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Abstract -- Newton's method for finding complex solutions of the equation 01 =−αz  is 
investigated for real values of α.  The bifurcations that occur as the power α varies are illuminated 
using computer graphics.  In particular, the appearance of an attracting 2-cycle just below even 
powers is investigated. 
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Introduction 
Computer graphics allows the visualization of the dynamics of iteration in powerful ways. Pictures 
of bifurcations of functions of a real variable and of basins of attraction for complex dynamics play 
an important role in understanding the dynamics of both real and complex iteration — from period 
doubling to chaos; for examples, see [1-5, 9-12, 14]. This short note describes bifurcations in the 
complex dynamics of Newton's method that we can visualize using a sequence of images. 
 Visualizing the convergence of Newton's method in the complex plane has been the subject 
of much recent study.  Often those images show the basins of attraction of Newton's method applied 
to a polynomial of low degree. Typically, a family of third degree polynomials is considered or 

1−nz  for n equal to 3, 4 or 5 is considered. Also, in [8] Newton's method on systems with 2 
complex variables is considered. In [15] nonintegral exponents are considered and in [13] a 
generalization of Newton's method is discussed. The dynamics of direct iteration of cz +α  for 
fractional exponents, which generalize the classical Mandelbrot and Julia sets, are described in [6] 
and are analyzed in [7]. Instead of direct iteration, we consider the bifurcations that occur using 
Newton's method on 1−αz  as we vary α . 
 Consider the basins of attraction for the roots of 13 −z  compared to those for 14 −z . The 
first has three main basins of attraction around the three roots of unity with symmetric turbulence on 
the boundaries. The second case is quite similar except it contains four basins of attraction. In 
general, we expect that slight changes to α should produce only slight changes in the behavior of 
Newton's method on 1−αz . However, it is clear that some fundamental changes in behavior must 
occur as we change from three to four basins of attraction. Thus, the question of how the change 
from three to four basins occurs is of interest. How many basins of attraction are there for any given 
positive real α?  Does every starting guess converge to a root? Where do the bifurcations occur?  
This paper takes a look at those questions. Figs. 1-8 show the convergence of Newton's method on 

1−αz  for 53 ≤≤ α . Fig. 1 shows three basins of attraction and Fig. 5 shows four basins of 
attraction as described above. 
 
The Computation 
Newton's method for solving 0)( =zf  begins with an initial guess 0z  and proceeds via: 
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Notice that the second version of this formula can be evaluated more quickly since it involves only 
one power of a complex number. Also notice we can think of steps of Newton's method as iteration 

of the function )(zg : )(1 nn zgz =+  where 11)11()( −+−= α

αα
zzzg . 

 In all the figures the initial guess 0z  used for Newton's method corresponds to position in the 
picture and varies with 2)Re(2 0 ≤≤− z  and 5.1)Im(5.1 0 ≤≤− z . The color used indicates the 
basin of attraction and the shade indicates the iteration count modulo 3. For example, all the shades 
of green indicate convergence to the root 1. The shades are chosen so that when we are within the 
green basin we are moving in the direction of increasing iteration count if we move from the darkest, 
through the medium, and to the lightest shade.   
 All the images were computed with extended precision floating point arithmetic using 19-20 
significant digits and using high precision exponents so that the range of magnitudes is 493110± .  
Complex exponentiation was implemented using the standard branch cut along the negative real 
line. A sequence, nz , was considered convergent if successive values differed by less than 1010−  in 
magnitude. The roots were dynamically determined with a distance of discrimination of 1010− . The 
roots and 2-cycles discovered can be independently verified as described in the next section. 
 
Results 
In Fig. 1 we see three symmetric basins of attraction that are expected when 3=α  since the roots of 

13 −z  are the three roots of unity.  In Fig. 2, 3.3=α  and the turbulent region between the left-most 
basins increases in size.  Notice also that unlike the case when 3=α  there are boundaries between 
the red and blue basins where there is no turbulence (look at some of the small red and blue regions 
near the negative real axis). 
 In general the equation 01 =−αz  will have roots απ /2 ikez =  where k are integers so that 

απ /2 k  is in the interval ],( ππ− .  That is, if k ranges over the integers satisfying 
2/2/ αα ≤<− k  the values for z given above run through the roots.  The three roots that are 

observed when 3.3=α  correspond to 1,0 ±=k . These are 1 and approximately i945.0327.0 ±− . 
The roots for other α's can also be computed this way. 
 When we increase α  to 88221.3=α  there are still only three roots but there is severe 
turbulence. The V-shaped turbulent region between the primary red and blue regions seen in Fig. 3 is 
larger than that in Fig. 2 and almost forms a "basin" of its own. In the first two figures the maximum 
number of iterations required for convergence was 66. In this figure the maximum number of 
iterations required for determining any pixel was 152,931. However, for every pixel computed the 
algorithm did eventually converge to one of the three roots! 
 A striking bifurcation occurs with a very slight increase to 88222.3=α . Fig. 4 shows three 
basins of attraction in red, green and blue and a large region in yellow where Newton's method does 
not converge. However, in this region, Newton's method approaches an attractive 2-cycle. In the 
long term, values shown in yellow oscillate between values close to ir 154366.0883623.0 +−=  
and is 154366.0883623.0 −−= . No pixel required more than 1855 iterations to converge to a root 
or to find the 2-cycle in this figure. 
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 Using MathematicaTM  it is easy to check numerically that r and s are 2-cycles since they are 
roots to the equation zzh =)(  where 88222.3=α , ))(()( zggzh = , and )(zg  was defined in the 
previous section. Now the fact that this is an attractive 2-cycle can be verified since 

1984.0)( <=′ rh  and likewise for s. Going back to the case when 88221.3=α  we can find roots 
to 0)( =zh  given approximately by iu 154395.0881416.0 +−=  and iv 156458.0883228.0 −−= ; 
notice the roots u and v are not quite conjugates. These roots also form a 2-cycle, but the 2-cycle is 
just barely repelling since 100003.1)( >=′ uh  and likewise for v. The fact that this derivative is just 
barely over one explains why such a large number of iterations were required for computing some 
pixels in Fig. 3. 
 The appearance of an attractive 2-cycle continues as α increases toward 4 but the points in 
the 2-cycle approach each other and the negative real axes. At 4=α , shown in Fig. 5, these points 
meet at -1 and form an attractive basin shown in magenta. Any small increase in α produces yet 
another basin of attraction. In Fig. 6, where 1.4=α , a cyan basin of attraction is conjugate to the 
magenta basin. Notice that there is no turbulence on the negative real axis which is a boundary 
between these basins. Also notice the fractal cyan and magenta "arches". As α  increases turbulence 
does appear on the negative real axis. At first it is restricted to inside the unit circle. Between 

7.4=α  and 8.4=α  the turbulence moves out along the negative real axis. Fig. 7 shows the basins 
of attraction when 8.4=α . Notice that there is almost a five-fold symmetry. Finally, the expected 
five-fold symmetry appears in Fig. 8 where 5=α . 
 In Fig. 9, the angle of the long term behaviors is shown verses the power α  for 111 ≤≤ α .  
The angle is the angle about the origin from the positive real axis. Attractive roots are shown in blue 
and attractive 2-cycles are shown in green. Notice that just before α equals each even integer there is 
an attractive 2-cycle. The points in the 2-cycle become less distinct and approach -1; that is, the 
angles approach π± . At the even integer, the 2-cycle has become the new root at -1.  As soon as α  
increases beyond the even integer, the root at -1 splits into two attractive roots. These roots move 
apart as α  increases and become uniformly spaced around the unit circle when α  reaches the next 
higher odd integer. The most striking feature in this figure is the sudden appearance of the attractive 
2-cycles. The first few values of α  where these bifurcations occur can be computed: 1.8163832, 
3.882214033, 5.893141755, and 7.897747821. 
 The sequence of images in this paper shows chaotic behaviors not usually seen in images of 
the convergence of Newton's method.  The intertwining basins with smooth boundaries observed 
just above 4=α  are a result of the branch cut used in computing the complex exponential function. 
Those smooth boundaries do not occur for Newton's method on 1−nz  with integer exponents. 
There are also fascinating bifurcations that occur just below even integers.  Attractive 2-cycles 
appear for those exponents. The changeover of a 2-cycle from repelling to attractive near 

88221.3=α  can be analyzed as well as observed visually. 
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Figure 1: Newton's method on 13 −z . 
 

 
Figure 2:  Newton's method on 13.3 −z . 
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Figure 3:  Newton's method on 188221.3 −z . 
 

 
Figure 4:  Newton's method on 188222.3 −z . 
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Figure 5:  Newton's method on 14 −z . 
 

 
Figure 6:  Newton's method on 11.4 −z . 
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Figure 7:  Newton's method on 18.4 −z . 
 

 
Figure 8:  Newton's method on 15 −z . 
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Figure 9:  Angle of long term behavior of Newton's method on 1−αz  for 111 ≤≤ α . 


