
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping 

10-1993 

Visualizing Object Oriented Software in Three Dimensions Visualizing Object Oriented Software in Three Dimensions 

Colin Ware 
University of New Hampshire, Durham, colin.ware@unh.edu 

David Hui 
University of New Brunswick 

Glenn Franck 
University of New Brunswick 

Follow this and additional works at: https://scholars.unh.edu/ccom 

 Part of the Computer Sciences Commons, and the Oceanography and Atmospheric Sciences and 

Meteorology Commons 

Recommended Citation Recommended Citation 
Ware, Colin; Hui, David; and Franck, Glenn, "Visualizing Object Oriented Software in Three Dimensions" 
(1993). Centre for Advanced Studies on Collaborative Research (CASCON). 176. 
https://scholars.unh.edu/ccom/176 

This Conference Proceeding is brought to you for free and open access by the Center for Coastal and Ocean 
Mapping at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Center for 
Coastal and Ocean Mapping by an authorized administrator of University of New Hampshire Scholars' Repository. 
For more information, please contact Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/ccom
https://scholars.unh.edu/ccom_home
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholars.unh.edu%2Fccom%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=scholars.unh.edu%2Fccom%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=scholars.unh.edu%2Fccom%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom/176?utm_source=scholars.unh.edu%2Fccom%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


Visualizing Object Oriented Software in Three Dimension s

Colin Ware, David Hui and Glenn Franck
Faculty of Computer Science
University of New Brunswick

P.O. Box 4400, Fredericton, NB .
E3B 5A3

cware@UNB .ca

Abstract
There is increasing evidence that it is possible to
perceive and understand increasingly comple x
information systems if they are displayed a s
graphical objects in a three dimensional space .
Object-oriented software provides an interestin g
test case - there is a natural mapping fro m
software objects to visual objects . In this paper
we explore two areas. 1) Information perception :
we are running controlled experiments to
determine empirically if our initial premise is
valid; how much more (or less) can be understoo d
in 3D than in 2D? 2) Layout: our strategy is to
combine partially automatic layout with manua l
layout . This paper presents a brief overview of
the project, the software architecture and some
preliminary empirical results .

Introduction
The management and understanding of complex
bodies of software remains one of the most
challenging issues facing software engineering .
Graphical techniques are in widespread use as an
aid in many phases of the development process ,
from planning to code writing . Unfortunately
the quantity of information is often so great tha t
conventional 2D diagrams become extremel y
cluttered (see Consens 1991 for one example) .
There is growing evidence, some of which is
described below, that representing diagrams in 3 D
can allow more complex information to be
comprehended (Robertson et al, 1991, Xiao an d
Milgram, 1992, Ware, Arthur and Booth, 1993) .

The IBM contact for this paper is Arthur Ryman ,
Centre for Advanced Studies, IBM Canada Ltd .
895 Don Mills Road, North York, Ontario, M3 C
1W3

The goal of the research described here is to build
a prototype system for the visualization an d
manipulation in 3D of substantial directed graph s
with multiple attributes on the nodes and arcs.
These graphs will be used to represent such
things as software modules and software usage o r
inheritance relations. Subsidiary goals are
advances in the interactive navigation and
manipulation of 3D scenes and advances in th e
visual representation of multidimensional discrete
data

Our primary methodology is to build a proof of
concept prototype called GraphVisualizer3D .
This will be capable of displaying a substantial
body of software comprising an existin g
commercial application and will be evaluated by
professional programmers. A secondary
methodology is to use focal studies in data
representation which will be evaluated using
techniques from visual psychophysics.

This paper is divided into three major
subsections. In the first we describe some results
relating to 3D visualization of networks of
information . In the second we describe our
strategy for interactive algorithm assisted graph
layout, and in the third we describe the software
architecture of the system .

Information visualization i n
3 D
Wickens suggested that creating visual object s
can be the best way of understanding the
relationship between variables in a
multidimensional data object; this is called an
object display (Wickens, 1991) . Colour coding is
a highly effective technique for multi-

612



dimensional discrete data display; colour
dimensions can impart almost as much as spatial
dimensions for representing clusters in a
multidimensional data space (Ware and Beatty,
1988) . We plan on exploiting the natural and
obvious device of representing software object s
as graphical objects. We will map attributes of
the software objects (such at type, structure an d
size) to the graphical attributes of the 3D
graphical objects (such as colour, shape and size).

Fish Tank VR
In recent years the concept of the virtual realit y
(VR) display has received considerable publicity .
The system that is most commonly described has
the display monitors mounted on a helmet ,
which immerses the user in the graphical
environment. However, Deering (1992) has
shown that a much higher quality VR image is
obtainable using a more conventional monitor b y
coupling the perspective of the image to the
users measured eye position, this localized th e
virtual scene to the vicinity of the monito r
screen. Ware et al (1993) used the term Fish
Tank Virtual Reality to describe this kind of
display to distinguish it from the immersive V R
systems. In the current project we are using Fish
Tank VR for the visualization of object-oriented
software. The basic elements of the system are
shown in Figure 1 .

Network visualizatio n
The most significant previous work on the 3D
visualization of information networks is the
SemNet project of Fairchild et. al. (1988) which
used 3D representation to allow users to visualiz e
large knowledge bases as nodes and arcs in a three
dimensional space. The present project borrows
heavily from ideas present in SemNet both in th e
basic concept and in some of the details .
However, we hope to go beyond this importan t
pioneering work in a number of aspects .
SemNet allowed users to manually place node s
according to semantic content, but much more
emphasis was placed on automatic layout . In our
work we place much more emphasis on manual
layout. SemNet used uniformly sized panels to
represent nodes and lines to represent arcs. We
have gone substantially beyond this in th e
variety of nodes and arcs we can represent .
SemNet used rotation to reveal the 3D structure
of the displayed networks. We are using head-
coupled stereo display to increase the 3D

information available . There was no formal
evaluation of SemNet and because of this it is
difficult to ascertain how successful they were ;
both positive and negative opinions are available .
We are engaged in a series of empirical
evaluations of the validity of differen t
representation schemes.

More recently, the Cone Tree concept developed
at Xerox Parc has also played a seminal role i n
arousing interest in 3D versus 2D displa y
(Robertson et al, 1991) . The Cone Tree system
allows for the display of tree structured graph s
displaying all the children of a node in the form
of a cone of information . The authors claim
that as many as one thousand nodes may be
displayable using Cone Trees without visua l
clutter - this is clearly more than could be
contained in a 2D layout, although the Con e
Trees require certain user manipulations to acces s
some of the information.

Of particular relevance to the display of
information networks is work that has shown
that the number of errors in detecting path s
through tree structures is substantially reduced if
a 3D display method is used (Sollenberger and
Milgram,1991 ; Ware, Arthur and Booth, 1993).
Sollenberger and Milgram showed that bot h
motion and stereopsis helped reduce errors in a
path tracing task. In their motion conditions the
stimulus pattern rocked back and forth about a
vertical axis. They found that motion was mor e
valuable than stereopsis in reducing errors . Ware
et al's experiment used a similar task with a hea d
coupled stereo display in which the perspectiv e
view was coupled to measured eye position of th e
observer. Although the motion was caused by
head movement in Ware et al's display, the
results were similar to those obtained previously
by Sollenberger and Milgram .

There are a number of unanswered questions
posed by the above studies. The first is the
question of what kind of motion of the image is
better for perceiving structure in information
networks:

1) motion induced by perspective coupled t o
eye position,

2) automatic rotation of the object, or
3) motion caused by linking the user's hand

movements to the object .

613



Figure 1 . The preferred method for visualizing complex networks of information may be using hea d
coupled stereo views. This results in a virtual 3D view of a scene placed in the vicinity of the monitor .

A second key question is whether the results of
Sollenberger and Milgram and Ware et a l
generalize to directed graphs . This is important
because tree layout is a relatively simple, wel l
understood process, and it is trivial to lay out a
pair of trees in a plane so that they do not
overlap . Hence the visualization problem posed
by the previous studies could easily be solved
without resorting to a 3D display . This is not
the case for an arbitrary directed graph where the
layout problem is more difficult and the
advantages of 3D visualization may be more
pronounced . While much of the work on 2D
layout of directed graphs has been directed at
minimizing arc crossings, the algorithms are
often complex and in some cases are NP hard .
We hypothesize that 3D visualization will to
some extent reduce the graph crossing problem
because arcs will no longer appear in the plane o f
the screen. In part, the following experiment
was designed to test this hypothesis .

Experimental study of 3 D
network visualization
Task description
The task presented to each subject in the
experiment was to decide whether there was a

path connecting two nodes which wer e
highlighted in a randomly laid out graph . The
computer generated a random, 3D graph
consisting of 75 nodes, arranged in a simulated
18 cm3 volume, with characteristics defined as
follows.

The nodes were divided into three groups of 25 :
groups A and B each contained 25 leaf nodes, and
group C which contained 25 connection nodes .
Each of the nodes in group C was connected vi a
arcs to two nodes in group A and to two nodes in
group B. Thus there were a total of 10 0
connecting arcs. All nodes were placed at random
within the working volume of the display space.

The graph remained the same throughout a give n
condition, but for each trial, a different pair of
nodes was highlighted . Whether or not the nodes
were connected was predetermined by th e
program, with half being connected, and half not .
Connected and unconnected pairs of nodes came
up in a (pseudo-) random order.

There were 18 trials conducted under each of nine
conditions (described below). For each trial, one
node from the A group and one from the B group

614



was highlighted, and the subject's task was to
determine whether or not there was a path o f
length two that connected the two highlighte d
nodes

Condition s
There were nine conditions under which trial s
were conducted.

1) 2D: no stereo, no rotation, two dimensions-
the 3D graph was projected onto a 2D plane
using an orthographic (parallel) projection by
removing Z axis information, hence no overla p
information was available .

2) Perspective : no stereo, no rotation, three
dimensions - this is essentially the same task as
in 1) above, except that the graph is displayed
using a perspective projection with the depth
cues of relative size and overlap/occlusion .

3) Stereo: no rotation, three dimension - thi s
condition made use of a pair of StereoGraphic s
CrystalEyes LCD shutter glasses to provide
auxiliary depth cues .

4) Passive Rotation: no stereo, three
dimensions - here, the scene rotated at a constant
angular velocity of 20 degrees/sec about the Y-
axis . Stereo was not employed, so the onl y
auxiliary depth cue was from relative movement .

5) Stereo, passive rotation : three
dimensions - same as above except with stereo;

6) Hand coupled: no stereo, hand coupled ,
three dimensions - the subject could move the
scene around with the mouse to get a better look
from almost any angle; while providing a large
degree of freedom, movement was slightl y
restricted to ±128° horizontal rotation (about Y-
axis) and ±49 .1° tilt (about x-axis);

7) Stereo, hand coupled : three dimensions
- same as above, except with stereo .

8) Head coupled: three dimensions - the
scene's perspective would change according to
where the subjects head position was, thu s
always producing a proper perspective for the
current head position, in relation to the center o f
the monitor screen;

9) Stereo, head coupled : three dimensions -
same as above, except with stereo .

The subjects were made aware before each
condition of what apparatus would be of use in
the next set of trials (the subject wore the head
tracker and stereo glasses regardless of the
condition, in order to avoid effects related solely
to wearing the equipment) .

Each subject was given as much time as require d
to determine whether or not he or she believe d
there was a connection ; after deciding, the subjec t
would indicate his or her response by pressing a
specified mouse button .

The entire experiment was repeated a second time
on a different day to allow for the accumulation
of more data. Before beginning the experimen t
each day, the subject was given a short warm-up
which presented four trials under each of the same
nine conditions .

There were a total of eleven subjects who took
part in the experiment, five of whom had use d
similar apparatus and/or graphics systems before .

Results
The results are summarized in Figure 2 . This
shows that times were relatively uniform acros s
conditions with one condition that stands out, the
hand coupled condition without stereopsis ; thi s
had an average time of 12.4 seconds as compared
to the overall average of 9.5 seconds . It is also
evident that the use of stereo shortened response
times by an average of 1 .9 seconds
(approximately 20%). This figure was obtained
by comparing the conditions which only differe d
by the presence or absence of stereo.

The main difference between conditions is found
in error rates. These ranged from 26% in the 2D
condition down to a low of 6.1% in the stereo
hand coupled condition. These data confirm
previous studies which show that motion is more
important than stereo in reducing errors (the
average for the motion alone conditions was
11 .4% whereas the average for the stereo alone
condition was 15 .4%) However they also show
that the combination of stereo and motion is th e
most effective (average error 7 .5%), and
interestingly, they suggest that the method for
producing the motion is not particularl y
important . Overall, the data do appear to
support the hypothesis that 3D visualizatio n
reduces the errors due to arc crossings. However,
there are also other possible explanations for thi s

615



decrease; such as the possibility that the multiple
views afforded by motion and stereopsis allow for
a reduced error rate despite the fact that in eac h
view are crossings existed.

Q

	

° > >

	

.,?:,°) 'a '0 'ow

a a

co,
x

30 -

Figure 2 . The results show small differences
between times for the different conditions but
large differences in error rates .

The practical conclusion which can be draw n
from these results is that combining motion with
a stereo view is a useful network visualization
technique which may be useful in understanding
the structure of object oriented code . Which type
of motion should presumably depend on the
application. For example, if the selection of

objects is important then automatic rotation is
not desirable because selecting moving objects is
difficult. On the other hand, if head coupling is
available then this would probably not interfere
with 3D selection . This is because the motor
control systems used for visually guided han d
placement presumably have evolved to work in
conjunction with simultaneous head motion .

Layout
The areas of graph layout in the plane an d
automatic graph drawing have attracted numerou s
researchers over the years . Eades and Tamassi a
0 give an extensive survey of the topic complete
with some 186 references . Eades and Xuemin ()
suggested three general criteria that consitute
"good" drawing of directed graphs in the plane :

• avoid upward pointing arcs,

• distribute nodes evenly over the plane ,

• minimize arc crossings .

We have only borrowed a small part from the
large pool of literature on graph layout since w e
feel that much of this literature is irrelevant t o
the most crucial issue in graph layout, namel y
the problem of semantic clustering. The most
important criterion for information layout will
usually be the meaning of the nodes and arcs ,
and since most wqrk on layout largely ignores
this factor, we do not find it useful .

If a three dimensional software representation i s
to be useful as the primary high level interface t o
a significant body of software, it is reasonable t o
expect a project manager to spend many tens o f
hours working with the diagram, particularly i f
it is also the interface to the textual code itsel f
and to the documentation . It is completel y
unreasonable to expect algorithms to achieve
more than a first approximation to the layout o f
software entities in space because good layout i s
based, to a large extent, on high level semantic s
which cannot, at present, be formalized .
Therefore, the placement used in the 3 D
interaction package will be based on a
combination of algorithmic constraints an d
manual layout. Our strategy is to combine the
most elementary graph layout algorithms with a
highly interactive system . Some of the criteri a
which we think may be important are listed

10

• 4-4

1

810

8

H 6
4

2
0

616



below, together with some of the interactive
requirements .

Cl: Nodes should be laid out in a top-dow n
fashion in horizontal layers .

C2: Arcs should point downward or horizontally
on each layer. There should be a minimum
of upward pointing arcs .

C3: Nodes should be laid out in a regular gri d
pattern within layers.

C4: It should be possible to drag and drop node s
in order to move them to new positions .

C5: Nodes should be constrained by gravit y
points at the grid intersections in order to
assist in the manual layout .

C6: Anchors should be supported to prevent
automatic layout methods from affecting
manual work that has already been done .

C6: Nesting nodes within nodes should b e
supported.

C7: Nested nodes should be laid out within the
parent nodes according to the same criteria
that are used for the parents.

Criterion Cl can be achieved by obtaining a
topological sort of the nodes based on a particular
arc relation . The prior requirement of topologica l
sorting is that the digraph must be acyclic or a
DAG and this is commonly achieved b y
reversing certain arcs . Unfortunately optimal
cycle elimination is NP-hard (Gary and Johnson ,
1979). However we use a simple and fast

Figure 3 . A view of some data objects stored in the system . The objects at the right, top and
bottom of the picture are the 3D widgets described in the text .

617



heuristic based on the depth first search techniqu e
to explore the digraph with respect to a chosen
root node; in this process previously visited
nodes are marked and thus backarcs can be
ignored (a similar method can be found in Eades
and Xuemin, 1989) .

Nesting nodes within nodes will also be don e
somewhat automatically ; if a node is designated
as nested then it will automatically be drawn
smaller and inside the parent node.

The rest of the layout criteria will be defined by
user interactions, although these will often be
constrained by the system. One important part
of the interactive layout system is the set of 3D
widgets used to control the user's view of the
graph .

3D Widgets
There are two methods of viewpoint control
employed in this system . The first is the head
coupling described in the introduction. Head
coupling is useful in that it provides a natura l
method for changing the viewpoint, but it is als o
limited. Moreover we wish to have a system in
which head coupling is optional, and thus the
system should be fully functional without it .
Therefore, we have designed a set of 3D widget s
for this and similar applications. These widgets
allow for the scene to be rotated and translated
using either velocity control or position control .
They are illustrated in Figure 3 . They consist of
three translation widgets and two rotatio n
widgets . The translation widgets allow motion
along the three orthogonal Cartesian axes . The
rotation widgets allow for the scene to be rotated
around a central vertical axis and tilted about a
horizontal axis. Each widget has a small
rectangle and a triangle attached. Each rectangle
is a direct manipulation position control ; when
it is selected the scene moves with the mouse
according to the axis selected . Each triangle
provides a velocity control ; when it is moved
the scene starts to rotate or translate according to
the amount of displacement .

Software architecture
The proof of concept prototype is being buil t
using C++ on a Silicon Graphics Indigo 2
Extreme workstation or equipped with a high
performance graphics subsystem capable of
approximately 600,000 filled 3D
polygons/second . The system is being written

using SGI's graphics library (GL) for all 3D
graphics, and X-Windows with Motif widgets for
the standard menu and window interface .

In the center of the main box in Figure 4 is an
elliptical shape denoting the Prioritized
Adjacency List (PAL) . This represents the
central internal data structure in the system . For
moderately sized systems this will contain all o f
the information that can be displayed in a graph
in addition to the layout information. Only a
subset of the information stored in this structur e
will be displayed at a given time. Aside from
this there is a file I/O module to transfer data into
and out of the system, and two modules relating
to system visualization and layout respectively .

C++ source
code

Database
source
code

Prolog
database

Cflow
database

tabase to GD
conversion progr

Hand controlled
13D widgets)

Interactive
'Constraints!

Alaoritluni

Device drivers

Figure 4. The software architecture for the
GraphVisualizer3D system .

File I/O

mouse

618



Outside of the main GV3D box is an ellipse
denoting the Graph Description Language (GDL) .
This is a language that we have designed to
allow for the permanent storage of grap h
structure information and also information
relating to layout and visual representation of a
graph. This language is also the primary
interface to the various diverse application
systems we plan to support . In the case of C+ +
code, we plan to use the IBM compiler for th e
RISC System 6000 which constructs an interna l
Prolog data base containing extensive
information about the code structure (Jarvey et al ,
1992). We will extract the information we need
by means of Prolog queries and transform the
results into GDL. In order to visualize another
application, hypertext for example, it will be
necessary to transform the data structure into th e
GDL .

Conclusion
The system described here is still in its earl y
stages of development . By the time this paper
appears we hope to have version 1 .0 complete
and operational . Nevertheless, we have alread y
obtained some encouraging results in providin g
empirical evidence that 3D graph visualization
can substantially reduces error rates over
visualization in only two dimensions . In the
next two years we hope to show that this mode
of viewing has substantial benefits for
understanding object oriented software .

This paper describes only part of the system .
There are other large areas which have not bee n
covered or have just been hinted at . One of these
areas is the method by which the users will quer y
the system to obtain information that is no t
currently displayed, or to highlight a certai n
subset of the arcs . Another is the sequence o f
steps whereby the code is analyzed for th e
purposes of display. Yet another is the method
for displaying textual information . Some of the
decisions about what to include in the system
have not yet been made. In other cases
information has been left out for reasons of
brevity.

About the authors
Colin Ware is an assistant professor of computer
science at the University of New Brunswick. His

research interests include data visualization an d
visual user interfaces.
David Hui has nearly completed a masters degree
in computer science at the University of Ne w
Brunswick in the area of software visualization .
He is currently employed at IBM Toronto Labs .
Glenn Franck is working as a software engineer
on the software visualization project. He has a
BSc in computer science from Dalhousie
University .

Acknowledgments
The primary source of support for this project i s
an NSERC strategic grant. We are grateful to
Arthur Ryman at IBM Toronto Labs for hi s
encouragement and support and for his assistanc e
in providing code analysis tools . We also thank
Tim Dudley at Bell Northern Research fo r
providing the initial impetus to start this projec t
and for ongoing enthusiastic support.

Reference s

Bier, E .A. (1990) Snap-Dragging in Three
Dimensions, Computer Graphics,24(2)

Consens, M., Medelzon, A ., and Ryman, A .
(1991) Visualizing and Querying Software
Structures . IBM Canada Technical report TR
74.053

Cox, P.T., Giles, F.R., and Pietrzykowski, T. ,
Prograph: a step towards liberatin g
programming from textual conditioning . IEEE
Workshop on Visual Languages. 1989, Rome .
Proceedings pp 150-156.

Deering, M. (1992) High resolution virtua l
reality. Computer Graphics, 26,2,195-202 .

Eades, P. and Tamassia, R. Algorithms for
drawing graphs : An annotated bibliography .
Technical report. Department of Computer
Science. University of Illinois at Urbana-
Champaign, Urbana-Champaign. Illinois, Jun e
1990 .

Eades and Xuemin. How to draw a directed
graph . In IEEE Workshop on Visual
Languages. 13-17, 1989.

Fairchild, K.M., Poltrock, S .E . and Furnas ,
G.W. (1988) SemNet: Three-Dimensional
Graphic Representations of Large Knowledge
Bases. In Cognitive Science ad Its
Applications for Human-Computer Interaction.
Ed Raymond Guindon Lawrence Erlbaum . 201 -
233 .

619



Garey, M.R. and Johnson, D .S . (1979)
Computers and Intractability - A Guide to th e
Theory of NP-Completeness, Freeman, 1979 .

Jarvey, S., Mitsui, H. and Nakamura, H . (1992)
Architecture of the x1 c++ browser. In
proceedings fo the 1992 CAS Conference.
Centre for Advanced Studies, IBM Canada Ltd .
November, 1992.

Lieberman, H . (1989) A Three-Dimensional
Representation for Program Execution,IEE E
Workshop on Visual Languages, Proceedings ,
111-116.

Mackiney, J.D., Card, S .K and Robertson, G .G .
(1990) SIGGRAPH '90 Conference
Proceedings. Computer Graphics, 24, 4, 171 -
176.

Mariani, J .A., and Lougher, R . TripleSpace: an
experiment in a 3D graphical interface to a
binary relational database, Interacting with
Computers, 4(2) 1992 147-162

Messinger, E .B . (1991) A Divide and Conquer
Algorithm for the Automatic Layout of Large
Directed Graphs. IEEE Transactions on
Systems, Man and Cybernetics, 21, 1, 1-1 2

Purcell, D .G. and Stewart, A.L. (1991) The
object detection effect Configuration enhances
perception, Perception and Psychophysics,
50(3) 215-224 .

Robertson, G .G., Mackinlay, J .D and Card, S .
K. (1991) Cone Trees: Animated 3D
Visualizations of Hierarchical Information.
CI-E['91 Proceedings. 189-194.

Sollenberger, R .L. and Milgram, P. (1991) A
comparative Study of Rotational an d
Stereoscopic Computer Graphic Depth Cues .
Proceedings of the Human Factors Society
Annual Meeting, 1452-1456 .

Tufte, E. (1990) Envisioning information .
Graphics Press, Connecticut.

Ware, C., Arthur ., and Booth, K.S. Fish Tank
Virtual Reality . Proceedings of
INTERCHI'93 . 37-42 .

Wickens, C .D. (1991) Engineering Psychology
and Human Performance, (2nd ed.) New York :
Harper Collins .

Wilhelms, J and Skinner, R. (1989) An
Interactive Approach to Behavioral Control .
Graphics Interface, Proceedings, 1-8 .

Xiao, Y . and Milgram (1992). Visualization of
Large Netwoks in 3-D Space: Issues in
Implementation and Experimental Evaluation .
Proceedings of the 1992 CAS conference . 247 -
258 .

620


	Visualizing Object Oriented Software in Three Dimensions
	Recommended Citation

	tmp.1455890613.pdf.wdH6h

