTs combine and extend elements of connectivity matrices devel-
oped by neuroanatomists and -physiologists (Felleman and Essen, 
1991; Scannell et al., 1999; Dantzker and Callaway, 2000; Sporns 
et al., 2000; Binzegger et al., 2004; Briggs and Callaway, 2007; 
Helmstaedter et al., 2008; Weiler et al., 2008) and Hinton diagrams 
known from artifi cial neural network research (Hinton et al., 1986) 
to the illustration of neuronal network models, for which all design 
parameters are known explicitly.

Below, we first review principles of visualization, before giv-
ing an overview of what needs to be illustrated in a neuronal 
network model, and how this has been done in the compu-
tational neuroscience literature so far. We then present con-
nectivity pattern tables as a new way of illustrating neuronal 
network connectivity, and describe the ConnPlotter tool for 
the automatic creation of such illustrations from the network 
model implementation.

PRINCIPLES OF VISUALIZATION

The use of illustrations dates back to cave paintings drawn some 
32,000 years ago (Clottes and Féruglio, 2009), about 25,000 years 
before the fi rst writing system was developed (Writing, 2008). In the 
early days, illustrations were used to communicate ideas, practices 
and customs. Artists such as Leonardo da Vinci combined illustra-
tions and science, and introduced what is now known as technical 
drawings (Hulsey, 2002).

Today, illustrations play an important part in science and are 
natural elements in scientifi c publications. The illustrations are 
technical illustrations rather than technical drawings, differing in 
their purposes and thus their appearance. Technical drawings are 
detailed and used for designing and manufacturing artifacts, while 
technical illustrations are less detailed, with the main purpose of 
conveying information about an object quickly and clearly (Giemsa, 
2007). When we later refer to illustrations, diagrams or fi gures, we 
mean technical illustrations.

A picture is worth more than a thousand words: complex  concepts 
can be described with just a single illustration conveying large amounts 
of information quickly. This does not make prose redundant, but 
visual representations aid in transferring knowledge between people, 
and give insight more effi ciently than text (Briscoe, 1996; APA, 2001). 
A good diagram has a clear and deliberate message. It conveys complex 
ideas in the most simple way without losing precision (Tufte, 1983; 
White, 1984; Briscoe, 1990; Nicol and Pexman, 2003).

VISUALIZING NEURONAL NETWORK CONNECTIVITY

The description of a neuronal network model in a publication 
should cover the network architecture, connectivity, and neuron 
and synapse models. The description is typically in prose, accom-
panied by a fi gure (Nordlie et al., 2009). In the literature we fi nd 
models ranging from simple models with few parts and connections 
to larger models with more parts and intricate connectivity. Despite 
the apparent difference in complexity, we fi nd that all models are 
visualized in the same manner.

There is seldom more than one fi gure of the model in a paper 
on neuronal networks, the sole fi gure comprising information on 
network architecture, connectivity, and in some cases also neuron 
and synapse models. Geometric shapes such as squares, rectangles 
and circles represent the parts of the network model, while connec-
tions are marked by lines linking source and target. A line indicates 
a connection, and line style or line endings are commonly used to 
convey information about the connection type, e.g., excitatory or 
inhibitory, or the connection strength. Typical end-symbols are 
arrowheads or crossbars. The same symbol may represent differ-
ent things: crossbars are used to mark excitatory connections in 
Hayot and Tranchina (2001, Figure 2) and inhibitory connections 
in Hill and Tononi (2005, Figure 1). There is no established com-
mon practice in the computational neuroscience literature for how 
to visualize what, or which notation to use (Nordlie et al., 2009). In 
addition, the box-and-arrow diagrams just described do not include 
connectivity details, e.g., the projection pattern.

A B C

FIGURE 1 | Hierarchy of diagrams of a complex network model (after Hill 

and Tononi, 2005). (A) Overview diagram showing only the main parts of the 

network, i.e., retina (Ret.), thalamus (Tp), thalamic reticular nucleus (Rp), and 

cortical populations Vp(v) and Vp(h), tuned to vertically and horizontally oriented 

stimuli, respectively. Arrows mark excitatory, circles inhibitory connections. 

(B) Detailed diagram of connectivity within cortical population Vp(v). Vp(v) is 

composed of three cortical layers, each with an excitatory (left) and inhibitory 

(right) subpopulation. Solid lines represent excitatory, dashed lines inhibitory 

connections. (C) Detailed rendition of connection masks and kernels 

projecting onto one cortical subpopulation Vp(v)L56(e) from panel (B), i.e., the 

excitatory subpopulation of layer 5/6 of Vp(v). Modifi ed from Nordlie et al. 

(2009, Figure 6).
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For simple network models, the box-and-arrow diagrams fi t 
well, since the number of parts and connections are relatively small. 
For more complex models, such illustrations are not reasonable, 
because there is too much information to display. Briscoe (1996, 
p. 6) points out that

[t]he most common disaster in illustrating is to include too much 
information in one fi gure. Too much information in an illustration 
confuses and discourages the reader.

To avoid the information overload in a single fi gure, we suggest 
to distribute the information between several fi gures, each showing 
different hierarchical levels. As an example, we consider the com-
plex thalamocortical model presented by Hill and Tononi (2005). 
Following Nordlie et al. (2009), we illustrate this model here using a 
hierarchy of three drawings in Figure 1: panel A provides an overall 
view of the network, panel B details the connectivity within the 
cortical populations tuned to vertical stimuli, while panel C gives 
details on projection patterns into a single cortical population.

In spite of the increased clarity provided by hierarchical fi gures, 
there is still too much information in, e.g., Figure 1B. The number 
of connections are many and line crossings cannot be avoided. This 
makes it diffi cult to see which parts connect where, even though 
sources are given different colors. The seminal network diagram 
of the primate cortex by Felleman and Essen (1991) indicates how 
daunting network illustrations can become.

CONNECTIVITY MATRICES

Neuronal networks may be described as directed graphs. In graph 
theory, graphs are commonly described using connectivity matrices. 
Each row of a connectivity matrix represents the connections (edges) 

from one graph element (node) to all other nodes. Connectivity 
matrices are used in several contexts: They are widely used to present 
connectivity in neuronal networks (see e.g., Felleman and Essen, 
1991; Sporns et al., 2000; Sporns, 2002). The CoCoMac-project 
(http://cocomac.org) uses connectivity matrices to display the exist-
ence of connections in the primate brain. Binzegger et al. (2004), 
Binzegger et al. (2009) extend connectivity matrices and present in 
each cell the number of synapses for a connection. The connectiv-
ity matrices in Scannell et al. (1999) and Weiler et al. (2008) show 
connectivity strength. Dantzker and Callaway (2000) and Briggs and 
Callaway (2007) visualize actual input to cortical neurons in the form 
of connectivity matrices, i.e., input maps, whereas Helmstaedter et al. 
(2008) show axonal density maps of cortical layer 4 neurons. Hinton 
diagrams (Hinton et al., 1986), a variant of connectivity matrices, 
are commonly used in the artifi cial neural network literature to 
visualize network connectivity. Hinton diagrams show squares or 
circles with an area proportional to the strength of each connec-
tion. Figure 2A shows a simple network example, and three types 
of connectivity matrices: panel B displays existence of connections, 
as in the CoCoMac-matrices, while panel C indicates connection 
strength by color code, ranging from dark red via yellow to white, 
as in Binzegger et al. (2004, 2009). Finally, panel D displays the same 
connectivity using a Hinton diagram.

CONNECTIVITY PATTERN TABLES

We present here Connectivity Pattern Tables (CPTs) as a compact, 
machine generatable visualization of connectivity in large neuronal 
networks, showing not only the existence or strength of a connec-
tion, but also its spatial structure. The essential features of CPTs 
are (i) a clutter-free presentation of connectivity, (ii) high informa-
tion content with respect to the spatial structure of  connectivity, 
(iii) ability to represent connectivity at several levels of aggregation, 
and (iv) machine-generation of the visualization from the same 
script code as used to generate the actual network, with minimal 
additional user input.

In this section, we introduce the principles of CPTs and illustrate 
them with three examples. In the next section, we will briefl y present 
our ConnPlotter tool, which automatically generates CPTs from 
network specifi cations written using the NEST Topology module 
(Plesser and Austvoll, 2009). All CPTs shown here were created using 
ConnPlotter and are shown without modifi cations; the same holds 
for the tables describing the connectivity of the example networks.

POPULATIONS, GROUPS, AND PROJECTIONS

Neuronal network architecture can be described from different 
perspectives. A cortical network may either be described as a grid 
of columns, each of which contains neurons in several layers, or 
as a collection of layers which are grids of neurons. Connectivity 
in networks, on the other hand, is often described in terms of spe-
cifi c neuron categories, e.g., “thalamic relay cells project to layer 
4 pyramidal cells in primary visual cortex.” In our defi nition of 
CPTs, we abstract from these details of representation and defi ne 
connectivity based on three concepts:

Population A two-dimensional sheet of neurons with a given 
extent in a coordinate system, which may be in physical or sti-
mulus space. Each neuron in a population has a position within 

A B a b c d

a 0 1 0 0

b 0 0 1 1

c 0 1 0 1

d 0 1 1 0

C
a b c d

a

b

c

d

D
a b c d

a

b

c

d

FIGURE 2 | Example network and connectivity matrices. (A) A simple 

network consisting of four parts a, b, c and d. The intensity I of each 

connection is marked. Connectivity matrices, based on (B) CoCoMac (http://

cocomac.org), indicating the existence of connections by 0 and 1, (C) 

Binzegger et al. (2004), indicating connection strength by color code ranging 

from dark red to white, and (D) Hinton-diagrams (Hinton et al., 1986), 

indicating connection type and strength by color and area, respectively. In all 

matrices, sources are represented by rows, targets by columns.
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the extent. All neurons in a population are treated equally when 
connections are created. Usually, populations will contain only 
neurons of one type, but this is not a strict requirement.
Population group A collection of populations. For brevity, we 
will usually call it just a “group”. Groups are used to structure 
CPTs and will often represent parts of the brain, such as thalamus 
or primary visual cortex. Each population must belong to exactly 
one group.
Projection A rule describing the connectivity between a source 
and a target population in terms of a convolution as detailed 
below.

Several simulation tools, such as PyNN and the NEST Topology 
Module currently support populations and projections as described 
here (Davison et al., 2008; Plesser and Austvoll, 2009).

In the subsequent discussion, we assume for the sake of simplicity 
that projections are divergent, i.e., that the projection rule describes 
how to pick target neurons for any given source neuron. Our discus-
sion applies equally for convergent projections (pick source neurons 
for any target neuron). We will return to the difference between 
convergent and divergent projections in the discussion.

We require further that some function d(·,·) exists that maps the 
locations 

�
s  and 

�

t  of a source and a target neuron onto a displace-
ment vector 

� � �

Δ = d s t( , ), even if source and target populations use 
different coordinate systems.

A projection is then defi ned by the following components:

Source The pre-synaptic (source) population.
Target The post-synaptic (target) population; may be identical to 
source.
Synapse The type of synapse to use for the connections.
Mask A function m( ) { , },

�

֏Δ 0 1  where 
�

Δ is the displacement 
between a source and a target neuron. Connections can only be 
created if m( ) .

�

Δ = 1
Kernel A function k( ) [ , ]

�

֏Δ 0 1  of source and target positions. It 
specifi es the probability of creating a connection between source 
and target neurons with displacement 

�

Δ.
Weight The weight w of the connections to be created. This may 
be a number or a rule for determining the weight, e.g., from a 
probability distribution.
Delay The delay of the connections, specifi ed in the same way as 
the weight.

Projections defi ned in this way imply that the same connection 
rule applies everywhere between two populations. Mask and kernel 
could obviously be combined into a single function, but simula-
tors can create connections far more effi ciently if the mask is given 
separately; we therefore consider it a component in its own right.

THE SIMPLE AND COMPLEX EXAMPLE NETWORK

Tables 1 and 2 show projection information for the two example 
networks we will use for illustration below. We will refer to the 
networks as Simple and Complex, respectively. Both networks have 
two population groups, IG and RG. IG (input group) contains 
only one anonymous population, while RG (recurrent group) 
contains populations E and I. Projections in the Simple network 
use a single synapse type that is interpreted as excitatory for posi-
tive weights and as inhibitory for negative weights. The Complex 

network, in contrast, has AMPA, NMDA, GABA
A
, and GABA

B
 syn-

apses. All populations in both networks have an extent of 1 × 1 in 
arbitrary units.

FULL CONNECTIVITY PATTERN TABLES

We shall now describe design guidelines for full connectiv-
ity pattern tables, i.e., tables showing the detailed connectivity 
between all populations in a network. For illustration, we show 
the CPTs for the Simple and Complex examples in Figures 3 

and 4, respectively.

 1. Projections are shown in a table, with one row per source, 
one column per target population of neurons.

 2. Each table entry is a patch, i.e., a rectangle indicating the 
extent of the target population. It shows the intensity I( )

�

Δ  of 
the projection from a source neuron to a target neuron displa-
ced by 

�

Δ. The intensity is defi ned in the section “Intensity”.
 3. Intensities for projections with the same source, target, and 

synapse type are added.

Table 1 | Connectivity table after Nordlie et al. (2009) for the simple 

example network. CPTs for this network are shown in Figures 3 and 5.

 Src Tgt Syn Wght Mask Kernel

1 IG RG/E exc 2 ≤0.2 0.8

2 IG RG/I exc 2 ≤0.3 0.4

3 RG/E RG/E exc 2 [(−0.4, −0.2), 1

     (+0.4, +0.2)]

4 RG/E RG/E exc 2 [(−0.2, −0.4), 1

     (+0.2, +0.4)]

5 RG/E RG/I exc 5 ≤0.5 G(p
0
 = 1, 

      σ = 0.1)

6 RG/I RG/E inh −3 ≤0.25 G(p
0
 = 1, 

      σ = 0.2)

7 RG/I RG/I inh −0.5 ≤1 0.5

G( , ) : ( /p p p e x

0 0
22 2

σ σx) = −

Table 2 | Connectivity table after Nordlie et al. (2009) for the complex 

example network. CPTs are shown in Figures 4 and 6.

Src Tgt Syn Wght Mask Kernel

IG RG/E AMPA 5 ≤0.2 0.8

IG RG/I AMPA 2 ≤0.3 0.4

RG/E RG/E AMPA 2 [(−0.4, −0.2), 1

    (+0.4, +0.2)]

RG/E RG/E NMDA 2 [(−0.2, −0.4), 1

    (+0.2, +0.4)]

RG/E RG/I AMPA 1 ≤0.5 G(p
0
 = 1,

     σ = 1)

RG/I RG/E GABA_A −3 ≤0.25 G(p
0
 = 1, 

     σ = 0.5)

RG/I RG/E GABA_B −1 ≤0.5 G(p
0
 = 0.5, 

     σ = 0.3)

RG/I RG/I GABA_A −0.5 ≤1 0.1

G( , ) : ( ) /p p p e0 0
2 2

σ σx x2

= −
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 4. Projections with the same source and target populations, but 
different synapse type, are shown in neighboring patches.

 5. Synapse types are grouped, typically into excitatory (gluta-
matergic) and inhibitory (gabaergic) synapses: The synapse 
types of projections between any pair of source and target 
populations must be from the same group. Grouping is 
discussed in more detail below.

 6. Intensity is indicated by color, from white for I = 0, to fully 
saturated for maximum intensity. The area of the target 
population outside the mask is off-white.

 7. The color scale of patches across all projections can either be 
local, i.e., each patch uses its own color scale (Figures 3A and 

4A), or global, i.e., the same scale is used across all patches in 
a table (Figures 3B and 4B).

 8. Colors are assigned to synapse types as follows:
(a)  If all projections in a network use the same synapse type, 

then synapses with positive weight are considered exci-
tatory and shown in red, those with negative weight are 
considered inhibitory and shown in blue, cf. Figure 3.

(b)  If all projections use a subset of AMPA, NMDA, GABA
A
, 

and GABA
B
 synapses, the following colors are used 

(cf. Figure 4):

AMPA red;
NMDA orange;
GABA

A
 blue;

GABA
B
 purple.

(c) In all other cases, the user needs to defi ne colors herself.

 9. Population groups are indicated by gray background 
rectangles; a darker shade of gray is used to emphasize the 
diagonal.

10. Labels for population groups are shown in the left and top 
margins, labels for populations in the right and bottom 
margins.

11. Projections excluding autapses (connections from a neuron 
onto itself) are marked by a crossed-out “A” in the upper 
right corner of the patch, projections excluding multapses 
(multiple connections between one pair of neurons) with a 
crossed-out “M”.

The grouping of synapse types refl ects Dale’s law (Shepherd, 
1998), which stipulates that neurons only secrete one type of 
neurotransmitter, so that one will have a combination of either 
AMPA and NMDA or GABA

A
 and GABA

B
 projections, but not 

of, e.g., AMPA and GABA
A
. An example is shown in Figure 4. By 

default, AMPA and NMDA form one group, GABA
A
 and GABA

B
 

a second group. This grouping can be freely defi ned by the user, 
though, so that networks violating Dale’s law can also be pre-
sented by CPTs.

Local color scales bring forth the structure in individual projec-
tions, but give no impression of the relative strength of projections. 
A global color scale, on the other hand, is useful to judge the relative 
strength of different projections in a network. To avoid that a single 
strong connection “drowns” detail among weaker connections (cf. 
Figures 3B and 4B), the user can choose the limits of the global 
color scale; see Figure 5C for an example.

FIGURE 3 | CPTs for the Simple network connectivity defi ned in Table 1. 

Rows represent sources, columns targets. Excitatory connections are shown in 

red, inhibitory ones in blue. Saturation refl ects the connection intensity defi ned 

as product of connection probability and synapse weight in arbitrary units. 

(A) Local color scale for each patch; patches with only a single value show fully 

saturated color. (B) Global color scale; only the maximum of the Gaussian RG/

E→RG/I connection reaches full saturation. This CPT is discussed in detail in the 

section “Simple network CPT”.
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When using a global color scale, proper color bars are displayed 
at the bottom of the CPT. If the user has defi ned the limits of the 
color scale manually and some intensity values are outside these 
limits, this is indicated by an arrowhead at the respective end of 
the color bar, as illustrated in Figure 5C. Individual color bars for 
each patch in a CPT with local color scales would lead to signifi cant 
visual clutter. In this case, therefore, a plain legend is shown, map-
ping synapse types to colors.

Intensity

It is not a priori clear what measure one should use to indicate the 
strength of a projection. We have chosen to defi ne the intensity 
of a projection as follows: The intensity I( )

�

Δ  is the product of the 
probability of a connection being created, and the weight of the 
connection, I w m k( ) ( ) ( )

� � �

Δ = Δ Δ . If the weight is given as a distribu-
tion, the mean is used. This choice is motivated by Binzegger et al. 
(2004), who chose line width in this manner. As an alternative, 
one may also consider the probability of connection alone, given 
by m k( ) ( )

� �

Δ Δ , as the intensity.

The actual effect of incoming spikes on the membrane potential 
may depend signifi cantly on the state of the neuron. Input through 
inhibitory synapses, e.g., will have larger effects when the neuron is 
depolarized and thus further from the synaptic reversal potential, 
and NMDA synapses will be ineffective unless the neuron is suf-
fi ciently depolarized. To capture this in a – if simplistic – fashion, 
we propose a third alternative defi nition of the intensity in terms 
of an estimate of the total charge moved across the membrane in 
response to one incoming spike. Let

i t wg t m V V Esyn rev( ) ( ) ( )( )= −
 

(1)

be the synaptic current, where w is the synaptic weight, g(t) 
describes the time course of the synaptic conductance in response 
to a single input spike as a function of time alone, m(V) a func-
tion describing a voltage dependence of the synapse, while E

rev
 is 

the reversal potential. m(V) will be unity for most synapse types 
except NMDA. The total charge deposited (tcd) due to a single input 
spike at t = 0 is then

Q wg t m V V E dt
t

= −
=

∞

∫ ( ) ( )( ) .rev

0  
(2)

We now assume that a single input spike evokes only small 
changes in membrane potential, so that we may fi x V = V

0
 when 

computing Q. We thus approximate the total charge deposited as

Q wm V V E g t dttcd 0 0 rev= −
∞

∫( )( ) ( ) ,
0  

(3)

FIGURE 4 | CPT for the Complex network connectivity defi ned in Table 2. 

Full table showing the four different synapse types (AMPA: red, NMDA: 

orange, GABA
A
: blue, GABA

B
: purple) using (A) local and (B) a global color 

scale. This CPT is discussed in detail in the section “Complex network CPT”.

FIGURE 5 | Aggregated CPTs for the Simple network. (A) Connections for 

each source/target pair of population groups are aggregated, but synapse 

types kept separate. (B) Connections aggregated across layers and synapse 

types. As for all CPTs aggregating across synapse types, the color scale ranges 

from blue (most inhibitory) via white (neutral) to most excitatory (red). (C) As in 

panel (B), but now using a global scale for colors in all patches. The arrow at the 

right end of the color bar indicates that the CPT contains values >5.
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and fi nally defi ne the intensity as product of charge deposited and 
probability of connection:

I m k Qtcd tcd( ) ( ) ( ) .
� � �

Δ = Δ Δ
 

(4)

Note that the synaptic weight w is included in Q
tcd

. Examples of 
CPTs based on I

tcd
 will be given in the section “CPT for a simplifi ed 

Hill-Tononi network”.

AGGREGATED CONNECTIVITY PATTERN TABLES

CPTs as described above represent each projection individually. 
CPTs for large networks may be quite large. Structuring the CPTs 
by population groups provides some overview, but in many cases it 
will be of interest to condense information. To this end, we defi ne 
several types of aggregated CPTs:

By group For each synapse type, intensities for all population 
pairs in a pair of source and target populations groups are summed 
(cf. Figures 5A and 6A).
By synapse For each pair of source and target populations, inten-
sities are summed across synapse types (cf. Figure 6B).
By group and synapse As aggregation by group, but summed 
across synapse types, too (cf. Figures 5B and 6C).

Aggregated CPTs are displayed in the same way as full CPTs, 
with the following additions:

12. When summing across synapse types, intensity I(
�

Δ) is fi rst 
computed for each synapse type individually. Intensities are 
then weighted with +1 for excitatory (AMPA, NMDA) and −1 
for inhibitory (GABA

A
, GABA

B
) synapse types. Different wei-

ghts may be used.
13. The resulting intensity is shown on a blue-white-red color 

scale as follows:
(a) I < 0 is shown in blue with saturation ∼|I|.
(b) I = 0 is shown in white.
(c) I > 0 is shown in red with saturation ∼I.

(d)  When using local color scales, the red and blue parts of 
the scale are scaled independently: fully saturated red 
may correspond to I = 10, while fully saturated blue cor-
responds to I = −0.5 (cf. Figure 5B).

(e)  When using a global color scale, red and blue scales are 
coupled by default, i.e., lower and upper limits of the 
color scale have the same absolute value (cf. Figure 5C). 
The user can set different limits.

14. When grouping by population groups, no population labels 
are shown.

CPT: EXAMPLES

We shall now briefl y review the Simple and Complex example 
networks to elucidate some properties of connectivity pattern 
tables, before we turn to a large network model taken from the 
literature.

Simple network CPT

The full CPT for the Simple network is shown in Figure 3 with 
local and global color scales. The left column is empty, as the 
IG population group receives no input. The patches in the right 
column show the projections onto the RG population group. This 
column is split in two sub-columns, marked E and I at the bot-
tom, each representing projections onto one of the populations 
in the RG group.

The top row shows projections onto the RG group from the IG 
group: the left patch represents the projection onto the E popula-
tion, the right onto the I population, corresponding to rows 1–2 
in Table 1, respectively. Both projections are excitatory and have 
constant intensity within a circular mask.

The bottom row of the CPT shows projections from the RG 
group onto itself. It is split into two sub-rows, representing pro-
jections from E and I populations, respectively. The E→E pro-
jection is the sum of the two rectangular projections defi ned by 
rows 3–4 in Table 1, as stipulated by design guideline 3. The E→I 

FIGURE 6 | Aggregated CPTs for the Complex network show in Figure 4. (A) Connectivity aggregated across groups, but not synapse types. (B) Connectivity 

aggregated across synapse types for each source/target pair of populations, i.e., combining either AMPA and NMDA or GABA
A
 and GABA

B
. (C) Connectivity 

aggregated across groups and synapse types.
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projection has a narrow Gaussian intensity profi le in a mask  fi lling 
almost the entire extent of the population (row 5), while the I→
E projection has a wider Gaussian profi le inside a narrower mask 
(row 6). The I→I projection has constant intensity fi lling the full 
extent of the population (row 7). Projections emanating from the 
E population are excitatory (red), those from the I population 
inhibitory (blue).

Figure 3B shows the same CPT with a global color scale. This 
reveals that the projection from the IG group to the RG/E popula-
tion is stronger than to the RG/I population, and that the highest 
intensity is at the center of the RG/E→I projection. The RG/I→I 
projection is very weak, but does not vanish: if the latter were the 
case, the patch would be off-white, not light blue.

Figure 5A shows the CPT for the Simple network aggregated 
by population groups: Projections to and from populations E and 
I in the RG group are now combined. The IG→RG projection is 
purely excitatory, whence we have only a single patch with two 
superimposed circles. Inside the RG layer, we have excitatory as well 
as inhibitory projections, and thus two patches. The upper (red) 
patch combines projections from the E population to the E and I 
populations – note the Gaussian at the center of the cross. The lower 
(blue) patch combines the Gaussian and fl at projections from the I 
population to the E and I populations. The fl at part is shown as a 
very light shade of blue only, as it is much weaker than the Gaussian 
center. Note that the two patches are not combined, as they repre-
sent two different synapse types, excitatory and inhibitory.

In Figure 5B projections are combined by group and synapse 
type resulting in a 2 × 2 matrix of patches. The IG→RG projection 
is purely excitatory and thus shows the red part of the color scale 
only. The aggregated recurrent projection, in contrast, combines 
excitatory and inhibitory projections and thus extends to the blue 
part of the color scale, too. The fl at inhibitory surround is shown in 
saturated blue even though it is very weak, because the red and blue 
color scales are decoupled. Figure 5C shows the same aggregated 
CPT, but with a global scale limited to [−5, +5]. Now the weakness 
of the inhibitory surround becomes apparent.

Complex network CPT

The full CPTs for the Complex network shown in Figure 4 differ from 
the Simple network as follows: For each source/target pair, there is 
space for two patches side-by-side, although synapses of both applica-
ble types occur only for the projections from RG/E (AMPA, NMDA) 
and RG/I (GABA

A
, GABA

B
) to RG/E. Figure 6A shows projections 

combined by source/target pairs: For each pair, we have a square of 
four patches, with the excitatory synapse types on top, inhibitory 
below. Aggregating across synapse types for each source/target popu-
lation pair gives the aggregated CPT in Figure 6B, while Figure 6C 
shows the aggregation across synapses and populations.

CPT for a simplifi ed Hill-Tononi network

To demonstrate the applicability of connectivity pattern tables to 
“real life” network models, we present connectivity pattern tables 
of a simplifi ed version of a large thalamocortical model investigated 
by Hill and Tononi (2005). This model comprises fi ve population 
groups: retina (Ret), thalamus (Tp), reticular nucleus (Rp), and hori-
zontally and vertically tuned primary visual cortex (Vp_h, Vp_v); we 

left out the secondary pathway with groups Ts, Rs, Vs_h, Vs_c, and 
Vs_v. The populations in each population group are summarized in 
Table 3. Each population spans an extent of 8° × 8° of visual angle. 
Figure 1 illustrates the model: Panel A shows the overall architec-
ture between population groups, while panel B presents the detailed 
connectivity between populations in group Vp_v. The large number 
of connections makes this fi gure diffi cult to read, and it does not 
provide any information about the spatial profi le of the projections. 
Figure 1C was a fi rst attempt to include these spatial profi les, but 
contains only projections onto one population (Nordlie et al., 2009). 
The fi gures in all three panels were created manually.

The full CPT for this model, shown in Figure 7, provides com-
plete connectivity information. Reading from top to bottom, we fi nd 
focused retinal input to relay cells and interneurons in the thalamus. 
Interneurons in thalamus inhibit themselves, while relay cells make 
oriented and non-oriented projections to the cortical areas, as well as 
axon collaterals to Rp. Rp in turn inhibits both populations in Tp via 
GABA

A
 and GABA

B
 synapses, while self-inhibiting via GABA

B
 only. 

Further down in the Tp and Rp columns, we note the corticothalamic 
feedback from layer 5/6 pyramidal cells to Tp and Rp. Towards the 
bottom right of the CPT, we fi nd a matrix of 2 × 2 blocks representing 
intracortical connectivity. The two blocks on the main diagonal show 
connectivity within the Vp_h and Vp_v groups, respectively, while 
the off-diagonal blocks show the projections from Vp_h onto Vp_v 
and vice versa. The latter projections are exclusively inhibitory. One 
also sees easily that excitatory connections within a single layer gener-
ally are much wider than from one layer to another, and that GABA

B
 

projections are much more focused than GABA
A
 projections.

Figure 8 presents aggregated CPTs for our version of the Hill-
Tononi model. In panel A, projections are summed across synapses 
and in panel B across populations, while panels C and D show 
CPTs aggregated across synapses and populations using local and 
global color scales, respectively. The latter CPTs bring out the overall 
connectivity in the network comparable to Figure 1A, but contain 
much more information.

Figure 9, fi nally, illustrates how CPTs may be used to reveal 
differences in effective connectivity as networks are in different 
operating regimes. In this fi gure, we show intensity I

tcd
 defi ned in 

terms of total charge deposited according to Eq. 4. Figure 9A shows 
connectivity for a network in which all populations are in a “down” 
state (V

m
 = –70 mV), while Figure 9B shows connectivity in the 

same network in an “up” state (V
m
 = –50 mV). A comparison of 

Table 3 | Neurons in the population groups in the modifi ed Hill-Tononi 

model.

Pop. group Populations Properties

Ret – Rate-modulated

  Poisson processes

Tp Relay Relay cells

 Inter Interneurons

Rp RpNrn Interneurons

Vp_h L23pyr, L4pyr, L56pyr Pyramidal cells

 L23in, L4in, L56in Interneurons

Vp_v L23pyr, L4pyr, L56pyr Pyramidal cells

 L23in, L4in, L56in Interneurons
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the CPTs reveals signifi cantly stronger inhibition within cortex at 
intermediate distances in the “up” state. CPTs may thus give new 
insights into network properties under different circumstances.

THE CONNPLOTTER TOOL

We have created the ConnPlotter, a Python package, to allow scien-
tists to generate connectivity pattern tables easily. Our most impor-
tant aim was to facilitate automatic generation of CPTs directly 
from the same script code used to create the model for simulation. 
At present, the ConnPlotter tool can visualize network defi nitions 
written for the NEST Topology module (Plesser and Austvoll, 2009). 
The ConnPlotter package is available as supplementary material to 
this paper under an open source license.

In this section, we shall briefl y present the ConnPlotter tool and 
show how networks can be specifi ed in a way that allows visualiza-
tion with ConnPlotter and simulation using the NEST Topology 
module. A comprehensive tutorial for ConnPlotter is included as 
Supplementary Material to this paper. First we shall introduce some 
NEST Topology concepts.

NEST TOPOLOGY CONCEPTS

Neuronal networks can be described from different perspectives, 
as discussed in the section “Populations, groups, and projections”. 
Connectivity pattern tables present a network as one or several 

groups of populations. Each population has an extent, but aside 
from their location, all neurons in a population are considered 
equal when creating connections.

The Topology module, in contrast, describes a network as one or 
several two-dimensional layers, each with a spatial extent. Each layer 
element has a location within the layer, and may consist of one or 
more neurons of the same or different types. The Simple network 
introduced in the section “The simple and complex example net-
work” would be constructed in the Topology module as two layers, 
IG and RG. Each element of layer IG is a single Poisson generator, 
while each element of layer RG consists of an E and an I neuron. 
Connections are specifi ed by giving the source and target layers, as 
well as the source and target neuron types for a projection. If no 
source or target neuron type is given, all neurons in each element 
are treated equally.

ConnPlotter matches the Topology module view of the network 
to the connectivity pattern view as follows:

• Layers are treated as population groups.
• Populations are inferred from the source and target layer and 

neuron specifi cations: If any projection in a network has source 
(or target) layer RG and neuron E, then RG/E is inferred as a 
population.

• Layers with single-neuron elements are treated as population 
groups with a single population, which may be anonymous.

FIGURE 7 | Full CPT for the Hill-Tononi model reduced to the primary 

pathway (Hill and Tononi, 2005). Layers are retina (Ret), thalamus (Tp; two 

populations: relay cells and interneurons), reticular nucleus (Rp), and horizontal 

and vertically tuned primary visual cortex (Vp_h, Vp_v); the latter two layers have 

six populations each, representing pyramidal cells and interneurons in layers 2/3, 

4, and 5/6. Synapse types are AMPA, NMDA, GABA
A
, and GABA

B
, with the 

same color code as in Figure 4. Note the rectangular projections from 

population Tp/Relay to Vp_h and Vp_v.
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• The extent of a population is identical to the extent of the 
layer to which it belongs.

Thus, the Simple network has layers IG and RG, corresponding 
to population groups IG and RG. Group IG has a single anonymous 
population, RG has the populations E and I.

SPECIFYING NETWORKS

We will use the Simple network to illustrate how to specify networks 
for NEST Topology and ConnPlotter. For details on NEST Topology 
network specifi cations, see Austvoll (2009). Networks are specifi ed 
by three lists: the model list (see “Simulating networks”), the layer 

list and the connection list.

FIGURE 8 | Aggregated CPTs for the Hill-Tononi model from Figure 7. (A) Connectivity aggregated across synapse types for each population pair. (B) Connectivity 

combined across populations in each group, but not across synapse types. (C) As in panel (B), but also aggregated across synapse types. (D) As in panel (C), but 

with a global color scale limited to [−2,2].
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    modCopy(common, {’connection_type’: ’divergent’,

                     ’synapse_model’  : ’static_synapse’,

                     ’sources’: {’model’: ’E’},

                     ’targets’: {’model’: ’I’},

                      ’mask’ : {’circular’: {’radius’: 0.5}}, 

                      ’kernel’ : {’gaussian’:

                                  {’p_center’: 1.0,

                                      ’sigma’   : 0.1}},

                      ’weights’: 5.0,

                    ’delays’ : 1.0}))]

Each entry is a tuple containing source layer, target layer, and a 
dictionary specifying projection details. The combination of a layer 
with the neuron type specifi ed for sources or targets in the dictionary 
defi nes a population in the sense of connectivity patterns, as discussed 
in the section “NEST topology concepts”. In the last tuple in the code 
snippet above, RG appears both as source and target layer. The sources 
and targets entry in the dictionary indicate that the projection is 
from neuron of type E to neurons of type I, thus defi ning populations 
RG/E and RG/I. The connection_type entry instructs the NEST 
Topology module to select neurons targets for each source neuron.

VISUALIZING NETWORKS

A network is visualized as a connectivity pattern table by creating a 
ConnectionPattern object and then calling its plot method:

import ConnPlotter as cpl

s_cp = cpl.ConnectionPattern(layerList,          

                             connectList)

s_cp.plot()

The layer list defi nes all layers in the network, especially size, 
extent and elements. For the Simple network, the layer list is

layerList = [(’IG’, {’columns’: 40, 

                     ’rows’: 40, 

                     ’extent’: [1.0, 1.0],

                     ’elements’: ’P’}),

             (’RG’, {’columns’: 40, 

                     ’rows’: 40, 

                     ’extent’: [1.0, 1.0],

                     ’elements’: [’E’, ’I’]})]

The tuples in the list contain the layer name fi rst, followed by a 
dictionary specifying layer properties, in this case a 40 × 40 grid of 
elements spanning an area of 1 × 1 in arbitrary units.

The connection list specifi es all projections in the network. We 
show only two entries of the Simple network connection list here 
for brevity:

connectList = [

   (’IG’, ’RG’,

    modCopy(common, {’connection_type’: ’divergent’, 

                     ’synapse_model’  : ’static_synapse’,

                     ’targets’: {’model’: ’E’},

                     ’mask’  : {’circular’: {’radius’: 0.2}},

                    ’kernel’ : 0.8,

                      ’weights’: 2.0,

                      ’delays’ : 1.0})),

    …

   (’RG’, ’RG’,

FIGURE 9 | Aggregated CPTs based on total charge deposited. The CPTs 

shown here are equivalent to Figure 8D, but intensity is now I
tcd

 defi ned in 

terms of total charge deposited in femtocoulomb, cf. Eq. 4 for membrane 

potential (A) Vm = –70 mV and (B) Vm = –50 mV, respectively. The color scale is 

the same for both fi gures. Note the difference in mid-range inhibition in 

intracortical connections.
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This yields the full CPT shown in Figure 3A. Population groups 
(layers) are ordered in the CPT as in the layer list, while populations 
are ordered alphabetically from left to right and top to bottom.

The remaining CPTs of the Simple model were drawn with sub-
sequent calls of the plot() methods with different arguments:

Figure 3B Full CPT with global color scale:
s_cp.plot(globalColors=True)

Figure 5A Aggregated by population group (i.e., by layer), local 
color scales:
s_cp.plot(aggrGroups=True)

Figure 5B Aggregated by group and synapse type, local color 
scales:
s_cp.plot(aggrGroups=True, aggrSyns=True)

Figure 5C Aggregated by group and synapse type, global color 
scale limited to [−5,5]:
s_cp.plot(aggrGroups=True, aggrSyns=True, 

          colorLimits=[-5,5])

Each of these method invocations will open a new fi gure win-
dow. CPTs are written directly to a fi le if one is given; in this case, one 
may also specify the total width of the CPT fi gure in millimeters:

s_cp.plot(file=’simple_cpt.eps’, fixedWidth=150)

The appearance of CPTs, e.g., font properties and background 
colors, can be adjusted to a considerable degree. ConnPlotter can be 
confi gured freely to handle networks with other synapse types than 
plain excitatory and inhibitory (same synapse_model for all pro-
jections, positive and negative weights) or AMPA, NMDA, GABA

A
, 

and GABA
B
. Please see the Tutorial included as Supplementary 

Material and the online help for details.

SIMULATING NETWORKS

To simulate a network using NEST, we need to complement the 
layer and connection lists with a model list that maps native NEST 
neuron models to the models used in the network. For the Simple 
network, we have

modelList = [(’poisson_generator’, ’P’, {’rate’: 10.0}),

             (’iaf_neuron’,        ’E’, {’C_m’: 200.0}),

             (’iaf_neuron’,        ’I’, {’C_m’: 150.0})]

Each list element is a tuple containing the name of the native 
NEST model, the model name used in the network, and a diction-
ary providing parameters for the model.

Once these three lists are defi ned, we can simulate the network 
in NEST using the PyNEST interface (Eppler et al., 2008) by iter-
ating over the lists to create models, layers and connections. The 
only challenge is that we need to turn the layer names given in the 
layer list into Python variable names. We achieve this by use of 
the exec statement. Any network can then be created using the 
following code:

for model in modelList: 

    nest.CopyModel(model[0], model[1], model[2])

for layer in layerList:

    exec ’%s = topo.CreateLayer(layer[1])’ %\

          layer[0]

for conn in connectionList:

    exec ’topo.ConnectLayer(%s,%s,conn[2])’ %\

         (conn[0], conn[1])

DISCUSSION

We have proposed here connectivity pattern tables as a new 
approach to visualizing neuronal network connectivity. CPTs are 
a natural extension to complex neuronal network models of similar 
visualization techniques used in neuroanatomy and -physiology 
(Felleman and Essen, 1991; Scannell et al., 1999; Dantzker and 
Callaway, 2000; Sporns et al., 2000; Briggs and Callaway, 2007; 
Helmstaedter et al., 2008; Weiler et al., 2008), and artifi cial neural 
network research (Hinton et al., 1986). They are complementary 
to the box-and-arrow network diagrams commonly found in the 
computational neuroscience literature (Nordlie et al., 2009). We 
believe that CPTs have considerable advantages compared to exist-
ing styles of network visualization:

1. CPTs provide signifi cantly more information, as the full spatial 
structure and relative strength of projections are revealed, not 
only their existence. The aggregated CPTs of the Hill-Tononi 
model in Figures 8C,D provide much more detail about the 
connectivity in the model than the corresponding box-and-
arrow diagram in Figure 1A.

2. CPTs showing intensity defi ned in terms of total charge depo-
sited reveal differences in effective connectivity in different 
networks states, as illustrated in Figure 9. This information is 
not available otherwise.

3. CPTs are clutter-free by construction: there are no lines con-
necting boxes and thus no confusing line crossings. Compare, 
e.g., the full CPT for the Hill-Tononi model in Figure 7 with 
the box-and-arrow diagram in Figure 1B, which represents 
only the connectivity within population group Vp_v.

4. CPTs can be created automatically from the same network spe-
cifi cation used to generate the actual network for simulation. 
This allows scientists to routinely explore their network archi-
tectures visually while working with them, as well as to easily 
create up-to-date fi gures for publication.

5. CPTs at different levels of detail can be created automatically, 
allowing inspection or presentation of different aspects of 
network connectivity.

This should make CPTs a useful tool in the hand of  computational 
neuroscientists, facilitating the interactive development of mod-
els, the detection of errors in model specifi cations, and the effec-
tive communication of network connectivities in presentations 
and publications. In practice, we observed that CPTs with local 
color scales are most useful in “debugging” network defi nition 
scripts, as it is easy to detect missing or extraneous connections, 
or connections patterns of wrong shape or synapse type. For pres-
entation purposes, and especially for the comparison of CPTs 
showing state-dependent connectivity based on the total charge 
deposited, a global color scale with suitably chosen limits appears 
most valuable.
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Our ConnPlotter package demonstrates that CPTs can indeed 
be created automatically, as stated above, and should allow sci-
entists to generate CPTs for their models with reasonable ease. 
This said, we would like to remark that we consider ConnPlotter 
to be usable and reasonably stable, but by no means a complete 
tool for generating CPTs. Further development of the tool will 
depend on the reception of the connectivity pattern tables in the 
community.

A number of open issues and limitations remain. Most of 
these relate to the scientifi c interpretation of connectivity, rather 
than to technical aspects. We consider the following issues 
particularly relevant.

Intensity We propose three alternative defi nitions of the intensity 
of a projection: probability only, probability times weight (default) 
and probability times total charge deposited; in the latter case, the 
intensity also depends on the membrane potential in the target 
population. The fi rst two defi nitions refl ect mostly the static archi-
tecture of the network, the latter may be used to illustrate the effec-
tive connectivity in a network in different states, such as “up” and 
“down” states in cortex.

If different populations have different densities of neurons, con-
sidering just probability, weight, or total charge deposited when 
defi ning the intensity of a projection may give misleading impres-
sions of the relative impact of different projections. In such cases, 
it may be useful to include the source and/or target population 
density in the defi nition of intensity.
Divergence/Convergence We have assumed so far that all pro-
jections are divergent, i.e., that connection targets are chosen 
according to mask and kernel for each neuron in the source 
population. Models describing connections as convergent can 
be handled in two ways: (i) CPTs are created as before, but each 
patch is interpreted as showing how to select source neurons, 
not target neurons. (ii) The convolutions described by mask and 
kernel are inverted, so that the convergent description becomes 
a divergent one. CPTs are then drawn using the divergent mask 
and kernel.

The latter approach has two advantages. First, it can be used in 
cases where some projections are described as divergent, some as 
convergent, as in the original model by Hill and Tononi (2005). 
That model describes all projections as divergent, except for the 
rectangular thalamocortical projections. In our implementation, 
we inverted these projections to divergent projections. The second 
advantage is that CPTs defi ning intensity in terms of total current 
deposited can be drawn only for divergent projections, since the 
membrane potential of the target population determines the effec-
tive strength of synaptic input.
Patchy projections Some cortical neurons show patchy connection 
patterns (Douglas and Martin, 2004): connections are clustered in 
space. To represent such patchy projections fully, one would have to 
visualize the distribution of the patch centers as well as the distribu-
tion of connections around these centers. It is not a priori clear how 
to integrate both types of information into a single fi gure.
Subcortical networks CPTs are tailored to layered networks as 
are typical for cortex and parts of the thalamus. Applying CPTs 
to other types of networks, e.g., models of the basal ganglia, may 
require modifi ed designs.

Dependent kernels CPTs visualize projections defi ned by convo-
lutions, cf. section “Populations, groups, and projections”, which 
implies that the same mask and kernel applies everywhere between 
two populations. Projection rules which depend not only on the 
displacement between, but also on the actual location of source and 
target neurons, e.g., their retinal eccentricities, cannot be presented 
fully using CPTs. One might, though, draw separate CPTs illustrat-
ing kernels for various eccentricities.

Some authors, notably Troyer et al. (1998), have presented mod-
els in which the projections from population B to population C 
depend on the correlations between connections from population A 
to population B. Thus, the effective kernel for the B→C projection 
is a convolution of the A→B kernel with a nominal B→C kernel. 
CPTs for such dependent kernels are outside the scope of the design 
guidelines given here.
Aggregation by synapse When projections are aggregated by syn-
apse, intensities for different synapse types are simply weighted 
with a scalar factor, by default +1 for excitatory and −1 for inhibi-
tory synapses. It is by no means clear that this will give the best 
rendition of the combined effect of the projections, in particular 
for non-linear synapses.
Coordinate systems We have assumed here that all layers use the 
same 2D coordinate system, so that distances between source and 
target neurons can be calculated easily. This assumption can be 
relaxed, as long as a transformation is provided that maps locations 
between source and target layers. Similarly, one could employ mixed 
coordinate systems, in which, e.g., one axis represents location in the 
visual fi eld and the other stimulus orientation. Masks and kernels 
would then have to be defi ned in terms of this coordinate system.

As real brains are three-dimensional structures, it would be 
advantageous to be able to visualize connectivity in three dimen-
sions. We believe that this would be possible in a meaningful way 
only as part of an interactive tool.

Connectivity for one-dimensional networks could, on the other 
hand, easily be displayed using CPTs. In this case, one would show 
in each patch the pertaining intensity as a one-dimensional func-
tion plot.
Boundary conditions Our design guidelines, and the current 
implementation of ConnPlotter, silently assume that projection 
kernels are cut-off at the edge of a populations extent.
Delay Connection delays are entirely ignored in CPTs: we simply 
lack the third dimension to represent time. One option would be 
to visualize the distribution of delays by drawing CPTs in which 
the delay defi nes the intensity.
Simulator support At present, ConnPlotter is tied closely to the 
NEST Topology module. The basic concepts of the Topology mod-
ule are quite general, though, and match the “Populations” and 
“Projections” of the PyNN simulator wrapper quite well (Davison 
et al., 2008). ConnPlotter should thus be easily adaptable to, e.g., 
PyNN. CPTs using intensity defi ned in terms of total charge depos-
ited (cf. Eq. 4) require that the simulator provides access to the value 
of ∫

∞

0
g t dt( )  either directly or indirectly.

We found in the work with connectivity pattern tables and 
the ConnPlotter tool that the fi eld lacks a suffi ciently established 
nomenclature for components of neuronal networks. In particular, 
construction and connection of networks are often described from 
quite different perspectives, as discussed in the sections “Populations, 
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without a clear layer  structure. Provided that network models 
are specifi ed at a  suffi ciently high level of abstraction, future 
interactive  visualization tools could interactively switch between 
different representations of model aspects. One might, e.g., reveal 
the connectivity of some classes of neurons in great detail, but 
other projections only as coarse projection patterns. If, fi nally, 
such tools were to allow  scientists to manipulate models, they 
would signifi cantly extend our ability to explore complex net-
work models.
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groups, and projections” and “NEST topology concepts”. While the 
construction perspective to a large degree builds on terminology from 
neuroanatomy (e.g., cortical layers and columns), the connection view 
of networks seems to have received little attention in the past (Austvoll, 
2007), whence there is no established terminology. We are optimistic 
that the increasing attention to model exchange and systematic model 
description (Cannon et al., 2007; Gleeson et al., 2008; Nordlie et al., 
2009), and in particular the current effort by the INCF to develop a 
standard language for neuronal network model descriptions, will give 
rise to a well-established vocabulary within a few years.

The brain is an extremely complex organ, requiring explana-
tion at many levels. Our knowledge about all aspects of the nerv-
ous system is growing at an accelerating pace thanks to ever more 
sophisticated experimental methods. Craver (2007, p. 33f) points 
out that the human mind cannot handle the wealth and complexity 
of knowledge we thus assemble. We depend on tools to retrieve, 
across levels of description, the particular information relevant to 
the subject of our investigation and to render it in a suitable way 
to gain new insight. This has led neuronanatomists to create data-
bases with interactive front-ends, allowing users to extract relevant 
information and to visualize it in a problem-related manner.

As neuronal network models increase in complexity, network 
modelers will similarly require tools to access and represent 
model features in problem-specifi c ways. Connection pattern 
tables are a humble fi rst step towards such tools. Extending 
ConnPlotter to an interactive tool for model visualization in 
three dimensions would permit the representation of networks 
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