
Visualizing Ontologies: A Case Study

John Howse1, Gem Stapleton1, Kerry Taylor2, and Peter Chapman1

1 Visual Modelling Group, University of Brighton, UK
{John.Howse,g.e.stapleton,p.b.chapman}@brighton.ac.uk

2 Australian National University and CSIRO, Australia
Kerry.Taylor@csiro.au

Abstract. Concept diagrams were introduced for precisely specifying
ontologies in a manner more readily accessible to developers and other
stakeholders than symbolic notations. In this paper, we present a case
study on the use of concept diagrams in visually specifying the Semantic
Sensor Networks (SSN) ontology. The SSN ontology was originally devel-
oped by an Incubator Group of the W3C. In the ontology, a sensor is a
physical object that implements sensing and an observation is observed
by a single sensor. These, and other, roles and concepts are captured vi-
sually, but precisely, by concept diagrams. We consider the lessons learnt
from developing this visual model and show how to convert description
logic axioms into concept diagrams. We also demonstrate how to merge
simple concept diagram axioms into more complex axioms, whilst ensur-
ing that diagrams remain relatively uncluttered.

1 Introduction

There is significant interest in developing ontologies in a wide range of areas,
in part because of the benefits brought about by being able to reason about
the ontology. In domains where a precise (formal) specification of an ontology is
important, it is paramount that those involved in developing the ontology fully
understand the syntax in which the ontology is defined. For instance, one formal
notation is description logic [3], for which much is known about the complexity
of reasoning over its fragments [4].

Notations such as description logics require some level of mathematical train-
ing to be provided for the practioners using them and they are not necessar-
ily readily accessible to all stakeholders. There have been a number of efforts
towards providing visualizations of ontologies, that allow their developers and
users access to some information about the ontology. For example, in Protégé,
the OWLViz plugin [10] shows the concept (or class) hierarchy using a directed
graph. Other visualization efforts provide instance level information over popu-
lated ontologies [11]. To the best of our knowledge, the only visualization that
was developed as a direct graphical representation of description logics is a varia-
tion on existential graphs, shown to be equivalent to ACL by Dau and Eklund [7].
However, existential graphs, in our opinion, are not readily usable since their syn-
tax is somewhat restrictive: they have the flavour of a minimal first-order logic

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 257–272, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

258 J. Howse et al.

with only the ∃ quantifier, negation and conjunction; the variation developed as
an equivalent to ACL uses ? to act as a free variable.

In previous work, Oliver et al. developed concept diagrams (previously called
ontology diagrams) as a formal logic for visualizing ontology specifications [12,13],
further explored in Chapman et al. [5]. Whilst further work is needed to estab-
lish fragments for which efficient reasoning procedures can be devised, concept
diagrams are capable of modelling relatively complex ontologies since they are
a second-order logic.

The contribution of this paper is to demonstrate how concept diagrams can be
used to model (part of) the Semantic Sensor Networks (SSN) ontology, in its cur-
rent version, which was developed over the period February 2009 to September
2010 by an Incubator Group of the W3C, called the SSN-XG [6]. We motivate
the need for accessible communication of ontology specifications in section 2,
ending with a discussion around why visualization can be an effective approach.
Section 3 presents a formalization of some of the SSN ontology’s axioms using
concept diagrams and using description logic, contrasting the two approaches.
Section 4 demonstrates how to translate description logic axioms to concept
diagrams and some inference rules. Section 5 concludes the paper.

2 Motivation

Complex ontologies are often developed by groups of people working together,
consistent with their most important application: to support the sharing of
knowledge and data. The most common definition of ontology refers to “an
explicit representation of a shared conceptualisation” [9]. A shared conceptuali-
sation is usually needed for the purposes for which ontologies are most used: for
representation of data to be shared amongst individuals and organisations in a
community. The “sharing” is necessary when domain-knowledge capture through
an ontology requires modelling of either commonly-held domain knowledge or
the common element of domain knowledge across multiple domains. This needs
to take account of instances that are asserted to exist in the ontology, and also
instances that might exist, or come into existence when the ontology is applied
to describe some data.

The W3C’s Web Ontology Language (OWL 2.0) is a very expressive but de-
cidable description logic: a fragment of first order predicate calculus. A brief
and incomplete introduction is given here: the reader is referred to [1] for a
complete treatment. In common with all ontology languages, a hierarchical tax-
onomy of concepts (called classes in OWL) is the primary modelling notion.
Individuals can be members (or instances) of concepts and all individuals are
members of the predefined concept Thing, no individuals are members of the
predefined Nothing. Binary relations over concepts, called roles, are used to re-
late individuals to others, and concept constructors comprising complex logical
expressions over concepts, roles and individuals are used to relate all these things
together. Most important here are role restrictions: expressions that construct
a concept by referring to relations to other concepts. There are also a range of role

Visualizing Ontologies: A Case Study 259

characteristics that can constrain the relations wherever they occur: such as
domain, range, transitive, subproperty and inverse. Two key features of OWL
designed for the semantic web applications is that all entities: classes (concepts),
properties (roles) and individuals are identified by URI (a Web identifier that can
be a URL), and that it has an RDF/XML serialization (commonly considered
unreadable).

In the experience of these authors, when people meet to develop concep-
tual structures, including models of knowledge intended to become an OWL
ontology, they very quickly move to sketching 2D images to communicate their
thoughts. At the beginning, these may be simple graph structures of labelled
nodes connected by labelled or unlabelled arcs. For example, figure 1 shows the
whiteboard used at the first Face-to-face meeting of the W3C Semantic Sensor
Networks Incubator Group, in Washington DC, USA, November 2009. Unlike
some modelling languages, OWL does not have a heritage in visual representa-
tions, and modellers struggle with different interpretations of the visualizations
used in the group. For example, in OWL, it is very important to know whether a
node represents an individual or a class. In a more advanced example, modellers
need to know whether a specified subsumption relationship between concepts is
also an equivalence relationship. As we shall see, concept diagrams are capable
of visualizing exactly these kinds of definitions.

Fig. 1. Whiteboard used at face-to-face meeting; Photo: M. Hauswirth

The major feature of OWL as a modelling language is also its greatest hin-
drance for shared development: the formal semantics and capability for reason-
ing. The examples we give later, in our case study, demonstrate that information
that would sometimes need to be inferred is actually explicitly visible on concept

260 J. Howse et al.

diagrams (so-called free-rides which we explain later). It is commonplace for
ontology developers, as domain experts, to be unaware of the formal semantics un-
derlying OWL, and if they are aware it remains very difficult to apply the knowl-
edge of the semantics in practice while developing in a team environment. For
example, even the simple difference between universal and existential role restric-
tions are difficult to represent and to assimilate in diagrammatic form. As
another example, the semantic difference between rdfs:domain and rdfs:range con-
straints on properties, as opposed to local restrictions on those properties in the
context of class definitions, is difficult to represent diagrammatically and very
hard to take into account when studying spatially-disconnected but semantically-
connected parts of an ontology sketch. There is a need for semantically-informed
sketching tools that help ontology developers to better understand their modelling
in real time.

3 Visualizing the SSN Ontology

In this section we walk through parts of the SSN ontology, showing how to
express it in our concept diagrams. At the end of section 3.2 we will give
a summary of the concept diagram syntax. The SSN ontology is available at
purl.oclc.org/NET/ssnx/ssn and extensive documentation and examples of its
use are available in the final report of the SSN-XG [2]. An alternative vi-
sualization of the SSN ontology was created using CMAP from IHMC (see
www.ihmc.us/groups/coe/) and may be compared with the visualisation pre-
sented here. The ontology imports, and is aligned with, the Dolce Ultra-Lite
upper ontology [14] from which it inherits upper concepts including Event, Ob-
ject, Abstract, Quality, PhysicalObject, SocialObject, InformationObject, Situation,
Description, Method, and Quality.

3.1 Concept Hierarchy Axioms

To represent the concept hierarchy, concept diagrams use Euler diagrams [8],
which effectively convey subsumption and disjointness relationships. In particu-
lar, Euler diagrams comprise closed curves (often drawn as circles or ellipses) to
represent sets (in our case, concepts). Two curves that have no common points
inside them assert that the represented sets are disjoint whereas one curve drawn
completely inside another asserts a subsumption relationship. In addition, Euler
diagrams use shading to assert emptiness of a set; in general, concept diagrams
use shading to place upper bounds on set cardinality as we will see later.

In the SSN ontology, descriptions of the concepts are given as comments in
the ssn.owl file [2], which we summarize here. The SSN ontology is defined over
a large vocabulary of which we present the subset required for our case study.
At the top level of the SSN hierarchy are four concepts, namely Entity, Feature-
OfInterest, Input, and Output. The concept Entity is for anything real, possible
or imaginary that the modeller wishes to talk about. Entity subsumes five other
concepts which, in turn, may subsume further concepts. The five concepts are:

Visualizing Ontologies: A Case Study 261

1. Abstract These are entities that cannot be located in space and time, such
as mathematical concepts.

2. Event These are physical, social, or mental processes, events, or states. Event
is, therefore, disjoint from Abstract.

3. Object These are physical, social or mental objects or substances. Therefore,
Object is disjoint from Abstract and Event.

4. FeatureOfInterest A feature of interest is an abstraction of real world phe-
nomena and is subsumed by the union of Event and Object.

5. Quality This is any aspect of an entity that cannot exist without that entity,
such as a surface of a solid object. Quality is also disjoint from Abstract,
Event, and Object.

An Euler diagram asserting these subsumption and disjointness properties as a
single axiom, alongside the axioms expressed using description logic, can be seen
here:

Entity

Abstract Quality+

Event+ Object+

FeatureOfInterest

1. Abstract � Entity
2. Quality � Entity
3. Event � Entity
4. Object � Entity
5. Abstract � Quality � ⊥
6. Abstract � Event � ⊥
7. Abstract � Object � ⊥
8. Quality � Event � ⊥
9. Quality � Object � ⊥

10. Event � Object � ⊥
11. FeatureOfInterest � Event �Object
12. Entity ≡ Abstract �Object �Event �Quality

The Euler diagram has a certain succinctness over the description logic in that
there are 6 DL axioms asserting disjointness properties, for example.

Notice, in the figure above, the concept Object is annotated with a plus sym-
bol, as are Event and Quality. Whilst not part of the formal syntax, this plus
symbol is used to indicate that there are concepts subsumed by each of these
concepts that are not displayed in this diagram; with tool support, one could
imagine clicking on this plus to ‘expand’ the diagram, to show the subsumed
concepts. In the SSN ontology, Object is the union of two disjoint concepts,
PhysicalObject and SocialObject:

Object

PhysicalObject+ SocialObject+ 1. Object ≡ PhysicalObject
�SocialObject

2. PhysicalObject � SocialObject � ⊥

262 J. Howse et al.

A PhysicalObject is an object that has a proper space region whereas a So-
cialObject exists only within some communication Event, in which at least one
PhysicalObject participates. Again, as indicated by the plus sign, PhysicalObject
subsumes various other concepts: Sensor, System, Device, and SensingDevice. A
Sensor can do sensing: that is, a Sensor is any entity that can follow a sensing
method and thus observe some Property of a FeatureOfInterest. A System is a
unit of abstraction for pieces of infrastructure for sensing, namely Device and
SensingDevice. A Device is a physical piece of technology, of which SensingDe-
vice is an example. Additionally, SensingDevice is an example of Sensor. This
information about the SSN ontology is axiomatized by the single Euler diagram
below, and equivalently by the adjacent description logic axioms:

PhysicalObject

System
Sensor

Device

SensingDevice

1. Sensor � PhysicalObject
2. System � PhysicalObject
3. Device � System
4. SensingDevice � Device
5. SensingDevice � Sensor

It should be clear that the diagram just given makes some informational con-
tent explicit, whereas it needs to be derived from the description logic axioms.
For instance, one can easily read off, from the diagram, that SensingDevice is
subsumed by PhysicalObject, since the closed curve representing the former is
contained by the closed curve representing the latter. From the description logic
axioms, one must use the transitive property of � to extract this information:
SensingDevice � Sensor � PhysicalObject. To make this deduction, one has to
identify appropriate description logic axioms from the list given, which requires
a little more effort than reading the diagram. This example, illustrating the in-
ferential properties of the diagram, is a typical example of a free-ride (sometimes
called a cheap ride), the theory of which was developed by Shimojima [16], later
explored by Shimojima and Katagiri [17]. In general, a free-ride is a piece of
information that can be readily ‘seen’ in a diagram that would typically need to
be inferred from a symbolic representation.

SocialObject also subsumes various other concepts, which we do not describe
in full here. Three will be of use to us later: a Situation is a view on a set of
entities; an Observation is a Situation in which a SensingMethod has been used
to estimate or calculate a value of a Property of a FeatureOfInterest; and Sens-
ing is a process that results in the estimation, or calculation, of the value of a
phenomenon. The following Euler diagram defines an axiom from the SSN ontol-
ogy, and the adjacent description logic statements capture the same information:

Visualizing Ontologies: A Case Study 263

Observation

Situation

SocialObject

Description

Method

Process

Sensing

SensorOutput

InformationObject

1. Situation � SocialObject
2. Observation � Situation
3. InformationObject � SocialObject
4. SensorOutput � InformationObject
5. Description � SocialObject
6. Method � Description
7. Process � Method
8. Sensing � Process
9. Situation � Description � ⊥

10. Situation � SocialObject � ⊥
11. InformationObject � Description � ⊥

This diagram, presenting information about the concepts subsumed by SocialOb-
ject, also has many free-rides, such as Sensing is subsumed by Description, and
that Process is disjoint from Observation since the two curves do not overlap.
For the latter, to deduce this from the given description logic axioms, one would
need to use axiom numbers 2, 6, 7, and 9.

We saw earlier that Quality was subsumed by one of the top-level concepts,
Entity. In turn, Quality subsumes Property, which is an observable quality of an
event or object. Property subsumes many concepts, but we only make use of one
of them later: MeasurementCapability. This concept collects together measure-
ment properties (accuracy, range, precision, etc) as well as the environmental
conditions in which those properties hold, representing a specification of a sen-
sor’s capability in those conditions:

Quality

Property

MeasurementCapability
1. Property � Quality
2. MeasurementCapability � Property

The last part of the concept hierarchy that we demonstrate concerns Event,
which was subsumed by the top-level concept Entity. Two of the concepts sub-
sumed by Entity are Stimulus and SensorInput. A sensor input is an event that
triggers the sensor and the concept SensorInput is equivalent to Stimulus:

Event

Stimulus SensorInput
1. Stimulus � Event
2. SensorInput � Event
3. SensorInput ≡ Stimulus

Notice here that, in the Euler diagram, we have asserted equivalence between
concepts by drawing two circles on top of one another.

264 J. Howse et al.

We have represented 24 of the SSN concepts using Euler diagrams to assert
subsumption and disjointness relationships. The discussions around free-rides
indicate that Euler diagrams (the basis of concept diagrams) can be an effective
method of axiomatizing concept hierarchies. We refer the reader to [2] for further
information on the hierarchy.

3.2 Role Rescrictions

Moving on to role restrictions, concept diagrams extend Euler diagrams by in-
corporating more syntax to increase their expressiveness. In particular, arrows
are used to represent role restrictions. The source of the arrow is taken to re-
strict the domain of the role, and the target provides some information about the
image of the role under the domain restriction. The nature of the information
given is determined by the arrow’s type: arrows can be dashed or solid. Given a
solid arrow, a, sourced on C and targeting D, representing the role R, a asserts
that the image of R when it’s domain is restricted to C is equal to D, that is:

image(R|C) = D where image(R|C) = {y : ∃x ∈ C (x, y) ∈ R}.
By contrast, if a were instead dashed then it would assert that the image of R
when its domain is restricted to C includes at least the elements in D, that is:

image(R|C) ⊇ D.

As we shall see in our examples, the syntax that can be used as sources and
targets of arrows, including closed curves (both labelled, as in Euler diagrams,
or unlabelled), or dots. Unlabelled closed curves represent anonymous concepts
and dots represent individuals. As with closed curves, dots can be labelled to
represent specific individuals, or unlabelled to represent anonymous individuals.
The syntax and semantics will be more fully explained as we work through our
examples.

Our first example of some role restrictions concerns the concept Sensor, since
this is at the heart of the SSN ontology. There are various restrictions placed on
the roles detects, observes, hasMeasurementCapability and implements. The first
of these, detects, is between Sensor and Stimulus: sensors detect only stimuli.
Next, there is a role observes between Sensor and Property: sensors observe only
properties. Thirdly, every sensor hasMeasurementCapability, the set of which is
subsumed by MeasurementCapability. Finally, every sensor implements some sens-
ing. That is, sensors have to perform some sensing. The concept diagram below
captures these role restrictions:

Here, we are quantifying over the concept Sensor, since we have written ‘For all
Sensor s’ above the bounding box of the diagram (in the formal abstract syntax
of concept diagrams, this would be represented slightly differently, the details
of which are not important here). The dot labelled s in the diagram is then the
source of four arrows, relating to the role restrictions just informally described.
The solid arrow labelled detects is used to place the following restriction on the
detects role:

image(detects|{s}) ⊆ Stimulus,

Visualizing Ontologies: A Case Study 265

Sensor

s

Stimulus Property

Sensing

Measurement

Capabilitydetects

observes

implements

hasMeasurement

Capability

For all Sensor s

treating the individual s as a singleton set. The unlabelled curve is acting as an
existentially quantified anonymous set so, strictly, the arrow and the unlabelled
curve assert:

∃X image(detects|{s}) = X ∧ X ⊆ Stimulus.

Earlier, we defined an axiom that asserted MeasurementCapability is subsumed
by Property, along with axioms that give the disjointness information conveyed in
the diagram above. We have made use of that information in the diagram above,
by drawing the curves with appropriate containment and disjointness properties.
A further point of note is that, in this diagram, we have not asserted anything
about whether image(observes|{s}) and image(hasMeasurementCapability|{s}) are
disjoint, or whether one subsumes the other. All we know is that the former is
subsumed by Property and the latter is subsumed by MeasurementCapability.
Finally, the dashed arrow provides partial information:

∃X∃y image(implements|{s}) ⊇ X ∧ X ⊆ Sensing ∧ y ∈ X

where X arises from the unlabelled curve targeted by the arrow and y arises
from the unlabelled dot placed inside this curve; we are using unlabelled dots to
assert the existence of individuals.

The role restrictions just given, together with the disjointness information,
can also be expressed using the following description logic axioms:

1. Sensor � ∀ detects.Stimulus
2. Sensor � ∀ observes.Property
3. Sensor � ∃ implements.Sensing
4. Sensor � ∀ hasMeasurementCapability.MeasurementCapability
5. Sensor � Stimulus � ⊥
6. Sensor � Property � ⊥
7. Sensor � Sensing � ⊥
8. Stimulus � Property � ⊥
9. Stimulus � Sensing � ⊥

10. Property � Sensing � ⊥

266 J. Howse et al.

We can see that the concept diagram has free-rides arising from the use of
the unlabelled curves. For example, it is easy to see that image(detects|{s}) is
disjoint from Property, but this information is not immediately obvious from the
description logic axioms: one must make this deduction from axioms 1 and 8.

Our second collection of role restrictions concerns the concept Observation. Here,
an observation includes an event, captured by the role includesEvent, which is a
Stimulus, illustrated by the dashed arrow in the diagram immediately below. In
addition, observations are observedBy exactly one (unnamed) individual, which is
a Sensor. Similarly, observations have exactly one observedProperty and this is a
Property, exactly one sensingMethodUsed and this is a Sensing object, and a set
of observationResults all of which are SensorOutputs. Finally, observations have
exactly one featureOfInterest (role), which is a FeatureOfInterest (concept). All of
these role restrictions are captured in the diagram below, where again we have
used previous information about disjointness to present a less cluttered diagram:

Observation

o

Stimulus Sensor

Property

Sensing

includesEvent
observedBy

observedProperty

sensingMethod

Used

For all Observation o

SensorOutput

observation

Result

FeatureOf

Interest

featureOf

Interest

Here, of note is the use of a rectangle around the closed curve labelled Feature-
OfInterest. The rectangle is used to assert that we are not making any claim
about the disjointness of FeatureOfInterest with respect to the other concepts
appearing in the diagram.

To allow the reader to draw contrast with description logic, the role restric-
tions just given are expressed by 21 description logic axioms, comprising 15 dis-
jointness axioms and the following 6 axioms that correspond to the information
provided by the six arrows:
1. Observation � ∃ includesEvent.Stimulus
2. Observation � (= 1 observedBy) � (∀ observedBy.Sensor)
3. Observation � (= 1 observedProperty) � (∀ observedProperty.Property)
4. Observation � (= 1 sensingMethodUsed) � (∀ sensingMethodUsed.Sensing)
5. Observation � ∀ ObservationResult.SensorOutput
6. Observation � (= 1 FeatureOfInterest) � (∀ FeatureOfInterest.FeatureOfInterest)

Visualizing Ontologies: A Case Study 267

Consider axiom 2, which corresponds to the arrow labelled observedBy. From
the description logic axiom, a little reasoning is required to see that every ob-
servation is related to exactly one individual, which must be a sensor: one must
deduce this from the information that Observation is subsumed by the set of in-
dividuals that are related to exactly one thing under observedBy intersected with
the set of individuals that are related to only properties under observedBy. In
our opinion, the diagram more readily conveys the informational content of the
axioms than the description logic syntax and in a more succinct way (although
this, of course, could be debated).

To conclude this section, we summarize main syntax of concept diagrams:

1. Rectangles. These are used to represent the concept Thing.
2. Closed Curves. These are used to represent concepts. If the curve does

not have a label then the concept is anonymous. The spatial relationships
between the curves gives information about subsumption and disjointness
relationships.

3. Dots. These are used to represent individuals. As with closed curves, unla-
belled dots represent anonymous individuals. The location of the dot gives
information about the type of the individual. Distinct dots represent distinct
individuals. When many dots are present in a region, we may use ≤, =, and
≥ as shorthand annotations (this will be demonstrated later).

4. Shading. Shading in a region asserts that the concept represented by the
region contains only individuals represented by dots.

5. Solid Arrows. These are used to represent role restrictions. In particular,
the image of the role whose label appears on the arrow has an image, when
the domain is restricted to (the concept or individual represented by) the
source, is equal to the target.

6. Dashed Arrows. These are used to represent role restrictions. In particular,
the image of the role whose label appears on the arrow has an image, when
the domain is restricted to the source, which is a superset of the target.

In addition, quantifiers and connectives can be used in the standard way.

4 Discussion

We will now extract, from the case study that we have presented, some gen-
eral constructions of diagrams, from description logic axioms. Moreover, we will
show how to take these simple axioms and merge them into more complex ax-
ioms, by providing inference rules. These inference rules are inspired by the
manner in which we produced our visualization of the SSN ontology, aiming
for diagrams with minimal clutter, without compromising their informational
content.

With regard to subclass and disjointness information, where C and D are
concepts, we have the following translations:

268 J. Howse et al.

C D C D

C

D

However, using these translations would give one diagram for every disjoint-
ness, subsumption and equivalence axiom in the ontology. As we have seen, it is
possible to produce readable diagrams that correspond to many axioms of the
kind just given (all of our diagrams that conveyed concept hierarchy information
expressed more than one description logic axiom). There is clearly a requirement
on the ontology deverloper to determine a balance between the number of ax-
ioms like these conveyed in a single diagram and the clutter in a diagram. Our
diagrams were drawn in a manner that concepts were only in the same diagram
if we wanted to assert something about their relationship. Later, we will give
some general rules for merging these simple diagrams into larger diagrams.

As we saw earlier, we can readily translate information about ‘only’ or ‘some’
role restrictions into diagrammatic form. For example, in the Sensor concept, we
have Sensor detects only Stimulus and Sensor implements some Sensing. Abstract-
ing from this, and including more general constraints, we have role restrictions
of these forms, where C and D are concepts and R is a role:

C
c

R

For all C c

D

C
c

R

For all C c

D

C
c

R

For all C c

D
...

n copies

In the above, instead of drawing n dots, we could use one dot annotated with
≥ n as shorthand which is sensible if n gets beyond, say, 4. We can also adopt this
shorthand for ≤ n; we recall that shading is used to place upper bounds on set
cardinality, generalizing the use of shading in Euler diagrams, in a shaded region
all elements must be represented by dots. We now give two further translations:

C
c

R

For all C c

D

C
c

R

For all C c

D
...

n copies

Visualizing Ontologies: A Case Study 269

Again, in the diagram just given, we could have used the shorthand = n.
The above translations demonstrate how to produce concept diagrams from

role restrictions defined using description logic. These translations are sound
and, in fact, information preserving. As with the hierarchy information, there
are often more succinct, elegant diagrams that can be created by representing
many of these axioms in a single diagram. We will call the diagrams obtained
by applying the transformations just given atomic axioms. We now demonstrate
how to produce non-atomic axioms (like the diagrams given in the SSN ontology)
from atomic axioms.

We begin by giving some inference rules that allow us to replace some axioms
with others; in many cases there are obvious generalizations of the inference
rules. We adopt a traditional presentation style, where axioms written above a
line can be used to infer those written below the line. Each rule has a name,
displayed in shorthand: Dis for Disjunction, Sub for Subsumption, and Mer for
Merge. All of these rules are equivalences (no informational content is lost) and
can be formalized and proved sound, but here we just present them informally
using illustrative diagrams. First we have, concerning hierarchy information:

C D C E D E

D EC
Dis1

C D
D

E

C D
E

Sub1

C
D

D
E

D
E

C

Sub2

For instance, Dis1 says three axioms that tell us three concepts are pairwise
disjoint is equivalent to a single diagram telling us that the concepts are pairwise
disjoint. Sub1, tells us, roughly speaking, that if D appears in one axiom, a, and
we know that E is subsumed by D then we can copy E into a, placing it inside
D. Sub2 is another instance of this kind of inference.

Regarding role restrictions, we have seen that it is possible to use information
about disjointness when creating these kinds of axioms. For instance, if we know
that C and D are disjoint then we can simplify an axiom that tells us C is sub-
sumed by ∀R.D: we do not have to place D in a separate box. This intuition is
captured by our first role restriction rule, Dis2. Our second role restriction rule,
Mer1, takes atomic axioms arising from C � ∀R.D and C � ∀S.E and merges
them into a single diagram. Rule Mer2 is similar.

270 J. Howse et al.

C D
C

c

R

For all C c

D

C D
C

c

R

For all C c

D

Dis2

C

c

R

For all C c

D C

c

S

For all C c

E

C

c

S

For all C c

D

R

E

Mer1

C

c

R

For all C c

D C

c

R

For all C c

D

=n

C

c

R

For all C c

D

=n

Mer2

To demonstrate the use of these inference rules, we consider the example from
the SSN network concerning Sensor on page 265. Translating the associated de-
scription logic axioms numbered 1, 3, 5, 7, and 9, using the techniques of the
previous subsection, we get the following five diagrams:

Axiom 1:

Sensor

s

detects

For all Sensor s

Stimulus

Axiom 3:

Sensor

s

implements

For all Sensor s

Sensing

Axiom 5:

Sensor Stimulus

Axiom 7:

Sensor Sensing

Axiom 9:

Sensing Stimulus

Using the rule Mer2, from axioms 1 and 3 we obtain:

Sensor

s

implements

For all Sensor s

Sensing

Stimulus
detects

Using axiom 5, and a generalization of Dis2, we can delete the rectangle around
Stimulus (since Stimulus and Sensor are disjoint):

Sensor

s

implements

For all Sensor s

Sensing

Stimulus
detects

Visualizing Ontologies: A Case Study 271

Using axioms 7 and 9, we further deduce:

Sensor

s

implements

For all Sensor s

Sensing

Stimulus
detects

We leave it to the reader to use these kinds of manipulations to obtain the
single diagram given for the role restrictions imposed over the Sensor concept.

5 Conclusion

In this paper we have discussed the need for sophisticated ontology visualization
techniques that will allow disparate groups of ontology developers and users to
communicate effectively. Concept diagrams are a visual notation that were de-
veloped with this need in mind. We have used concept diagrams to produce a
visualization of (part of) the Semantic Sensor Network ontology, including in-
formation about the concept hierarchy and role restrictions. Thus, this paper
demonstrates that concept diagrams can be applied to modelling real-world on-
tologies. Concept diagrams may undergo further refinement as more case studies
are developed and as they are applied in other domains.

An important future development is the implementation of tool support. We
envisage developing tools which allow the automatic conversion of symbolically
specified ontologies to concept diagrams. This will involve solving challenging
problems, such as identifying what constitutes an effective diagram (as shown
in this paper, there are different diagrams that convey the same information)
and how to automatically draw chosen diagrams from abstract descriptions of
them. This functionality could build on recent advances in automated Euler di-
agram drawing [15,18,19], although the layout problem for concept diagrams is
more challenging. In addition, we want to allow ontology creators to be able to
specify the axioms directly with concept diagrams, which may require a sketch
recognition engine to be devised; this could also build on recent work that rec-
ognizes sketches of Euler diagrams [20]. These automatically drawn sketches can
be translated into symbolic form, so that we can make use of sophisticated tool
support that already exists for ontology development.

References

1. W3C OWL Working Group, OWL 2 Web Ontology Language
Document Overview, W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/ (accessed June
2011)

2. Lefort, et al.: The W3C Semantic Sensor Network Incubator Group Final
Report, http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/ (accessed
June 2011)

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

272 J. Howse et al.

3. Baader, F., Calvanese, D., McGuinness, D., Nadi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook. CUP (2003)

4. Baader, F., Calvanese, D., McGuinness, D., Nadi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook, ch. 3. CUP (2003)

5. Chapman, P., Stapleton, G., Howse, J., Oliver, I.: Deriving sound inference rules for
concept diagrams. In: IEEE Symposium on Visual Languages and Human-Centric
Computing. IEEE (2011)

6. Compton, et al.: The SSN Ontology of the Semantic Sensor Network Incubator
Group. Submitted to The Journal of Web Semantics (July 2011)

7. Dau, F., Eklund, P.: A diagrammatic reasoning system for the description logic
ACL. Journal of Visual Languages and Computing 19(5), 539–573 (2008)

8. Euler, L.: Lettres a une princesse d‘allemagne sur divers sujets de physique et de
philosophie. Letters 2, 102–108 (1775); Berne, Socit Typographique

9. Gruber, T.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2) (1993)

10. Horridge, M.: OWLViz, http://www.co-ode.org/downloads/owlviz/ (accessed
June 2009)

11. Jambalaya: http://www.thechiselgroup.org/jambalaya
12. Oliver, I., Howse, J., Stapleton, G., Nuutila, E., Torma, S.: A proposed diagram-

matic logic for ontology specification and visualization. In: International Semantic
Web Conference (Posters and Demos) (2009)

13. Oliver, I., Howse, J., Stapleton, G., Nuutila, E., Torma, S.: Visualising and speci-
fying ontologies using diagrammatic logics. In: 5th Australasian Ontologies Work-
shop, vol. 112, pp. 87–104. CRPIT (2009)

14. Presutti, V., Gangemi, A.: Content Ontology Design Patterns as Practical Building
Blocks for Web Ontologies. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 128–141. Springer, Heidelberg (2008)

15. Rodgers, P., Zhang, L., Fish, A.: General Euler Diagram Generation. In: Stapleton,
G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 13–27.
Springer, Heidelberg (2008)

16. Shimojima, A.: Inferential and expressive capacities of graphical representations:
Survey and some generalizations. In: Blackwell, A.F., Marriott, K., Shimojima, A.
(eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 18–21. Springer, Heidelberg
(2004)

17. Shimojima, A., Katagiri, Y.: An Eye-Tracking Study of Exploitations of Spatial
Constraints in Diagrammatic Reasoning. In: Stapleton, G., Howse, J., Lee, J. (eds.)
Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 74–88. Springer, Heidelberg (2008)

18. Simonetto, P., Auber, D.: Visualise undrawable Euler diagrams. In: 12th Interna-
tional Conference on Information Visualization, pp. 594–599. IEEE (2008)

19. Stapleton, G., Zhang, L., Howse, J., Rodgers, P.: Drawing Euler diagrams with
circles: The theory of piercings. IEEE Transactions on Visualisation and Computer
Graphics 17, 1020–1032 (2011)

20. Wang, M., Plimmer, B., Schmieder, P., Stapleton, G., Rodgers, P., Delaney, A.:
SketchSet: Creating Euler diagrams using pen or mouse. In: IEEE Symposium on
Visual Languages and Human-Centric Computing 2011. IEEE (2011)

http://www.co-ode.org/downloads/owlviz/
http://www.thechiselgroup.org/jambalaya

	Visualizing Ontologies: A Case Study
	Introduction
	Motivation
	Visualizing the SSN Ontology
	Concept Hierarchy Axioms
	Role Rescrictions

	Discussion
	Conclusion
	References

