
Visualizing Software Systems as Cities

Richard Wettel and Michele Lanza

Faculty of Informatics - University of Lugano, Switzerland

Abstract

This paper presents a 3D visualization approach which

gravitates around the city metaphor, i.e., an object-oriented

software system is represented as a city that can be tra-

versed and interacted with: the goal is to give the viewer

a sense of locality to ease program comprehension.

The key point in conceiving a realistic software city is to

map the information about the source code in meaningful

ways in order to take the approach beyond beautiful pic-

tures.

We investigated several concepts that contribute to the

urban feeling, such as appropriate layouts, topology, and

facilities to ease navigation and interaction.

We experimented our approach on a number of systems,

and present our findings.

1 Introduction

One of the possible ways to categorize software visual-

izations is to make a distinction between 2D and 3D. 2D vi-

sualization has been extensively and successfully explored

in the past [5, 7, 8, 10, 12, 14, 19, 20, 22]. This is not the

case with 3D visualizations which are still struggling to be

accepted, because of a number of reasons, such as navi-

gation and interaction problems. Despite the proven use-

fulness of 2D visualizations, they do not allow the viewer

to be immersed in a visualization, and the feeling is that

we are looking at things from “outside”. 3D visualiza-

tions [3, 4, 11, 15, 17] on the other hand provide the poten-

tial to create such an immersive experience, but there has

been little research in software visualization on this aspect.

Existing 3D visualizations of software (such as [15, 17]),

while being visually appealing, fail at producing the im-

mersive feeling, because they lack locality: the objects in

the 3D space can be freely moved and the viewer is allowed

too much freedom of movement, leading to disorientation

– one of the main arguments against 3D visualizations. We

argue that to provide locality, we need to enhance a 3D vi-

sualization by means of a well-established metaphor, as this

allows the viewer to embed the represented elements into a

familiar context, thus contrasting disorientation.

We propose a 3D visualization which depicts object-

oriented software systems as habitable [21] cities that one

can intuitively explore. The buildings in the city (repre-

senting software artifacts) are positioned according to well

defined rules, and thus facilitate the establishing of visual

orientation to gain familiarity with the system.

As we discuss in the section on related work, this idea

is not new, but we claim that it has so far been used at

the wrong levels of granularity. Choosing the right level of

granularity is crucial to correctly support the city metaphor.

Classes are the cornerstone of the object-oriented paradigm,

and together with the packages they reside in, the pri-

mary orientation point for developers. Therefore we display

classes as building and packages as city districts. We enrich

this approach by also mapping source code metrics onto the

size and type of buildings. Last, but not least, the overall

layout and topology of the city is taken into account.

We implemented this central idea and many additional

concepts into a tool named CodeCity which allows the user

to visit these software cities and interact with the repre-

sented elements.

We exemplify our approach by visualizing three large

software systems, namely the Java systems ArgoUML and

Azureus, and the VisualWorks Smalltalk development envi-

ronment, and report on our findings.

The contributions of the paper are:

• A 3D visualization approach which creates cities that

look real, due to the combination of layouts, topolo-

gies, metric mappings applied at an appropriate level

of granularity.

• A description of a fully working and freely available

tool that scales up to very large systems.

Structure of the paper. In Section 2 we present in detail

how we support the city metaphor by providing a number of

examples. In Section 3 we discuss both the advantages and

the drawbacks of our approach. We then provide a descrip-

tion of our tool in Section 4. Finally, we present related

work in Section 5 and conclude in Section 6.

This article makes extensive use of color pictures. Please

read it on-screen or as a color-printed paper version.

921-4244-0600-5/07/$20.00  2007 IEEE

2 Visualizing Software Systems as Cities

Many existing 3D visualizations of software are un-

doubtedly appealing, but for a variety of reasons they fail

to communicate relevant information about a system and

thus fail to support program comprehension tasks. This is

because they exploit the additional 3rd dimension as yet

another visual means to communicate information, quickly

leading to information overload, over-plotting, and naviga-

tion problems: Software is often depicted using a graph rep-

resentation of nodes and edges which float in a 3D space and

the user can “fly around” in that space to focus on interest-

ing parts. We argue that this extended freedom is counter-

intuitive and leads to disorientation and thus a negative per-

ception of 3D visualizations.

We claim that to contrast the feeling of disorientation and

frustration a good metaphor is needed, because it allows the

viewer to embed the visual elements in a familiar context.

2.1 The City Metaphor

After a number of experiments -which are not the focus

of this paper- to discover a good metaphor we settled on a

city metaphor. Since we focus on object-oriented programs,

the point is to depict the constructs that need to be under-

stood in this context, such as packages, classes, methods,

attributes, and all their explicit and implicit relationships.

We represent classes as buildings located in city districts

which in turn represent packages, because of the following

reasons:

• A city, with its downtown area and its suburbs is a fa-

miliar notion with a clear concept of orientation.

• A city, especially a large one, is still an intrinsically

complex construct and can only be incrementally ex-

plored, in the same way that the understanding of a

complex system increases step by step. Using an all

too simple visual metaphor (such as a large cube or

sphere for the whole system or each package) does not

do justice to the complexity of a software system, and

leads to incorrect oversimplifications: We have to cope

with the fact that software is complex.

• Classes and the packages they reside in are key ele-

ments of the object-oriented paradigm and thus, pri-

mary orientation point for developers. We currently

do not display the class internals, because for a large-

scale understanding it is not necessary. Apart from

over-plotting problems, it is also contrary to the way

one explores a city: A person does not start the explo-

ration of a real city by looking into particular houses. It

is however necessary for a fine-grained understanding

and thus a topic of our future research.

In short, our aim is to represent software systems as

realistic cities that can be navigated and interacted with.

This leads to a number of concepts that we developed and

the corresponding research questions, which we discuss

throughout this section by giving examples:

• Displaying Software Metrics. How can we depict se-

mantic information about a software system, such as

metrics?

• Urban Layouts & Topology. What are appropriate lay-

outs to transmit an urban feeling?

• Interaction & Navigation. How can we interact with

the city representation and which navigation facilities

make sense in such a context?

Figure 1. City of ArgoUML.

Example of a system overview. We see in Figure 1 the

code city of ArgoUML, a 130+ kLOC Java system. The

brown buildings represent classes and interfaces, placed in

blue tiles representing the packages. The color saturation

of the tiles is proportional to the nesting level of the cor-

responding packages. The height of the buildings repre-

sent their number of methods (NOM), while the width and

length represents the number of attributes (NOA). On the

left of the figure, at the far end of the city, we see two exter-

nal suburbs, which represent the parts of the Java standard

and the Java extended (javax) libraries that ArgoUML uses.

The visualization allows us to easily spot some patterns.

There are at least two massive buildings, which are poten-

tial god classes [18]. This city hosts a number of dispro-

portional buildings, such as two antenna-shaped constructs,

which represent classes with a large number of methods

and very few attributes, as well as a number of buildings

that look like parking lots, which represent classes with lots

of attributes and very few or no methods (potential data

classes). There are also a lot of small houses, which make

up entire districts. The visualization is interactive and navi-

gable using the keyboard, i.e., it is easy to zoom in on details

of the city or to focus on one specific district. We focus on

this aspects in a latter part of the article.

93

Figure 2. Linear (left) and boxplot-based (right) mappings applied to VisualWorks Smalltalk.

2.2 Displaying Software Metrics

We identified the following set of visual properties of

the city artifacts that can carry semantic information about

the system under investigation: dimensions, position, color,

color saturation, and transparency.

In this respect we address a number of questions, such

as: Which software metric to map? Which visual property

is appropriate to depict a particular metric? How can we

map a metric value on a visual property?

The decision on which metrics will get to influence the

appearance of the city highly depends on the purpose of the

visualization. In the examples presented throughout this pa-

per, we settled on two simple metrics: the number of meth-

ods (NOM) and the number of attributes (NOA).

Intuitive mappings ease reasoning about a system. Since

tall buildings are often associated with business, we mapped

the NOM metric on the height to denote the amount of func-

tionality of a class. We map the number of attributes on

the size of the base of a building. Thus, a class with many

methods but few attributes will be represented as a tall and

thin building. In the complementary case, a class with a

high number of attributes and few methods will appear like

a platform (or a “parking lot”). A code city reveals these

extremes, and also provides an impression of the magnitude

of the system as well as of the distribution of system intel-

ligence.

To illustrate how the mapping changes the city appear-

ance, we chose a large software model depicted twice in

Figure 2.

This model consists of more than 8,000 classes and

is made of several software systems residing in the same

Smalltalk namespace: Smalltalk itself, Jun (an OpenGL

implementation), Moose (a reengineering environment),

and our tool CodeCity.

A straightforward mapping between software metrics

and visual properties of the city elements is the linear map-

ping, exemplified in Figure 2, left. The NOM metric of

this system has a very wide value range (some Jun classes

have well over 1’000 methods) and one consequence is that

the overview of the system is compromised: The average-

sized buildings appear insignificantly small in comparison

to the extremely tall buildings (the latter do not fit in the

figure). To see them entirely in the view would require to

zoom out to the extent that the majority of the buildings

are not recognizable anymore. This can be easily solved

by normalizing the heights. A more serious problem is the

extensive range of building sizes presented simultaneously

to the viewer, which according to the gestalt principles [9]

is more than one can grasp. To overcome all these draw-

backs our cities exhibit only a reduced number of possible

values for a visual property, based on a metric-based catego-

rization. A building’s height corresponds to one of 5 cate-

gories (very small, small, average, tall, very tall), according

to the NOM value of the class that it represents. Choosing

the boundaries between the categories can be done in two

ways: The boxplot-based mapping computes the boundary

values based on a boxplot technique, while the threshold-

based mapping sets these boundaries according to empiri-

cally established thresholds taken from [13]. Boxplot-based

mappings produce balanced cities, because the boundaries

are relative to the values present in the analyzed system.

The drawback is that they cannot be used to compare among

cities, because a low value of a metric in one system may

be high in another system. Threshold-based mapping over-

comes this disadvantage, but requires well-defined thresh-

olds for each metric. The right part of Figure 2 shows the

same system with the boxplot-based mapping, looking more

like a real city. For a description of the boxplot-based and

threshold-based mapping, as well as for the chosen values

for the categories, we refer the interested reader to [21].

94

Figure 3. The city of Azureus and its package topology.

2.3 Urban Layouts & Topology

The layout of a real city is constrained by its physical

evolution, i.e., the locations of the buildings have an inher-

ent meaning. While such an observation sounds trivial in

reality, in a software city there is no notion of “appropri-

ate location” of a building, since software does not have a

tangible physical presence [2].

We address this problem by placing buildings in dis-

tricts, which can be themselves grouped recursively into

larger districts, according to the package structure of the

investigated system (see Figure 4). Due to package nesting,

the layout is executed at every nesting level. Laying out

buildings in a city governed by gravity (i.e., buildings have

their bases on the ground) boils down to a two-dimensional

rectangle-packing problem, which takes a set of rectangles

and places them into a rectangle of minimum area. We im-

plemented a modified treemap algorithm. It starts with a

rectangular space, large enough to host all the rectangles.

We use a binary tree structure, whose root node is the total

surface, to keep track of the space. Positioning a rectangle

starts with finding the empty node whose size best fits the

rectangle. Then, if necessary, we recursively split the cho-

sen node until it reaches the rectangle’s size. Within each

district, the order in which the buildings are placed is given

by their sizes (largest first). We extended the layout by in-

troducing the notion of topology: We represent the nested

packages as stacked platforms, thus placing the buildings

at different altitudes. In the top right of Figure 3 we de-

pict only the 450+ packages of Azureus, while the left part

displays both the package topology and the classes.

Figure 4. The city of Azureus layout.

95

Figure 5. Selection of a district in ArgoUML.

2.4 Interaction & Navigation

Being able to navigate and interact with a visual repre-

sentation is a critical feature, since static pictures are limited

with respect to expressiveness. We support the following

types of interactions:

• Selection. In CodeCity one can select any artifact or

group of artifacts and interact with them. The lower

part of Figure 5 shows the selection of the ArgoUML

city district org.argouml.uml.diagram, appearing in a

light green color. The selection can be done manually

by clicking on elements, or automatically with a query

engine described later in this section. With the current

selection one can perform operations, such as adding

to or removing from the selection, clearing the selec-

tion, and inverting the selection.

• Spawning. Spawning complementary views, i.e., iso-

lating elements is useful whenever we need to focus

on a particular part of the system. We can make a se-

lection of artifacts in the city and spawn a new view

that contains only the selected elements, allowing us

to continue the exploration in detail. Figure 6 shows

an isolated district.

Figure 6. Spawning a part of the city.

• Tagging. During the exploration of a city, we may

need to tag a set of buildings because we want to re-

member them or because we deem them as less rele-

vant. We can assign a particular color to a selection

96

Figure 7. Color and transparency tagging.

or also use transparency. Figure 7 illustrates how one

can combine these effects to emphasize particular el-

ements, while making the rest less obvious. The two

class hierarchies in the package, whose roots are FigN-

odeModelElement and FigEdgeModelElement both de-

fined in package org.argouml.uml.diagram.ui, are col-

ored in yellow and red, respectively, while the other

classes’ transparency is set to 60%.

• Filtering. Manual selection of elements can be cum-

bersome, therefore we provide a means to perform au-

tomated searches by indicating a set of criteria, which

enable searching for artifacts that match a particular

name (such as *UML*), or type (all classes of the

GUI district), or category (all root classes), or arti-

facts related to the current selection (all sub- or super-

classes, all classes related through invocations or ac-

cesses, etc.). We implemented a query engine to auto-

matically search for the elements matching the query.

• Navigation. As opposed to some 3D visualization sys-

tems, where the viewer can rotate or move elements,

our approach bears more similarity to video games,

where the player is placed within an environment with

only limited capabilities. We make a distinction be-

tween vertical navigation (the user gets to orbit and

fly around the city, move forward or backward, change

the altitude, etc.) and horizontal navigation. The latter

corresponds to “driving around” the city, in the midst

of the buildings, but with limited movement capabili-

ties, given by the physical constraints of the world: it

is impossible to pass through buildings or go below the

ground (no God-mode in our approach). These two of

types of navigation are modal, i.e., the user can only

be in one or the other navigation mode.

3 Discussion

After using CodeCity for a certain time, we noticed a few

aspects we want to discuss:

• Scalability. Because we settled our initial level of

granularity to the class level, our approach scales up

well in terms of the size of the system that we can dis-

play as a code city. However, in cities representing

very large systems the interactivity and navigability

can be substantially slowed down. Performance op-

timization is mandatory to increase realism. We are

currently considering the use of level-of-detail (LOD)

techniques to improve scalability.

• Navigation & Interactivity. CodeCity provides vari-

ous navigations possibilities: moving back or forward,

hovering left or right, orbiting around the city, chang-

ing altitude. Because of the rich semantics put inside

a code city, one can interact with anything in the city.

Moreover, a high number of selection queries are avail-

able, as well as the possibility to change the color and

transparency of the selected items, which enables vi-

sual tagging.

• Completeness. The classes and the package structure

provides a fair amount of information for an overview

of the system. One of the things missing in our city

metaphor is a proper representation of lower-level ar-

tifacts, such as methods or attributes, and depiction of

the relationships between classes, such as inheritances,

method invocations and attribute accesses. While we

can display the relationships as directed edges, it leads

to visual occlusion and decreased realism. Represent-

ing each relationship as a link is therefore not a feasi-

ble solution. For now, relationships can be visualized

on demand, and are accessible as selection queries or

through a direct inspection of the source entity repre-

sented by the building.

4 Tool Implementation

We implemented the visualizations presented in this pa-

per in a tool called CodeCity (Figure 8), written in Smalltalk

and built on top of the Moose reengineering framework [6],

which makes it language-independent. CodeCity provides

flexibility in configuring the views and supports all the three

types of metric mappings we have presented. CodeCity pro-

vides full interaction with any element of the city (such as

coloring, making it transparent, eliding, etc.). We provide

a highly-flexible query mechanism to search for elements.

Right-clicking any of the items brings up a context menu to

perform a variety tasks, such as inspecting the model entity,

accessing the represented source code, etc.

97

Figure 8. The CodeCity User Interface.

5 Related Work

A number of researchers have used 3D visualizations of

software. While it is interesting related work, many used

general 3D visualizations to represent software without any

particular metaphor. Because of that we omit their discus-

sion and concentrate on work similar to ours.

Knight and Munro [11] proposed a city representation in

which a Java class is represented as a district, with meth-

ods represented as buildings. However, the authors do not

discuss scalability, and their language-specific approach is

not largely applicable. The visual mapping is not well cho-

sen, leading to unrealistic cities with thousands of districts.

Moreover, the authors do not exploit package information

to lay out the components.

In [4], the same authors increased the granularity and ap-

plied this idea for the representation of the components in a

software system and mapped semantic information (number

of contained components) on the type of the building.

In [16] the authors also propose a city metaphor. In their

case, the city represents a package and contains, for in-

creased realism, non-source elements, such as trees, streets,

and street lamps. In this metaphor, the program run would

be represented as cars originated from different compo-

nents, leaving traces to determine their origin and desti-

nation. Unfortunately, this paper presents only the ideas,

supported by static rendered images without allowing inter-

action.

The 3D approach proposed by Marcus et al. [15] grav-

itates around poly cylinders, grouped together in floating

containers. Each poly cylinder represents a line of code

and they are grouped in containers representing files, which

makes it not very appropriate for systems with thousands of

classes and hundreds of thousand of LOC. The interaction

provided by this approach is more on placing the elements

in the scene (moving, rotating, scaling). Other interactions

such as queries and extraction were only mentioned as fu-

ture work. Moreover, in a view where the user can manipu-

late the sizes of the elements, one cannot visually compare

them.

At a higher level of abstraction, Balzer et al. [3] pro-

posed the idea of representing software systems as land-

scapes, which is a concept we want to look into and possibly

merge with our approach.

Andrews et al. [1] produced 3D visualizations of file sys-

tems with a similar layout and topology. Files are depicted

by equal-size cubes, colored according to a characteristic of

the file, such as file type or age.

98

6 Conclusions

In this paper we presented a 3D software visualization

approach based on a city metaphor. The classes are rep-

resented as buildings of the city and the packages as its

districts. We investigated several factors that concur to the

realistic aspect of the city, such as an appropriate level of

granularity, mapping between the software domain and the

urban domain, and layouts and topology. We looked into

ways of mapping software metrics to visual properties and

came up with a mapping technique that eases the reason-

ing about the visualized system, by limiting the number of

different sizes presented at one time. The two variations of

this mapping have their advantages and disadvantages. The

boxplot-based mapping produces well balanced cities, but is

not useful for comparisons among systems. The threshold-

based mapping overcomes this drawback, due to the abso-

lute values used, but is conditioned by the existence and

reliability of thresholds. The interaction features our ap-

proach supports are selection, isolation, tagging with color

and transparency, querying the system, and inspecting ele-

ments. Navigation within and around the city is realized as

vertical and horizontal navigation. We implemented all the

concepts presented in this paper in a tool called CodeCity.

CodeCity scales up to industrial-size software systems, such

as ArgoUML (over 2,500 classes), Azureus (over 4,500

classes) or VisualWorks (over 8,000 classes).

Our future work is dedicated to further increase the

realism of the cities and to provide more interaction

features. We would also like to find proper representations

for the class internals (methods and attributes) and the

relationships.

Acknowledgments. We acknowledge the financial support

of the Hasler Foundation for the project “EvoSpaces - Multi-

dimensional navigation spaces for software evolution” (MMI

1976). We also thank Romain Robbes for proof-reading.

References

[1] K. Andrews, J. Wolte, and M. Pichler. Information pyra-

mids: A new approach to visualising large hierarchies. In

Proceedings of VIS 1997 (IEEE Visualization Conference),

pages 49–52. IEEE CS, Oct. 1997.

[2] T. Ball and S. Eick. Software visualization in the large. IEEE

Computer, 29(4):33–43, 1996.

[3] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Soft-

ware landscapes: Visualizing the structure of large software

systems. In VisSym 2004, Symposium on Visualization, Kon-

stanz, Germany, May 19-21, 2004, pages 261–266. Euro-

graphics Association, 2004.

[4] S. M. Charters, C. Knight, N. Thomas, and M. Munro. Visu-

alisation for informed decision making; from code to com-

ponents. In International Conference on Software Engineer-

ing and Knowledge Engineering (SEKE ’02), pages 765–

772. ACM Press, 2002.
[5] M. D’Ambros and M. Lanza. Reverse engineering with log-

ical coupling. In Proceedings of WCRE 2006 (13th Work-

ing Conference on Reverse Engineering), pages 189 – 198,

2006.
[6] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile

reengineering environment. In Proceedings of ESEC/FSE

2005, pages 99–102, Sept. 2005. Tool demo.
[7] S. Ducasse and M. Lanza. The class blueprint: Visually

supporting the understanding of classes. Transactions on

Software Engineering (TSE), 31(1):75–90, Jan. 2005.
[8] R. Falke, R. Klein, R. Koschke, and J. Quante. The dom-

inance tree in visualizing software dependencies. In VIS-

SOFT, pages 83–88, 2005.
[9] S. Few. Show me the numbers: Designing Tables and

Graphs to Enlighten. Analytics Press, 2004.
[10] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,

H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, and

K. Wong. The software bookshelf. IBM Systems Journal,

36(4):564–593, Nov. 1997.
[11] C. Knight and M. C. Munro. Virtual but visible software.

In International Conference on Information Visualisation,

pages 198–205, 2000.
[12] M. Lanza and S. Ducasse. Polymetric views—a lightweight

visual approach to reverse engineering. Transactions on

Software Engineering (TSE), 29(9):782–795, Sept. 2003.
[13] M. Lanza and R. Marinescu. Object-Oriented Metrics in

Practice. Springer-Verlag, 2006.
[14] M. Lungu and M. Lanza. Exploring inter-module rela-

tionships in evolving software systems. In Proceedings of

CSMR 2007 (11th European Conference on Software Main-

tenance and Reengineering), pages xxx–xxx, Los Alamitos

CA, 2007. IEEE Computer Society Press.
[15] A. Marcus, L. Feng, and J. I. Maletic. 3d representations for

software visualization. In Proceedings of the ACM Sympo-

sium on Software Visualization, pages 27–ff. IEEE, 2003.
[16] T. Panas, R. Berrigan, and J. Grundy. A 3d metaphor for

software production visualization. International Conference

on Information Visualization, page 314, 2003.
[17] T. Panas, R. Lincke, and W. Löwe. Online-configuration

of software visualization with Vizz3D. In Proceedings

of ACM Symposium on Software Visualization (SOFTVIS

2005), pages 173–182, 2005.
[18] A. Riel. Object-Oriented Design Heuristics. Addison Wes-

ley, Boston MA, 1996.
[19] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price,

editors. Software Visualization — Programming as a Multi-

media Experience. The MIT Press, 1998.
[20] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: visu-

alization of code evolution. In Proceedings of 2005 ACM

Symposium on Software Visualization (Softviz 2005), pages

47–56, St. Louis, Missouri, USA, May 2005.
[21] R. Wettel and M. Lanza. Program comprehension through

software habitability. In Proceedings of 15th International

Conference on Program Comprehension (ICPC 2007). IEEE

Computer Society, 2007.
[22] M. Wilhelm and S. Diehl. Dependencyviewer - a tool for

visualizing package design quality metrics. In VISSOFT,

2005.

99

