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Abstract

The high-dimensional data created by high-throughput technologies require visualization tools that 

reveal data structure and patterns in an intuitive form. We present PHATE, a visualization method 

that captures both local and global nonlinear structure using an information-geometric distance 

between datapoints. We compared PHATE to other tools on a variety of artificial and biological 
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datasets, and find that it consistently preserves a range of patterns in data, including continual 

progressions, branches, and clusters, better than do other tools. We define a manifold preservation 

metric called ‘Denoised Embedding Manifold Preservation’ (DEMaP) and show that PHATE 

produces quantitatively better denoised lower-dimensional embeddings compared with existing 

visualization methods. An analysis of a newly generated scRNA-seq dataset on human germ layer 

differentiation demonstrates how PHATE reveals unique biological insight into the main 

developmental branches, including identification of three previously undescribed subpopulations. 

We also show that PHATE is applicable to a wide variety of data types, including mass cytometry, 

single-cell RNA-sequencing, Hi-C, and gut microbiome data.

Introduction

High dimensional, high-throughput data are accumulating at a staggering rate, especially of 

biological systems measured using single-cell transcriptomics and other genomic and 

epigenetic assays. Because humans are visual learners, it is important that these datasets are 

presented to researchers in intuitive ways to understand both the overall shape and the fine 

granular structure of the data. This is especially important in biological systems, where 

structure exists at many different scales and a faithful visualization can lead to hypothesis 

generation.

There are many dimensionality reduction methods for visualization [1-11], of which the 

most commonly used are PCA [11] and t-SNE [1-3]. However, these methods are 

suboptimal for exploring high-dimensional biological data. First, they tend to be sensitive to 

noise. Biomedical data is generally very noisy, and methods like PCA and Isomap [4] fail to 

explicitly remove this noise for visualization, rendering fine grained local structure 

impossible to recognize. Second, nonlinear visualization methods such as t-SNE often 

scramble the global structure in data. Third, many dimensionality reduction methods (e.g. 

PCA and diffusion maps) fail to optimize for two-dimensional visualization as they are not 

specifically designed for visualization.

Furthermore, common implementations of dimensionality reduction methods often lack 

computational scalability. The volume of biomedical data being generated is growing at a 

scale that far outpaces Moore’s Law. State-of-the-art methods such as MDS and t-SNE were 

originally presented (e.g., in [1, 7]) as proofs-of-concept with somewhat naïve 

implementations that do not scale well to datasets with hundreds of thousands, let alone 

millions, of data points due to speed or memory constraints. Although some heuristic 

improvements may be made (see, for example, [3, 8]), most available packages still follow 

the original implementation and thus cannot run on big data, which severely limits the 

usability of these methods in the medium to long term.

Finally, we note that some methods try to alleviate visualization challenges by directly 

imposing a fixed geometry or intrinsic structure on the data. However, methods that impose 

a structure on the data generally have no way of alerting the user whether the structural 

assumption is correct. For example, any data will be transformed to fit a tree with Monocle2 

[12] or clusters with t-SNE. While such methods are useful for data that fit their prior 
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assumptions, they can generate misleading results otherwise, and are often ill suited for 

hypothesis generation or data exploration.

To address the above concerns, we have designed a dimensionality reduction method for 

visualization named Potential of Heat-diffusion for Affinity-based Transition Embedding 

(PHATE). PHATE generates a low-dimensional embedding specific for visualization which 

provides an accurate, denoised representation of both local and global structure of a dataset 

in the required number of dimensions without imposing any strong assumptions on the 

structure of the data, and is highly scalable both in memory and runtime. To achieve this, we 

combine ideas from manifold learning, information geometry, and data-driven diffusion 

geometry and integrate them with current state-of-the-art methods. The result is that high-

dimensional and nonlinear structures, such as clusters, nonlinear progressions, and branches, 

become apparent in two or three dimensions and can be extracted for further analysis (Figure 

1A).

We develop a new metric called ‘Denoised Embedding Manifold Preservation’ (DEMaP) to 

quantify the ability of an embedding to preserve denoised manifold distances, we show that 

PHATE consistently outperforms 11 other methods on synthetically generated data with 

known ground truth. We also use PHATE to visualize several biological and non-biological 

real world datasets, showing PHATE’s capacity to visualize datasets with many different 

underlying structures including trajectories, clusters, disconnected and intersecting 

manifolds, and more (Figure 1). To demonstrate the ability of PHATE to reveal new 

biological insights, we apply PHATE to a newly generated single-cell RNA-sequencing 

dataset of human embryonic stem cells grown as embryoid bodies over a period of 27 days 

to observe differentiation into diverse cell lineages. PHATE successfully captures all known 

branches of development within this system as well as differentiation pathways that have—

to the best of our knowledge—not been described before, and enables the isolation of rare 

populations based on surface markers, which we validate experimentally.

Results

Visualizing complex, high-dimensional data in a way that is both easy to understand and 

faithful to the data is a difficult task. Such a visualization method needs to preserve local and 

global structure in the high-dimensional data, denoise the data so that the underlying 

structure is clearly visible, and preserve as much information as possible in low (2-3) 

dimensions. Additionally, a visualization method should be robust in the sense that the 

revealed structure of the data is insensitive to user configurations of the algorithm and 

scalable to the large sizes of modern data.

Popular dimensionality reduction methods are deficient in one or more of these attributes. 

For example, t-SNE [1] focuses on preserving local structure, often at the expense of the 

global structure (Figure 1B-C), while PCA focuses on preserving global structure at the 

expense of the local structure (Figure 1B-C). Although PCA is often used for denoising as a 

preprocessing step, both PCA and t-SNE provide noisy visualizations when the data is noisy, 

which can obscure the structure of the data (Figure 1B-C). In contrast, diffusion maps [13] 

effectively denoises data and learns the local and global structure. However, diffusion maps 
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typically encodes this information in higher dimensions [14], which is not amenable to 

visualization, and can introduce distortions in the visualization under certain conditions (see 

Figures S1 and S2A).

PHATE is designed to overcome these weaknesses and provide a visualization that preserves 

the local and global structure of the data, denoises the data, and presents as much 

information as possible into low dimensions. There are three major steps in the PHATE 

algorithm.

1. Encode local data information via local similarities (Figure 2A-C).

For some data types, such as Hi-C chromatin conformation maps [15], the local relationships 

are encoded directly in the measurements. However, for most data types, the local 

similarities must be learned. We assume that component-wise, the data are well-modeled as 

lying on a manifold. Effectively this means that local relationships between data points, even 

noisy, are meaningful with respect to the overall structure of the data as they can be chained 

together to learn global relationships along the manifold. We apply a kernel function we 

developed (called the α-decay kernel) to Euclidean distances to accurately encode the local 

structure of the data even when the data is not uniformly sampled along the underlying 

manifold structure.

2. Encode global relationships in data using the potential distance (Figure 2D).

Diffusing through data is a concept that was popularized in the derivation of Diffusion Maps 

(DM) [13]. Diffusion is performed by first transforming the local similarities into 

probabilities that measure the probability of transitioning from one data point to another in a 

single step of a random walk and then powering this operator to t steps to give t-step walk 

probabilities. Thus both the local and global manifold distances are represented in the 

newly-calculated multi-step transition probabilities, referred to as the diffusion probabilities. 

For example, two points that have multiple potential, short paths that connect them will have 

a higher diffusion probability than two points that either have only long paths or relatively 

few paths connecting them. By considering all possible random walks, the diffusion process 

also denoises the data by downweighting spurious paths created by noise. However, directly 

embedding the diffusion probabilities into 2 or 3 dimensions via eigenvalue decomposition 

results in either a loss of information (Figure S1) or an unstable embedding (Figures S2A 

and S3D, respectively). In PHATE we interpret the diffusion probability of each point to all 

other points as the “global context of the datapoint,” and derive an information-theoretic 

potential distance between each pair of cells that compares the entire global context. 

Potential distance is computed as a divergence between the associated diffusion probability 

distributions of the two cells to all other cells. Thus the relationship of each cell to both near 

neighbors and distant points is accounted for in this distance. Notably, many divergences use 

a sublinear transformation of probability distributions (such as a logscale transformation) 

which prevents nearest neighbors from dominating the distance.
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3. Embed potential distance information into low dimensions for visualization (Figure 2E-
F).

The information in the potential distances are then squeezed into low dimensions for 

visualization via metric MDS, which creates an embedding by matching the distances in the 

low-dimensional space to the input distances. Unlike PCA, this ensures that all variability is 

squeezed into the two dimensions for a maximally informative embedding.

These steps are outlined in Table 1. All of these steps are necessary to create a good 

visualization that preserves local and global structure in the high-dimensional data, denoises 

the data, and presents as much information as possible in low dimensions. Further details on 

all of the steps of PHATE are included in Online Methods, Table S1, and Supplementary 

Note 1. PHATE is also robust to the choice of parameters (Online Methods and Figure S4) 

and produces the same results every time it is run, regardless of random seed (Figure S5).

In addition to the exact computation of PHATE, we developed an efficient and scalable 

version of PHATE that produces near-identical results. In this version, PHATE uses 

landmark subsampling, sparse matrices, and randomized matrix decompositions. For more 

details on the scalability of PHATE see Online Methods, Table S2, and Figure S6, which 

shows the fast runtime of PHATE on datasets of different sizes, including a dataset of 1.3 

million cells (2.5 hours) and a network of 1.8 million nodes (12 minutes).

Extracting Information from PHATE

PHATE embeddings contain a large amount of information on the structure of the data, 

namely, local transitions, progressions, branches or splits in progressions, and end states of 

progression. Here we present new methods that provide suggested end points, branch points, 

and branches based on the information from higher dimensional PHATE embeddings. These 

may not always correspond to real decision points, but provide an annotation to aid the user 

in interpreting the PHATE visual.

• Branch Point Identification with Local Intrinsic Dimensionality. In biological 

data, branch points often encapsulate switch-like decisions where cells sharply 

veer towards one of a small number of fates (see Figure S7A for an example). 

Identifying branch points is of critical importance for analyzing such decisions. 

We make a key observation that most points in PHATE plots of biological data 

lie on low-dimensional progressions with some noise as demonstrated in Figure 

3Aii. Since branch points lie at the intersections of such progressions, they have 

higher local intrinsic dimensionality and can thus be identified by estimating the 

local intrinsic dimension. Figure 3Aii shows that points of intersection in the 

artificial tree data indeed have higher local intrinsic dimensionality than points 

on branches.

• Endpoint Identification with Diffusion extrema. We identify endpoints in the 

PHATE embedding as those that are least central and most distinct by computing 

the eigenvector centrality and the distinctness of a cellular state relative to the 

general data by considering the minima and maxima of diffusion eigenvectors 

(see Figure 3Ai). After identifying branch points and endpoints, the remaining 
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points are assigned to branches between two branch points or between a branch 

point and endpoint using an approach based on the branch point detection 

method in [14] that compares the correlation and anticorrelation of neighborhood 

distances. Figure 3Aiii gives a visual demonstration of this approach and details 

are given in Online Methods. Figure 3B shows the results of our approach to 

identifying branch points, endpoints, and branches on an artificial tree dataset, a 

scRNA-seq dataset of bone marrow [16], and an iPSC CyTOF dataset [17]. Our 

procedure identifies the branches on the artificial tree perfectly and defines 

biologically meaningful branches on the other two datasets which we will use for 

data exploration.

Comparison of PHATE to Other Methods

Here we compare PHATE to multiple dimensionality reduction methods. We provide 

quantitative comparisons on simulated data where the ground truth is known, and provide a 

qualitative comparison using both simulated and real biological data.

Quantitative Comparisons.

Quantifying the accuracy of a dimensionality reduction for visualization is an open problem 

in machine learning [18-20] as it is generally impossible to greatly reduce the dimensionality 

of a dataset without loss of information. To quantify the quality of a visualization, we need a 

metric that judges whether a method preserves the information that is necessary for visual 

understanding. Prior work has focused on preserving pairwise distances or local 

neighborhoods [5, 21, 22]. However, these quantifications are not strictly desirable. For 

example, classical MDS is analytically the optimal solution to pairwise distance preservation 

in n dimensions [7]. However, MDS, as is visible in Figures S8 and S3, often does not 

produce clear or insightful visualizations for complex, nonlinear data. On the other hand, 

preserving local neighborhoods is the basis of the objective function for t-SNE [1], which 

fails to incorporate global structure and is hence insufficient for our purposes (Figure S3).

Prior work has also emphasized the utility of geodesic distances in computing both 

dimensionality reductions [4] and associated metrics [19]. Similar computations have been 

used to compare the output of trajectory inference algorithms [23]. However, this metric is 

insufficient for our use for two reasons: 1. unlike in trajectory inference, the raw data is 

noisy, and we wish to quantify the ability of a visualization method to denoise the data; and 

2. geodesic distances on low-dimensional visualizations fail to capture the inherent meaning 

of curvature. Since visualizations do not suffer from the curse of dimensionality, we are able 

instead to use Euclidean distances, which capture the difference between straight and curved 

lines which are also meaningful to the human eye.

Hence, to quantitatively compare PHATE to other visualization methods, we formulated the 

Denoised Embedding Manifold Preservation (DEMaP) metric. DEMaP is designed to 

encapsulate the desirable properties of a dimensionality reduction method that is intended 

for visualization. These include: 1. the preservation of relationships in the data such that 

cells close together on the manifold are close together in the embedded space and cells that 

are far apart on the manifold are far apart in the embedding, including disconnected 
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manifolds (e.g. clusters) which should be as well separated as possible; and 2. denoising, 

such that the low-dimensional embedding accurately represents the ground truth data and is 

as invariant as possible to biological and technical noise. DEMaP encapsulates each of these 

properties by comparing the geodesic distances on the noiseless data to the Euclidean 

distances of the embedding extracted from noisy data. An overview of DEMaP is presented 

in Figure 4A. See Online Methods for details.

To compare the performance of PHATE to 12 dimensionality reduction methods, we 

simulated scRNA-seq data from Splatter [24]. Splatter uses a parametric model to generate 

data with various structures, such as branches or clusters. This simulated data provides a 

ground truth reference to which we can add various types of noise. We then use this noisy 

data as input for each dimensionality reduction algorithm, and quantify the degree to which 

each representation preserves local and global structures and denoises the data using 

DEMaP. To generate a diverse set of ground truth references, we simulated 50 datasets 

containing clusters and 50 datasets containing branches. See Online Methods for simulation 

details.

For each method, we used the default parameters and calculated DEMaP on each simulated 

dataset using different noise settings. The results are presented in Figure 4B and Table S3. 

We found that PHATE had the highest DEMaP score in 22/24 comparisons and was the top-

performing method overall. UMAP was the second best performing method overall but had 

the highest DEMaP score in only two of the comparisons, one of which is equal with 

PHATE. We ran further tests on cluster data using the adjusted Rand Index [25] and found 

that on average PHATE preserves local cluster structure as well or better than t-SNE, 

UMAP, and PCA. The results are presented in Figure S9. From all of these results, we 

conclude that PHATE captures the true structure of high dimensional data more accurately 

than existing visualization methods.

Qualitative Comparisons.

In addition to the quantitative comparison, we can visually compare the embeddings 

provided by different methods. Figure 5 shows a comparison of the PHATE visualization to 

seven other methods on five single-cell datasets with known trajectory (Fig. 5A,D,E) and 

cluster (Fig. 5B-C) structures. We see that PHATE provides a clean and relatively denoised 

visualization of the data that highlights both the local and global structure: local clusters or 

branches are visually connected to each other in a global structure in each of the PHATE 

visualizations. Many of these branches are consistent with cell types or clusters validated by 

the authors [16, 17, 26, 27] and are also present in other visualizations such as force-directed 

layout and t-SNE, suggesting that the structures in the PHATE embedding reflect true 

structure in the dataset. However, force-directed layout tends to give a noisier visualization 

with fewer clear branches. Additionally, t-SNE [21] tends to shatter trajectories into clusters, 

creating the false impression that the data contain natural clusters. We characterize each of 

these visualizations in detail in Supplementary Note 2.

We obtained similar results by comparing PHATE to eleven methods on nine non-biological 

datasets, including four artificial datasets where the ground truth is known (Figure S3). 

Expanded comparisons on single-cell data, including additional datasets and visualization 
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methods, are also included in Figure S8. See Supplementary Note 2 for a full discussion of 

each method in all of these comparisons.

Data Exploration with PHATE

PHATE can reveal the underlying structure of the data for a variety of datatypes. 

Supplementary Note 3 discusses PHATE applied to multiple different datasets, including 

SNP data, microbiome data, Facebook network data, Hi-C chromatin conformation data, and 

facial images (Figures S10 and S11). In this section, however, we show the insights gained 

through the PHATE visualization of this structure for single-cell data. See Online Methods 

for details on preprocessing steps.

We show that the identifiable trajectories in the PHATE visualization have biological 

meaning that can be discerned from the gene expression patterns and the mutual information 

between gene expression and the ordering of cells along the trajectories. We analyze the 

mouse bone marrow scRNA-seq [16] and iPSC CyTOF [17] datasets described previously. 

Our analysis of the iPSC CyTOF data is presented here while the analysis of the mouse bone 

marrow data is presented in Supplementary Note 3. For both of these datasets, we used our 

new methods for detecting branches and branch points. We then ordered the cells within 

each trajectory using Wanderlust [28] applied to higher-dimensional PHATE coordinates. 

We note that ordering could also be based on other pseudotime ordering software such as 

those in [14, 29-32]. To estimate the strength of the relationship between gene expression 

and cell ordering along branches, we estimated the DREMI score (a weighted mutual 

information that eliminates biases to reveal shape-agnostic relationships between two 

variables [33]) between gene expression and the Wanderlust-based ordering within each 

branch. Genes with a high DREMI score within a branch are changing along the branch. We 

also use PHATE to analyze the transcriptional heterogeneity in rod bipolar cells to 

demonstrate PHATE’s ability to preserve cluster structure (see Supplementary Note 3 and 

Figure S12A).

Figure S7C shows the mass cytometry dataset from [17] that shows cellular reprogramming 

with Oct4 GFP from mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells 

(iPSCs) at the single-cell resolution. The protein markers measure pluripotency, 

differentiation, cell-cycle and signaling status. The cellular embedding (with combined 

timepoints) by PHATE shows a unified embedding that contains five main branches, further 

segmented in our visualization, each corresponding to biology identified in [17]. Branch 2 

contains early reprogramming intermediates with the correct set of reprogramming factors 

Sox2+/Oct4+/Klf4+/Nanog+ and with relatively low CD73 at the beginning of the branch. 

Branch 2 splits into two additional branches. Branches 4 and 6 (Figure S7) show the 

successful reprogramming to ESC-like lineages expressing markers such as Nanog, Oct4, 

Lin28 and Ssea1, and Epcam that are associated with transition to pluripotency [34]. Branch 

5 shows a lineage that is refractory to reprogramming, does not express pluripotency 

markers, and is referred to as “mesoderm-like” in [17].
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The other branches are similarly analyzed in Supplementary Note 3. In addition, the data 

features can be reweighted to obtain specific “views” of the data (see Supplementary Note 3 

and Figure S13).

PHATE Analysis of Human ESC Differentiation Data

To test the ability of PHATE to provide novel insights in a complex biological system, we 

generated and analyzed scRNA-seq data from human embryonic stem cells (hESCs) 

differentiating as embryoid bodies (EB) [35], a system which has never before been 

extensively analyzed at the single-cell level. EB differentiation is thought to recapitulate key 

aspects of early embryogenesis and has been successfully used as the first step in 

differentiation protocols for certain types of neurons, astrocytes and oligodendrocytes 

[36-39], hematopoietic, endothelial and muscle cells [40-48], hepatocytes and pancreatic 

cells [49, 50], as well as germ cells [51, 52]. However, the developmental trajectories 

through which these early lineage precursors emerge from hESCs as well as their cellular 

and molecular identities remain largely unknown, particularly in human models.

We measured approximately 31,000 cells, equally distributed over a 27-day differentiation 

time course (Figure S14A and Online Methods). Samples were collected at 3-day intervals 

and pooled for measurement on the 10x Chromium platform. The PHATE embedding of the 

EB data revealed a highly ordered and clean cellular structure dominated by continuous 

progressions (Figures 1C and 6A), unlike other methods such as PCA or t-SNE (Figure S8). 

Exploratory analysis of this system using PHATE uncovered a comprehensive map of four 

major germ layers with both known and novel differentiation intermediates that were not 

captured with other visualization methods.

A Comprehensive Lineage Map of Embryoid Bodies from PHATE

Importantly, PHATE retained global structure and organization of the data as is evidenced by 

the retention of a strong time trend in the embedding, although sample time was not 

included in creating the embedding. Further, PHATE revealed greater phenotypic diversity at 

later time points as seen by the larger space encompassed by the embedding at days 18 to 27 

(Figure 1C).

This phenotypic heterogeneity was further analyzed by both an automated analysis (see 

Supplementary Note 4, Figure 6A, and Tables S4 and S5) and by manual examination of the 

embedding in conjunction with the established literature on germ layer development (Figure 

S14B). For the manual analyses, we used 80 markers from the literature to identify 

populations along the PHATE map which gave rise to a detailed germ layer specification 

map (Figure 6B, Videos S1, S2, and S3). These populations are shown on the PHATE 

visualization in Figure 6C. In the lineage tree, the dots are the populations and the arrows 

represent transitions between the populations. Our map shows in detail how hESCs give rise 

to germ layer derivatives via a continuum of defined intermediate states.
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Novel Transitional Populations in Embryoid Bodies

The comprehensive nature of the lineage map generated from the PHATE embedding 

allowed us to identify novel transitional populations that have not yet been characterized. 

Three novel pre-cursor states were identified in both manual and automated analyses: a bi-

potent NC and NP pre-cursor, a novel EN precursor, and a novel cardiac precursor.

Within the ectodermal lineage, differentiation begins with the induction of pre-NE state 

characterized by downregulaton of POU5F1 and induction of OTX2. This state is resolved 

into two precursors, NE-1 (GBX2+ZIC2/5+) and NE-2 (GBX2+OLIG2+HOXD1+). While 

NE-1 neuroectoderm appeared to develop along the canonical NE specification route and 

expressed a set of well established anterior NE markers (ZIC2/5, PAX6, GLI3, SIX3/6), the 

NE-2 neuroectoderm gave rise to a bi-potent HOXA2+HOXB1+ precursor that subsequently 

separated into the NC branch and neural progenitor (NP) branch. Given its potential to 

generate both NE and NC cell types, the HOXA2+HOXB1+ precursor could represent the 

equivalent of the neural plate border cells that have been defined in model organisms [53, 

54].

Within the EN branch, the canonical EOMES+FOXA2+SOX17+ EN precursor was 

clustered together with the novel EOMES−FOXA2−GATA3+SATB1+KLF8+ precursor, 

which further differentiated into cells expressing posterior EN markers NKX2-1, CDX2, 

ASCL2, and KLF5. Finally, a novel T+GATA4+ CER1+PROX1+ cardiac precursor cell was 

identified within the ME lineage that gave rise to TNNT2+ cells via a GATA6+HAND1+ 

differentiation intermediate.

A more detailed analysis of the novel and canonical cell types derived from the PHATE 

embedding is given in Supplementary Note 4.

Experimental Validation of PHATE-Identified Lineages

We next used the ability of PHATE to extract data on specific regions within the 

visualization to define a set of surface markers for the isolation and molecular 

characterization of specific cell populations within the EB differentiation process.

We focused on two specific regions that correspond to the NC branch (sub-branch iii, Figure 

6Aiii) and cardiac precursor sub-branch within the ME branch (sub-branch vii, Figure 

6Aiii). Differential expression analysis identified a set of candidate markers for each region 

(Figures 6D-E). We focused on markers with a high Earth Mover’s Distance (EMD) [55] 

score in the targeted sub-branch, and low EMD scores in all other sub-branches (see Online 

Methods for more details on the EMD). Based on these analyses and the availability of 

antibodies, CD49D/ITGA4 was chosen for the neural crest (the highest scoring surface 

marker for sub-branch iii) while CD142/F3 and CD82 were chosen for cardiac precursors 

(among the top 6% of surface markers and the top 3% of all genes by EMD). We FACS-

purified CD49d+CD63− and CD82+CD142+ and performed bulk RNA-sequencing (Figure 

S14F) on these sorted populations.
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To verify that we isolated the correct regions, we calculated the Spearman correlation 

between the gene expression pattern of each cell and the bulk RNA-seq data from the 

CD49d+CD63− sorted cells (Figures 6F and S14D). The correlation coefficient was the 

highest in the neural crest branch (branch iii), which corresponds to the highest expression 

of CD49d. Similar results were obtained for the cardiac precursor cells (Figures 6F and 

S14E).

Taken together, our analyses show that PHATE has the potential to greatly accelerate the 

pace of biological discovery by suggesting hypotheses in the form of finely grained 

populations and identifying markers with which to isolate populations. These populations 

can be probed further using alternative measurements such as epigenetic or protein 

expression assays.

Discussion

With large amounts of high-dimensional high-throughput biological data being generated in 

many types of biological systems, there is a growing need for interpretable visualizations 

that can represent structures in data without strong prior assumptions. However, most 

existing methods are highly deficient at retaining structures of interest in biology. These 

include clusters, trajectories or progressions of various dimensionality, hybrids of the two, as 

well as local and global nonlinear relations in data. Furthermore, existing methods have 

trouble contending with the sizes of modern datasets and the high degree of noise inherent to 

biological datasets. PHATE provides a unique solution to these problems by creating a 

diffusion-based informational geometry from the data, and by preserving a divergence 

metric between datapoints that is sensitive to near and far manifold-intrinsic distances in the 

dataspace. Additionally, PHATE is able to offer clean and denoised visualizations because 

the information geometry created in PHATE is based on data diffusion dynamics which are 

robust to noise. Thus, PHATE reveals intricate local as well as global structure in a denoised 

way.

We applied PHATE to a wide variety of datasets, including single-cell CyTOF and RNA-seq 

data, as well as Gut Microbiome and SNP data, where the datapoints are subjects rather than 

cells. We also tested PHATE on network data, such as Hi-C and Facebook networks. In each 

case, PHATE was able to reveal structures of visual interest to humans that other methods 

entirely miss. Moreover, we have implemented PHATE in a scalable way that enables it to 

process millions of datapoints in a matter of hours. Hence, PHATE can efficiently handle the 

datasets that are now being produced using single-cell RNA sequencing technologies.

To showcase the ability of PHATE to explore data generated in new systems, we applied 

PHATE to our newly generated human EB differentiation dataset consisting of roughly 

31,000 cells sampled over a differentiation time course. We found that PHATE successfully 

resolves cellular heterogeneity and correctly maps all germ layer lineages and branches 

based on scRNA-seq data alone, without any additional assumptions on the data. Through 

detailed sub-population and gene expression analysis along these branches we identified 

both canonical and novel differentiation intermediates. The insights obtained with PHATE in 
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this system will be a valuable resource for researchers working on early human 

development, human ES cells, and their regenerative medicine applications.

We expect numerous biological, but also non-biological, data types to benefit from PHATE, 

including applications in high-throughput genomics, phenotyping, and many other fields. As 

such, we believe that PHATE will revolutionize biomedical data exploration by offering a 

new way of visualizing, exploring and extracting information from large scale high-

dimensional data.

Methods

Here we present an expanded explanation of our computational methods, experimental 

methods, and data processing steps. For the computational details, we first provide a detailed 

overview of the PHATE algorithm followed by a robustness analysis of PHATE with respect 

to the parameters and the number of datapoints. We then provide details on the scalable 

version of PHATE, identifying branch points and branches, and the EMD score analysis.

The embedding provided by PHATE is designed for visualizing global and local structure in 

the data in exploratory settings with the following properties in mind: 1) The visualization 

should capture the relevant structure in low (2-3) dimensions. 2) The visualization should 

preserve and emphasize global and local structure including transitions and clusters. 3) The 

visualization is denoised to enable data exploration. 4) The visualization is robust in the 

sense that the revealed structure is insensitive to user configurations.

The mathematical steps of PHATE are provided in Table S1. We now provide further details 

about each of the steps in the PHATE algorithm and we explain how these steps ensure that 

PHATE meets the four properties described above. For even further mathematical details of 

the algorithm, see Supplementary Note 1.

Distance Preservation

Consider the common approach of linearly embedding the raw data matrix itself, e.g., with 

PCA, to preserve the global structure of the data. PCA finds the directions of the data that 

capture the largest global variance. However, in most cases local transitions are noisy and 

global transitions are nonlinear. Therefore, linear notions such as global variance 

maximization are insufficient to capture latent patterns in the data, and they typically result 

in a noisy visualization (Figure S3, Column 2). To provide reliable structure preservation 

that emphasizes transitions in the data, we need to consider the intrinsic structure of the data. 

This implies and motivates preserving distances between data points (e.g., cells) that 

consider gradual changes between them along these nonlinear transitions (Figure 2A-B).

Local Affinities and the Diffusion Operator

A standard choice of a distance metric is the Euclidean distance. However, global Euclidean 

distances are not reflective of transitions in the data, especially in biological datasets that 

have nonlinear and noisy structures. For instance, cells sampled from a developmental 

system, such as hematopoiesis or embryonic stem cell differentiation, show gradual changes 

where adjacent cells are only slightly different from each other. But these changes quickly 
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aggregate into nonlinear transitions in marker expression along each developmental path. 

Therefore, we transform the global Euclidean distances into local affinities that quantify the 

similarities between nearby (in the Euclidean space) data points (Figure 2C).

A common approach to transforming global (e.g. Euclidean) distances to local similarities is 

to apply a kernel function to all pairs of points. A popular kernel function is the Gaussian 

kernel kε(x, y) = exp(∓∥x – y∥2/ε) that quantifies the similarity between the two points x and 

y based on their Euclidean distance. The bandwidth ε determines the radius (or spread) of 

neighborhoods captured by this kernel. Let X ⊂ ℝd be a dataset with N points sampled i.i.d. 

from a probability distribution p :ℝd [0, ∞) (with ∫ p(x)dx = 1) that is essentially 

supported on a low dimensional manifold ℳm ⊆ ℝd, where m is the dimension of ℳ and m 

≪ d. A kernel matrix that includes all pairwise measures of local affinity is constructed by 

computing the kernel function between all pairs of points in X.

Embedding local affinities directly can result in a loss of global structure as is evident in t-

SNE (Figures 1, 5, S8, and S3) or kernel PCA embeddings. For example, t-SNE only 

preserves data clusters, but not transitions between clusters, since it does not enforce any 

preservation of global structure. In contrast, a faithful structure-preserving embedding (and 

visualization) needs to go beyond local affinities (or distances), and also consider global 

relations between parts of the data. To accomplish this, PHATE is based on constructing a 

diffusion geometry to learn and represent the shape of the data [13, 57, 58]. This 

construction is based on computing local similarities between data points, and then walking 

or diffusing through the data using a Markovian random-walk diffusion process to infer 

more global relations (Figure 2D).

The initial probabilities in this random walk are calculated by normalizing the row-sums of 

the kernel matrix. In the case of the Gaussian kernel described above, we obtain the 

following:

νε(x) = ‖kε(x, ⋅ )‖1 = ∑
z ∈ X

kε(x, z)
(1)

resulting in a N × N row-stochastic matrix

[Pε](x, y) =
kε(x, y)
νε(x)

, x, y ∈ X . (2)

The matrix Pε is a Markov transition matrix where the probability of moving from x to y in a 

single time step is given by Pr[x → y] = [Pε](x,y). This matrix is also referred to as the 

diffusion operator.

The α-decaying Kernel and Adaptive Bandwidth

When applying the diffusion map framework to data, the choice of the kernel K and 

bandwidth ε plays a key role in the results. In particular, choosing the bandwidth 

corresponds to a tradeoff between encoding global and local information in the probability 

matrix Pε. If the bandwidth is small, then single-step transitions in the random walk using Pε 
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are largely confined to the nearest neighbors of each data point. In biological data, 

trajectories between major cell types may be relatively sparsely sampled. Thus, if the 

bandwidth is too small, then the neighbors of points in sparsely sampled regions may be 

excluded entirely and the trajectory structure in the probability matrix Pε will not be 

encoded. Conversely, if the bandwidth is too large, then the resulting probability matrix Pε 
loses local information as [Pε](x,·) becomes more uniform for all x ∈ X, which may result in 

an inability to resolve different trajectories. Here, we use an adaptive bandwidth that 

changes with each point to be equal to its kth nearest neighbor distance, along with an α-

decaying kernel that controls the rate of decay of the kernel.

The original heuristic proposed in [13] suggests setting ε to be the smallest distance that still 

keeps the diffusion process connected. In other words, it is chosen to be the maximal 1-

nearest neighbor distance in the dataset. While this approach is useful in some cases, it is 

greatly affected by outliers and sparse data regions. Furthermore, it relies on a single 

manifold with constant dimension as the underlying data geometry, which may not be the 

case when the data is sampled from specific trajectories rather than uniformly from a 

manifold. Indeed, the intrinsic dimensionality in such cases differs between mid-branch 

points that mostly capture one-dimensional trajectory geometry, and branching points that 

capture multiple trajectories crossing each other.

This issue can be mitigated by using a locally adaptive bandwidth that varies based on the 

local density of the data. A common method for choosing a locally adaptive bandwidth is to 

use the k-nearest neighbor (NN) distance of each point as the bandwidth. A point x that is 

within a densely sampled region will have a small k-NN distance. Thus, local information in 

these regions is still preserved. In contrast, if x is on a sparsely sampled trajectory, the k-NN 

distance will be greater and will encode the trajectory structure. We denote the k-NN 

distance of x as εk(x) and the corresponding diffusion operator as Pk.

A weakness of using locally adaptive bandwidths alongside kernels with exponential tails 

(e.g., the Gaussian kernel) is that the tails become heavier (i.e., decay more slowly) as the 

bandwidth increases. Thus for a point x in a sparsely sampled region where the k-NN 

distance is large, [Pk](x,·) may be close to a fully-supported uniform distribution due to the 

heavy tails, resulting in a high affinity with many points that are far away. This can be 

mitigated by using the following kernel

Kk, α(x, y) =
1
2

exp −
‖x − y‖2

εk(x)

α
+

1
2

exp −
‖x − y‖2

εk(y)

α
, (3)

which we call the α-decaying kernel. The exponent α controls the rate of decay of the tails 

in the kernel Kk,α. Increasing α increases the decay rate while decreasing α decreases the 

decay rate. Since α = 2 for the Gaussian kernel, choosing α > 2 will result in lighter tails in 

the kernel Kk,α compared to the Gaussian kernel. We denote the resulting diffusion operator 

as Pk,α. This is similar to common utilizations of Butterworth filters in signal processing 

applications [59]. See Figure S2B for a visualization of the effect of different values of α on 

this kernel function.
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Our use of a locally adaptive bandwidth and the kernel Kk,α requires the choice of two 

tuning parameters: k and α. k should be chosen sufficiently small to preserve local 

information, i.e., to ensure that [Pk,α](x,·) is not a fully-supported uniform distribution. 

However, k should also be chosen sufficiently large to ensure that the underlying graph 

represented by Pk,α is sufficiently connected, i.e., the probability that we can walk from one 

point to another within the same trajectory in a finite number of steps is nonzero.

The parameter α should also be chosen with k. α should be chosen sufficiently large so that 

the tails of the kernel Kk,α are not too heavy, especially in sparse regions of the data. 

However, if k is small when α is large, then the underlying graph represented by Pk,α may 

be too sparsely connected, making it difficult to learn long range connections. Thus we 

recommend that α be fixed at a large number (e.g. α ≥ 10) and then k can be chosen 

sufficiently large to ensure that points are locally connected. In practice, we find that 

choosing k to be around 5 and α to be about 10 works well for all the data sets presented in 

this work. However, the PHATE embedding is robust to the choice of these parameters as 

discussed later in the Online Methods.

In addition to progression or trajectory structures, the recommendations provided in this 

section work well for visualizing data that naturally separate into distinct clusters. In 

particular, the α-decay kernel ensures that relationships are preserved between distinct 

clusters that are relatively close to each other.

Propagating Affinities via Diffusion

Here we discuss diffusion, i.e., raising the diffusion operator to its t-th power as shown in 

Table S1 (Figure 2D). To simplify the discussion we use the notation P for the diffusion 

operator, whether defined with a fixed-bandwidth Gaussian kernel or our adaptive kernel. 

This matrix is referred to as the diffusion operator, since it defines a Markovian diffusion 

process that essentially only allows single-step transitions within local data neighborhoods 

whose sizes depend on the kernel parameters (ε or k and α). In particular, let x ∈ X and let 

δx be a Dirac at x, i.e., a row vector of length N with a one at the entry corresponding to x 

and zeros everywhere else. The t-step distribution of x is the row in Pε
t  corresponding to x:

px
t ≜ δxP t = [P t](x, ⋅ ) . (4)

These distributions capture multi-scale (where t serves as the scale) local neighborhoods of 

data points, where locality is considered via random walks that propagate over the intrinsic 

manifold geometry of the data. This provides a global and robust intrinsic data distance that 

preserving the overall structure of the data. In addition to learning the global structure, 

powering the diffusion operator has the effect of low-pass filtering the data such that the 

main pathways in it are emphasized and small noise dimensions are diminished, thus 

achieving the denoising objective of our method as well.
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Choosing the Diffusion Time Scale t with Von Neumann Entropy

The diffusion time scale t is an important parameter that affects the embedding. The 

parameter t determines the number of steps taken in a random walk. A larger t corresponds 

to more steps compared to a smaller t. Thus, t provides a tradeoff between encoding local 

and global information in the embedding. The diffusion process can also be viewed as a low-

pass filter where local noise is smoothed out based on more global structures. The parameter 

t determines the level of smoothing. If t is chosen to be too small, then the embedding may 

be too noisy. On the other hand, if t is chosen to be too large, then some of the signal may be 

smoothed away.

We formulate a new algorithm for choosing the timescale t. Our algorithm quantifies the 

information in the powered diffusion operator with various values of t. This is accomplished 

by computing the spectral or Von Neumann Entropy (VNE) [60, 61] of the powered 

diffusion operator. The amount of variability explained by each dimension is equal to its 

eigenvalue in the eigendecomposition of the related (non-Markov) affinity matrix that is 

conjugate to the Markov diffusion operator. The VNE is calculated by computing the 

Shannon entropy on the normalized eigenvalues of this matrix. Due to noise in the data, this 

value is artificially high for low values of t, and rapidly decreases as one powers the matrix. 

Thus, we choose values that are around the ”knee” of this decrease.

More formally, to choose t, we first note that its impact on the diffusion geometry can be 

determined by considering the eigenvalues of the diffusion operator, as the corresponding 

eigenvectors are not impacted by the time scale. To facilitate spectral considerations and for 

computational ease, we use a symmetric conjugate

[A](x, y) = ν(x)[P](x, y) ∕ ν(y)

of the diffusion operator P with the row-sums ν. This symmetric matrix is often called the 

diffusion affinity matrix. The VNE of this diffusion affinity is used to quantify the amount of 

variability. It can be verified that the eigenvalues of At are the same as those of Pt, and 

furthermore these eigenvalues are given by the powers {λi
t}i = 1

N − 1 of the spectrum of P. Let 

η(t) be a probability distribution defined by normalizing these (nonnegative) eigenvalues as 

[η(t)]i = λi
t ∕ ∑j = 0

N − 1λj
t. Then, the VNE H(t) of At (and equivalently of Pt) is given by the 

entropy of η(t), i.e.,

H(t) = − ∑
i = 1

N

[η(t)]i log[η(t)]i , (5)

where we use the convention of 0 log(0) ≜ 0. The VNE H(t) is dominated by the relatively 

large eigenvalues, while eigenvalues that are relatively small contribute little. Therefore, it 

provides a measure of the number of the relatively significant eigenvalues.

The VNE generally decreases as t increases. As mentioned previously, the initial decrease is 

primarily due to a denoising of the data as less significant eigenvalues (likely corresponding 

to noise) decrease rapidly to zero. The more significant eigenvalues (likely corresponding to 

Moon et al. Page 16

Nat Biotechnol. Author manuscript; available in PMC 2020 May 03.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



signal) decrease much more slowly. Thus the overall rate of decrease in H(t) is high initially 

as the data is denoised but then low for larger values of t as the signal is smoothed. As t → 
∞, eventually all but the first eigenvalue decrease to zero and so H(t) → 0.

To choose t, we plot H(t) as a function of t as in the first plot of Figure S2C. Choosing t from 

among the values where H(t) is decreasing rapidly generally results in noisy visualizations 

and embeddings (second plot in Figure S2C). Very large values of t result in a visualization 

where some of the branches or trajectories are combined together and some of the signal is 

lost (fourth plot in Figure S2C). Good PHATE visualizations can be obtained by choosing t 

from among the values where the decrease in H(t) is relatively slow, i.e. the set of values 

around the “knee” in the plot of H(t) (third plot in Figure S2C and the PHATE visualizations 

in Figure 1). This is the set of values for which much of the noise in the data has been 

smoothed away, and most of the signal is still intact. The PHATE visualization is fairly 

robust to the choice of t in this range, as discussed later in this section.

In the code, we include an automatic method for selecting t based on a knee point detection 

algorithm that finds the knee by fitting two lines to the VNE curve [62]. This algorithm 

calculates the error between the VNE plot and two lines fitted to the data. The first line has 

endpoints at the first VNE value and the suggested knee point. The second line has 

endpoints at the suggested knee point and the last VNE value. The suggested knee point with 

the minimum error is selected.

Potential Distances

To resolve instabilities in diffusion distances and embed the global structure captured by the 

diffusion geometry in low (2 or 3) dimensions, we use a novel diffusion-based informational 

distance, which we call potential distance (Figure 2E). It is calculated by computing the 

distance between log-transformed transition probabilities from the powered diffusion 

operator. The key insight in formulating the potential distance is that an informational 

distance between probability distributions is more sensitive to global relationships (between 

far-away points) and more stable at boundaries of manifolds than straight point-wise 

comparisons of probabilities (i.e., diffusion distances). This is because the diffusion distance 

is sensitive to differences between the main modes of the diffused probabilities and is largely 

insensitive to differences in the tails. In contrast, the potential distance, or more generally 

informational distances, use a submodular function (such as a log) to render distances 

sensitive to differences in both the main modes and the tails. This gives PHATE the ability to 

preserve both local and manifold-intrinsic global distances in a way that is optimized for 

visualization. The resulting metric space also quantifies differences between energy 

potentials that dominate “heat” propagation along diffusion pathways (i.e., based on the 

heat-equation diffusion model) between data points, instead of simply considering transition 

probabilities along them.

The potential distance is inspired by information theory and stochastic dynamics, both fields 

where probability distributions are compared for different purposes. First, in information 

theory literature, information divergences are used to measure discrepancies between 

probability distributions in the information space rather than the probability space, as they 

are more sensitive to differences between the tails of the distributions as described above. 
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Second, when analyzing dynamical systems of moving particles, it is not the point-wise 

difference between absolute particle counts that is used to compare states, but rather the ratio 

between these counts. Indeed, in the latter case the Boltzmann Distribution Law directly 

relates these ratios to differences in the energy of a state in the system. Therefore, similar to 

the information theory case, dynamical states are differentiated in energy terms, rather than 

probability terms. We employ the same reasoning in our case by defining our potential 

distance using localized diffusion energy potentials, rather than diffusion transition 

probabilities.

To go from the probability space to the energy (or information) space, we log transform the 

probabilities in the powered diffusion operator and consider an L2 distance between these 

localized energy potentials in the data as our intrinsic data distance, which forms an M-

divergence between the diffusion probability distributions [63, 64]. Mathematically, if 

Ux
t = − log(px

t ) for x ∈ X, then the t-step potential distance is defined as

Vt(x, y) = ‖Ux
t − Uy

t‖2, x, y ∈ X . (6)

To give a more intuitive view, consider two points x and y that are on different sides of a line 

of points W = {w1, w2,… ,wn} (See Figure 2E), suppose that there is a small set of distant 

points Z = {z1, z2,…, zn} that are on the same side of W as y but opposite side as x such that 

they are twice as far from x as from y. The representation of each point x is as its t-step 

diffusion probability to all other points. So to compute the potential distance between x and 

y we compare these probabilities. What is the right type of distance to measure the 

distinction between these two probability distributions? One solution has been the diffusion 

distance which is simply the Euclidean distance between these probability distributions. 

However, in the example mentioned above the diffusion distance would be dominated by 

larger probabilities and the probabilities to the Z points would not affect the distance from x 

to y perhaps making them seem close. But instead, we take a divergence between the 

probabilities from x and y by first log-scale transforming the probabilities and then taking 

their Euclidean distance, which makes the distance sensitive to fold-change. Thus, if a 

probability of 0.01 from x to a point zi is changed to 0.02 from y then this has the same 

effect as if the probabilities had been 0.1 and 0.2. Thus, PHATE is sensitive to small 

differences in probability distribution corresponding to differences in long-range global 

structure, which allows PHATE to preserve global manifold relationships using this potential 

distance.

We note that the potential distance is a particular case of a wider family of diffusion-based 

informational distances that view the diffusion geometry as a statistical manifold in 

information geometry. See Supplementary Note 1 for details on this family of distances.

Embedding the Potential Distances in Low Dimensions

A popular approach for embedding diffusion geometries is to use the eigendecomposition of 

the diffusion operator to build a diffusion map of the data. However, this approach tends to 

isolate progression trajectories into numerous diffusion coordinates (i.e., eigenvectors of the 

diffusion operator; see Figure S1). In fact, this specific property was used in [14] as a 
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heuristic for ordering cells along specific developmental tracks. Therefore, while diffusion 

maps preserve global structure and denoise the data, their higher intrinsic dimensionality is 

not amenable for visualization. Instead, we squeeze the variability into low dimensions using 

metric multidimensional scaling (MDS), a distance embedding method (Figure 2F).

There are multiple approaches to MDS. Classical MDS (CMDS) [7] takes a distance matrix 

as input and embeds the data into a lower-dimensional space as follows. The squared 

potential distance matrix is double centered:

B = −
1
2

JVt(2)J, (7)

where Vt(2) is the squared potential distance matrix (i.e. each entry is squared) and 

J = I − 1
N

11T  with 1 a vector of ones with length N. The CMDS coordinates are then 

obtained by an eigendecomposition of the matrix B. This is equivalent to minimizing the 

following “strain” function:

Strain(x1, …, xN) = ∑
i, j

(Bij − 〈xi, xj〉)2/∑
i, j

Bij
2 , (8)

over embedded m-dimensional coordinates xi ∈ ℝm of data points in X. We apply CMDS to 

the potential distances of the data to obtain an initial configuration of the data in low 

dimension m.

While classical MDS is computationally efficient relative to other MDS approaches, it 

assumes that the input distances directly correspond to low-dimensional Euclidean distances, 

which is overly restrictive in our setting. Metric MDS relaxes this assumption by only 

requiring the input distances to be a distance metric. Metric MDS then embeds the data into 

lower dimensions by minimizing the following “stress” function:

Stress(x1, …, xN) = ∑
i, j

V(xi, xj)
t − ‖xi − xj‖

2/∑
i, j

Vxi, xj
t 2

. (9)

over embedded m-dimensional coordinates xi ∈ ℝm of data points in X.

If the stress of the embedded points is zero, then the input data is faithfully represented in 

the MDS embedding. The stress may be nonzero due to noise or if the embedded dimension 

m is too small to represent the data without distortion. Thus, by choosing the number of 

MDS dimensions to be m = 2 (or m = 3) for visualization purposes, we may trade off 

distortion in exchange for readily visualizable coordinates. However, some distortion of the 

distances/dissimilarities is tolerable in many of our applications since precise dissimilarities 

between points on two different trajectories are not important as long as the trajectories are 

visually distinguishable. By using metric MDS, we find an embedding of the data with the 

desired dimension for visualization and the minimum amount of distortion as measured by 

the stress. When analyzing the PHATE coordinates (e.g. for clustering or branch detection), 
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we use metric MDS with m chosen to explain most of the variance in the data as determined 

by the eigenvalues of the diffusion operator (as is done for von Neumann entropy). In this 

case, minimal distortion is introduced into the analysis.

A naïve approach towards obtaining a truly low dimensional embedding of diffusion 

geometries is to directly apply metric MDS, from the diffusion map space to a two 

dimensional space. However, as seen in Figures S3 (Column 5) and S8, direct embedding of 

these distances produces distorted visualizations. Embedding the potential distances (defined 

in Def. 1) is more stable at boundary conditions near end points compared to diffusion maps, 

even in the case of simple curves that contain no branching points. Figure S2A shows a half 

circle embedding with diffusion distances versus distances between log-scaled diffusion. We 

see that points are compressed towards the boundaries of the figure in the former. 

Additionally, this figure demonstrates that in the case of a full circle (i.e., with no end points 

or boundary conditions), our potential embedding (PHATE) yields the same representation 

as diffusion maps.

PHATE achieves an embedding that satisfies all four properties delineated previously: 

PHATE preserves and emphasizes the global and local structure of the data via: 1. a 

localized affinity that is chained via diffusion to form global affinities through the intrinsic 

geometry of the data, 2. denoises the data by low-pass filtering through diffusion, 3. provides 

a distance that accounts for local and global relationships in the data and has robust 

boundary conditions for purposes of visualization, and 4. captures the data in low 

dimensions, using MDS, for visualization.

We have shown by demonstration in Figures S3 and S8 that all of the steps of PHATE, 

including the potential transform and MDS, are necessary, as diffusion maps, t-SNE on 

diffusion maps, and MDS on diffusion maps fail to provide an adequate visualization in 

several benchmark test cases with known ground truth (even when using the same 

customized α-decaying kernel we developed for PHATE). We have also shown that PHATE 

is robust to the choice of parameters.

Robustness Analysis of PHATE

Here we show that the PHATE embedding is robust to subsampling and the choice of 

parameters. We demonstrate this both qualitatively and quantitatively. For the quantitative 

demonstrations, we simulated scRNA-seq data using the Splatter package [24] as in 

Section . We first calculated the geodesic pairwise distances for the noiseless data. Then for 

each setting, we calculated the pairwise Euclidean distances in the 2-dimensional 

embedding. We then compared the geodesic distances with the embedded distances via the 

Spearman correlation coefficient to compute DEMaP. We used both the paths and groups 

options of the Splatter package. Simulation details are discussed later in Online Methods.

Table S3 shows that PHATE is robust to subsampling on the Splatter datasets. For the paths 

dataset, the average Spearman correlation is the same when 95% and 50% of the data points 

are retained. For the groups dataset, the correlation drops slightly when going from 95% 

retention to 50% retention. Additionally, the correlation coefficient is still quite high (and 
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better than all other methods) when only 5% of the data points are retained. Thus, 

quantitatively, PHATE is robust to subsampling.

We also demonstrate this visually. We ran PHATE on the iPSC mass cytometry dataset from 

[17] with varying subsample sizes N. Figure S4A shows the PHATE embedding for N = 

1000, 2500, 5000, 10000. Note that the primary branches or trajectories that are visible 

when N = 50000 (Figure S7C) are still visible for all subsamples. Thus, PHATE is robust to 

the subsampling size. Similar results can be obtained on other datasets.

We also show that the PHATE embedding is robust to the choice of t, k, and α. Figure S4B 

shows the PHATE embedding on the iPSC mass cytometry dataset from [17] with varying 

scale parameter t. This figure shows that the embeddings for 50 ≤ t ≤ 200 are nearly 

identical. Thus, PHATE is very visually robust to the scale parameter t. Similar results can 

be obtained on other datasets and with the k and α parameters.

The embedding is also quantitatively robust to the parameter choices. Figure S4C-D shows 

heatmaps of the Spearman correlation coefficient between geodesic distances of the ground 

truth data and the Euclidean distances of the PHATE visualization applied to the simulated 

Splatter datasets for different values of k, t, and α. For α ≤ 10, the correlation coefficients 

are very similar for all values of k, t, and α. This demonstrates that PHATE is robust to the 

choices of these parameters.

Scalability of PHATE

The native form of PHATE is limited in scalability due to the computationally intensive 

steps of computing potential distances between all pairs of points, computing metric MDS, 

and storing in memory the diffused operator. Thus, we describe here, and in Table S2, an 

alternative way to compute a PHATE embedding that is highly scalable and provides a good 

approximation of the native PHATE described previously. The scalable version of PHATE 

uses a slight difference in computing t-step diffusion probabilities between points. It requires 

that every other step that the diffusion takes goes through one of a small number of 

“landmarks.” Each landmark is selected to be a central point that is representative of a 

portion of the manifold, selected by spectrally clustering manifold dimensions.

First, we construct the α-decaying kernel on the entire dataset. This can be calculated 

efficiently and stored as a sparse matrix by using radius-based nearest neighbor searches and 

thresholding (i.e., setting to zero) connections between points below a specified value (e.g., 

0.0001), as we regard them numerically insignificant for the constructed diffusion process. 

The resulting affinity matrix Kk,α will be sparse as long as α is sufficiently large (e.g., α ≥ 

10) to enforce sharp decay of the captured local affinities. The full diffusion operator P is 

constructed from Kk,α by normalizing by row-sums as described previously.

However, powering the sparse diffusion operator would result in a dense matrix, causing 

memory issues. To avoid this, we instead perform diffusion between points via a series of M 

landmarks where M < N. We select the landmarks by first applying PCA to the diffusion 

operator and then using k-means clustering on the principal components to partition the data 

into M clusters. This is a variation on spectral clustering. We then calculate the probability 
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of transitioning in a single step from the i-th point in X to any point in the j-th cluster for all 

pairs of points and clusters. Mathematically, we can write this as

PNM(i, j) = ∑
ξ ∈ Cj

P(i, ξ)
(10)

where Cj is the set of points in the jth cluster. Thus, we can view each cluster as being 

represented by a landmark and the (i, j)-th entry in PNM gives the probability of transitioning 

from the ith point in X to the j-th landmark in a single step. Similarly, we construct the 

matrix PMN where the (j, i)-th entry contains the probability of transitioning from the j-th 

landmark to the i-th point in X. In this case, we cannot simply sum the transition 

probabilities P(ξ, i), ξ ∈ Cj, since we also have to consider the prior probability Q(j, ξ) of 

the ξ-th point (with ξ ∈ Cj) being the source of a transition from a cluster Cj. For this 

purpose we use the prior proposed in [65], and write

PMN(j, i) = ∑
ξ ∈ Cj

Q(j, ξ)P(ξ, i)
(11)

with Q(j, ξ) = ∑i Kk,α (ξ, i)/∑ζ∈Cj ∑i Kk,α (ζ, i).

We use the two constructed transition matrices to compute PMM = PMNPNM, which provides 

the probability of transitioning from landmark to landmark in a random walk by walking 

through the full point space. Diffusion is then performed by powering the matrix PMM. This 

can be written as

PMM
t = PMNPNMPMNPNM…PMNPNM . (12)

From this expression, we see that powering the matrix PMM is equivalent to taking a random 

walk between landmarks by walking from landmarks to points and then back to landmarks t 

times.

We then embed the landmarks into the PHATE space by calculating the potential distances 

between landmarks and applying metric MDS to the potential distances. Denote the resulting 

embedding as Ylandmarks. We then perform an out of sample extension to all points from the 

landmarks by multiplying the point to landmark transition matrix PNM by Ylandmarks to get

Y points = PNMY landmarks . (13)

Since M is chosen to be vastly less than N, the memory requirements and computational 

demands of the powering the diffusion operator and embedding the potential distances are 

much lower.

The described steps are summarized in Table S2. In Figure S6A-E we show that this 

constrained diffusion preserves distances between datapoints in the final PHATE embedding, 

with the scalable version giving near-identical results to the exact computation of PHATE. 
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Further, in Figure S6B we show that the embedding achieved by this approach is robust to 

the number of landmarks chosen.

We note that if the only computational bottleneck were in computing MDS, scalable 

versions of MDS could be used [8, 66, 67]. However, since storing the entries of the 

powered diffusion operator in memory is also an issue, we employ the use of landmarks 

earlier in the process. It has also been shown that “compressing” the process of diffusion 

through landmarks in the fashion described here performs better than simply applying 

Nystrom extension (which includes landmark MDS [66]) to diffusion maps [68].

The fast version of PHATE was used in Figures 5, S8, S3, S2D, S6A-E, S13, and S12. All 

other plots were generated using the exact version of PHATE.

To demonstrate the scalability of PHATE for data exploration on large datasets, we applied 

PHATE to the 1.3 million mouse brain cell dataset from 10x [69]. Figure S6C shows a 

comparison of PHATE to t-SNE, colored by 10 of the 60 clusters provided by 10x. We see 

that PHATE retains cluster coherence while t-SNE shatters some of the cluster structure.

Branch Identification

Here we describe the methods we developed for identifying branches in a PHATE 

visualization and selecting representative branch- and endpoints.

We use the estimated local intrinsic dimensionality to identify branch points. We can regard 

intrinsic dimensionality in terms of degrees of freedom in the progression modeled by 

PHATE. If there is only one fate possible for a cell (i.e. a cell lies on a branch as in Figure 

3Aii) then there are only two directions of transition between data points—forward or 

backward—and the local intrinsic dimension is low. If on the other hand, there are multiple 

fates possible, then there are at least three directions of transition possible—a single 

direction backwards and at least two forward. This cannot be captured by a one dimensional 

curve and will require a higher dimensional structure such as a plane, as shown in Figure 

3Aii. Thus, we can use the concept of local intrinsic dimensionality for identifying branch 

points.

We used the local intrinsic dimension estimation method derived in [70, 71] to provide 

suggested branch points. This method uses the relationship between the radius and volume 

of a d-dimensional ball. The volume increases exponentially with the dimensionality of the 

data. So as the radius increases by δ, the volume increases by δd where d is the 

dimensionality of the data. Thus the intrinsic dimension can be estimated via the growth rate 

of a k-nn ball with radius equal to the k-nn distance of a point. The procedure is as follows. 

Let Zn = (z1,…, zn} be a set of independent and identically distributed random vectors with 

values in a compact subset of ℝd. Let Nk, j be the k nearest neighbors of zj; i.e. 

Nk, j = {z ∈ Zn ∖ {zj} :‖z − zj‖ ≤ ϵk(zj)}. The k-nn graph is formed by assigning edges 

between a point in Zn and its k-nearest neighbors. The power-weighted total edge length of 

the k-nn graph is related to the intrinsic dimension of the data and is defined as
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Lγ, k(Zn) = ∑
i = 1

n

∑
z ∈ Nk, i

‖z − zi‖
γ, (14)

where γ > 0 is a power weighting constant. Let m be the global intrinsic dimension of all the 

data points in Zn. It can be shown that for large n,

Lγ, k(Zn) = nβ(m)c + ϵn, (15)

where β(m) = (m–γ)/m, ϵn is an error term that decreases to 0 as n → ∞, and c is a constant 

with respect to β(m) [70]. A global intrinsic dimension estimator m can be defined based on 

this relationship using non-linear least squares regression over different values of n [70, 71].

A local estimator of intrinsic dimension m(i) at a point zi can be defined by running the 

above procedure in a smaller neighborhood about zi. This approach is demonstrated in 

Figure 3A, where a k-nn graph is grown locally at each point in the data. However, this 

estimator can have high variance within a neighborhood. To reduce this variance, majority 

voting within a neighborhood of zi can be performed:

m(i) = arg max
ℓ

∑
zj ∈ Nk, i

1(m(j) = ℓ),
(16)

where 1( ⋅ ) is the indicator function [71].

We note that other local intrinsic dimension estimation methods could be used such as the 

maximum likelihood estimator in [72].

We also identify endpoints in the PHATE embedding. These points can correspond to the 

beginning or end-states of differentiation processes. For example, Figure S7A shows the 

PHATE visualization of the iPSC CyTOF dataset from [17] with highlighted endpoints, or 

end-states, of the reprogrammed and refractory branches. While many major endpoints can 

be identified by inspecting the PHATE visualization, we provide a method for identifying 

other endpoints or end-states that may be present in the higher dimensional PHATE 

embedding. We identify these states using data point centrality and distinctness as described 

below.

First, we compute the centrality of a data point by quantifying the impact of its removal on 

the connectivity of the graph representation of the data (as defined using the local affinity 

matrix Kk,α). Removing a point that is on a one dimensional progression pathway, either 

branching point or not, breaks the graph into multiple parts and reduces the overall 

connectivity. However, removing an endpoint does not result in any breaks in the graph. 

Therefore we expect endpoints to have low centrality, as estimated using the eigenvector 

centrality measure of Kk,α.

Second, we quantify the distinctness of a cellular state relative to the general data. We expect 

the beginning or end-states of differentiation processes to have the most distinctive cellular 

profiles. As shown in [56] we quantify this distinctness by considering the minima and the 
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maxima of diffusion eigenvectors (see Figure 3Ai). Thus we identify endpoints in the 

embedding as those that are most distinct and least central.

After identifying branch points and endpoints, the remaining points can be assigned to 

branches between two branch points or between a branch point and endpoint. Due to the 

smoothly-varying nature of centrality and local intrinsic dimension, the previously described 

procedures identify regions of points as branch points or endpoints rather than individual 

points. However, it can be useful to reduce these regions to representative points for analysis 

such as branch detection and cell ordering. To do this, we reduce these regions to 

representative points using a “shake and bake” procedure similar to that in [73]. This 

approach groups collections of branch points or endpoints together into representative points 

based on their proximity.

Let Vn = {v1, …, vn} be the set of branch points and endpoints in the high-dimensional 

PHATE coordinates that we wish to reduce. We create a Voronoi partitioning of these points 

as follows. We first permute the order of Vn, which we denote as Vn′ = {v1′, …, vn′}. We then 

take the first point v1′ and find all the points in Vn′  that are within a distance of h, where h is 

a scale parameter provided by the user. These points (including v1′) are assigned to the first 

component of the partition and removed from the set Vn′ . This process is then repeated until 

all points in Vn are assigned to the partition. To ensure that each point is assigned to the 

nearest component of the partition (as measured by proximity to the centroid), we next 

calculate the distance of each point to all centroids of the partition, and reassign the point to 

the component with the nearest centroid. This reassignment process is repeated until a stable 

partition is achieved. This completes the process of constructing the Voronoi partition.

The Voronoi partition constructed from this process may be sensitive to the ordering of the 

points in Vn′ . To reduce this sensitivity, we repeat this process multiple times (e.g., 40-100) 

to create multiple Voronoi partitions. We then construct a distance between points by 

estimating the probability that two points are not in the same component from this 

partitioning process. This provides a notion of distance that is robust to noise, random 

permutations, and the scale parameter h. We then partition the data again using the above 

procedure except we use these probability-based distances. The representative points are 

then selected from the resulting centroids of this final partition.

A representative point is labeled an endpoint if the corresponding collection of points 

contains one or more endpoints as identified using centrality and distinctness. Otherwise, the 

representative point is labeled a branch point.

After representative points have been selected, the remaining points can be assigned to 

corresponding branches. We use an approach based on the branch point detection method in 

[14] that compares the correlation and anticorrelation of neighborhood distances. However, 

we use higher dimensional PHATE coordinates instead of the diffusion maps coordinates. 

Figure 3Aiii gives a visual demonstration of this approach. Here we consider two reference 

cells X and Y. We wish to determine if cells Q1 and Q2 belong to the branch between X and 

Y or not. Consider Q1 first which does belong to this branch. If we move from Q1 towards 

X, we also move farther away from Y. Thus the distances to X and Y of a neighborhood of 
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points around Q1 (which will be located on the branch) are negatively correlated with each 

other. Now consider Q2 which does not belong to the branch between X and Y. In this case, 

if we move from Q2 towards Y, we also move closer to X. Thus the distances to X and Y of 

a neighborhood of points around Q2 are positively correlated with each other. In practice, 

these distance-based correlations are computed for each possible branch and the point is 

assigned to the branch with the largest anticorrelation (i.e. the most negative correlation 

coefficient).

EMD Score Analysis

The EMD is measure of dissimilarity between two probability distributions that is 

particularly popular in computer vision [74]. The EMD was chosen to perform differential 

expression analysis in the EB scRNA-seq data due to its stability in estimation compared to 

other divergence measures. Intuitively, if each distribution is viewed as a pile of dirt, the 

EMD can be thought of as the minimum cost of converting one pile of dirt into the other. If 

the distributions are identical, then the cost is zero. When comparing univariate distributions 

(as we do as we only consider a single gene at a time), the EMD simplifies to the L1 distance 

between the cumulative distribution functions [55]. That is, if P and Q are the cumulative 

distributions of densities p and q, respectively, then the EMD between p and q is ∫ ∣P(x) – 

Q(x)∣dx. While the EMD is nonnegative, we assign a sign to the EMD score based on the 

difference between the medians of the distributions.

Biological Methods

The processes for generating the EB data and for preprocessing the biological data are 

described here.

Generation of Human Embryoid Body Data

Low passage H1 hESCs were maintained on Matrigel-coated dishes in DMEM/F12-N2B27 

media supplemented with FGF2. For EB formation, cells were treated with Dispase, 

dissociated into small clumps and plated in non-adherent plates in media supplemented with 

20% FBS, which was prescreened for EB differentiation. Samples were collected during 3-

day intervals during a 27 day-long differentiation timecourse. An undifferentiated hESC 

sample was also included (Figure S14A). Induction of key germ layer markers in these EB 

cultures was validated by qPCR (data not shown). For single cell analyses, EB cultures were 

dissociated, FACS sorted to remove doublets and dead cells and processed on a 10x 

genomics instrument to generate cDNA libraries, which were then sequenced. Small scale 

sequencing determined that we have successfully collected data on 31,161 cells distributed 

throughout the timecourse. After preprocessing the data as described below, we are left with 

16,825 cell measurements for data analysis. See also the Life Sciences Reporting Summary 

for further details.

Data Preprocessing

Here we discuss methods we used to preprocess the various datasets.

Data Subsampling: The full PHATE implementation scales well for sample sizes up to 

approximately N = 50000. For N much larger than 50000, computational complexity can 
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become an issue due to the multiple matrix operations required. All of the scRNAseq 

datasets considered in this paper have N < 50000. Thus, we used the full data and did not 

subsample these datasets. However, the mass cytometry datasets have much larger sample 

sizes. To aid in branch analysis, we randomly subsampled these datasets for analysis in 

Section using uniform subsampling. For the comparison figures (Figures 5, S3, and S8), 

scalable PHATE was used and subsampling was not performed except as indicated in the 

figures. The PHATE embedding is robust to the number of samples chosen, which we 

demonstrated in Section .

Mass Cytometry Data Preprocessing: We process the mass cytometry datasets according to 

[75].

Single-Cell RNA-Sequencing Data Preprocessing: This data was processed from raw reads 

to molecule counts using the Cell Ranger pipeline [76]. Additionally, to minimize the effects 

of experimental artifacts on our analysis, we preprocess the scRNAseq data. We first filter 

out dead cells by removing cells that have high expression levels in mitochondrial DNA. In 

the case of the EB data which had a wide variation in library size, we then remove cells that 

are either below the 20th percentile or above the 80th percentile in library size. scRNA-seq 

data have large cell-to-cell variations in the number of observed molecules in each cell or 

library size. Some cells are highly sampled with many transcripts, while other cells are 

sampled with fewer. This variation is often caused by technical variations due to enzymatic 

steps including lysis efficiency, mRNA capture efficiency, and the efficiency of multiple 

amplification rounds [77]. Removing cells with extreme library size values helps to correct 

for these technical variations. We then drop genes that are only expressed in a few cells and 

then perform library size normalization. Normalization is accomplished by dividing the 

expression level of each gene in a cell by the library size of the corresponding cell.

After normalizing by the library size, we take the square root transform of the data and then 

perform PCA to improve the robustness and reliability of the constructed affinity matrix 

Kk,α. We choose the number of principal components to retain approximately 70% of the 

variance in the data which results in 20-50 principal components.

Gut Microbiome Data Preprocessing: We use the cleaned L6 American Gut data and remove 

samples that are near duplicates of other samples. We then preprocess the data using a 

similar approach for scRNA-seq data. We first perform “library size” normalization to 

account for technical variations in different samples. We then log transform the data and 

then use PCA to reduce the data to 30 dimensions.

Applying PHATE to this data reveals several outlier samples that are very far from the rest 

of the data. We remove these samples and then reapply PHATE to the log-transformed data 

to obtain the results that are shown in Figure 1D.

ChIP-seq Processing for Hi-C Visualization: We used narrow peak bed files and took the 

average peak intensity for each bin at a 10 kb resolution. For visualization, we smoothed the 

average peak intensity values based on location using a 25 bin moving average.
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DEMaP

To quantitatively compare each dimensionality reduction tool, we wish to calculate the 

degree to which each method preserves the underlying structure of the reference dataset and 

removes noise. Since single-cell RNA-sequencing and other biological types of data are 

highly noisy, visual renderings of the data that can offer denoised embeddings that reveal the 

underlying structure of the data are desirable. Therefore, the goal of our accuracy metric is 

to quantify the correspondence between distances in the low-dimensional embedding and 

manifold distances in the ground truth reference.

To define a quantitative notion of manifold distance we use geodesic distances. Geodesic 

distances are shortest path distances on a nearest-neighbor graph of the data weighted by the 

Euclidean distances between connected points [4]. In cases where points are sampled 

noiselessly from a manifold, such as in our ground truth reference, geodesic distances 

converge exactly to distances along the manifold of the data [4, 78]. Thus we reason that if 

geodesic distances between points on the noiseless manifold are preserved by an embedding 

computed on the noisy data then the data is sufficiently denoised and the manifold structure 

is also preserved.

We take this approach to formulate our ground-truth manifold distance as a quantification of 

the degree to which each dimensionality reduction method preserves the pairwise geodesic 

distances of the noiseless data after low-dimensional embedding of the corresponding noisy 

data. Since the low dimensional embedding is often a result of a non-linear dimensionality 

reduction, curves and major paths in the data are “straightened” such that Euclidean 

distances in the embedding space correspond to manifold distance in the high dimensional 

space [7]. Thus we quantify the preservation of manifold distances as the correlation 

between geodesic distance in the noiseless reference dataset and Euclidean distances in the 

embedding space as a measure of structure preservation which we call Denoised Embedding 

Manifold Preservation (DEMaP). An overview of DEMaP is presented in Figure 4A.

Construction of the Artificial Tree Test Case

The artificial tree data shown in Figure 1B is constructed as follows. The first branch 

consists of 100 linearly spaced points that progress in the first four dimensions. All other 

dimensions are set to zero. The 100 points in the second branch are constant in the first four 

dimensions with a constant value equal to the endpoint of the first branch. The next four 

dimensions then progress linearly in this branch while all other dimensions are set to zero. 

The third branch is constructed similarly except the progression occurs in dimensions 9-12 

instead of dimensions 5-8. All remaining branches are constructed similarly with some 

variation in the length of the branches. We then add 40 points at each endpoint and branch 

point and add zero mean Gaussian noise with a standard deviation of 7. This construction 

models a system where progression along a branch corresponds to an increase in gene 

expression in several genes. Prior to adding noise, we also constructed a small gap between 

the first branch point and the orange branch that splits into a blue and purple branch (see the 

top set of branches in the left part of Figure 1B). This simulates gaps that are often present in 

measured biological data. We also added additional noise dimensions, bringing the total 

dimensionality of the data to 60.
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Splatter Simulation Details

Splatter is a scRNA-seq simulation package that uses a parametric model to generate data 

with various structures, such as branches or clusters [24]. We use Splatter to simulate 

multiple ground truth datasets for multiple experiments. To select parameters for the 

simulation, we fit the Splatter simulation to the EB data, and then modified the resulting 

dataset from both the Splatter ”paths” and the Splatter “groups” simulations as described in 

Section . Note that we do not make use of Splatter’s built-in dropout function, since it uses a 

zero-inflated model; multiple studies have shown that an undersampling (binomial) model is 

more appropriate [79-83]. Each simulation is performed with 3000 simulated cells. The 

mean correlation coefficient and standard deviations are calculated from 20 trials.

To generate a diverse set of ground truth references, we simulated 50 datasets containing 

clusters and 50 datasets containing branches. In each of these simulated datasets, the number 

and size of the clusters of branches as well as the global position of the clusters or branches 

with respect to each other is random. Furthermore, the local relationships between individual 

cells on these structures is random. Finally, the changes in gene expression within clusters or 

along branches is random. The output of this simulation is the ground truth reference.

Next, we add biological and technical noise to the reference data. First, to simulate 

stochastic gene expression we use Splatter’s Biological Coefficient of Variation (BCV) 

parameter, which controls the level of gene expression in each cell following an inverse 

gamma distribution. Second, to simulate the inefficient capture of mRNA in single cells, we 

undersample from the true counts using the default BCV. Third, to demonstrate robustness to 

varying of total genes measured, we randomly remove genes from the data matrix. Finally, 

to demonstrate robustness to the number of cells captured, we randomly remove cells from 

each dataset. We vary each of these parameters, including by default some degree of 

biological variation and mRNA undersampling to each simulation.

The default parameters used in the simulation are the following:

• batchCells=3000 • out.prob=0.016

• nGenes=17580 • out.facLoc=5.4

• mean.shape=6.6 • out.facScale=0.90

• mean.rate=0.45 • bcv.common=0.18

• lib.loc=9.1 • bcv.df=21.6

• lib.scale=0.33 • de.prob=0.2

We also set dropout.type="none", with a post-hoc binomial dropout of 50%. For the groups 

simulation we drew the number of groups n from a Poisson distribution with rate λ = 10, 

and then drew the group.prob parameter from a Dirichlet distribution with n categories and a 

uniform concentration α1 = ⋯ = αn = 1. For the paths simulation, we set group.prob as 

above, and additionally set the ith entry in the parameter path.from as a random integer 

between 0 and i – 1, drew the parameter path.nonlinearProb from a uniform distribution on 

the interval (0, 1), and drew the parameter path.skew from a beta distribution with shape α = 

10, β = 10. Note that here the library size was doubled from the fit value, since the EB data 
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itself suffers from dropout. To reduce the number of genes for the n_genes simulation, we 

randomly removed genes post-hoc in order to avoid changing the state of the random 

number generator in building the simulation.

For the ground truth simulations, we set bcv.common to 0, did not perform binomial 

dropout, and did not remove genes or cells. For the BCV simulation, we performed 50% 

post-hoc binomial dropout, did not remove genes or cells, and set bcv.common to 0, 0.25, 

and 0.5. For the dropout simulation, we set bcv.common to 0.18, did not remove genes or 

cells, and performed 0%, 50%, and 95% post-hoc binomial dropout. For the subsample 

simulation, we set bcv.common to 0.18, performed 50% post-hoc binomial dropout, did not 

remove genes, and subsampled rows of the matrix to retain 95%, 50%, and 5% of the total 

cells. For the n_genes simulation, we set bcv.common to 0.18, performed 50% post-hoc 

binomial dropout, did not remove cells, and subsampled columns of the matrix to retain 

17000, 10000, and 2000 genes.

PHATE Experimental Details

For all of the quantitative comparisons, we have used the default parameter settings for the 

PHATE plots. For the majority of the qualitative comparisons in Figures 5, S8, and S3, we 

also used the default parameter settings for all methods. Exceptions to this are the artificial 

tree (Figure S3A), the intersecting circles (Figure S3D), and the MNIST dataset (Figure 

S3I). In these cases, the PHATE parameters have been tuned to give a clearer separation of 

the branches. However, in general, the default PHATE settings give good results on most 

datasets, especially those that are complex, high-dimensional, and noisy as demonstrated 

empirically in Section . The default settings are also used in Figures S2D, S6A-E, S13, and 

S12. For all other PHATE plots, the parameters were tuned slightly to better highlight the 

structure of the data.

Data Availability

The embryoid body scRNA-seq and bulk RNA-seq datasets generated and analyzed during 

the current study are available in the Mendeley Data repository at:

http://dx.doi.org/10.17632/v6n743h5ng.1 Figure S14A contains images of the raw single 

cells while Figure S14F contains scatter plots showing the gating procedure for FACS 

sorting cell populations for the bulk RNA-seq data.

Code Availability

Python, R, and Matlab implementations of PHATE are available on GitHub, for academic 

use: https://github.com/KrishnaswamyLab/PHATE

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Overview of PHATE and its ability to reveal structure in data. (A) Conceptual figure 

demonstrating the progression of stem cells into different cell types and the corresponding 

high dimensional single-cell measurements rendered as a visualization by PHATE. (B) 

(Left) A 2D drawing of an artificial tree with color-coded branches. Data is uniformly 

sampled from each branch in 60 dimensions with Gaussian noise added (see Methods). 

(Right) Comparison of PCA, t-SNE, and the PHATE visualizations for the high-dimensional 

artificial tree data. PHATE is best at revealing global and branching structure in the data. In 

particular, PCA cannot reveal fine-grained local features such as branches while t-SNE 
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breaks the structure apart and shuffles the broken pieces within the visualization. See Figure 

S3 for more comparisons on artificial data. (C) Comparison of PCA, t-SNE, and the PHATE 

visualizations for new embryoid body data showing similar trends as in (B). (D) PHATE 

applied to various datatypes. Left: PHATE on human microbiome data shows clear 

distinctions between skin, oral and fecal samples, as well as different enterotypes within the 

fecal samples. Middle: PHATE on Hi-C chromatin conformation data shows the global 

structure of chromatin. The embedding is colored by the different chromosomes. Right: 

PHATE on induced pluripotent stem cell (iPSC) CyTOF data. The embedding is colored by 

time after induction. See Figures 5, S8, S10, and S11 for more applications to real data.
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Figure 2. 

Steps of the PHATE algorithm. (A) Data. (B) Euclidean distances. Data points are colored 

by their Euclidean distance to the highlighted point. (C) Markovnormalized affinity matrix. 

Distances are transformed to local affinities via a kernel function and then normalized to a 

probability distribution. Data points are colored by the probability of transitioning from the 

highlighted point in a single step random walk. (D) Diffusion probabilities. The normalized 

affinities are diffused to denoise the data and learn long-range relationships between points. 

Data points are colored by the probability of transitioning from the highlighted point in a t 

step random walk. (E) Informational distance. An informational distance (e.g. the potential 

distance) that measures the dissimilarity between the diffused probabilities is computed. The 

informational distance is better suited for computing differences between probabilities than 

the Euclidean distance. See the text for a discussion. (F) The final PHATE embedding. The 

informational distances are embedded into low dimensions using MDS. Note that distances 

or affinities can be directly input to the appropriate step in cases of connectivity data. 

Therefore, the Euclidean distance or our constructed affinities can be replaced with distances 

or affinities that best describe the data. For example, in Figure S11D we replace our affinity 

matrix with the Facebook connectivity matrix.
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Figure 3. 

Extracting branches and branchpoints from PHATE. (A) Methods for identifying suggested 

endpoints, branch points, and branches. (i) PHATE computes a specialized diffusion 

operator as an intermediate step (Figure 2D). We use this diffusion operator to find 

endpoints. Specifically we use the the extrema of the corresponding diffusion components 

(eigenvectors of the diffusion operator) to identify endpoints [56]. (ii) Local intrinsic 

dimensionality is used to find branchpoints in a PHATE visual. As there are more degrees of 

freedom at branch points, the local intrinsic dimension is higher than through the rest of a 

branch. (iii) Cells in the PHATE embedding can be assigned to branches by considering the 

correlation between distances of neighbors to reference cells (e.g. branch points or 

endpoints). (B) Detected branches in the (i) artificial tree data, (ii) bone marrow scRNA-seq 

data from [16], and (iii) iPSC CyTOF data from [17].
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Figure 4. 

PHATE most accurately represents manifold distances in a 2D embedding. (A) Schematic 

description of performance comparison procedure. For each method and each type of 

corruption, Euclidean distances in the 2D embedding are compared to geodesic distances in 

an equivalent noiseless simulation by Spearman correlation. (B) Performance of 12 different 

methods across varying levels of corruption by dropout, decreased signal-to-noise ratio 

(BCV), randomly subsampled cells (subsample) and randomly subsampled genes (n_genes). 

Mean correlation of 20 runs for each configuration is shown. For further details see Table 

S3.
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Figure 5. 

Comparison of PHATE to other visualization methods on biological datasets. Columns 

represent different visualization methods, rows different datasets.
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Figure 6. 

PHATE analysis of embryoid body scRNA-seq data with n = 16, 285 cells. (A) i) The 

PHATE visualization colored by clusters. Clustering is done on a ten dimensional PHATE 

embedding. The number of cells in each cluster is given in Table S5. ii) The PHATE 

visualization colored by estimated local intrinsic dimensionality with selected branch points 

highlighted. iii) Branches and sub-branches chosen from contiguous clusters for analysis. 

(B) Lineage tree of the EB system determined from the PHATE analysis showing embryonic 

stem cells (ESC), the primitive streak (PS), mesoderm (ME), endoderm (EN), 
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neuroectoderm (NE), neural crest (NC), neural progenitors (NP), and others. Red font 

indicates novel cell precursors. See supplemental videos S1, S2, and S3 for 3D PHATE 

visualizations of each stage in the tree. (C) PHATE embedding overlaid with each of the 

populations in the lineage tree. Other abbreviations include lateral plate ME (LP ME), 

hemangioblast (H), cardiac (C), epicardial precursors (EP), smooth muscle precursors 

(SMP), cardiac precursors (CP), and neuronal subtypes (NS). (D) Heatmap showing the 

EMD score between the cluster distribution and the background distribution for each gene. 

Relevant genes for identifying the main lineages were manually identified. Genes are 

organized according to their maximum EMD score. The number of cells in each cluster is 

given in Table S5. (E) The EMD scores of the top scoring surface markers in the targeted 

sub-branches (sub-branches iii and vii). (F) Scatter plots of the bulk transcription factor 

expression vs. the mean single-cell transcription factor expression in sub-branches iii (left, n 

= 2,537 cells) and vii (right, n = 1,314 cells). The Spearman correlation coefficients are 

calculated for n = 1,213 transcription factors.
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Table 1:

General steps in the PHATE algorithm.

Input: Data matrix, algorithm parameters (see Online Methods)
Output: The PHATE visualization

1: Compute the pairwise distances from the data matrix.

2: Transform the distances to affinities to encode local information.

3: Learn global relationships via the diffusion process.

4: Encode the learned relationships using the potential distance.

5: Embed the potential distance information into low dimensions for visualization.
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