
 Open access  Proceedings Article  DOI:10.1145/989863.989928

Visualizing programs with Jeliot 3 — Source link 

Andrés Moreno, Niko Myller, Erkki Sutinen, Mordechai Ben-Ari

Institutions: University of Eastern Finland, Weizmann Institute of Science

Published on: 25 May 2004 - Advanced Visual Interfaces

Topics: Visualization, User interface and Object-oriented programming

Related papers:

 A Meta-Study of Algorithm Visualization Effectiveness

 Exploring the role of visualization and engagement in computer science education

 The BlueJ system and its pedagogy

 ANIMAL: A System for Supporting Multiple Roles in Algorithm Animation

 A multi-national, multi-institutional study of assessment of programming skills of first-year CS students

Share this paper:    

View more about this paper here: https://typeset.io/papers/visualizing-programs-with-jeliot-3-
t3wkjw834t

https://typeset.io/
https://www.doi.org/10.1145/989863.989928
https://typeset.io/papers/visualizing-programs-with-jeliot-3-t3wkjw834t
https://typeset.io/authors/andres-moreno-gc9wab2vk8
https://typeset.io/authors/niko-myller-39c66snt2t
https://typeset.io/authors/erkki-sutinen-elm1pj82bl
https://typeset.io/authors/mordechai-ben-ari-2kqbiz25u4
https://typeset.io/institutions/university-of-eastern-finland-2o0w9psw
https://typeset.io/institutions/weizmann-institute-of-science-33xmjp8v
https://typeset.io/conferences/advanced-visual-interfaces-333n1akf
https://typeset.io/topics/visualization-3sftdwii
https://typeset.io/topics/user-interface-m9tigr1x
https://typeset.io/topics/object-oriented-programming-2b1z2v1q
https://typeset.io/papers/a-meta-study-of-algorithm-visualization-effectiveness-2rfogtzhbq
https://typeset.io/papers/exploring-the-role-of-visualization-and-engagement-in-bhelf2687d
https://typeset.io/papers/the-bluej-system-and-its-pedagogy-3pi6sa3igv
https://typeset.io/papers/animal-a-system-for-supporting-multiple-roles-in-algorithm-2s045k390h
https://typeset.io/papers/a-multi-national-multi-institutional-study-of-assessment-of-2tylxuc9k6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/visualizing-programs-with-jeliot-3-t3wkjw834t
https://twitter.com/intent/tweet?text=Visualizing%20programs%20with%20Jeliot%203&url=https://typeset.io/papers/visualizing-programs-with-jeliot-3-t3wkjw834t
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/visualizing-programs-with-jeliot-3-t3wkjw834t
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/visualizing-programs-with-jeliot-3-t3wkjw834t
https://typeset.io/papers/visualizing-programs-with-jeliot-3-t3wkjw834t


Visualizing Programs with Jeliot 3 
Andrés Moreno, Niko Myller, Erkki Sutinen 

Department of Computer Science 
University of Joensuu 

P.O. Box 111 
FIN-80101 Joensuu, Finland 

+358-13-251 7928 

{amoreno, nmyller, sutinen}@cs.joensuu.fi

Mordechai Ben-Ari 
Department of Science Teaching 
Weizmann Institute of Science 

Rehovot 76100, Israel 
+972-8-934 2940 

moti.ben-ari@weizmann.ac.il

ABSTRACT 
We present a program visualization tool called Jeliot 3 that is 

designed to aid novice students to learn procedural and object 
oriented programming. The key feature of Jeliot is the fully or 
semi-automatic visualization of the data and control flows. The 
development process of Jeliot has been research-oriented, 

meaning that all the different versions have had their own 
research agenda rising from the design of the previous version and 
their empirical evaluations. In this process, the user interface and 

visualization has evolved to better suit the targeted audience, 
which in the case of Jeliot 3, is novice programmers. In this paper 
we explain the model for the system and introduce the features of 

the user interface and visualization engine. Moreover, we have 
developed an intermediate language that is used to decouple the 
interpretation of the program from its visualization. This has led 

to a modular design that permits both internal and external 
extensibility. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - Computer Science education; H.5.1 

[Information Interfaces and Presentation]: Multimedia 

Information Systems - Animations; I.6.8 [Simulation and 

Modeling]: Types of Simulation - Animation, Visual 

General Terms 
Human Factors. 

Keywords 
Program visualization, novice programming. 

1. INTRODUCTION 
 When considering the possibility of visualizing an algorithm or a 

program, it may appear that visualization is a superior way to 
illustrate their behavior. In particular, when students are learning 
algorithms or programming, this kind of tool seems to be an 

excellent learning resource. However, it has been proved during 
several empirical experiments that an animation of the running 

algorithm only helps students to learn if it somehow cognitively 

engages them and is specially targeted for the particular user 
population (e.g. for novices) [4, 11]. 

The results achieved have driven researchers to reformulate their 
research questions. It has become clear that the media itself does 
not have a strong effect on the learning outcomes. The effect of 

visualization is in the organization of the content, in the way the 
subject is taught (i.e. are the students passive observers or active 
learners), and how it suits the particular learner population. This 

is also in line with more general research done by educational 
psychologists on multimedia learning [8]. 

In Jeliot, the idea is to involve the students in the construction of 

their own programs and at the same time examine a visual 
representation of the programs’ execution. During this process 
they acquire a mental model of the computation that helps them to 

understand the constructs of programming. Furthermore, the 
model can be used to acquire new knowledge and the vocabulary 
used to discuss programs and programming concepts. Thus the 

students are engaged with the tool and are learning by doing. 

Object-oriented programming is getting much attention and 

object-oriented languages such as Java are used as the first 
language to teach programming. The visualization of object 
oriented concepts such as objects and inheritance are important, 

because these concepts are not easily grasped by novice 
programmers. This was one of the issues that we wanted to 
concentrate on in Jeliot 3 [9]. 

2. PREVIOUS WORK 
BlueJ [1] is one of the first systems developed to teach 
introductory object oriented programming. The key feature of the 

system is the static visualization of the class structure as a UML 
diagram. Furthermore, it allows the learner to interact with the 
objects by creating them, calling their methods and inspecting 

their state with easy-to-use menus and dialogs. However, it does 
not provide any dynamic visualization of the program, which is 
the purpose of our system. Moreover, it is also be possible to 
introduce a similar kind of visualization into Jeliot 3 with slight 

modifications. 

Javavis [10] is a system developed from the same idea of using 

the Java Debugging Interface (JDI) to obtain information about 
the runtime behavior of the program. It visualizes the state of the 
program and its changes during execution. The system is not 

meant for novices, because the visualization it produces assumes 
that students are familiar with UML and the basics of 
programming. However, this kind of system could be very useful 

for advanced courses in programming. 

 

© ACM, 2004. This is the author's version of the work. It is 
posted here by permission of ACM for your personal use. Not 
for redistribution. The definitive version was published in the 

Proceedings of the Advanced Visual Interfaces (AVI 2004) 
Conference. http://doi.acm.org/10.1145/nnnnnn.nnnnnn" 



 

Figure 1: User interfaces of Jeliot I. 

3. HISTORY OF JELIOT 
The development of the Jeliot family [2, 6] started almost ten 
years ago when the first system Eliot [5] was developed to help in 
the production of algorithm animations. After Eliot two other 

systems have been developed: Jeliot I [13] and Jeliot 2000 [4].  

The development process of Jeliot has been research-oriented, 

meaning that all the versions have had their own research agenda 
rising from the previous versions’ design and empirical 
evaluations. All these systems have been implemented in different 

environments and a new version has been developed either to 
extend the possibilities for visualization or to support different 
user populations. The first versions, Eliot and Jeliot I, shared the 

main goal, which was to ease the production of algorithms 
animations. The Jeliot I implementation allowed it to be used on 
the Internet, making Jeliot’s use distance independent. Jeliot 2000 
was especially designed for novice learners, whereas Jeliot 3 [9] 

is a generalization of the work done with Jeliot 2000; extending it 
to visualize object oriented concepts. 

During the development and evaluation cycle of Jeliot, it has been 
learned that there is no one best formula for all learning needs, but 
there should be several items in the learning environment from 

which the learner can select the ones she needs [2]. This means 
that we should give students the possibility to use different kinds 
of visualizations with various orientations leading to a stage 

where an extendable and modular system is needed as a basis for 
this development. 

3.1 Evolution of the User Interface 
The user interfaces of Eliot and Jeliot I consisted of multiple 

windows (see Figure 1). Eliot used the resources provided by X-
Windows system, whereas Jeliot I relied on the Java support of 
internet browsers. A common animation scenario was displayed 

on at least three different windows, which could be placed 
anywhere on the screen, with the control buttons divided among 
the windows. Moreover, users had to place the visualization 

objects by means of dialogs that provided great level of detail. 
However, setting all these details could hinder the understanding 
of the resulting animation, because user would focus on these 

details not on the animation itself. These factors made the usage 
of the systems more challenging for novices. In an empirical 
evaluation, novices found Jeliot I too complex to use [7]. 

 

Figure 2: User interface of Jeliot 2000. 

The user interface of Jeliot 2000 is illustrated in Figure 2. It 

consists of just one window with several panes. The automatic 
visualization of Jeliot 2000 also implies a simplified user 
interface. There is no need to set up any parameters before 

starting the animation of a program. To start the animation just 
two buttons (“Compile” and “Play”) are needed. The buttons used 
to control the animation resemble a VCR control panel, making it 

easy for novices to identify their meaning. Finally Jeliot 2000 is a 
single application, overcoming the difficulties that the server-
client model of Jeliot I presented [7]. 

3.2 Evolution of the Visualization 
Eliot and Jeliot I concentrated their visualization on data 
visualization (i.e. they visualized only variables); the animation 
consisted of values moving from one variable to another or 

comparisons with the other values. However the information 
provided by Eliot and Jeliot I animations was not descriptive 
enough for students. Lattu et al. [7] found that the visualization of 

the data flow was insufficient for the novice students, who also 
require visualization of the control flow and object structures. 
Moreover, novices require that even expression evaluation is fully 

visualized. Thus, control flow visualization and expression 
evaluation was added into Jeliot 2000. However, the shift in the 
visualization focus meant losing a level of abstraction in the 

visualization, while allowing a more complete visualization of the 
data and control flow of the program. 

4. JELIOT 3 

4.1 Goals 
The goals of Jeliot 3 were defined by previous experience with 

the Jeliot family in empirical evaluations. While maintaining the 
same basic features, new features were added to better suit the 
user population. The main goals of the systems are listed below: 

− The system must be easy to use. 

− The visualizations produced by the system should be 

consistent with the visualization in all cases. 

− The visualizations produced by the system should be 

complete and continuous. 

− The system should support the visualization of as large a 
subset of programs written in Java language as possible. 

− The system should be extensible internally and externally.  



The first three goals come from the fact that Jeliot 3 is intended 

for novice users, and in research on Jeliot [3, 7] and visual 
displays [11] these features have been found important for them. 

Even though the system is intended for novices, it should support 
the visualization of as large a subset of programs written in Java 
language as possible. We also wanted to support the possibility to 

stay with Jeliot longer than the first couple of weeks. Jeliot 3 
introduces object-oriented concepts, visualizing objects and 
inheritance, concepts which can be now discussed during the first 

courses on programming in an objects-first approach [1]. 

Extensibility has been a problem of the previous versions of 
Jeliot. Adding new features to the visualization has not been easy, 

thus with this new version, extensibility was one of the important 
issues. As stated before, students should have the possibility to 
use various visualizations in different stages of learning. 

Production of several visualizations requires that the system be 
extensible. 

 

Figure 3: User interface of Jeliot 3. 

4.2 User Interface 
The design of the user interface is a crucial aspect in the tool for 
novice computer user. We used the user interface design from 
Jeliot 2000 as it was found usable and simple for novices [3]. We 

have added extra menus and shortcut keys to make the usage of 
the software smoother. Line numbering was added to the code 
editor and view to make the referencing to the code easier. 

The user interface of Jeliot 3 is illustrated in Figure 3. The menu 
bar consists of buttons and menus that can be used during the 

editing or visualization of the program. During visualization, the 
buttons are taken away to leave more space for the source code 
visualization in the code viewer. The control panel contains the 

VCR-like buttons to control the visualization in the visualization 
frame. If an error occurs during the execution of the program, an 
error viewer shows the reason and the code view highlights the 

area where the error possibly happened. If the program requests 
any input it is shown in the visualization frame. If any output is 
printed it will be shown in the output console at the bottom of the 

window. 

4.3 Visualization 
In the visualization of the programs we had several principles that 

we used to justify our decisions. We wanted to be as consistent as 

possible to reduce the cognitive load of the student. As stated by 

Petre and Green [11], seeing the secondary notation of a graphical 
display, in our case the layout of the animation frame, is an 
acquired skill and novices do not have it. This means that the 

secondary notation has to be done as explicitly and consistently as 
possible. All the visualized components have their own area on 
the screen as shown in Figure 4 and they always appear in that 

area. Furthermore, the visualizations are formed as close as 
possible to the Java Language Specification as far as it has been 
pedagogically reasonable. 

 

Figure 4: The structure of the animation frame in Jeliot 3. 

We also used the results about multimedia learning from Mayer 

[8] as general guidelines. All the visualized material was coherent 
and complete in a sense that none of the visualized elements 
appear from nowhere, but each of the elements has its own place 
to appear. In addition, all the expressions and their subexpressions 

are evaluated and all the values shown so that student needs not 
guess where each value is coming from. Furthermore, the 
visualization and program code is linked with the code 

highlighting so that cause and effect could be identified. 

All the explanations and the related expressions are always shown 

as close to each other as possible to help linking the value of the 
expression and the resulting explanation.  

For object-oriented programming visualization, we have tried to 
use UML-like notation. The objects are shown as boxes that 
contain attributes and their values. The references are shown as 

lines connecting the object with the corresponding variable, 
allowing the object have several references at any moment. 

4.4 Design and Implementation 
The new program visualization system is based on the previously 
developed system, Jeliot 2000, and the research done with it [3]. 
However, designing a new system required a different approach to 
avoid the problems found in Jeliot 2000. In the design of the new 

version we wanted to reuse as much existing code as possible. 
Thus, we tried to design modular system that could use other 
programs as its components. 

The visualization engine of Jeliot 2000 was easily reusable and 
found to be effective [3]. It was taken as the visualization engine 

of the new version. However, the Java interpreter of Jeliot 2000 
was hand-crafted and the further development of it would have 
been difficult. We decided to use an already available open source 

Java interpreter, DynamicJava. It is almost fully Java compliant 
and it is written in Java. Thus, it had all the features that we were 



looking for, full support for Java language and the possibility to 

integrate it easily into our system. 

Two approaches were tried when designing the communication 

model between these two systems. The first approach was to form 
a description of the programs execution in XML, as proposed by 
Stratton [12]. However, we decided not to use the XML-based 

language because it would have made the program much heavier, 
and the well-formedness requirement of XML would have caused 
problems, especially with programs requesting input from the 

user. In the second approach, we designed an intermediate 
language between these two systems. This intermediate language 
consists of simple ASCII text lines that carry all the information 
needed to visualize the interpretation of a program. This means 

that our intermediate language is a result of the interpretation of 
the program by DynamicJava, not just another form to describe 
the source code. 

 

Figure 5: The functional structure of Jeliot 3 

The functional structure of the Jeliot 3 is shown in the Figure 5. A 
user interacts with the user interface and creates the source code 

of the program (1). The source code is sent to the Java interpreter 
and the intermediate code is extracted (2 and 3). The intermediate 
code is interpreted and directions are given to the visualization 

engine (4 and 5). The user can control the animation by playing, 
pausing, rewinding or playing step-by-step the animation (6). 
Furthermore, the user can input data, for example, an integer or a 

string, to the program executed by the interpreter (6, 7 and 8). 

The intermediate language provides a source of interpretation 

information that can be used for different visualizations. A new 
intermediate code interpreter and a visualization engine can be 
developed to produce different visualization of the same program 

(e.g. call tree visualization). Thus, Jeliot 3 can be extended 
internally with multiple visualizations of the same program. 
Secondly, the intermediate language can be interpreted again 

without Java interpreter, so the visualization can be stored in the 
form of the intermediate language and it will produce exactly the 
same visualization. 

5. CONCLUSION 
Jeliot 3 has improved previous versions of the Jeliot family by 
incorporating several new features: objects support, larger subset 

of programs accepted, improved error information, improved 
design, better extensibility, etc. 

Jeliot 3 is ready to be used by teachers at introductory 

programming courses. Jeliot 3 can help in the early stages of these 
courses by providing clear semantics and by engaging students 
into the learning process. With Jeliot 3 visualizations, teachers 

and students can share a graphical and verbal vocabulary that 

eases the discussion of programming concepts. 

Jeliot 3 aspires also to be the base of future developments. 

Maintaining it stable and documented will encourage developers 
to create new visualization models. Those new features will adapt 
Jeliot 3 to different scenarios and could make it a more valuable 

tool. The open development of Jeliot 3 will stand in the basis of 
public licensing (GPL) and it will be coordinated from the 
University of Joensuu.  

First evaluation of Jeliot 3 will be carried out in the beginning of 
the year 2004. Results of this evaluation will show us how to 
proceed in following versions. 

6. REFERENCES 
[1] D. J. Barnes and M. Kölling. Objects First with Java – A 

Practical Introduction using BlueJ. Prentice Hall/Pearson 

Education, Reading, Massachusetts, USA, 2003. 

[2] M. Ben-Ari, N. Myller, E. Sutinen, and J. Tarhio. 
Perspectives on Program Animation with Jeliot. In S. Diehl, 

editor, Software Visualization, vol. 2269 of Lecture Notes in 
Computer Science, pages 31–45. Springer-Verlag, 2002. 

[3] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen. The 
Jeliot 2000 program animation system. Computers & 
Education, 40(1):15–21, 2003. 

[4] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A Meta-
Study of Algorithm Visualization Effectiveness. Journal of 
Visual Languages & Computing, 13(3):259–290, 2002. 

[5] S.-P. Lahtinen, E. Sutinen, and J. Tarhio. Automated 
Animation of Algorithms with Eliot. Journal of Visual 

Languages and Computing, 9(3):337–349, 1998. 

[6] Jeliot, WWW-page, http://cs.joensuu.fi/jeliot, 

2003 

[7] M. Lattu, V. Meisalo, and J. Tarhio. A visualization tool as a 
demonstration aid. Computers & Education, 41(2):133–148, 
2003. 

[8] R. E. Mayer. Multimedia Learning. Cambridge University 
Press, Cambridge, UK, 2001. 

[9] Andrés Moreno, Niko Myller. Producing an Educationally 
Effective and Usable Tool for Learning, the Case of the 
Jeliot Family. To appear in the Proceedings of International 

Conference on Networked e-learning for European 
Universities, Granada, Spain, 2003 

[10] R. Oechsle and T. Schmitt. JAVAVIS: Automatic Program 

Visualization with Object and Sequence Diagrams Using the 
Java Debug Interface (JDI). In S. Diehl, editor, Software 
Visualization, volume 2269 of Lecture Notes in Computer 

Science, pages 176–190. Springer-Verlag, 2002. 

[11] M. Petre. Why Looking Isn't Always Seeing: Readership 

Skills and Graphical Programming. Communication of the 
ACM, 38(6):55–70, 1995. 

[12] D. Stratton. A Program Visualisation Meta-Language 

Proposal. In C. H. Lee, editor, Proceedings of the 9th 
International Conference on Computers in Education 
/SchoolNet2001, pages 601 –609, Soeul, S. Korea, 2001. 

[13] E. Sutinen, J. Tarhio, and T. Teräsvirta. Easy Algorithm 
Animation on the Web. Multimedia Tools and Applications, 
19(2):179–184, 200 




