
Visualizing Tags over Time

Micah Dubinko Ravi Kumar Joseph Magnani
Jasmine Novak Prabhakar Raghavan Andrew Tomkins

Yahoo! Research
701 First Avenue

Sunnyvale, CA 94089.
{micah,ravikumar,magnani,jnovak,pragh,atomkins}@yahoo-inc.com

ABSTRACT
We consider the problem of visualizing the evolution of tags
within the Flickr (flickr.com) online image sharing com-
munity. Any user of the Flickr service may append a tag
to any photo in the system. Over the past year, users have
on average added over a million tags each week. Under-
standing the evolution of these tags over time is therefore
a challenging task. We present a new approach based on a
characterization of the most interesting tags associated with
a sliding interval of time. An animation provided via Flash
in a web browser allows the user to observe and interact
with the interesting tags as they evolve over time.

New algorithms and data structures are required to sup-
port the efficient generation of this visualization. We com-
bine a novel solution to an interval covering problem with
extensions to previous work on score aggregation in order
to create an efficient backend system capable of producing
visualizations at arbitrary scales on this large dataset in real
time.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Measurements

Keywords
Flickr, Tags, Temporal evolution, Visualization, Interval cov-
ering, Social media

1. INTRODUCTION
There is enormous and growing interest in the consump-

tion of up-to-the-moment streams of newly-published con-
tent of various forms: news articles, posts on blogs or bul-
letin boards, and multimedia data such as images, songs,
or movie clips. Users often consume such data on an as-
generated basis, using mechanisms like atom and RSS to be
notified when interesting content becomes available.

Social media applications like flickr.com, del.icio.us,
rawsugar.com, technorati.com, stumbleupon.com, myweb.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

yahoo.com, and simpy.com, provide an opportunity for com-
munities of users to build structure on top of base content
using tags and annotations [14, 4]. In Flickr for example,
users may upload and share photos, and may place tags
on their own or others’ photos. It is possible then to browse
through users, photos, tags, or more complex structures such
as groups, themes, and clusters.

By watching the behavior of users in these social environ-
ments over time, we can explore the evolution of community
focus. In this paper we study a browser-based application
to visualize the evolution of “interesting”1 tags in Flickr. In
fact, our techniques apply broadly to materializing and vi-
sualizing sequences of “interesting” data points along a time
series.

A satisfactory solution to this problem requires some means
of addressing the problem of timescale: a time series may
look very different at the scale of a single day than at the
scale of a week, a month, or a year. Information at the daily
level may be interesting and quirky, while information at the
week or month level may show broader and more persistent
patterns and shifts. Either may be of interest, depending on
the user’s intent. Our techniques will apply at any timescale,
but coping with the complexity of this requirement without
compromising efficiency requires us to develop some novel
backend machinery.

These new temporal streams of information are generating
data at a furious pace. It is certainly not possible to show
all the information to the user, so the data must “cooked”
in some way into a succinct summary tailored at the par-
ticular information needs of the user. In some cases, the
user may seek data points that are particularly anomalous,
while in other cases it may be data points that are highly
persistent or that manifest a particular pattern. We focus
on one particular notion of “interesting” data: the tags dur-
ing a particular period of time that are most representative
for that time period. That is, the tags that show a sig-
nificantly increased likelihood of occurring inside the time
period, compared to outside. We develop a novel visualiza-
tion and a series of algorithms that allow the visualization
to be produced efficiently over time.

The visualization itself has certain requirements: it must
provide a view of temporal evolution, with a large amount of
surface data easily visible at each timestep. It must allow the
user to interact with the presentation in order to drill down
into any particular result. It must remain “situated,” in the

1Our notion of “interesting tags” is not to be confused with
the “popular tags” or “Most interesting photos for a tag”
that are used on the Flickr website.

sense that the user must always be aware of the current point
of time being presented, and it must provide random access
into the time stream so that the user can reposition the
current time as necessary. We present a family of evolving
visualizations implemented in Actionscript/Flash MX that
meet these requirements.

Our visualization makes use of two screen regions. First, a
narrow timeline across the top of the page shows an interval
representing the current time window. This interval slides
forward as the animation progresses, and may be shifted
by the user to provide random access into the overall time
sequence. The remainder of the page shows interesting tags
during the current time period. These tags enter and depart
the page based on one of two metaphors: a ‘river’ metaphor,
in which tags flow in from the right and exit to the left and
a ‘waterfall’ metaphor, in which tag slots remain fixed but
particular tags flow through the slots over time.

In order to drive the visualization, we develop backend
algorithms to produce the necessary data. To generate the
interesting tags for a particular time period, the scale of
the data renders infeasible any scheme that must examine
all the data before providing an answer. Thus, any real-
time solution must provide a data structure that supports
rapid generation of the relevant information. We consider
techniques from database indexing, text indexing, and range
indexing to solve this problem. We are able to draw on
specific techniques from score aggregation in the database
community, and to use segmentation approaches from range
indexing, but we require some modifications and some new
algorithmic solutions to provide the complete system.

There are two novel contributions in the algorithm. The
first is a solution to an interval covering problem that al-
lows any timescale to be expressed efficiently as a combina-
tion of a small number of pre-defined timescales that have
been pre-computed and saved in the “index” structure. The
second contribution is an extension of work on score aggre-
gation allowing data from the small number of pre-computed
timescales to be efficiently merged to produce the optimal
solution without needing to consume all the available data.
Both contributions are described in Section 4.

The resulting visualization is available at http://research.
yahoo.com/taglines.

2. RELATED WORK

2.1 Visualization
Schneiderman’s Treemaps [18] have been applied to evolv-

ing time-series data, although their initial focus is the visu-
alization of hierarchies. For example, SmartMoney’s map of
the market web-based visualization by Martin Wattenberg,
visible at http://www.smartmoney.com/marketmap, shows
multiple categories of time series data using a two-dimensional
recursive partitioning of data points into boxes, and convey-
ing volume and change in data using size and color. This
visualization focuses on a detailed breakdown of the data
at each point in time, while our visualization provides a
high-level summary at each timestep with a focus on evolu-
tion over time. A visualization of the Shape of Song, also
by Wattenberg (http://turbulence.org/works/song), cre-
ates a static representation of repetition throughout a time
series; different in philosophy, but similar in goal, to our
approach.

Google Zeitgeist provides a measure of the most salient
and most rapidly-growing queries on the web at the current
time. The measures they apply are similar in spirit to our
own interestingness measure, but they do not capture the
evolution we do. The ThemeRiver system [7] presents a visu-
alization of text collection (eg., news) that evolves over time
using a ‘river’ metaphor; however, their river metaphor does
not present any visual images corresponding to the text.

Moodstats, visible at http://www.moodstats.com, shows
a static visualization of the evolution of mood over time,
allowing detailed views into several dimensions of mood of
an individual, and comparison to the snapshots of others.
Again, the focus is on providing a posthoc non-evolving view
of an evolving dataset.

LifeLines [13] shows multiple timelines relating to per-
sonal history, and provides a series of manipulations that the
user may employ to interact with the timelines. Similarly,
Lin et al. introduced VizTree [12], a visualization based on
augmenting suffix trees that allows mining, anomaly detec-
tion, and some forms of queries over massive time-series data
streams. The visualization focuses on characterizing the fre-
quency of transitions of certain types in the signal. The
focus of the scheme is very broad, and provides a domain-
independent view of the data. Our approaches on the front-
end, on the other hand, are specific to the domain so as to
allow the user to make use of the rich multimedia content
associated with each object (tag).

2.2 Indexing
As described above, the scale of our data requires that

computing the interesting tags for a particular time interval
be sub-linear in the total number of tags in that interval.
Thus, some indexing methodology is required. We consid-
ered approaches from database indexing [10], but found that
a straightforward application might provide efficient access
to the tags within an interval, but would then require scan-
ning all such tags. However, approaches used in the Garlic
project [16], particularly the work on optimal score aggrega-
tion in Fagin, Lotem, and Naor [3], address specifically this
issue and are incorporated into our solution. This work is
described later in more detail.

Our underlying index structure is simple, and owes more
to techniques from spatial indexing — see, for example,
Guttman’s R-Trees [5]. The same technique may also be
viewed as an inverted index [20] over overlapping documents,
but the approach we take is quite different from the tradi-
tional text search approach. There has been considerable
work on indexing objects that change their position and/or
extent over time. The focus in these has been to optimize
queries about future positions of objects and those that opti-
mize historical queries; see [17, 6] and the references therein.

2.3 Temporal Data Analysis
Analysis of temporal data, especially in the context of the

web, has been an active topic of research for the last few
years. The area of topic detection and tracking is concerned
with discovering topically related material in streams of data
[21, 1]. Kleinberg [8] models the generation of bursts by a
two-state automaton and uses it to detect bursts in a se-
quence of events; ideas from these was also used to track
bursty events in blogs [11]. Vlachos et al. [19] study queries
that arrive over time and identify bursts and semantically
similar queries; see also [2]. For an extensive of account of re-

cent work on temporal data analysis, the readers are referred
to a survey by Kleinberg [9] and the references therein.

3. VISUALIZATION
Our visualization is made up of two interchangeable meta-

phors — the ‘river’ and the ‘waterfall’. By default, the vi-
sualization steps forward, one day at a time. The common
features of both visualization metaphors are:

• A bar is displayed on top of the screen indicating the
current interval of time being summarized in the re-
mainder of the screen. The pointer on the time scale
can be dragged in either direction and this permits
random access to the days defining the interval.

• Controls for play/pause, forward/reverse (by a month),
speed/slow, and optional audio are available on the left
bottom corner of the screen.

• Control to seamlessly switch between the two visual-
izations is available on the right bottom corner of the
screen.

In the river metaphor, tags appear from right of the screen,
travel left slowly, and disappear. The font size of the tag is
proportional to the intensity of its interestingness (defined in
Section 4.1). As each tag ‘flows’ from right to left, it displays
one photo from Flickr with this tag. If the tag is ‘caught’
using the mouse pointer during its journey left, it displays
more Flickr photos with this tag. A sample screenshot of the
river metaphor is shown in Figure 1. The day was Apr 24,
2005 and the tag ‘London marathon’ was clicked to display
more photos corresponding to this tag. This visualization
gives a quick overview of the tags as a function of time.

In the waterfall metaphor, the screen is divided into left
and right halves. See Figure 2 for a sample screenshot. The
top 8 most interesting tags are displayed in 8 rows in the left
half, with font sizes proportional to the intensities of their
interestingness. The tags change as days go by. If a tag
persists for two or more consecutive days, we need to make
sure that it occurs at the same slot on the screen. The right
half of the screen displays the photos corresponding to each
tag. If a tag persists for more than one consecutive day,
more photos are added to its row. This metaphor is useful
to study tags that persist across multiple days.

4. ALGORITHMS
In this section we describe the framework and algorithms

underlying our work. As described in Section 3, our system
presents a visualization of interesting tags over time, for any
specified timescale (for example, one day, one week, or 23
days). The backend must provide data to support this vi-
sualization. Formally, the timescale is given as a number w
representing the width in days of the interval of time that
will be considered at each timestep. The backend must take
an interval width w and a particular timestep t, and must
return the most interesting tags that occur from t to t + w.
We will begin with algorithms for this problem. Later, in
Section 4.5, we will also consider an extension: during stan-
dard operation, if the front-end requests the most interesting
tags from t to t + w, then the most likely next request will
be from t+1 to t+w+1 — we consider how the algorithms
may be optimized for this common case.

To recap, the main problem is the following: given a col-
lection of timestamped tags and a query interval [a, b], find
the most “interesting” tags during the query interval.2

We begin with a concrete definition of “interesting” and
indicate how tags can be ranked under this definition. Our
definition implies a simple algorithm to compute the most
interesting tags for a particular interval. However, this algo-
rithm is inefficient for real-time use, and so we must develop
more efficient approaches to support our visualization.

4.1 Interestingness
We now define what we mean by “interesting.” First, we

require a little notation. Let 0, . . . , T − 1 be discrete points
in time (also called timestamps) and let U = {u1, . . . , } be
the universe of objects — in our case, objects are tags. An
object u ∈ U has a multiset of timestamps associated with it,
indicating its occurrence over time. Because the occurrences
are a multiset, an object may occur many times during the
same timestep. Let γ(u, t) denote the number of times the

object u occurs at time t. Let γ(u) =
PT−1

t=0
γ(u, t) denote

the total number of occurrences of object u.
Our measure of interestingness should have the following

properties:

1. An object should be considered more interesting dur-
ing a particular interval if it occurs more frequently
within the interval, and less frequently outside the in-
terval.

2. A highly infrequent object that happens to occur only
during a particular time interval should not necessarily
be the most interesting object for that time interval.

Let I = [a, b] be a time interval, where 0 ≤ a < b ≤ T . We
introduce a measure to meet the tradoffs implied by these
conditions. As a baseline, we consider the probability that a
particular object occurs within I : this meets both aspects of
Property 1 above. We modify this baseline idea to introduce
a regularization constant C, a positive integer, to meet the
requirements of Property 2. For any object u and interval
I , our measure of the interestingness of u during I is given
by:

Int(u, I) =
X

t∈I

γ(u, t)/(C + γ(u)). (1)

This quantity, reminiscent of ‘tf–idf’ in information re-
trieval (see also [15]), is aimed at capturing the most inter-
esting — not necessarily the most frequent — objects that
occur in the interval I . The parameter C ensures that ob-
jects that occur only in I but very few number of times do
not take advantage of the ‘idf’ term in the definition. Fi-
nally, the most interesting objects for I are those with the
highest values of Int(·, I), with the actual value measuring
the “intensity” of the interestingness.

Our definition of interestingness is intentionally simple;
one could imagine more sophisticated definitions. Note that
our definition of interestingness is linear: if I1 and I2 are dis-
joint intervals, then Int(u, I1 ∪ I2) = Int(u, I1) + Int(u, I2)
and if I1 ⊆ I2, then Int(u, I1\I2) = Int(u, I1)−Int(u, I2). As
we will see, this linearity property permits us to develop effi-
cient algorithms for computing interestingness for arbitrary
intervals, after moderate amounts of preprocessing.
2For simplicity of notation, we will adopt the notation [a, b]
for intervals, but to avoid double-counting the endpoints, we
assume that the actual interval is right-open: [a, b).

Figure 1: Screenshot of the river metaphor.

Figure 2: Screenshot of the waterfall metaphor.

Equation 1 implies an algorithm for computing the most
interesting objects. First, pre-compute γ(u), the total num-
ber of occurrences of an object u. Then, given a query in-
terval, simply scan the objects that occur during each day
of the interval, accumulating the counts of each tag. Divide
the resulting counts for each object u by γ(u) + C using
the pre-computed information, and sort the objects by the
resulting value.

Unfortunately, as we will show in Section 5, this algorithm
is slow for real-time applications. We now explore some
faster approaches to computing the most interesting objects.

4.2 Faster Algorithms for Interesting Objects
Our extensions to the naive algorithm discussed above

include a pre-processing step and then a real-time step that
occurs at run-time. Recall that the problem we face is not
simply to compute Int(u, I) efficiently, but rather to find
the k most interesting objects that occur during I , for a
positive integer k. These k objects are then rendered in the
visualization.

Our algorithms pre-compute the interestingness of some
or all objects for some carefully chosen intervals, and then
aggregate some of this pre-computed information to com-
pute at runtime the most interesting objects that occur dur-
ing any given interval.

Specifically, we pre-compute the counts of all tags within
a special set of intervals at various different scales. Fig-
ure 3 shows the intervals that are pre-computed. For sim-
plicity, we assume T is a power of 2. As the figure shows,
for each power of two, say 2i, with i = 1, . . . , lg T , we
cover all the days with intervals of length 2i and for each
such interval we pre-compute a list of all objects that oc-
cur during the interval, sorted by interestingness. For ex-
ample, at length scale 23 = 8, we pre-compute intervals
[0, 8], [8, 16], [16, 24], [24, 32], Likewise for all powers of 2
between 1 and lg T . Because there are fewer and fewer in-
tervals at each increasing length scale, the total storage for
all these intervals only doubles the original data represen-
tation, and may reside on disk during processing. Further,
we will later see that in practice, it is possible to store much
less additional information — details are in Section 5.

Figure 3: Intervals for which statistics are pre-

computed.

In order to perform a query for a particular interval I ,
we first express I as a combination of some of these pre-
computed intervals, and then scan the data for all objects
contained within each of the pre-computed intervals. Based
on this information, we find the most interesting objects. We
study two ways to combine pre-computed intervals: unions
of intervals, and combinations of unions and set differences.

At run-time, we are given an interval I = [t, t + w] and
the goal is to compute the top k most interesting objects in
this interval. There are two steps to do this:

1. Decomposition step. Here, the goal is to express I in terms
of a collection of the pre-computed intervals, so as to
make the collection as small as possible.

2. Aggregation step. Here, the goal is to compute the most
interesting objects using only information from the
small collection of pre-computed intervals. We will
see that it is not necessary to compute Int(u, I) for ev-
ery object u, but rather obtain only the top k objects
ordered by interestingness within I .

Our first algorithm, called Additive, has a decomposition
step that expresses I as a disjoint union of pre-computed
intervals, i.e., it computes a candidate set J such that I =
∪J∈J J . It has the advantage that it can make use of a
provably optimal threshold algorithm [3] for the aggrega-
tion step. The second algorithm, termed subtractive, has
a decomposition step that obtains a possibly more succinct
decomposition by expressing I as both union and difference
of pre-computed intervals, i.e., it obtains a candidate set
J = J+ ∪ J− such that I = (∪J∈J+

J) \ (∪J∈J
−

J). How-
ever, the threshold algorithm is not directly applicable in
this case and we have to modify it appropriately.

We illustrate the additive and subtractive decompositions
with a concrete example. Suppose I = [0, 63]. Then, the
decomposition step of the additive algorithm will express it
as I = [0, 32]∪ [32, 48]∪ [48, 56]∪ [56, 60]∪ [60, 62]∪ [62, 63].
On the other hand, a more succinct expression of I is pos-
sible if we allow set differences: I = [0, 64] \ [63, 64], which
will in fact be the result of the decomposition step of the
subtractive algorithm.

4.3 Additive Algorithm
The algorithm for the decomposition step is as follows.

Interval Decomposition Algorithm (Additive).
Given an arbitrary interval I = [a, b], we identify the

largest interval I ′ = [a′, b′] in the pre-computed set that
is completely contained in I , i.e., I ′ ⊆ I ; this can be done
very efficiently by examining b − a and a. We add this pre-
computed interval to the collection, and then recurse on the
subintervals [a, a′] and [b′, b], as long as they are non-empty.

The following can be easily shown.

Proposition 1. The above algorithm outputs an optimal
decomposition of I using unions of pre-computed intervals.

We now turn to the aggregation step. Recall that each
pre-computed interval stores all objects that occur within
the interval, ranked by interestingness within the interval.
We must use this information as efficiently as possible to
compute the most interesting objects within the query inter-
val I . To do this, we employ the Threshold Algorithm (TA)
of Fagin, Lotem, and Naor [3]. The algorithm is straightfor-
ward and we now describe it in its entirety.

The setting for Algorithm TA is as follows. We have a
universe of objects, each of which has been scored on m sep-
arate dimensions. A function f combines the scores for each
of the dimensions into a single overall score for the object.
Our goal is to find the k objects with highest total score.
For each dimension, a list of the objects is available sorted
in order of score for that dimension. The score function f
is assumed to be monotone: if one object scores at least
as high as another in every dimension, it cannot be ranked

lower overall. Some examples of monotone score functions
are the sum of the scores, or the max of the scores, or a
weighted combination of the scores. The goal now is find
the objects with the highest aggregate scores according to
f . Algorithm TA proceeds as follows:

Threshold Algorithm (Monotone).
Access in parallel each of the m sorted lists, in any order.

For each element, look up its score in all m dimensions, and
compute its overall score using f . Let xi be the score in the
i-th dimension of the last object seen in the i-th list. Define
τ = f(x1, . . . , xm). Once k objects have been seen whose
overall score is at least τ , terminate and return the k top
objects seen so far.

Fagin et al. show that this algorithm is correct, and in fact
is optimal for aggregation in a strong sense they define.

Our interval covering problem falls directly into this frame-
work. For a query interval I , we represent I as a union of
intervals I = I1 ∪ · · · ∪ Iℓ. For each object u, the score for
each interval Ij is simply Int(u, Ij). Due to the linearity
of Int, these scores may be combined by simple addition,
which is a monotone combination of the scores from each
interval. Thus, Algorithm TA may be applied to find the
top k elements.

4.4 Subtractive Algorithm
To obtain the decomposition using both additions (unions)

and subtractions (set differences), we first consider a simpler
problem: what if the query interval I is of the form [0, B];
that is, the left endpoint is zero. This case may be recast
as the following problem: given an integer B, express it as
sums and differences of powers of 2 in the shortest possible
way. Figure 4 gives a graphical representation of this prob-
lem. The bold query interval in the figure may be covered
using one of two options. In option A, we take the largest
pre-computed interval contained entirely within I , and then
recursively cover the remainder of I . In option B, we take
the smallest pre-computed interval that completely covers I ,
and then recursively “subtract off” the remainder interval
between I and the covering interval. The algorithm simply
chooses the option that minimizes the length of the remain-
der interval. We may formally write this algorithm in terms
of the right endpoint B as follows:

Figure 4: Covering aligned intervals.

Integer Decomposition Algorithm (Subtractive).
Let ρ(I) denote the optimal representation of [0, I] us-

ing both addition and subtraction. Let b be the minimum
number of bits needed to represent B. If B > 3 · 2b−2,
then ρ(B) = [0, 2b] \ ρ(2b − B). If B ≤ 3 · 2b−2, then
ρ(B) = [0, 2b−1] ∪ ρ(B − 2b−1).

We can show the following by induction (proof omitted in
this version):

Proposition 2. The above algorithm optimally expresses
a left-aligned interval in terms of unions and differences of
pre-computed intervals.

Thus, we can express every number B as
P

i
pi −

P

i
qi

where pi’s and qi’s are powers of 2.
We now extend this result to provide an optimal algorithm

for covering an arbitrary interval I using unions and set dif-
ferences. The following shows that we may apply our algo-
rithm for left-aligned intervals even if the interval is shifted
by a sufficiently large power of 2, and the proof is immediate
by a shifting argument:

Corollary 1. Let I = [2a, 2a + B], with a ≥ b, and let
[0, B] be optimally represented as

P

i
pi −

P

i
qi. Then ρ(I)

is given by ∪i[2
a, 2a + pi] \ ∪i[2

a, 2a + qi].

In a straightforward manner, we may also extend to right-
aligned intervals I = [2a−B, 2a], obtaining ρ(I) using ρ(B).

Now, we can construct an algorithm to decompose an arbi-
trary interval I = [a, b] into unions and set differences (addi-
tions and subtractions) of pre-computed intervals. The idea
is given in Figure 5. As the figure shows, there are two op-
tions for representing I . We begin by identifying the small-
est power of two such that no pre-computed interval of that
width is contained in I . This width is indicated by the large
block arrow on the left of the figure. I must cover the right
endpoint of exactly one interval of this length — let c be the
location of that endpoint. Similarly, some pre-computed in-
terval of twice that length must cover I ; let J = [a′, b′] be
that interval. If x is the number of bits needed to represent
the length of I , then note that a′, b′, and c are all multiples of
powers of 2 greater than or equal to x2; we will use this fact
later. We identify two options for optimally representing I .
In option A, we consider covering I using the intervals [a, c]
and [c, b], both of which are shifted left-aligned intervals by
our earlier observation, and may therefore be covered opti-
mally using our technique above. In option B, we begin by
taking J , and then remove [a′, a] and [b′, b], both of which
are also shifted left-aligned intervals and hence amenable to
our earlier technique. We simply compare these two possible
solutions, and report the best. The arrowheads in the figure
show the direction in which the sub-intervals are aligned.

Figure 5: Covering arbitrary intervals.

The following can be shown using a case analysis (proof
omitted here).

Corollary 2. The above algorithm outputs an optimal
decomposition of I using unions and set differences of inter-
vals in I.

Notice that the aggregation function is given by the ac-
tual decomposition: if I = (∪J∈J+

J) \ (∪J∈J
−

J), then
Int(u, I) =

P

J∈J+
Int(u, J) −

P

J∈J
−

Int(u, J). Therefore,

the aggregation function f is no longer monotone and so we
cannot use Algorithm TA.

However, notice that f is of a very special form: f =
f+ − f−, where f+, f− are monotone. Now we have two op-
tions to find the k objects with the highest f scores. There
are two algorithms based on the kind of access model that
is available. The first algorithm works when the only access
available is to objects sorted by their f+ and f− scores. For
instance, this is the case if we were to use TA to find the
objects with highest/lowest f+ and f− scores. The second,
more efficient algorithm works if, in addition to sorted ac-
cess, we can random access the f+ or f− score of an object;
this is inspired by TA.

Threshold Algorithm (Non-monotone, sorted access).
Access in parallel the objects ordered by f+ and those

ordered by -f−. Continue until the same k objects appear
in both lists. Output these k objects with top aggregated
scores.

Threshold Algorithm (Non-monotone, random access).
Access in parallel the objects ordered by decreasing values

of f+ and those ordered by increasing values of f−. As an
object is seen under sorted access in one of the lists, do
random access to the other list to find its score. For f+, f−,
let x+, x− be the score of the last object seen under sorted
access. Define the threshold value τ = x+ − x−. As soon
as at least k objects have been seen whose aggregate score
is at least τ , stop. Finally, output the k objects with top
aggregated scores.

It is easy to show:

Proposition 3. For the aggregation function f = f+ −
f−, the above algorithms correctly find the top k answers.

4.5 Computation of Sliding Intervals
It is also possible to obtain incremental versions of both

the additive and subtractive algorithms. These algorithms
take advantage of the fact that most of the time, the optimal
representation for an interval [t, t+w] is related to the opti-
mal representation for the next timestamp [t + 1, t + 1 + w].
We omit the details of this algorithm in this version, and
simply state the following proposition:

Proposition 4. For a sequence of intervals Ii = [a +
i, a + w + i] for i = 0, . . . , m, with m ≫ w, let Ji repre-
sent the optimal collection of intervals to cover Ii. Then
Ei[|Ji∆Ji+1|] ≤ c for some constant c.

That is, as we slide an interval, the additive and sub-
tractive algorithms produce a cover that changes on average
by only a small (constant) number of members. Thus, if
we count the number of pre-computed intervals that must
be accessed to compute the most interesting objects at a
particular query interval offset, the amortized cost of those
accesses is small for each additional slide of the query inter-
val.

5. EXPERIMENTS

5.1 Dataset
The data was obtained from Flickr (flickr.com), a Ya-

hoo! property. Flickr is an extremely popular online photo-
sharing site. Users can post photos on this site and annotate
them with tags. Flickr also permits users to tag photos cre-
ated by others.

The snapshot of Flickr data we analyzed had the following
characteristics. The data consists of a table with the follow-
ing columns: date, photo id, tagger id, and tag. There were
86.8M rows in this table, where each row represents an in-
stance of a photo being tagged. Of these tags, around 1.26M
were unique; thus each tag is repeated, on average, 70 times.
The data spanned 472 days, starting June 3, 2004; thus, on
average, more than 1.2M tags arrive per week.

First, we performed some simple data cleaning operations
on this table. We extracted the raw tags and removed white
space, punctuation, and converted them to lower case. This
performs some simple normalization. We did not attempt
to stem or spell-correct the tags since many of the tags were
proper nouns (e.g., Katrina) or abbreviations (e.g., DILO,
which means ‘Day In the Life Of’).

Figure 6: Histogram of unique tag-user-date combi-

nations, suggesting bulk uploads.

We used the ‘user id’ field to ensure that on each day,
a tag is counted only once per user, i.e., for a given user
on a given day, we do not allow the user to place the same
tag on different photos. This is to discount bulk uploads
of many photos with same tag that might make these tags
appear interesting for the wrong reason; in fact, as Figure 6
shows, this is a very common occurrence in Flickr. In other
words, we implicitly want to capture the “interestingness”
from a social perspective, and not an individual perspective.
A global analysis of tag occurrences reveals the most com-
monly occurring tags are: 2005, 2004, and flowers. These
tags, while very common, are unlikely to be particularly in-
teresting for any reasonable interval in time. The ‘idf’ term
in our definition of interestingness guards against this: tags
don’t become interesting by virtue of occurring too often
globally. As we mentioned earlier, the regularization pa-
rameter C in Equation 1 ensures that tags occur sufficiently
many times globally before they can be considered interest-
ing; we set C = 50. We set k, the number of tags to display
per interval, to be 8. We also compute their interestingness
score for use in the visualization.

Our system consists of two parts. The back-end imple-
ments the algorithm described in Section 4 to find the most
interesting 8 tags for every interval. This data is then writ-
ten out to an intermediate data file. The front-end handles
the visualization. The core component of the front-end is
built using ActionScript and Flash MX. This portion con-
sumes the data file and renders the tags on the screen, along
with some sample photos for the tags, taken from the Flickr
website.

5.2 Performance
In this section we discuss the performance of our back-

end. Recall that the goal of our algorithm is to compute the
most “interesting” tags during a particular interval of time.
We will describe a naive scheme that uses no pre-processing,
then a scheme that uses interval covering but no score ag-
gregation, and finally our full scheme using both interval
covering and score aggregation. We give performance num-
bers for all three approaches on various different interval
widths.

Naive approach.
Recall the Naive algorithm of Section 4 operates as fol-

lows: scan the data for each day contained in the query
interval, and add up the interestingness scores for each tag.
Report the top 8 scores. This approach uses no indexing
whatsoever. We will refer to this scheme as “Naive” in the
timing numbers below.

Interval covering.
To perform interval covering, we first pre-compute the in-

terestingness scores of all tags within the pre-computed in-
tervals described in Section 4, as shown in Figure 3. In order
to perform a query for a particular interval I , we first express
I as a combination of pre-computed intervals, and then scan
the tags associated with each of these pre-computed inter-
vals, aggregating the interestingness scores. Based on this
information, we find the eight most interesting tags, with
their scores. We consider a much smaller number of inter-
vals than in the Naive algorithm, but we still consider every
tag occurring in each interval.

Interval covering with Algorithm TA.
Our third scheme uses both interval covering and Algo-

rithm TA. In this scheme, we again express the query inter-
val in terms of pre-computed intervals. However, we do not
examine every tag within each of the pre-computed intervals.
Instead, we examine tags in order until we can conclude that
no unseen tags could be more “interesting” than the tags we
have seen so far, and we then terminate exploration.

Evaluation.
We examine performance for four different interval lengths:

two days, one week, one month, and one quarter. For each
interval length, we apply our backend to compute the most
interesting tags for an interval of that length, at many dif-
ferent start locations, and take the average. We compare
the naive algorithm (“Naive”), the additive interval cover-
ing algorithm without using the threshold algorithm (“No
TA”), and the full additive interval covering algorithm with
Algorithm TA (“TA”). As data access is the dominant fac-
tor in performance, Figure 7 shows the total number of tag
interestingness scores that must be extracted in order to

compute the eight most interesting tags. Thus, if a partic-
ular approach partitions the query [0, 5] into [0, 4] ∪ [4, 5],
and then scans 50 tags in the first interval, and 25 in the
second, before concluding, then we charge this approach 75
accesses. All three algorithms return the optimal solution,
but examine differing amounts of data. The y axis is plotted
on a log scale in order to capture the differences. The naive
algorithm examines between ten thousand and one million
tag interestingness scores over the various different interval
lengths. The “No TA” algorithm examines between one and
two orders of magnitude fewer values: about one thousand
values for length-2 intervals and almost ten thousand values
for intervals of ninety days. Finally, the “TA” algorithm
performs better yet, another one to two orders of magni-
tude improvement, examining around one hundred values
for each interval. Thus, both the interval covering and the
threshold algorithm provide a dramatic improvement over
the naive algorithm, and the combination allows a highly
efficient backend that can easily keep up with a browsing
user.

Figure 7: Average number of tags examined per day,

with and without TA.

Recall that the threshold algorithm does not need to ex-
plore every tag during every pre-computed interval. Instead,
it scans down the pre-computed intervals to a certain depth
until it can determine that its solution is optimal. We may
therefore examine how many tags it must explore per pre-
computed interval before it is able to terminate. Figure 8
shows the average number of tags that must be explored
per pre-computed intervals for a variety of interval lengths.
The spikes at powers of two in the figure arise because these
intervals may be expressed very succinctly in terms of pre-
computed intervals — the difference is quite dramatic be-
cause we perform experiments on an interval of width w
at locations 0, w, 2w, The average depth ranges from
around forty for short intervals to as much as two hundred
for longer intervals. In all cases, these averages are quite
small, explaining why the timing advantage is so significant.

However, this finding suggests another possible extension.
If the algorithm explores only a prefix of the tags associated
with each pre-computed interval, perhaps it is not necessary
even to store the information for tags that will never be
accessed. To evaluate this hypothesis, we compute the most
tags ever extracted from any pre-computed interval during
a series of runs of TA. We can then ask how many stored
tags would be sufficient to provide optimal solutions for 99%
of the queries, 95% of the queries, and so forth. The results

Figure 8: Average depth as a function of window

size.

are shown in Table 1. The table shows that we need to keep
around more tags than the average, but not too many more:
the average number of tags consumed for various intervals
ranges from about thirty to almost two hundred, while the
max number of tags consumed reaches 645 at 99% accuracy.

Interval .99 .95 .90 .85 .80
2 645 374 270 153 46
7 280 194 135 103 89
28 229 150 107 86 74
90 586 357 294 246 217

Table 1: Accuracy vs interval depth.

Armed with this information, we may then ask the benefit
question: if we are willing to provide approximate answers
in 1% of the cases, what storage savings will we discover?
We perform the following experiment. Fix a cutoff d for the
depth, and for each pre-computed interval, store only values
for d tags. The total storage required for each value of d is
shown in Figure 9 as a percentage of the storage required
without any cutoff. Allowing 1% of queries to produce an
approximate answer, as in our motivating question above,
requires that we keep only 2% of the total storage.

Figure 9: Storage savings by truncating tag values

per pre-computed interval.

Finally, we can explore the actual timings for the TA algo-
rithm, over interval widths ranging from two days to ninety
days. Figure 10 shows the results. The thick line represents
the total number of seconds

5.3 Qualitative experience
We now provide a few qualitative and anecdotal observa-

tions about the results of applying the algorithms described
above. We begin by covering the types of tags that show

Figure 10: Average time taken as a function of win-

dow size.

up as “interesting,” and then move to a discussion of the
impact of timescale.

5.3.1 Categories of interesting tags
Many of the “interesting” tags are quirky and unusual,

and the reader is invited to explore them through the avail-
able demonstration system at http://research.yahoo.com/
taglines. However, many fall into certain recurring cate-
gories, which we now describe.

Events.
There is significant bursty tagging behavior around special

events. These include annually recurrent events such as hol-
idays; for example, Valentine’s Day, Thanksgiving, Xmas,
and Hanukkah. However, they also include events on multi-
year cycles such as Republican National Convention (Aug.
30, 2004), and a wide variety of one-off events. To give
a sense of these events, here is a partial listing: Web 2.0

(Oct. 9), Lunar eclipse (Oct. 28), NYC Marathon (Nov.
8), GoogleFest (Aug. 23), Creepy Christmas (Dec 18),
Flickr.Taiwan (Apr. 10), Googletalk (Aug. 24), Katrina
Relief Auction (Sep. 1), Sith (May 20).

Personalities.
Photographs and tags tend to follow significant personal-

ities in the news, particularly when those personalities ex-
hibit strong temporal correlation. Examples include Jeanne

Claude (Feb 18, 2005) and Pope (Apr. 26).

Social media tagging.
Certain interesting tags arise from the Flickr community

itself, as users find interest in an apparently random topic
and begin creating a body of tagged images around it. Ex-
amples include What’s in your fridge? (Oct. 24–actual
photos of the interior of refrigerators), Faces in holes (Nov.
21–faces visible through varieties of annuli), dilodec04 (Dec.
20–day in the life of), What’s in your bag? (Mar. 10–
images of the contents of people’s bags), Badge (Jul. 1–
images of access badges), Do your worst (Jul. 28–collection
of the most unflattering photos), and White hands (Jul. 9–
white hands!).

5.3.2 Effect of window size
We alluded earlier to a qualitative difference in the types

of tags that arise at a short timescale like a single day ver-
sus a longer timescale like one or more months. To wit,
longer timescales tend to contain broader and more sus-
tainable trends, while shorter scales tend to surface quirky
and individualistic tags. Tags corresponding to regions of
time such as july 2005 and AUGUST2005 occur only at larger
timescales. At the three month timescale, tags such as
INTERESTINGNESS and I LOVE NATURE begin to arise — these
have “staying power” with the users and have attracted
something of a following.

In the other direction, tags that arise at the level of an in-
dividual day, but not a week or longer include short-duration
activities such as LoveParadeSF and brief, quirky social ac-
tivities like What’s in your fridge.

At the day and week level, but not propagating to months
or quarters, we see nycmarathon and Katrina Relief Auction.
Then at the level of a month, but failing to reach the quar-
terly timescale, we see tags like lunar eclipse.

It is interesting to note that RNC Protest shows up only
at the daily level, while the more general tag rnc shows up
at all timescales.

6. CONCLUSIONS
We studied the problem of visualizing the evolution of

tags within Flickr. We presented a novel approach based
on a characterization of the most salient tags associated
with a sliding interval of time. We developed an animation
paradigm (using Flash) in a web browser, allowing the user
to observe and interact with interesting tags as they evolve
over time. In the course of this, we develop new algorithms
and data structures to support an efficient generation of this
visualization.

It will be interesting to extend this visualization to other
online sources of data that have a temporal component, in-
cluding news headlines, query logs, and music downloads.

Acknowledgments
We would like to thank the Flickr team for their help with
data and discussions, particularly Serguei Mourachov, Stew-
art Butterfield, and Catarina Fake.

7. REFERENCES
[1] J. Allan, J. Carbonell, G. Doddington, J. Yamron,

and Y. Yang. Topic detection and tracking pilot
study: Final report. DARPA Broadcast News
Transcription and Understanding Workshop, 1998.

[2] S. Chien and N. Immorlica. Semantic similarities
between search engine queries using temporal
correlation. In Proceedings of the 14th International
Conference on World Wide Web, pages 2–11, 2005.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. Journal of
Computer and System Sciences, 66(4):614–656, 2003.

[4] S. Golder and B. Huberman. The structure of
collaborative tagging systems. Journal of Information
Science, 2006.

[5] A. Guttman. R-trees : A dynamic index structure for
spatial searching. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 47–57, 1984.

[6] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and
D. Gunopulos. Efficient indexing of spatiotemporal
objects. In Proceedings of the 8th International
Conferences on Extending Database Technology, pages
251–268, 2002.

[7] S. Havre, B. Hetzler, and L. Nowell. ThemeRiver:
Visualizing thematic changes in large document
collections. IEEE Transactions on Visualization and
Computer Graphics, 8(1):9–20, 2002.

[8] J. Kleinberg. Bursty and hierarchical structure in
streams. Data Mining and Knowledge Discovery,
7(4):373–397, 2003.

[9] J. Kleinberg. Temporal dynamics of on-line
information systems. In M. Garofalakis, J. Gehrke,
and R. Rastogi, editors, Data Stream Management:
Processing High-Speed Data Streams. Springer, 2006.

[10] H. Korth and A. Silberschatz. Database System
Concepts. McGraw-Hill, second edition, 1991.

[11] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins.
On the bursty evolution of blogspace. World Wide
Web, 8(2):159–178, 2005.

[12] J. Lin, E. J. Keogh, S. Lonardi, J. P. Lankford, and
D. M. Nystrom. Viztree: a tool for visually mining
and monitoring massive time series databases. In
Proceedings of International Conference on Very Large
Data Bases, pages 1269–1272, 2004.

[13] B. Milash, C. Plaisant, and A. Rose. Lifelines:
visualizing personal histories. In Proceedings of the
International Conference Companion on Human
Factors in Computing Systems, pages 392–393, 1996.

[14] D. Millen, J. Feinberg, and B. Kerr. Social
bookmarking in the enterprise. ACM Queue,
3(9):28–35, 2005.

[15] S. Robertson and S. Walker. Okapi/Keenbow at
Trec-8. In Proceedings of the 8th Text Retrieval
Conference, pages 151–161, 2000.

[16] M. T. Roth, M. Arya, L. Haas, M. Carey, W. Cody,
R. Fagin, P. Schwarz, J. Thomas, and E. Wimmers.
The Garlic project. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, page 557, 1996.

[17] S. Saltenis, C. Jensen, S. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously moving
objects. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 331–342, 2000.

[18] B. Shneiderman. Tree visualization with tree-maps:
2-d space-filling approach. ACM Transactions on
Graphics, 11(1):92–99, 1992.

[19] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos.
Identifying similarities, periodicities, and bursts for
online search queries. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 131–142, 2004.

[20] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes. Morgan Kaufmann Publishers, second
edition, 1999.

[21] Y. Yang, T. Pierce, and J. Carbonell. A study on
retrospective and on-line event detection. In
Proceedings of the 21st Annual International ACM
Conference on Research and Development in
Information Retrieval, pages 28–36, 1998.

