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Abstract 

Diagnosis of post-stroke epilepsy (PSE) is often challenging because of a low incidence 

of epileptiform abnormalities on electroencephalography (EEG). Hence, this study 

evaluated whether postictal subtraction single-photon emission computed tomography 

(SPECT) could visualize epileptic activity and act as a diagnostic modality in PSE. Fifty 

PSE patients who had undergone Tc-99m-ECD SPECT twice (postictal and interictal), 

were enrolled. The postictal hyperperfusion area was identified by subtraction (postictal-

interictal) SPECT and classified into two distribution types: superficial or deep-seated. 

Laterality and distribution of postictal hyperperfusion on subtraction SPECT were 

compared with stroke lesions, seizure symptoms, and epileptiform EEG findings. Forty-

three of the 50 patients (86%) had hyperperfusion on subtraction SPECT and 26 (52%) 

had epileptiform EEG findings. Subtraction SPECT showed prolonged postictal 

hyperperfusion despite the relatively long interval between seizure end and postictal 

SPECT (median 19.1 hours, range, 2.2–112.5 hours). The laterality of the hyperperfusion 

area had a high concordance rate with the laterality of stroke lesions (97.7%), seizure 

symptoms (91.9%), and epileptiform EEG findings (100%). Scalp EEG identified 

epileptiform activity more frequently in superficial type of SPECT, but less frequently in 

deep-seated type (both, p=0.03). Postictal SPECT can be complementary to scalp EEG in 

endorsing the diagnosis and location of PSE.  
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Introduction 

  Post-stroke epilepsy (PSE) is related to poor prognosis and quality-of-life in post-

stroke patients 1-3, and is the major cause of acquired epilepsy in adults, most notably in 

the elderly 4, 5. Multiple epidemiological studies have reported the incidence of PSE is 3–

5% in 1 year and 10–12% in 5 to 10 years after stroke 6, 7.  

Diagnosis of PSE is often challenging, one reason being that it can manifest as a 

non-convulsive seizure, which often shares similar symptoms with neuropsychiatric 

disturbances such as post-stroke confusion. In addition, epileptiform discharges detected 

by scalp electroencephalogram (EEG) are scant and obscured by frequent focal slow in 

stroke 8, 9 and elderly patients 10. Although long-term continuous EEG is desirable for 

correct diagnosis, it is usually unavailable in general hospitals or stroke centers, where 

most patients with PSE are admitted. Thus, alternative diagnostic procedures are 

warranted.  

Ictal single-photon emission computed tomography (SPECT) can detect 

hyperperfusion at the epileptic focus during the ictal period, and has long been used for 

pre-surgical evaluation in patients with intractable partial epilepsy 11-13. Ictal subtraction 

SPECT (subtraction images of interictal SPECT from ictal SPECT coregistered onto 

magnetic resonance imaging (MRI)) can objectively localize an epileptic focus more 

precisely than a single SPECT scan 14. In addition, perfusion changes around the stroke 

lesion are difficult to detect by ictal SPECT without subtraction images in chronic 
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stroke patients as a result of diaschisis and hypometabolism due to neuronal injury and 

subsequent neuronal cell loss, gliotic scarring, or functional inactivation 15. However, 

subtraction SPECT has not been commonly used in the management of patients with 

PSE.  

Our stroke center has clinically performed postictal SPECT, with additional 

postictal subtraction SPECT (subtraction images of interictal SPECT from postictal 

SPECT coregistered to MRI) to identify postictal hyperperfusion. The aim of the current 

study was to evaluate whether postictal subtraction SPECT can visualize epileptic 

activity and thus serve as a diagnostic modality in patients with PSE. 

 

Material and methods 

Study protocol 

This study was conducted as a single-center sub-analysis of the multi-center 

prospective cohort PROgnosis of POst Stroke Epilepsy (PROPOSE) study 

(UMIN000019940). We retrospectively recruited 186 consecutive patients admitted to 

the Department of Stroke and Cerebrovascular Diseases in the National Cerebral and 

Cardiovascular Center (NCVC) and clinically diagnosed with PSE between April 2014 

and January 2018 (Figure 1). All patients had a routine-length (approximately 20 minutes) 

scalp EEG. The final diagnosis of PSE for enrollment in PROPOSE study was verified at 

the consensus conference attended by two or more neurologists and one or two 
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epileptologists (KKo and AS) with reference to seizure history, semiology, EEG findings, 

therapeutic response, and clinical course. The diagnostic inclusion criteria consisted of 

(1) recurrent (two or more) unprovoked seizures occurring >24 h apart, meeting the 

traditional definition proposed by the ILAE 16 or (2) one unprovoked seizure that met the 

practical clinical definition proposed by the ILAE 17 with epileptiform EEG findings or 

therapeutic response to antiepileptic drugs. One hundred and eighty-four patients were 

diagnosed and enrolled in the PROPOSE study through a consensus conference. Among 

them, 134 patients had cerebral blood flow-SPECT with 99mTc-ethyl cysteinate dimer 

(ECD-SPECT) early after admission (as postictal SPECT). Only patients having a follow-

up SPECT scan with an interval of 4 days or more after an initial SPECT scan (as interictal 

SPECT) (n=55) were selected. Patients who did not undergo MRI scans (n=5), which 

were used for making the subtraction images of interictal SPECT from postictal SPECT 

coregistered to MRI, were excluded. Finally, 50 patients with cerebral infarction (n=24), 

intracerebral hemorrhage (n=23), and subarachnoid hemorrhage (n=3) were examined; 

(n=3) had multiple stroke subtypes.  

   The present study was approved by the ethics Committee of the National Cerebral 

and Cardiovascular Center. We assert that all procedures contributing to this work 

complied with the ethical standards of the relevant national guidelines on human 

experimentation and with the Helsinki Declaration of 1975, as revised in 2008. Written 

informed consent for the research, including initial and follow-up SPECT, was provided 
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by patients. If written informed consent was not available before SPECT imaging (for 

example, as a result of patient’s disability or impaired consciousness) oral informed 

consent, through an opt-out process, preceded written consent. Since we intended to use 

the data in a multi-center study for our single-center sub-analysis, the present study was 

disclosed with an opt-out choice on the center website. No patients refused to participate 

in the study subsequently.  

 

Evaluation of EEG and seizure semiology 

The localization of epileptiform abnormalities in all scalp EEGs was evaluated by 

two board-certified epileptologists (KKo and AS), who were blind to clinical details. 

Epileptiform EEG findings were defined as interictal epileptiform (spike and sharp 

waves), periodic, or ictal epileptiform, discharges based on the International Federation 

of Clinical Neurophysiology [http://www.ifcn.info/showcontent.aspx?MenuID=1169] 

and American Clinical Neurophysiology Society 

[https://www.acns.org/practice/guidelines] guidelines and consensus statements. The 

laterality of the symptomatogenic zone, the cortex that produces ictal symptoms, was 

determined in reference to semiology, lateralizing signs, such as unilateral tonic/clonic 

seizure, eye and head version, and aphasia 18.  

 

SPECT data acquisition and analysis 
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Patients were placed in a supine position with their eyes closed in a quiet and dimly-

lit environment for 5 minutes and 16.2 mCi (600 MBq) of 99mTc-ECD was injected 

intravenously. During the scan, no abnormal behaviors were observed, and patients did 

not report any subjective manifestations of seizures. Imaging data were acquired using a 

dual-headed gamma camera (ECAM, Siemens) 15 minutes after the injection of the tracer, 

with a scan duration of 20 minutes. The image field-of-view contained the entire brain 

and cerebellum. The projection data were processed with a filtered back projection, and 

the Chang attenuation correction applied. 

 

Postictal subtraction SPECT 

The perfusion changes between the initial (postictal) and follow-up (interictal) 

SPECT were identified using subtraction ictal SPECT coregistered to MRI (SISCOM) 

method, as described previously 14. Briefly, each patient’s postictal and interictal SPECT 

scans were coregistered to the MRI scan of each patient, using an automated image 

registration program 19. The count of each voxel in the postictal and interictal perfusion 

SPECT images was normalized according to global mean voxel counts. Normalized 

postictal and interictal SPECT images were subtracted to obtain postictal – interictal 

difference. The mean and standard deviations of global change in perfusion were 

calculated in the subtraction image of each patient. The voxels with the count beyond two 

standard deviations (z-score = ± 2) were regarded as a significant change. The cluster 
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extent threshold was set to 125, which was equivalent to the spatial resolution of SPECT 

in tissue 20. The brain regions with a significant increase in perfusion were superimposed 

on the tomographic and surface rendering images of MRI.  

 

Time intervals from seizure end to initial SPECT 

    Time intervals from seizure end to initial SPECT were calculated. Wilcoxon signed-

rank test was performed to analyze the relationship between time interval and incidence 

of perfusion changes on subtraction SPECT.  

 

Localization of perfusion changes in SPECT and structural lesions in MRI 

We visually localized perfusion changes on subtraction SPECT and structural lesions 

in MRI. In order to ensure the consistency between imaging and EEG data, brain regions 

were classified into five areas; frontal (superior, middle, inferior, and orbital gyrus), 

central (precentral and postcentral gyrus), parietal (superior and inferior parietal lobules, 

and precuneus), occipital (cuneus, lingual gyrus and superior, middle, and inferior 

occipital gyrus), and temporal (superior, middle, and inferior temporal gyrus, Heschl’s 

gyrus and temporal pole) areas. If two or more regions were involved, the localization 

was classified into multiple areas. The laterality of the perfusion changes on subtraction 

SPECT was compared with that of the structural lesions, symptomatogenic zone, and 

epileptiform EEG findings. Furthermore, the localization of perfusion changes was also 
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compared with that of the epileptiform EEG findings. A representative concordant case 

is presented in Figure 2. 

 

Distribution type classification of subtraction SPECT compared with EEG findings 

We classified the distribution of perfusion changes in SPECT into two types: i) 

superficial type (outer side or convexity of cerebral hemisphere) and ii) deep-seated type 

(medial side or deep area of cerebral hemisphere, such as interhemispheric fissure or deep 

area close to lateral and third cerebral ventricles, except the thalamus and basal ganglia) 

(Figure 3). Distribution types of perfusion changes were independently assessed by a 

stroke neurologist (KF) and a neuronuclear medicine specialist (KKa) blinded to clinical 

information and EEG findings. Inter-observer inconsistencies were resolved through 

consensus meetings. To evaluate intra-observer reliability, the assessment was performed 

twice, with an interval, by one of the observers (KF). Distribution types of perfusion 

changes were compared using Pearson chi-square test or Fisher exact test between the 

patients with and without epileptiform EEG findings. 

 

Results 

Patient characteristics 

Patient characteristics are shown in Table 1. Forty-three of the 50 patients (86%) 

presented lateralizing signs and 26 (52%) had epileptiform EEG findings.  
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Time intervals from seizure end to initial SPECT and EEG 

Subtraction SPECT detected hyperperfusion in 43 of 50 patients (86%), which was 

restricted in the frontal region in 4 patients and spread to two or more regions in the 

remaining 39 patients. Inter-observer agreement for the region with hyperperfusion was 

96%, with a Kappa statistic of 0.85. Intra-observer reliability for hyperperfusion was 98%, 

with a Kappa statistic of 0.92. The median time interval from seizure end to initial SPECT 

was 19.1 hours (range, 2.2–112.5 hours), indicating that hyperperfusion prolonged hours 

after seizure end in PSE. A major reason for the difference in time interval was the timing 

of admission: the time intervals in 10 patients admitted during weekday daytime hours 

were significant shorter than 40 patients admitted during evening or the weekend hours 

(median 8.0 hours vs 20.6 hours, p=0.01, Wilcoxon signed-rank test). Moreover, there 

was no difference in the incidence of hyperperfusion between the two timings of 

admission. (9 of 10 patients (90%) vs 34 of 40 patients (85%), p= 1.0, Fisher exact test). 

Table 2 shows the time intervals from seizure end to initial SPECT in patients with and 

without hyperperfusion. There was no difference in the interval between patients with, 

and those without, hyperperfusion (p=0.62). The median time interval from seizure end 

to initial EEG was 18.1 hours (range, 0.9–92.5 hours). Wilcoxon signed-rank test showed 

time intervals from seizure end to initial SPECT were significantly longer than from 

seizure end to initial EEG (p=0.008). The incidence of hyperperfusion on subtraction 
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SPECT was higher, though not significant (86% vs. 52%; Pearson chi-square test, p=0.77), 

than that of epileptiform findings on EEG.  

 

Concordance of subtraction SPECT with MRI lesions, seizure semiology, and EEG 

findings  

Epileptiform EEG findings were observed in 26 patients. Hyperperfusion was 

observed in 22 of 26 patients with epileptiform EEG findings (84.6%) and 21 of 24 

patients without epileptiform EEG findings (87.5%). There was no difference in the 

incidence of hyperperfusion between the two groups (p=0.77, Pearson chi-squared test). 

Regarding lateralization concordance, the laterality of hyperperfusion area on the 

postictal subtraction SPECT had a high concordance rate with that of structural lesions 

(97.7%), symptomatogenic zone (91.9%), and epileptiform EEG findings (100%). 

Regarding localization concordance, the brain area with hyperperfusion on the postictal 

subtraction SPECT images corresponded to that with epileptiform discharges on EEG in 

16 of 21 patients who had both hyperperfusion and epileptiform EEG findings (76.2%) 

(Figure 4).  

Supplemental table 1 shows a comparison of EEG and SPECT findings with seizure 

symptoms. Supplemental table 2 summarizes seizure symptoms and EEG findings in 

patients without hyperperfusion. Supplemental table 3 summarizes clinical 

characteristics in patients with or without hyperperfusion. There was no difference in 
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characteristic patterns of seizure symptoms or EEG findings between the patients with 

and without hyperperfusion. 

 

Distribution types of hyperperfusion and epileptiform EEG findings  

Hyperperfusion was observed in the superficial area in 36 patients, the deep-seated 

area in 30, and both of them in 23 (Figure 5A). Inter-observer agreement for distribution 

type classification was 88%, with a Kappa statistic of 0.82. Intra-observer agreement for 

distribution type classification was 96%, with a Kappa statistic of 0.94. EEG identified 

epileptiform activity more frequently in superficial type, but less frequently in deep-

seated type of hyperperfusion (both, p=0.03) (Figure 5B and 5C, respectively).  

 

  

Discussion   

This study yielded three main results in patients with PSE. Firstly, postictal 

hyperperfusion, detected by the subtraction SPECT, prolonged for many hours or even 

days. Secondly, the hyperperfusion area on the postictal subtraction SPECT was 

concordant with seizure semiology, MRI, and EEG findings in terms of laterality and 

distribution. Thirdly, the postictal subtraction SPECT detected hyperperfusion even in 

patients without epileptiform discharges in a scalp EEG.  

Our study demonstrated postictal hyperperfusion prolonged for hours, even days, in 
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patients with PSE. In intractable focal epilepsy other than PSE, regional perfusion 

increases during seizure and decreases soon after the seizure ends. The perfusion change 

occurs within minutes in temporal lobe epilepsy 12, 21 and an even shorter duration (~10–

15 seconds) in extra-temporal lobe epilepsy 22. Unlike the typical perfusion changes, our 

results demonstrate the novel finding that postictal hyperperfusion prolongs in PSE. The 

reason for the prolonged hyperperfusion in PSE remains unclear. Our study found no 

apparent clinical, EEG, or imaging determinants in the SPECT findings. Recent studies 

have shown a decrease in regional perfusion after ictal hyperperfusion is mediated by 

vasoconstriction in the arteriole 23, 24. Therefore, one possible reason for the prolonged 

hyperperfusion in PSE is impaired vasoreactivity caused by stroke 25. In other words, 

presence of stroke lesions could be the cause of the postictal hyperperfusion per se. 

Aging 26, hypertension 27, and diabetes 28, all of which are often accompanied by stroke, 

also change vasoreactivity and may have additional effects. Another possible reason is 

an increase in the excitability and synchrony of neuronal networks due to 

deafferentation, selective neuronal loss, neurodegeneration, collateral synaptic 

sprouting, and altered synaptic plasticity after stroke 3, 29, 30.  

 

The incidence of hyperperfusion was significantly higher in poststroke epilepsy than 

elderly epilepsy without stroke (43 of 50 vs. 2 of 18 patients; 86% vs. 11%, p<0.001) 

(unpublished data), further supporting the notion that stroke lesions themselves underlie 
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the postictal hyperperfusion. Further basic and clinical research is thus warranted to 

clarify the exact mechanisms behind the stroke-related factors underlying postictal 

hyperperfusion. In clinical practice, ictal SPECT with radiotracer injection immediately 

after seizure onset is difficult to perform in patients with PSE as a result of the lower 

frequency of seizures, clinically unapparent seizure manifestations (for example, coma, 

severe neurologic sequelae, or non-convulsive seizure), or instability in the patient’s 

condition. It is noteworthy, therefore, that postictal SPECT can provide a wide range of 

diagnostic time window for PSE, even hours or days after seizure end.  

 

Another interesting point in the current study was the hyperperfusion area on postictal 

subtraction SPECT remaining concordant with seizure semiology, MRI, and EEG 

findings in terms of laterality or distribution. In the presurgical evaluation of epilepsy, the 

epileptogenic zone 35 is determined based on concordance of clinical data including EEG, 

MRI, ictal SPECT, positron emission tomography, and seizure semiology. In particular, 

hyperperfusion on ictal SPECT is known to reflect seizure origin before propagation of 

epileptiform activity 19. Additionally, a previous study reported that epileptogenic focus 

localized by seizure semiology and EEG is coherent with the stroke lesions in PSE 36. In 

light of this, the current study suggests prolonged postictal hyperperfusion, concordant 

with seizure semiology, MRI, and EEG findings, can reflect the propagating and 

remaining epileptiform activity after PSE, which may have a diagnostic value for PSE. 
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Notably, hyperperfusion was detected with sufficient sensitivity, even in patients 

without epileptiform discharges in scalp EEG. Scalp EEG often fails to detect epileptic 

activity when the epileptic focus is located in deep-seated areas 31, 33, 34. In addition, 

epileptiform discharges may be small in patients with PSE as neural damage caused by 

stroke decreases the epileptic potential 35. In contrast, previous studies have shown ictal 

subtraction SPECT has a high potential to detect epileptic activity in deep-seated areas, 

such as the mid-cingulate gyrus or hypothalamus, in patients with cortical dysplasia 33 

and hamartomas 34. Similarly, the current study showed postictal subtraction SPECT 

was sensitive enough (86%) to identify hyperperfusion in deep-seated areas, even in 

PSE patients without epileptiform EEG findings. Therefore, postictal subtraction 

SPECT could be advantageous to detect epileptic activity arising from or propagating to 

the deep-seated area, in comparison to scalp EEG. Thus, postictal subtraction SPECT 

may be used to complement scalp EEG.  

  

This study has several limitations. Firstly, we assessed only patients who underwent 

SPECT twice clinically. This introduced the potential for selection bias as patients with 

non-convulsive status epilepticus, or those difficult to diagnose, tend to undergo repeated 

SPECT scans. Secondly, there was a time lag between evaluation of ictal semiology, EEG, 

and initial SPECT, which may have affected the concordance rates between the 
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lateralized and localized areas. Thirdly, the diagnosis of PSE was not always EEG-based 

because of the lower incidence of epileptiform EEG abnormalities in PSE 36. Moreover, 

past studies showed 99mTc-ECD SPECT imaging may fail to show hyperperfusion in 

patients with strokes as compared with 99mTc-hexamethyl propylene amine oxim, 123I-

iodoamphetamine, and 133xenon studies 37-40. Thus, hyperperfusion could potentially be 

underestimated in this study. Finally, we used SPECT to measure cerebral perfusion in 

the current study, which is not always available in clinical routine. Efforts are being made 

to replace this technique with other modalities, such as less invasive MRI arterial spin 

labeling, which does not result in radiation exposure.  

 

In summary, our study demonstrates PSE patients present prolonged postictal 

hyperperfusion concordant with seizure semiology and EEG findings, and that SPECT 

may complement scalp EEG in PSE. Postictal SPECT thus has potential in the diagnosis 

of PSE, especially in patients without epileptiform discharges on EEG. Additionally, 

postictal SPECT has a wide diagnostic time window, allowing a diagnosis of PSE hours, 

or even days, after seizure end. Postictal subtraction SPECT may serve as a promising 

modality in the diagnosis and localization of PSE. 
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Figure Legends 

Figure 1. Study protocol.  

We enrolled 50 patients who were diagnosed with post-stroke epilepsy and clinically 

underwent Tc-99m-ECD SPECT twice (postictal and interictal) and MRI scan.  

 

Figure 2. Imaging and electroencephalography findings in a representative 

concordant case.  

(A) A woman aged 85 years presented with seizure in the form of eye version to the 

right side and clonic seizure of the right hemibody with subsequent secondary 

generalized convulsion; semiology suggested a symptomatogenic zone in the left 

hemisphere. Seizure end came after intravenously-administered benzodiazepines, and 

initial electroencephalography (EEG), recorded on admission, showed sharp waves and 

periodic discharges in the left frontopolar regions. EEG was recorded with a bipolar 

montage with the high-frequency filter set at 50 Hz. The vertical marker represents 50 

μV, and the horizontal marker, 1 second. 

(B) MRI fluid-attenuated inversion images on admission showing chronic infarction 

(arrowhead) in the left frontal lobe (structural lesions). 

(C) Initial SPECT performed 3 days after seizure end.   

(D) Follow-up SPECT performed 7 days after the initial SPECT.   
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(E) Subtraction SPECT coregistered to MRI showing prolonged postictal 

hyperperfusion adjacent to the old infarct in the left frontal lobe. The laterality of 

hyperperfusion was concordant with MRI, clinical, and EEG findings. The localization 

of hyperperfusion also corresponded to that of epileptiform EEG findings. R, right; L, 

left. 

 

Figure 3. Distribution type classification of hyperperfusion on subtraction SPECT. 

(A) Superficial type; subtraction SPECT images showing hyperperfusion located on the 

outer side or convexity of the cerebral hemisphere.  

(B) Deep-seated type; subtraction SPECT images showing hyperperfusion located on the 

medial side or deep area of the cerebral hemisphere, such as interhemispheric fissure or 

deep area close to the lateral and third ventricles, except the thalamus and basal ganglia.  

R, right; L, left. 

 

Figure 4. Lateralization concordance of subtraction SPECT with MRI lesions, 

seizure semiology, and EEG findings.  

Hyperperfusion area and structural lesions on MRI were observed in the same 

hemisphere in 42 patients of 43 patients with hyperperfusion on the subtraction SPECT 

(97.7%). Hyperperfusion area and semiology-based symptomatogenic zone were 

identified in the same hemisphere in 34 of 37 patients who had both hyperperfusion and 
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lateralizing sign (91.9%). Hyperperfusion area and epileptiform activity on EEG were 

observed in the same hemisphere in 21 of 21 patients who had both hyperperfusion and 

epileptiform EEG findings (100%). 

 

Figure 5. Distribution types of hyperperfusion and epileptiform EEG findings. 

(A) Among 43 patients with hyperperfusion on the subtraction SPECT, hyperperfusion 

was observed in the superficial area in 36 patients (83.7%), the deep-seated area in 30 

(69.8%), and both areas in 23 (53.5%).  

(B) Scalp electroencephalography (EEG) was positive for epileptiform activity more 

frequently in the superficial, than strict deep-seated, type (not including superficial type) 

of SPECT (21 of 36 vs. 1 of 7; 58.3% vs. 14.3%, p=0.03).  

(C) Scalp EEG was negative for epileptiform activity more frequently in deep-seated, 

than strict superficial, type (not including deep-seated type) of SPECT (18 of 30 vs. 3 of 

13; 60% vs. 23.1%, p=0.03).  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Tables 

Table 1. Patient characteristics 

Patient demographics  

Mean age in years (range) 71.9 (38-95) 

Total patients 50 

  Male, n (%) 28 (56) 

 Median time elapsing from stroke onset to late seizure in years (range) 0.75 (0.3-22.3) 

Newly diagnosed epilepsy, n (%) 31 (62) 

Recurrent epilepsy, n (%) 19 (38) 

    - Pre-administration antiepileptic drugs* 16/19 

    - Median frequency of seizures per year (range) 1 (0.2-2) 

  Status epilepticus, n (%) 18 (36) 

    - Duration of status epilepticus before/on admission >30 minutes 12/18 

  Seizure symptoms  

    - Hemi-convulsion, n (%) 23 (46) 

    - Atonic seizure, n (%) 10 (20) 

    - Aphasia, n (%) 10 (20) 

    - Version of eyes/head, n (%) 25 (50) 

  Lateralizing sign, n (%) 43 (86) 

  Non-convulsive seizure, n (%) 14 (28) 
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  Focal seizure  50/50 (100) 

  Focal seizure evolving to secondarily generalized seizure 18/50 (36) 

  

Major cerebrovascular lesion in MRI†  

 i) Cerebral infarction, n (%) 23 (46) 

    - Cerebral cortex involvement 23/23 

ii) Intracerebral hemorrhage, n (%) 24 (48) 

- Cerebral cortex involvement 19/24 

    - Lobar 15/24 

    - Putamen 8/24 

    - Thalamus 1/24  

iii) Subarachnoid hemorrhage, n (%) 3 (6) 

  

EEG findings  

Interictal/ictal epileptiform discharges or periodic discharges, n (%)‡ 26 (52) 

- Interictal epileptiform discharges, n (%) 18 (36) 

- Periodic discharges, n (%) 14 (28) 

- Ictal epileptiform discharges n (%) 3 (6) 

Number of EEG studies, median (range) 2 (1-8) 

Time interval (seizure end - initial EEG), h, median (range)  18.1 (0.9-92.5) 
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EEG, electroencephalography; h, hour.  

*Patients who received antiepileptic drugs before admission, yet to be diagnosed. 

†Three patients had two or three types of cerebrovascular lesions. 

‡Seven patients had two or three types of epileptiform abnormalities 
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Table 2. Time intervals from seizure end to initial SPECT in patients with and 

without hyperperfusion 

 Range (h) Median (h) IQR (h) P value 

Total patients (n=50) 2.2-112.5 19.1 11-31.6  

- with hyperperfusion (n=43) 2.2-112.5 19.7 11.1-25 

0.62* 

- without hyperperfusion (n=7) 3.9-111.4 17.7 10.8-93 

 

EEG, electroencephalography; h, hour; IQR, interquartile range.  

*Wilcoxon signed-rank test was performed.  
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Supplemental table 1. Comparison of EEG and SPECT findings between patients with and without convulsion, 

and those with and without secondary generalization. 

 

Patient demographics 
CS 

(n=36) 

NCS 

(n=14) 
P value 

SG (+) 

(n=18) 

SG (-) 

(n=32) 
P value 

EEG findings       

- Interictal epileptiform discharges 11 (30.6%) 7 (50%) 0.19 6 (33.3%) 12 (37.5%) 0.77 

- Periodic discharges 9 (25%) 5 (35.7%) 0.45 5 (27.8%) 9 (28.1%) 0.98 

Subtraction SPECT       

 - Hyperperfusion 31 (86.1%) 12 (85.7%) 0.97 14 (77.8%) 29 (90.6%) 0.21 

 

CS, convulsive seizure; EEG, electroencephalography; NCS, non-convulsive seizure; SG, secondary generalization; 

SPECT, single photon emission computed tomography. Pearson chi-square test or Fisher exact test was performed 

for comparisons. 
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Supplemental table 2. Seizure symptoms and EEG findings in patients without hyperperfusion (n=7) 

Cases Age/sex Stroke Seizure symptoms Seizure duration EEG findings 
Time interval 

to SPECT* 

Patient 1 84/F Infarction 
Hemi-facial convulsion evolving 
to secondary generalized seizure 

>30 minutes 
No epileptiform 

abnormality 
29.4 hours 

Patient 2 85/F Infarction 
Hemi-convulsion of the right 

extremities 
<5 minutes 

PDs in the left 
frontal region 

111.4 hours 

Patient 3 73/F Infarction Motor aphasia <5 minutes 
No epileptiform 

abnormality 
3.9 hours 

Patient 4 73/F Infarction 
Focal seizure to bilateral tonic-

clonic seizure 
<5 minutes 

IEDs in the left 
temporal region 

17.2 hours 

Patient 5 88/F ICH 
Hemi-facial convulsion evolving 
to secondary generalized seizure 

<5 minutes 
IEDs in the left 
central region 

93.0 hours 

Patient 6 47/F ICH 

Hemi-convulsion of the right 
extremities evolving to 

secondary generalized seizure 

5-30 minutes 
No epileptiform 

abnormality 
10.8 hours 

Patient 7 53/M ICH Atonic seizure of the right side <5 minutes 
IEDs in the left 
temporal region 

17.7 hours 

 

EEG, electroencephalography; F, female; ICH, intracerebral hemorrhage; IEDs, interictal epileptiform discharges; M, 

male; PDs, periodic discharges. *Time interval is measured from seizure end to initial SPECT.  
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Supplemental Table 3. The differences of clinical characteristics between the patients with and without 

hyperperfusion in poststroke epilepsy.  

Patient demographics 
Total 

(n=50) 

PSE with 

hyperperfusion 

on SPECT 

(n=43) 

PSE without 

hyperperfusion 

on SPECT 

(n=7) 

P value 

Mean age in years (range) 71.9 (38-95) 71.9±13.4 71.9±16.1 0.88 

  Male, n (%) 28 (56) 27 (63) 1 (4) 0.02 

 Median time elapsing from stroke onset to late seizure in years (range) 0.75 (0.3-22.3) 0.8 (0.1-22.3) 0.6 (0.3-7.4) 0.65 

Newly diagnosed epilepsy, n (%) 31 (62) 26 (60) 5 (71) 0.58 

Recurrent epilepsy, n (%) 19 (38) 17 (40) 2 (29) 0.58 

    - Pre-administration antiepileptic drugs* 16/19 14 (33) 2 (29) 0.83 

    - Median frequency of seizures per year (range) 1 (0.2-2) 1 (0.2-2) 0.75 (0.5-1) 0.89 

  Status epilepticus, n (%) 18 (36) 16 (37) 2 (29) 0.66 

    - Duration of status epilepticus before/on admission >30 minutes 12/18 11/16 1/2 0.60 

  Seizure symptoms     

    - Hemi-convulsion, n (%) 23 (46) 19 (44) 4 (57) 0.52 
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    - Atonic seizure, n (%) 10 (20) 9 (21) 1 (14) 0.68 

    - Aphasia, n (%) 10 (20) 9 (21) 1 (14) 0.68 

    - Version of eyes/head, n (%) 25 (50) 22 (51) 3 (43) 0.68 

  Lateralizing sign, n (%) 43 (86) 37 (86) 6 (86) 0.78 

  Non-convulsive seizure, n (%) 14 (28) 12 (28) 2 (29) 0.97 

  Focal seizure  50/50 (100) 43 (100)) 7 (100)  

  Focal seizure evolving to secondarily generalized seizure 18/50 (36) 14 (33) 4 (57) 0.21 

     

Major cerebrovascular lesion in MRI†     

 i) Cerebral infarction, n (%) 23 (46) 19 4  

    - Cerebral cortex involvement 23/23 19/19 4/4  

ii) Intracerebral hemorrhage, n (%) 24 (48) 21 3  

- Cerebral cortex involvement 19/24 18 1  

    - Lobar 15/24 14 1  

    - Putamen 8/24 7 1  
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    - Thalamus 1/24 0 1  

iii) Subarachnoid hemorrhage, n (%) 3 (6) 3 0  

     

EEG findings     

Interictal/ictal epileptiform discharges or periodic discharges, n (%)‡ 26 (52) 22 (51) 4 (57) 0.77 

- Interictal epileptiform discharges, n (%) 18 (36)    

- Periodic discharges, n (%) 14 (28) 13 1 0.38 

- Ictal epileptiform discharges n (%) 3 (6) 3 0 0.73 

Number of EEG studies, median (range) 2 (1-8) 2(1-8) 2 (1-2) 0.43 

Time interval (seizure end - initial EEG), h, median (range)  18.1 (0.9-92.5) 16.3 (0-87.7) 19 (4.7-92.5) 0.21 

     

SPECT     

Time interval (seizure end - initial SPECT), h, median (range) 19.1 (2.2-112.5) 18.4 (2.2-112.5) 17.7 (3.9-111.4) 0.55 
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EEG, electroencephalography; h, hour; PSE, poststroke epilepsy; SPECT, single photon emission computed 

tomography.  

*Patients who received antiepileptic drugs before admission, yet to be diagnosed. 

†Three patients had two or three types of cerebrovascular lesions. 

‡Seven patients had two or three types of epileptiform abnormalities 

 


