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Abstract.

We characterize the boundary ∂Σp of the solution set Σp of a parametric linear sys-
tem A(p)x = b(p) where the elements of the n×n matrix and the right-hand side vector
depend on a number of parameters p varying within interval bounds. The characteri-
zation of ∂Σp is by means of pieces of parametric hypersurfaces, the latter represented
by their coordinate functions depending on corresponding subsets of n− 1 parameters.
The presented approach has a direct application for efficient visualization of parametric
solution sets by utilizing some plotting functions supported byMathematica and Maple.
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1 Introduction.

Consider the linear algebraic system

A(p) · x = b(p),(1.1)

where the elements of the n×n matrix A(p) and the vector b(p) are affine-linear
functions

aij(p) := aij,0 +
k∑

ν=1

aij,νpν , bi(p) := bi,0 +
k∑

ν=1

bi,νpν ,(1.2)

aij,ν , bi,ν ∈ R, ν = 0, . . . , k, i, j = 1, . . . , n

� Received November 2, 2006. Accepted in revised form October 19, 2007. Communicated
by Lars Eldén.
�� This work was partially supported by DFG and the Bulgarian National Science Fund
under grant No. MM-1301.



E. D. POPOVA AND W. KRÄMER

of k parameters. The parameters are considered to be uncertain and varying
within given intervals

p ∈ [p] = ([p1], . . . , [pk])
�.(1.3)

Such systems are common in many engineering analysis or design problems,
models in operational research, linear prediction problems, etc., where there are
complicated dependencies between the coefficients of the system [1, 2, 14]. The
uncertainties in the model parameters could originate from an inexact knowledge
of these parameters, measurement imprecision, or round-off errors. Linear sys-
tems with interval input data are applicable also to uncertainty theories which
rely on interval arithmetic for computations, such as fuzzy set theory, random
set theory, or probability bounds theory.
The set of solutions to (1.1–1.3), called parametric solution set, is

Σp = Σ(A(p), b(p), [p]) := {x ∈ Rn | ∃p ∈ [p], A(p)x = b(p)}.(1.4)

The well-known non-parametric interval linear system [A]x = [b], which is the
most studied in the interval literature, can be considered as a special case of
the parametric linear system with n2 + n independent parameters aij ∈ [aij ],
bi ∈ [bi], i, j = 1, . . . , n. For a parametric system (1.1–1.3), the corresponding
non-parametric one with [A] = ([aij ]) ∈ IR

n×n, [b] ∈ IRn can be obtained as

[aij ] = aij,0 +
k∑

ν=1

aij,ν [pν ], [bi] = bi,0 +
k∑

ν=1

bi,ν [pν ], i, j = 1, . . . , n.

The non-parametric solution set, called also united solution set, is defined as

Σ([A], [b]) := {x ∈ Rn | ∃A ∈ [A], ∃b ∈ [b], A · x = b}.

In general, Σ(A(p), b(p), [p]) ⊆ Σ([A], [b]) since the elements of [A], [b] are per-
turbed independently in contrast to A(p), b(p) with p ∈ [p]. Figure 3.1B illus-
trates both solution sets for the system from Example 3.1 and some of their
properties. The parametric solution set Σp is smaller and much more compli-
cated than the corresponding non-parametric solution set. For example, Σp is
generally not convex even in a single orthant. Therefore, it would be interesting
and helpful to see how some parametric solution sets look like. The visualization
of Σp (even only in 2D or 3D) would be helpful not only for graphical illustration
but also for exploration of some properties and for comparison of some numerical
results.
In a series of papers (see e.g. [4, 5, 6] and the references therein) Alefeld,
Kreinovich, and Mayer give various descriptions of the solution sets for systems
of interval linear equations with dependent coefficients, paying particular atten-
tion to the symmetric solution set. For example, in [5] the parametric solution
set is described as a semialgebraic set. Unfortunately, most of these descrip-
tions do not contain a constructive process which could be used for drawing the
parametric solution set. This gap was filled in [7] where the solution sets of para-
metric linear systems involving affine-linear dependencies were characterized by
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systems of inequalities obtained by a Fourier–Motzkin like elimination process.
Provided that the proposed Fourier–Motzkin like elimination process is imple-
mented in suitable software tools, this approach can be applied for drawing the
parametric solution sets in environments supporting tools for inequalities plot-
ting. The algorithms for plotting inequalities are usually based on cylindrical
algebraic decomposition (CAD) [9]. Although CAD is an algorithmic process, it
becomes computationally infeasible for complicated inequalities.
Utilizing the set of inequalities by which the famous Oettli–Prager theorem [15]
characterizes the non-parametric solution set and the tools for inequalities plot-
ting supported in Mathematica [20], corresponding functions for drawing non-
parametric solution sets in 2D and 3D were developed and a suitable web
interface to these functions was provided [18]. Recently some tools for drawing
non-parametric and connected parametric solution sets were also reported [12,
18]. The visualization function reported in [18] utilizes the availableMathematica
functions for plotting parametric curves but the quality of the produced solution
set image has some deficiencies.
In this paper we present an approach for characterizing the parametric solu-
tion set which is alternative to that based on systems of inequalities [7]. Our
approach is designed particularly for visualization of the parametric solution
set boundary and can be easily implemented in the environments of Mathemat-
ica [20] and Maple [11] which support functions for plotting parametric curves
and surfaces. Section 3 discusses how to utilize the plotting functions in Math-
ematica and Maple for visualization the solution sets of some special cases of
parametric linear systems. In Section 4 we derive our approach and character-
ize the boundary ∂Σp of the solution set Σp to a system involving affine-linear
dependencies by means of pieces of parametric hypersurfaces, the latter repre-
sented by their coordinate functions depending on corresponding sets of n − 1
parameters. The numerical examples, given throughout the paper and in Sec-
tion 5, demonstrate the discussed visualization approaches and illustrate some
properties of the parametric solution sets.

2 Preliminaries.

Denote by Rn,Rn×m the set of real vectors with n components and the set of
real n ×m matrices, respectively. A real compact interval is [a] = [a−, a+] :=
{a ∈ R | a− ≤ a ≤ a+}. By IRn, IRn×m we denote the sets of interval n-vectors
and interval n × m matrices, respectively. The end-point functionals (·)−, (·)+

are applied to interval vectors and matrices componentwise.

Proposition 2.1. If A(p) is nonsingular for all p ∈ [p] then Σp is compact
and connected.

Proof. Since A(p) is non-singular for every p ∈ [p], A−1(p) exists for p ∈ [p]
and x(p) := A−1(p) ·b(p) is a function of k variables p ∈ Rk which is continuous.
Since [pν ], ν = 1, . . . , k are connected and compact, the same holds for the image
Σp of x(p).
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An obvious set-theoretical description of the parametric solution set is given
by the following
Proposition 2.2.

Σp(A(p), b(p), [p]) :=
⋃

p̃∈[p]

{x ∈ Rn | A(p̃) · x = b(p̃)}.

In particular, if A(p) is square nonsingular for all p ∈ [p] then

Σp(A(p), b(p), [p]) :=
⋃

p̃∈[p]

{x(p̃) = A−1(p̃) · b(p̃)}.

Denote by ∂Σp the boundary of the parametric solution set Σp. In what follows
we will characterize ∂Σp by pieces of parametric hypersurfaces. In algebraic
geometry, a hypersurface in n-dimensional projective space is an algebraic surface
of dimension (n− 1). It is then defined by a single equation

f(x1, . . . , xn) = 0,

a homogeneous polynomial in the homogeneous coordinates. Hypersurface is
a special name for a submanifold of codimension one [19]. The function above
may have singularities and thus it may not be a submanifold in the strict sense.
The definitions of hypersurfaces may differ depending on exactly which proper-
ties are required, see e.g. [3] for a definition of real analytic hypersurfaces.

Definition 2.1. A hypersurface in n-dimensional space is called parametric
if it is defined by n coordinate functions

xi = xi(p1, . . . , pk), i = 1, . . . , n

depending on k = n− 1 parameters.

Parametric hypersurface (PHS) is then a hypersurface whose coordinate func-
tions are parameterized. Here we will consider parametric hypersurfaces, denoted
by n-dimensional vectors x(p), where p is a n−1-dimensional parameter vector,
which are defined by the analytic solution of parametric linear systems (1.1–1.3).
For simplicity, a k-dimensionalCm-surface in Rn, wherem ≥ 1 and k < n−1, will
be called degenerate parametric hypersurface. In a 3D space degenerate para-
metric hypersurfaces are curves and points, see Figure 3.2B e.g., or Figure 4.2A
and B.
Particular pieces (parts) of a parametric hypersurface will be obtained for
specified ranges of the parameters p−j ≤ pj ≤ p

+
j , j = 1, . . . , k. Therefore,

particular parts of a parametric hypersurface will be denoted by x(p)|p∈[p] and
will be also called restricted PHS-s.

3 Special cases.

In this section we demonstrate how to utilize the plotting functions in Mathe-
matica and Maple for visualizing the solution set of some particular cases of 2D
and 3D parametric linear systems.
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Consider the parametric linear system (1.1–1.3). If A(p) is nonsingular for all
p ∈ [p] and the number of parameters is k ≤ n − 1, then x(p) = A−1(p) · b(p)
defines a PHS (curve for k = 1) in Rn which fully characterizes the parametric
solution set (1.4), respectively its boundary.
For n = 2, k = n − 1, e.g., the parametric solution set is a parametric curve
whose x, y coordinates are functions of one uncertain parameter p ∈ [p]

x = x1(p) = {A
−1(p) · b(p)}1

y = x2(p) = {A
−1(p) · b(p)}2.

Many computer algebra systems, e.g. Mathematica [20] and Maple [11] have
built-in functions for drawing 2D and 3D parametric plots. In 2D, Mathematica
and Maple effectively generate a sequence of points by varying the parameter p,
then form a curve by joining these points.

Example 3.1. (n = 2, k = 1) Let

A(p) =

(
3p 1
−2 3p− 1

)
, b(p) =

(
2p
p

)
, p ∈ [0, 1].

For these data, the parametric solution set is that part of the parametric curve

x(p) = A−1(p) · b(p) =

(
−3p+ 6p2

4p+ 3p2

)
/(2− 3p+ 9p2)

which is obtained for 0 ≤ p ≤ 1.
The following Maple code visualizes in Figure 3.1A the parametric solution
set as a part of the corresponding parametric curve.

> A:=[[3*p, 1], [-2, 3*p-1]]:

> b:=[2*p, p]:

> x:=linalg[linsolve](A, b):

> plot([x[1], x[2], p=0..1]);

The same figure can be generated in Mathematica by using its kernel function
ParametricPlot.
Mathematica and Maple can be also used for plotting either one- or two-
parameter sets of points in a 3D space. The built-in functions plot3D in Maple
or ParametricPlot3D in Mathematica create three-dimensional space curves
and surfaces, parameterized by one or two coordinates respectively. In Mathe-
matica the surface is formed from a collection of quadrilaterals. The corners of
the quadrilaterals have coordinates corresponding to the values of z = z(u, v)
when the parameters u and v take on values in a regular grid. The option
PlotPoints of the Mathematica function ParametricPlot3D allows a user to
specify the number of sample points used. The Mathematica package
Graphics‘ParametricPlot3D’ extends the kernel function ParametricPlot3D
by providing an alternative to the PlotPoints option where the sampling may
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Figure 3.1: A: The parametric solution set of the system from Example 3.1; B: Both
the parametric solution set and part of the corresponding non-parametric solution set.

be specified by giving a step size in each coordinate. The package also introduces
PointParametricPlot3D function for plotting either one- or two-parameter sets
of points in space.

Example 3.2. (n = 3, k = 2) Let

A(p) =

⎛

⎝
1 p q
p 2 p
q p 3

⎞

⎠ , b(p) =

⎛

⎝
1
p2

q2

⎞

⎠ ,
p ∈ [0, 1]

q ∈ [0, 0.9].

The followingMathematica code generates the snail represented in Figure 3.2A.

In[1]:= A = {{1,p,q}, {p,2,p}, {q,p,3}};

b = {1, p^2, q^2};

x = LinearSolve[A, b];

ParametricPlot3D[x, {p,0,1}, {q,0,0.9}];

Example 3.3. (n = 3, k = 1) For

A(p) =

⎛

⎝
1 p p
p 2 p
p p 3

⎞

⎠ , b(p) =

⎛

⎝
1
p2

p2

⎞

⎠ , p ∈ [−0.2, 0.1],

the one-parameter solution set is a 3D curve represented in Figure 3.2B.

For 2D systems involving more than one parameter and having nonsingular
matrices for all values of the parameters, we can get a good impression of the
parametric solution set by drawing a set of one-parameter curves obtained for
the parameters after the first one taking on values in a grid of points within the
parameter intervals. This approach is implemented in a Mathematica function
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Figure 3.2: One- (B) and two-parameter (A) solution sets corresponding to the 3D
linear systems from Examples 3.3 and 3.2, respectively.

ParametricSSetwhich is part of the package IntervalComputations‘Solution
Sets’. The following Example illustrates the usage of this function.

Example 3.4. (n = 2, k = 2) Let

A(p) =

(
p q − 1
q p

)
, b(p) =

(
−q + 1/3
q

)
, p ∈ [−2,−1], q ∈ [3, 5].

The following Mathematica code first loads the package, then defines the ar-
guments and calls the visualization function.

In[5]:= << IntervalComputations‘SolutionSets’

In[6]:= A = {{p, q-1}, {q, p}};b={-q+1/3, q};

tr = {p->Interval[{-2, -1}], q->Interval[{3, 5}]};

ParametricSSet[A, b, tr];

The function ParametricSSet[mat, vec, tr] has three obligatory arguments:
mat is the parametric matrix of the system, vec is the right-hand side vector,
and tr is a list ofMathematica rules specifying the parameters and their interval
values. By default, ParametricSSet draws a set of one-parameter curves taken
on an uniform mesh in the parameter intervals after the first one. The default
value for the mesh step size is 1% of the interval width. Figure 3.3A represents
the generated graphics image.
By an optional argument StepSize, one can specify particular values for the
step size of all parameter values after the first one. The graphics in Figure 3.3B
is drawn by specifying StepSize->{0.1} regarding the second parameter q.
Although the set of one-parameter curves in Figure 3.3B is more shaggy than
that in Figure 3.3A, the shape of the parametric solution set is still well visible.

In[9]:= tr = {q->Interval[{3, 5}], p->Interval[{-2, -1}]};

ParametricSSet[m, b, tr, StepSize->{0.05}];
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Figure 3.3: The parametric solution set of Example 3.4 built by 1-parameter curves
drawn on an uniform mesh for the parameters after the first one. A: the default value for
the StepSize which is 1% of the interval width, B: StepSize= 0.1 for the parameter q,
C: StepSize= 0.05 for the parameter p.

One can change the order in which the parameters are enlisted in the third argu-
ment of the function ParametricSSet, and this way to represent the parametric
solution set by another set of one-parameter curves. The result of the execution
of the above code can be seen in Figure 3.3C.
Based on the representation given by Proposition 2.2, a 2D parametric solu-
tion set can be visualized by a set of one-parameter curves drawn in a mesh of
values for the parameters after the first one. This is the only approach for visual-
ization the solution set of a 2D linear system involving nonlinear dependencies.
Unfortunately, the above approach is not applicable for drawing disconnected
2D solution sets and in the case of 3D systems. An important disadvantage is
the big size of the graphics image which increases with decreasing the mesh step
size. That is why, in the next section we derive another approach for visualization
only the boundary of the parametric solution set. To this end, the parametric
solution set is characterized by parametric hypersurfaces.

4 Main results.

Let K = {1, . . . , k}. For n ≤ k, define Q(n − 1, k) as the set of all possible
subsets of K containing n− 1 elements

Q(n− 1, k) := {q = {i1, . . . , in−1} | q ⊂ K, Card(q) = n− 1}.
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For k < n, Q(n − 1, k) := {q | q = K}, that is Q(n − 1, k) consists of only one
set which is the set K itself. For n ≤ k the cardinality of Q(n − 1, k) is
Card(Q(n − 1, k)) =

(
k
n−1

)
= k!

(k−n+1)!(n−1)! . For q = {i1, . . . , in−1}

∈ Q(n− 1, k), the vector (pi1 , . . . , pin−1) will be denoted by pq.
For a vector p = (p1, . . . , pk) ∈ Rk and q ∈ Q(n− 1, k), define q̃ = K \ q and
two vectors pq ∈ Rn−1, pq̃ ∈ Rk−n+1 by

pq := (pi1 , . . . , pin−1),

pq̃ := (pin , . . . , pik).

For n ≤ k, the vectors pq and pq̃ split the original vector p into two noninter-
secting subvectors defined by the set of indexes q.
Denote by U(k − n + 1) := {u ∈ Rk−n+1 | |u| = (1, . . . , 1)�} the set of all
(k− n+ 1)-dimensional sign vectors, where the absolute value |u| is understood
componentwise |u| := (|u1|, . . . , |uk|)� for u ∈ Rk . For [a] = [a−, a+] ∈ IR

k−n+1

and u ∈ U(k − n+ 1),

{au}i :=

{
a−i if ui = −1

a+i if ui = 1
, i = 1, . . . , k − n+ 1.

Thus for an interval vector [a], au denotes a real vector whose elements are
corresponding interval end-points. The number of elements in the set U(k−n+1)
is Card(U(k − n+ 1)) = 2k−n+1.
Let v ∈ Rn be a numerical vector. Define a cone

K(v) :=
{
(x1, . . . , xn) ∈ R

n : xi ≥ 0 if sign(vi) ≥ 0; xi ≤ 0 if sign(vi) ≤ 0
}
.

For a fixed v ∈ Rn, K(v) defines an orthant in Rn. It is obvious that K(v) is
a polyhedral cone and therefore it is a closed convex cone. K(v) is solid since
the interior of K(v) is not empty. Since K(v) ∩ −K(v) = {0}, K(v) is pointed.
Being a pointed, solid, closed convex cone, K(v) is a proper cone [8]. The proper
cone K(v) induces a partial ordering in Rn via

y
K(v)

≤ x⇐⇒ x− y ∈ K(v).

Our first theorem characterizes exactly the boundary ∂Σp by parts of para-
metric hypersurfaces in the special case when the number of the parameters is
less than or equal to the dimension of the system.

Theorem 4.1. If A(p) is nonsingular for all p ∈ [p] and k ≤ n, then

∂Σp =
⋃

q∈Q(n−1,k)

{x(pq, p
−
q̃ )|pq∈[pq], x(pq, p

+
q̃ )|pq∈[pq]}.

Proof. By definition, every tuple of n− 1 parameters determines one para-
metric hypersurface (PHS) in the n-dimensional space. So, if k ≤ n − 1, ∂Σp
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consists of a piece of exactly one PHS, degenerate if k < n − 1, which is the
parametric solution set itself

∂Σp = x(p)|p∈[p] = Σ
p,

where x(p) = A−1(p) · b(p) and [p] ∈ IRk, k ≤ n− 1.
Let k = n. For a fixed q ∈ Q(n− 1, k), pq̃ is a one-component vector. Define
the set of restricted PHS-s

Σpq,pq̃ :=
⋃

t∈[pq̃]

x(pq , t)|pq∈[pq].

It is evident that Σpq ,pq̃ ≡ Σp. We have the following equivalent representations
of these sets.

Σpq,pq̃ =
{
x ∈ Rn | ∃pq ∈ [pq], ∃pq̃ ∈ [pq̃], A(pq, pq̃)x = b(pq, pq̃)

}

=
{
x ∈ Rn | ∃pq ∈ [pq], ∃pq̃ ∈ [pq̃], A(pq)x− b(pq) = pq̃(b

pq̃ −Apq̃x)
}
,

where Apq̃ ∈ Rn×n, bpq̃ ∈ Rn, Apq̃ = ∂A(pq,pq̃)
∂pq̃

, bpq̃ =
∂b(pq ,pq̃)
∂pq̃

, A(pq) =

A(pq, pq̃)− pq̃Apq̃ , b(pq) = b(pq, pq̃)− pq̃bpq̃ . For v = bpq̃ −Apq̃x we obtain

Σpq ,pq̃ =
{
x ∈ Rn | ∃pq ∈ [pq],

p−q̃ (b
pq̃ −Apq̃x)

K(v)

≤ A(pq)x− b(pq)
K(v)

≤ p+q̃ (b
pq̃ −Apq̃x)

}
.

Therefore, the restricted PHS-s x(pq , p
−
q̃ )|pq∈[pq], x(pq , p

+
q̃ )|pq∈[pq], obtained as

solutions of the following parametric systems depending on n− 1 parameters pq

(A(pq) + p
−
q̃ A

pq̃)x = b(pq) + p
−
q̃ b
pq̃ , resp.

(A(pq) + p
+
q̃ A

pq̃)x = b(pq) + p
+
q̃ b
pq̃ ,

belong to ∂Σpq,pq̃ . Due to Σpq ,pq̃ ≡ Σp, these end-point PHS-s belong to the
boundary of the parametric solution set Σp, too. For q1, q2 ∈ Q(n − 1, k),
q1 �= q2 and fixed t1 ∈ [pq̃1 ], t2 ∈ [pq̃2 ], in general x(pq1 , t1) �= x(pq2 , t2), but
Σpq1 ,pq̃1 ≡ Σpq2 ,pq̃2 . Thus, when q traces the set Q(n−1, k), pq̃ traces all the par-
ameters, respectively all the boundary parametric hypersurfaces, which proves
the theorem.

Figures 3.3B and 3.3C illustrate the above theorem.

Remark 4.1. If k = n and for some q1 ∈ Q(n − 1, k), some λ ∈ {−,+},
x(pq1 , p

λ
q̃1
) is degenerate, then there exist q2 ∈ Q(n−1, k), µ ∈ {−,+} such that

x(pq2 , p
µ
q̃2
) is non-degenerate and x(pq1 , p

λ
q̃1
) ∈ x(pq2 , p

µ
q̃2
). See Example 4.2 and

Figure 4.2 A, B for an illustration.

Example 4.1. Consider the parametric linear system
(
p1 p2 − 1
p2 p1

)
· x =

(
−p2 + 1/3
p2

)
, p1 ∈ [−2,−1], p2 ∈ [3, 5].
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For p1 ∈ [−2,−1], p2 ∈ [3, 5], A(p) is nonsingular and

A−1(p) =

(
p1 1− p2
−p2 p1

)
/
(
p21 + p2 − p

2
2

)
.

We have Q(n− 1, k) = Q(1, 2) = {{1}, {2}}. For q = {1},

x(p1, p
−
2 ) =

(
−2(9 + 4p1)/3
8 + 3p1

)
/
(
− 6 + p21

)
,

x(p1, p
+
2 ) =

(
−2(30 + 7p1)
5(14 + 3p1)

)
/
(
− 60 + 3p21

)
.

For q = {2},

x(p2, p
−
1 ) =

(
2− 9p2 + 3p22
−p2(8− 7 + 3p2)

)
/
(
− 12− 3p2 + 3p

2
2

)
,

x(p2, p
+
1 ) =

(
1− 6p2 + 3p22
−p2(−4 + 3p2)

)
/
(
− 3− 3p2 + 3p

2
2

)
.

The corresponding parts of the above boundary curves are drawn on Figure 4.1.
Compare Figures 4.1 and 3.3.

Figure 4.1: Boundary curves for the parametric solution set from Example 4.1.

Let k > n and q ∈ Q(n − 1, k) be fixed. Since k > n, the corresponding
“free” parameters pq̃ ∈ Rk−n+1 are more than one. Let k − n+ 1 = 2. For fixed
t1 ∈ {[pq̃]}1, define a set of restricted PHS-s

Σpq,t1 := {x(pq, t1, t2)|pq∈[pq] | t2 ∈ {[pq̃]}2}.

Then the whole parametric solution set Σp can be considered as a family Σpq of
sets defined by one free parameter

Σpq :=
⋃

t1∈{[pq̃]}1

Σpq,t1 .(4.1)
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By Theorem 4.1, ∂Σpq,t1 = {x(pq, t1, t
−
2 )|pq∈[pq], x(pq , t1, t

+
2 )|pq∈[pq]}, where t2 =

{[pq̃]}2. Thus, for k − n+ 1 = 2 we obtain

∂Σpq ⊆ ∂Σpq,t
λ
1 =

⋃

u∈U(k−n+1)

x
(
pq, p

u
q̃

)∣∣
pq∈[pq]

,

where t1 ∈ {[pq̃]}1 and λ ∈ {+,−}. By induction on the number of free pa-
rameters and by varying q ∈ Q(n− 1, k), we prove the following theorem which
generalizes Theorem 4.1 for k > n.

Theorem 4.2. If A(p) is nonsingular for all p ∈ [p], then

∂Σp ⊆
⋃

q∈Q(n−1,k)

⋃

u∈U(k−n+1)

x
(
pq, p

u
q̃

)∣∣
pq∈[pq]

⊆ Σp.(4.2)

The set in the middle of the relation (4.2) will be called set of end-point
parametric hypersurfaces.

Example 4.2. Consider the parametric linear system

(
1 p1
p1 p2

)
· x =

(
p3
p3

)
,

p1 ∈ [0, 1]

p2 ∈ [−4,−1]

p3 ∈ [0, 2].

For the parameters varying within their intervals, A(p) is nonsingular and

A−1(p) =

(
p2 −p1
−p1 1

)
/
(
− p21 + p2

)
.

Q(n − 1, k) = {{1}, {2}, {3}}, then we obtain the following set of PHS-s. For
q = {1} the corresponding end-point PHS-s are

x(p1, p
−
2 , p

−
3 ) = x(p1, p

+
2 , p

−
3 ) = (0, 0)

�,

x(p1, p
−
2 , p

+
3 ) =

(
8 + 2p1
−2 + 2p1

)
/
(
4 + p21

)
,

x(p1, p
+
2 , p

+
3 ) =

(
2 + 2p1
−2 + 2p1

)
/
(
1 + p21

)
.

Parts of these PHS-s corresponding to p1 ∈ [0, 1] are presented on Figure 4.2A.
For q = {2} the corresponding end-point PHS-s are

x(p2, p
−
1 , p

−
3 ) = x(p2, p

+
1 , p

−
3 ) = (0, 0)

�,

x(p2, p
−
1 , p

+
3 ) = (2, 2/p2)

�, x(p2, p
+
1 , p

+
3 ) = (2, 0)

�.

Those parts of the above PHS-s corresponding to p2 ∈ [−4,−1] are presented on
Figure 4.2B. For q = {3} the corresponding end-point PHS-s are

x(p3, p
−
1 , p

−
2 ) = (p3,−p3/4)

�, x(p3, p
+
1 , p

−
2 ) = x(p3, p

−
1 , p

+
2 ) = (p3, 0)

�,

x(p3, p
−
1 , p

+
2 ) = (p3,−p3)

�.
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Figure 4.2: Parts of the end-point parametric hypersurfaces for the system from Ex-
ample 4.2. A: x(p1, p

u
1̃ )|p1∈[0,1], B: x(p2, p

u
2̃ )|p2∈[−4,−1], C: x(p3, p

u
3̃ )|p3∈[0,2], where

u ∈ U(2). D: The parametric solution set represented by the set of all end-point
parametric hypersurfaces for the system from Example 4.2.

Those parts of the above PHS-s corresponding to p3 ∈ [0, 2] are presented on
Figure 4.2C. The set of all end-point PHS-s restricted to the ranges of the cor-
responding parameters is presented on Figure 4.2D.
The set of all end-point PHS-s contains superfluous parametric hypersurfaces
(those which do not belong to the boundary). The dimension of this set is also

quite big, Card(
⋃
q∈Q

⋃
u∈U x(pq , p

u
q̃ )) =

(
k
n−1

)
2k−n+1, growing with the dimen-

sion of the system and the number of free parameters. In the 3D case drawing
superfluous parametric surfaces will make the plotting function take much longer
to render the surface. Therefore, we need a mechanism for filtering only the
boundary PHS-s from the set of all end-point parametric hypersurfaces. Since
Remark 4.1 remains valid also for k > n, all degenerate end-point PHS-s may be
eliminated from the set of end-point PHS-s. One criterion for eliminating par-
ticular end-point PHS-s is given by the following theorem where � denotes the
interval hull defined by �S := [inf S, supS] for a nonempty bounded set S ⊆ Rn.

Theorem 4.3. Let A(p) be nonsingular for all p ∈ [p] and k > n. For
fixed q ∈ Q(n − 1, k) and λ ∈ U(k − n + 1), the corresponding restricted PHS
x(pq, p

λ
q̃ )|pq∈[pq] does not belong to ∂Σ

p if there exists another piece of PHS,

defined by r ∈ Q(n− 1, k) and µ ∈ U(k − n+ 1), such that

�x
(
pq, p

λ
q̃

)∣∣
pq∈[pq]

⊂ �x
(
pr, p

µ
r̃

)∣∣
pr∈[pr ]

�= �Σp.

Proof. For r = q, the coordinate functions of x(pq, p
λ
q̃ ) depend on the same

parameters for all λ ∈ U(k − n + 1) and therefore the inclusion means that
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x(pq, p
λ
q̃ )|pq∈[pq] belongs to the interior of Σ

p. For r �= q, the inequality and
proper inclusion relations prevent from excluding boundary PHS-s contributing
to the solution set hull.

Example 4.3. Consider the parametric linear system

(
2p1 −p2
p2 2p1

)
· x =

(
p3
p3

)
,

p1 ∈ [1, 2]
p2 ∈ [−1.2, 2]
p3 ∈ [−2, 2].

The matrix is nonsingular for all values of the parameters within their intervals
and

A−1(p) =

(
2p1 p2
−p2 2p1

)
/
(
4p21 + p

2
2

)
.

Q(n − 1, k) = {{1}, {2}, {3}}, then we obtain the following set of end-point
PHS-s. For q = {1}

x(p1, p
−
2 , p

−
3 ) = −x(p1, p

−
2 , p

+
3 ) =

(
15− 25p1
−15− 25p1

)
/
(
9 + 25p21

)
,

x(p1, p
+
2 , p

−
3 ) = −x(p1, p

+
2 , p

+
3 ) =

(
−1− p1
1− p1

)
/
(
1 + p21

)
.

The corresponding pieces of these PHS-s are presented on Figure 4.3A. For their
hulls we have

�x(p1, p−2 , p−3 )|p1∈[p1] =
([

−5
6+6

√
2
, −517

]

[
−20
17 ,

−65
109

]

)
,

�x(p1, p+2 , p−3 )|p1∈[p1] =
(
[−1,−3/5]

[−1/5, 0]

)
.

For q = {1} no one of the restricted PHS-s satisfies Theorem 4.3.

Figure 4.3: Restricted end-point PHS-s for the system from Example 4.3 and
q = {1} (A), q = {2} (B).
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For q = {2},

x(p−1 , p2, p
−
3 ) = −x(p

−
1 , p2, p

+
3 ) =

(
−4− 2p2
−4 + 2p2

)
/
(
4 + p22

)
,

x(p+1 , p2, p
−
3 ) = −x(p

+
1 , p2, p

+
3 ) =

(
−8− 2p2
−8 + 2p2

)
/
(
16 + p22

)
.

The corresponding pieces of these PHS-s are presented on Figure 4.3B. For their
hulls we have

�x(p−1 , p2, p−3 )|p2∈[p2] =

⎛

⎝

[
1√

2(−2+
√
2)
, −517

]

[
1√

2(−2+
√
2)
, 0
]

⎞

⎠ ,

�x(p+1 , p2, p−3 )|p2∈[p2] =
([

1
4−4

√
2
, −35109

]

[
−65
109 ,

−1
5

]

)
.

Since �x(p+1 , p2, p−3 )|p2∈[p2] ⊂ �x(p−1 , p2, p−3 )|p2∈[p2], by Theorem 4.3,

x(p+1 , p2, p
−
3 )|p2∈[p2] is not a boundary curve. Analogously x(p

−
1 , p2, p

+
3 )|p2∈[p2]

is not a boundary curve. Both curves are represented on Figure 4.3B as dashed
curves. For q = {3},

x(p−1 , p
−
2 , p3) =

(
5p3/34
10p3/17

)
, x(p+1 , p

−
2 , p3) =

(
35p3/218
65p3/218

)

x(p−1 , p
+
2 , p3) =

(
p3/2
0

)
, x(p+1 , p

+
2 , p3) =

(
3p3/10
p3/10

)
.

The corresponding pieces of these PHS-s are presented on Figure 4.4A and their
hulls are

�x(p−1 , p−2 , p3)|p3∈[p3] =
( [

−5
17 ,

5
17

]
[
−20
17 ,

20
17

]

)
, �x(p+1 , p−2 , p3)|p3∈[p3] =

([
−35
109 ,

35
109

]
[
−65
109 ,

65
109

]

)

�x(p−1 , p+2 , p3)|p3∈[p3] =
(
[−1, 1]

[0, 0]

)
, �x(p+1 , p+2 , p3)|p3∈[p3] =

([
−3
5 ,
3
5

]
[
−1
5 ,
1
5

]
)
.

For q = {3} no one of the restricted PHS-s satisfies Theorem 4.3.

Figure 4.4: For the system from Example 4.3, A: end-point PHS-s for q = {3}; B: the
set of end-point PHS-s for q = {1}, {2}, {3} after the application of Theorem 4.3.
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Since both �x(p1, p−2 , p−3 )|p1∈[p1], �x(p1, p+2 , p−3 )|p1∈[p1] are contained in
�x(p−1 , p2, p−3 )|p2∈[p2] and both�x(p1, p−2 , p+3 )|p1∈[p1],�x(p1, p+2 , p+3 )|p1∈[p1] are
contained in �x(p−1 , p2, p+3 )|p2∈[p2], then by Theorem 4.3 all restricted PHS-s for
q = {1} are not boundary curves. The set of restricted end-point PHS-s that
remains after the application of Theorem 4.3 is drawn on Figure 4.4B. Obvi-
ously, there are end-point PHS-s that do not belong to the boundary but cannot
be eliminated by the above criterion. For producing a best looking graphics the
superfluous end-point PHS-s can be eliminated manually by enumerating the
elements of the set of end-point parametric hypersurfaces.

5 2D projections of practical examples.

In this section we present some larger and practical examples further illustrat-
ing the application of the discussed methodology. The first example illustrates
the application of Theorem 4.1 for visualization of a 3D parametric solution
set. Then, next two examples come from practical models of electrical circuits.
These examples demonstrate the application of Theorem 4.2 and the efficacy
of the discussed approach for visualizing parametric solution sets of higher di-
mensions and depending on many uncertain parameters. All graphics images
are generated automatically in the environment of Mathematica [20] by newly
developed functions implementing the presented methodology.

Example 5.1. Consider the following 3D linear system

⎛

⎝
1 p1 p2
p1 2 p1
p2 p1 3

⎞

⎠ · x =

⎛

⎝
1− p3
p3/3 + 1
p3/2

⎞

⎠ ,
p1 ∈ [−1/2, 1]
p2 ∈ [−1/2, 1/2]
p3 ∈ [0, 1].

Since the number of the parameters is equal to the dimension of the system,
according to Theorem 4.1, the boundary of the parametric solution set to the
above system is exactly representable by at most six restricted PHS-s in the 3D
space. The corresponding graphics is presented in an electronic supplementary
material as a pdf file and an active Mathematica notebook. One can open the
notebook by the free Mathematica Player [21] in order to have the best view
of the parametric solution set by rotating, scaling and zooming the graphics in
real-time. The shape of the solution set can be also seen in a web page

http://cose.math.bas.bg/webMathematica/3Dex-ParSSet.jsp

where the applet LiveGraphics3D [13] enables everyone with a web browser sup-
porting Java to view and interactively rotate the graphics.
For 3D systems involving more parameters than the dimension of the system,
rendering the whole set of 3D end-point restricted PHS-s will be too heavy. In
such cases and also for larger systems, a good impression about the parametric
solution set can be obtained via its 2D projections. Taking two desired compo-
nents of the analytic system solution we obtain a 2D parametric solution set
projecting the original one onto the corresponding coordinate plane. The latter
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2D parametric projection set is visualized according to Theorem 4.2 by generat-
ing and drawing all end-point restricted parametric curves. Figure 5.1 represents
the set of end-point restricted parametric curves projecting the solution set of
the system from Example 5.1 on the plane x2, x3. It seems that the projection
on this coordinate plane gives the best impression of the example 3D parametric
solution set. Most of the restricted end-point parametric curves at least partially
form the boundary of the projection. Some end-point parametric curves show
non-monotonic dependence on the parameter.

Figure 5.1: Projection of the 3D parametric solution set from Example 5.1 on the plane
x2, x3.

The application of Kichhoff’s laws to planar resistive networks with uncertain
resistances leads to parametric linear systems. Below we consider two such sys-
tems of dimension 5 and apply the proposed methodology for plotting projections
of the parametric solution set on particular coordinate planes.

Example 5.2. Consider the resistive network presented in Figure 5.2. After
the considerations in [10], the output voltage Vout is obtained via solution of the
following linear equations

⎛

⎜⎜⎜⎜⎝

30 −10 −10 −10 0
−10 10 + θ2 + θ1 −θ1 0 0
−10 −θ1 15 + θ3 + θ1 −5 0
−10 0 −5 15 + θ4 0
0 0 −5 5 1

⎞

⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1
0
0
0
0

⎞

⎟⎟⎟⎟⎠
,

where the i-th solution variable xi is taken to be the current Ii, i = 1, 2, 3, 4 and
x5 = Vout, while the resistances are associated with the parameters θj. Assuming
resistances θj with nominal values θ

0
1 = 10Ω, θ

0
2 = 6Ω, θ

0
3 = 10Ω, θ

0
4 = 10Ω,

and that each θj lies within ±2Ω of its nominal value, we are interested to
represent the set of system responses whenever the parameters vary within the
box [8, 12]× [4, 8]× [8, 12]× [8, 12].
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Figure 5.2: Example electrical circuit, after [10].

In this example the number of the parameters is less than the number of
the variables. Although the boundary of the parametric solution set is exactly
representable by PHS-s in the 5D space we can visualize only its 2D projections.
In order to see what is the variation of the output voltage Vout (= x5) under
the specified variations in the resistances, we choose a projection onto the plane
x4, x5, Figure 5.3. With respect to each parameter there are eight end-point
parametric curves, see Figure 5.3B. All of them are linear for this example,
a property that corresponds to monotonic dependencies proven in [10] by another
method. Identifying which lines are on the boundary can be easily done if sorting
each set of end-point PHS-s in a canonical order of the points building the curves.
Thus the boundary presented in Figure 5.3. A consists of the curves with number
1 and 7 (w.r.t. θ1), 4 and 6 (w.r.t. θ2), 2 and 7 (w.r.t. θ3), 1 and 8 (w.r.t. θ4),
compare to Figure 5.3B.

Figure 5.3: Projection of the parametric solution set from Example 5.2 on the plane
x4, x5. A: boundary curves, B: the set of end-point parametric curves w.r.t. θ1, θ2,
θ3, θ4.

Example 5.3. Consider the so-called Okumura’s problem. This is a linear
resistive network, presented in [16] and considered also in [17]. The resistive
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network consists of two current sources J1 and J2 and nine resistors. The prob-
lem of finding the voltages v1, . . . , v5, when the voltage of each conductance
gi, i = 1, . . . , 9 varies independently in prescribed bounds [gi], leads to the fol-
lowing parametric linear system

⎛

⎜⎜⎜⎜⎝

g1 + g6 −g6 0 0 0
−g6 g2 + g6 + g7 −g7 0 0
0 −g7 g3 + g7 + g8 −g8 0
0 0 −g8 g4 + g8 + g9 −g9
0 0 0 −g9 g5 + g9

⎞

⎟⎟⎟⎟⎠
v = J,(5.1)

where J = (10, 0, 10, 0, 0)�. The parameters gi, i = 1, . . . , 9 are subject to toler-
ance δ = 0.01, that is gi ∈ [1− δ, 1 + δ].

Figure 5.4 presents the projection of the parametric solution set on the plane
of the first two coordinates.

Figure 5.4: Projection of the parametric solution set from Example 5.3 on the
v1, v2-plane.

This example involves more parameters than the previous one. For each pa-
rameter, the set of end-point PHS-s involves 256 curves which makes the process
of eliminating the PHS-s, that are not on the boundary, more difficult. The set of
end-point PHS-s for g6 is such that the first and the last curves in the canonical
order of the set are on the boundary of the parametric solution set, see Fig-
ure 5.5A. Since in this example there is again a monotonic dependence of the so-
lution on the parameters, the canonical order of the curves in the set of end-point
PHS-s helps to find which are the boundary curves, i.e. these are curves number
73 and 184 for g1. For all other parameters, the sets of end-point PHS-s consist of
many small line segments located on same lines and boundary-lines, see e.g. Fig-
ure 5.5B presenting in black the set of end-point PHS-s for g9. Line segments
with the following numbers 1–40, 56, 65–69, 86, 65–55, 171, 172, 176, 178–180,
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185–192, 201–204, 217–256, in the canonical order of the set of PHS-s for g7, are
boundary segments used in the plot of Figure 5.4.

Figure 5.5: Projection of the parametric solution set from Example 5.3 on the
v1, v2-plane and: the set of all end-point PHS-s for g6 (A), the set of all end-point
PHS-s for g9 (B).

6 Conclusion.

We characterized the boundary of a parametric solution set by parts of para-
metric hypersurfaces. In view that some environments like Mathematica and
Maple support tools for drawing parametric hypersurfaces, the presented ap-
proach is much more straightforward for visualization of parametric solution sets
(and their projections) than the approach based on a combination of Fourier–
Motzkin like elimination and CAD for visualization of inequalities. The method-
ology presented in this paper is applicable for visualizing the parametric solution
set of any linear system whose solution can be computed analytically. The over-
all amount of work can be distributed because the set of end-point parametric
hypersurfaces can be handled separately for each parameter. Furthermore, this
is the only approach for visualizing the solution set when k ≤ n − 1 since the
inequalities plotting functions cannot visualize equations.
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