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Abstract—In machine learning, pattern classification assigns high-dimensional vectors (observations) to classes based on general-
ization from examples. Artificial neural networks currently achieve state-of-the-art results in this task. Although such networks are
typically used as black-boxes, they are also widely believed to learn (high-dimensional) higher-level representations of the original
observations. In this paper, we propose using dimensionality reduction for two tasks: visualizing the relationships between learned
representations of observations, and visualizing the relationships between artificial neurons. Through experiments conducted in three
traditional image classification benchmark datasets, we show how visualization can provide highly valuable feedback for network
designers. For instance, our discoveries in one of these datasets (SVHN) include the presence of interpretable clusters of learned
representations, and the partitioning of artificial neurons into groups with apparently related discriminative roles.

Index Terms—Artificial neural networks, dimensionality reduction, algorithm understanding

1 INTRODUCTION

In machine learning, advances in computing power and techniques for
building and training (deep) artificial neural networks (ANNs) have
allowed these models to achieve state-of-the-art results in many ap-
plications related to pattern recognition [39]. However, successfully
training ANNs is generally time-consuming, and requires significant
expertise [5].

In data visualization, dimensionality reduction has been suc-
cessfully used to compute projections: representations of high-
dimensional data in lower-dimensional (usually 2D) spaces that try to
preserve the data structure. This structure is related to the data distri-
bution, relationships between points, and presence of clusters [26, 24].
When depicted by scatterplots, projections can be used to reason about
the original data. Compared to other high-dimensional data visualiza-
tions, such as scatterplot matrices, parallel coordinates, star coordi-
nates, and their variants, projections are considerably more scalable
with respect to the number of dimensions [25, 44]. They are also scal-
able with respect to the number of observations, although visual clut-
ter eventually becomes problematic. Concerning computational cost,
recent dimensionality reduction techniques are able to deal with hun-
dreds of thousands of observations at interactive rates [33, 19].

In this paper, we demonstrate the potential of dimensionality re-
duction techniques to provide insightful visual feedback about ANNs.
Although we focus on multilayer perceptrons and convolutional neural
networks, our approach is extensible to other types of networks (e.g.,
LSTM or Elman networks [14]). Specifically, our proposed visualiza-
tions address the following two tasks:

• T1: Exploring the relationships between alternative representa-
tions of observations learned by ANNs.

• T2: Exploring the relationships between artificial neurons.

The projection-based visualization approach that we propose for T1
is (sparsely) found in the machine learning literature [7, 29, 41, 36, 16].
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However, such projections are typically used for illustrative purposes
(Sec. 3). In contrast, we show how projections can aid existing ap-
proaches for understanding and improving ANNs (Sec. 5). Specif-
ically, using three widely studied benchmark image classification
datasets, we show how our visualization approach is able to confirm
facts that are already known about ANNs, and reveal previously un-
seen relationships between learned representations. In this context,
we also propose a novel visualization of the evolution of such repre-
sentations (Sec. 5.4).

Our approach towards T2 is completely new in the context of
ANNs, although it is related to techniques developed for feature-space
exploration (Sec. 3). Similarly to our approach for T1, we use pro-
jections to represent similarities between artificial neurons (given a
particular set of input observations). We also propose a novel visual-
ization of the relationships between artificial neurons and classes (Sec.
6.2). Although presented separately, our visualization approaches for
T1 and T2 should be seen as complementary for understanding ANNs,
as we exemplify in Sec. 6.2.

This paper is organized as follows. Section 2 briefly introduces
pattern classification, together with the notation and definitions used
in the text. Section 3 relates this paper to previous work in machine
learning, information visualization, and visual analytics. Section 4 de-
tails the protocol followed by our experiments, which, although not
crucial to our claims, allows for reproducibility. Section 5 presents
the results of our projection-based visualizations of the relationships
between learned representations for different datasets (T1), highlight-
ing valuable insights gained from visualization. Section 6 presents our
projection-based visualizations of relationships between artificial neu-
rons (T2). Section 7 discusses the limitations of our work. Section 8
summarizes our findings and suggests future work.

2 PRELIMINARIES

A dataset D is composed of pairs (x,y), where x ∈ R
m is an ob-

servation, and y ∈ {0, 1}d is a target class assignment. If yc = 1,
observation x belongs to class c. In this paper, each observation cor-
responds to a 2D image and belongs to a single class, although these
are not limitations of our proposal.

We consider two kinds of ANNs: multilayer perceptrons (MLPs)
and convolutional neural networks (CNNs). Such a network represents
a parameterized function f : Rm → (0, 1)d, which usually attempts
to generalize class assignments from examples in D. Computation in
these networks is performed by artificial neurons, which are typically
organized into layers, as outlined next.

Multilayer perceptrons: In this model, the weighted input to neuron j

in layer l is defined as z
(l)
j = b

(l)
j +

∑

k w
(l)
j,ka

(l−1)
k , where b

(l)
j , w

(l)
j,k ∈

R are free parameters, and a
(l−1)
k is the activation (output) of neuron

k in layer l − 1 (Fig. 1). In other words, each neuron computes a
linear combination, plus a bias, of neuron activations from the previous



layer. The activation a
(l)
j depends on the activation function chosen

for layer l [5]. In a sigmoid layer, a
(l)
j = 1/(1 + exp(−z

(l)
j )); in a

rectified linear layer, a
(l)
j = max(0, z
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j ); in a softmax layer, a
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∑
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k ).

The activation of layer l is defined as a
(l) =

(

a
(l)
1 , . . . , a

(l)

N(l)

)

,

where N (l) is the number of neurons in layer l. Thus, if we let f
denote the function computed by the network and L denote its number

of layers (including the input), we have f(x) = a
(L) when a

(1) =
x. Any layer between the first and the last is called a hidden layer.
A network with more than one hidden layer is called a deep neural
network [4].

Crucial to our approach is the fact that the activation of layer l >
1 can be seen as an alternative (learned) representation of the input
observation, since the activation of layer l depends only on learned
parameters and the activation of layer l−1 (see Fig. 1). The activations
of a given layer for a set of observations (network inputs) is the focus
of our visualization.
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Fig. 1. Schema of MLP with three layers and three neurons per layer.

Convolutional neural networks: We consider three distinct layer
types for this model: convolutional, max-pooling, and fully connected.
A convolutional layer receives as input a w × h image with c color
channels, and connects each of its neurons to a small window (all chan-
nels included) of the input. Neurons compute their weighted inputs
and activations as usual. However, each neuron is replicated (by pa-
rameter sharing) for many input windows, given a pre-defined stride.
When the output of all corresponding replicas are organized into a
single-channel image, the operation is analogous to multichannel im-
age convolution [21]. The output of a convolutional layer is obtained
by stacking the outputs of sets of replicated neurons into a single mul-
tichannel image. The number of output channels can be seen as the
number of convolutional filters. A max-pooling layer reduces the spa-
tial dimensions of a multi-channel image by keeping the highest-value
activation in a neighborhood (independently for each channel, for a
pre-defined stride), and also outputs a multichannel image. A fully
connected layer is analogous to an MLP layer, and is only followed by
other fully connected layers. The activation of such a layer can also be
seen as a learned representation of the input.
Network training: The weights and biases of an ANN, which we
collectively denote by a vector θ, are adapted to minimize a cost func-
tion C that penalizes prediction errors on the dataset D. For exam-
ple, a softmax output layer is typically combined with a negative log-
likelihood cost function

C = −
∑

(x,y)∈D

d
∑

k=1

yk ln a
(L)
k ,

where a
(L)
k is the activation of neuron k on the last layer L when the

network receives x as input [4]. Note that −yk ln a
(L)
k → ∞ when

yk = 1 and a
(L)
k → 0, which characterizes a prediction error.

The process of minimizing C with respect to θ is called training.
As C is differentiable with respect to every network parameter1, min-
imization can be attempted by gradient descent. This technique itera-
tively updates θ by the rule θ ← θ − η∇θC, where η is the learn-
ing rate. In our work, we use (momentum-based) mini-batch stochas-
tic gradient descent [5]. This technique partitions the dataset D into
batches, and approximates ∇θC by using a single batch for each pa-
rameter update. After each batch is considered, training has completed
one epoch. The hyperparameters (batch size, learning rate, number of
layers, number of neurons per layer, etc) are not affected by training,
and are usually chosen using previous experience and cross-validation.

Dimensionality reduction is performed by a function p : Rk → R
2.

The projection Ap ⊂ R
2 of a set A ⊂ R

k is defined as Ap = {p(a) |
a ∈ A}, and attempts to preserve the high-dimensional structure of
A, as already mentioned in Sec. 1.

3 RELATED WORK

Machine learning experts have developed many strategies to design
and improve ANNs, since the success of these models is highly im-
pacted by the choice of preprocessing steps and several (interacting)
hyperparameters. During training, a common approach is compar-
ing model accuracy on a validation set with accuracy on a training
set [35]. This helps diagnosing overfitting (low validation accuracy
when compared to training accuracy) and underfitting (low accuracy
in both cases). Manual choice of hyperparameters requires significant
expertise and effort, and comprehensive guides have been written on
the subject [32, 5]. The high dimensionality of the data and large num-
ber of parameters make ANNs hard to interpret, and make improving
models a challenging task. Although automatic hyperparameter search
is possible [40], it is generally (computationally) expensive.

Visual analytics and information visualization systems have been
developed to inspect ANNs, since visual feedback is considered highly
valuable by practitioners. For instance, Zeiler and Fergus [50] show
how insight gained from visualizing ANNs has enabled them to out-
perform the state-of-the-art (at the time) on an major image classifica-
tion benchmark. Their work aims to reconstruct an input image (ob-
servation) given a particular output channel of a convolutional layer
(feature map). Reconstruction from activations is also investigated by
Mahendran and Vedaldi [27]. Erhan et al. [9] search, through opti-
mization, inputs that cause high activations in particular neurons, with
the goal of understanding their roles. Yosinski et al. [48] visualize fea-
ture maps from CNNs trained for image recognition as they receive an
input video stream, which enables the visual search for filters that de-
tect a particular object. They also extend the work of Erhan et al. [9],
showing how regularization techniques can be used to generate more
interpretable images that cause high activations in a neuron. As will
become clear, our approach is complementary to these visualizations.

Dimensionality reduction techniques can be divided into linear (e.g.,
PCA, LDA, MDS) and non-linear (e.g., Isomap, LLE, t-SNE) [24,
44]. Highly scalable techniques have been proposed (e.g., LSP [33],
LAMP [19]), which are able to deal with hundreds of thousands of ob-
servations (or more) at interactive rates. Dimensionality reduction has
been previously applied to ANN visualization, due to its scalability in
number of dimensions and observations. For instance, Erhan et al. [8]
use projections of learning trajectories to study the effects of unsuper-
vised pre-training. Each point in such a trajectory corresponds to the
concatenation of output layer activations for a whole dataset at a given
training stage. Closer to our work, projections of hidden layer activa-
tions, the subject of Sec. 5, have been used as high-level evidence of
model efficacy [7, 29, 41, 36, 16]. Aubry and Russell [1] visualize hid-
den layer activations using PCA, aiming to understand their invariance
with respect to several factors present in real and synthetic images.

In contrast to these works, our work is the first (to our knowledge)
to present a detailed analysis of the insights on classification systems

1The rectified linear activation function is not differentiable at 0, but that is

usually irrelevant in practice.



obtainable by projections of hidden layer activations. Separately, in
Sec. 6, we use projections to explore relationships between neurons
in a hidden layer. This visualization is completely new in the con-
text of ANNs, but related to previous work on feature space explo-
ration [49, 42]. However, in contrast to such previous work, which
explores relationships between input features (dimensions) to a pat-
tern classification technique, we visualize relationships between fea-
tures (neuron activations) learned by such a technique. The impor-
tance of visualizing black-box techniques is discussed more generally
by Mühlbacher et al. [30].

4 EXPERIMENTAL PROTOCOL

Our visualization approach is based on hidden layer activations ex-
tracted from a network trained for a given dataset, and can be divided
into two parts: creating projections from these activations (T1), and
depicting the relationships between the neurons that originate these
activations (T2). This section details the protocol followed by the ex-
periments presented in Secs. 5 and 6, which simultaneously detail and
evaluate our visualization approach.
Datasets include three well-known image classification benchmarks:
MNIST [22], SVHN [31] and CIFAR-10 [20]. MNIST has 50K train-
ing images, 10K validation images, and 10K test images (28 × 28
grayscale images of handwritten digits). SVHN has 63.2K training
images, 10K validation images, and 26K test images (32 × 32 color
images of house number digits). CIFAR-10 has 30K training images,
10K validation images and 10K test images (32×32 color photographs
in ten object classes). Although the images in SVHN and CIFAR-
10 are quite small, which allows fast experimentation, these are not
toy datasets, and are widely used to evaluate state-of-the-art ANNs
[47, 23].
Neural networks of two types are considered:

1. Multilayer perceptron (MLP): 3072 (784, for MNIST) input neu-
rons, followed by four rectified linear hidden layers of 1000 neu-
rons each. The output layer is softmax with 10 neurons. Dropout
[41] is applied from the first hidden layer, growing from 0.2 to
0.5 in steps of 0.1 per layer.

2. Convolutional neural network (CNN): 32 × 32 × 3 input image
(28 × 28 × 1, for MNIST), followed by a convolutional layer
with 32 3 × 3 × 3 (or 3 × 3 × 1) filters, a convolutional layer
with 32 3 × 3 × 32 filters, a 2 × 2 max-pooling layer (dropout
0.25), a convolutional layer with 64 3× 3× 32 filters, a convo-
lutional layer with 64 3 × 3 × 64 filters, a 2 × 2 max-pooling
layer (dropout 0.25), a fully connected layer with 4096 (or 3136)
neurons (dropout 0.5), a fully connected layer with 512 neurons,
and a softmax output layer with 10 neurons. All convolutional
and fully connected layers (except the output) are rectified linear.

While larger models (in number of layers and parameters) are
used for certain difficult classification tasks, the architectures sketched
above are fully realistic, typical for image classification tasks, and suf-
ficiently complex to warrant exploration.
Training is performed by momentum-based mini-batch stochastic gra-
dient descent [5]. For MLPs, the batch size is 16, learning rate is
0.01, momentum coefficient is 0.9, and learning decay is 10−9. For
CNNs, the batch size is 32, learning rate is 0.01, momentum coeffi-
cient is 0.9, and learning decay is 10−6. Initial weights for a neuron
in layer l are sampled from a uniform distribution on [−s, s], where

s = [6/(N (l−1) + N (l+1))]1/2, and biases start at 0. We manually
chose these hyperparameters, together with the aforementioned archi-
tectures, based on cross-validation using the pre-defined validation
sets. After the hyperparameters were chosen, we trained the models
again using all data except the pre-defined test sets.

Table 1 summarizes the test set accuracy (AC, fraction of correctly
classified observations) of our networks, and compares it to state-of-
the-art networks, some of which also use preprocessing and data aug-
mentation. Clearly, our networks achieve good accuracy on bench-
mark datasets. As such, they should be seen as realistic from an appli-
cation perspective.

Table 1. Test Set Accuracies for our Two Architectures
❛
❛
❛
❛
❛
❛

Dataset
Model

MLP CNN State-of-the-art

MNIST 98.52% 99.62% 99.79% [47]

SVHN 77.38% 93.76% 98.08% [23]

CIFAR-10 52.91% 79.19% 91.78% [23]

Activations for a given layer, the subject of our analysis, are extracted
for a random subset of 2000 observations from the test sets, strictly
to facilitate visual presentation. This subset is always the same for a
given dataset. In two cases, we also extract activations from a ran-
dom subset of a training set (Sec. 5.2). For CNNs, we only extract
activations from fully connected layers.

Projections are created using a fast (approximate) implementation of
t-distributed Stochastic Neighbor Embedding (t-SNE) [43], using the
default parameters. We chose this technique based on its widespread
popularity, proven ability to preserve neighborhoods and clusters in
projections [44], and our previous experience in similar contexts.

We visualize projections as scatterplots, with points colored to show
class assignment. We measure projection quality by the neighborhood
hit (NH), which indicates how well classes are visually separated [33].
For a given k (in our work, k = 6), the NH for a point ap is the ratio
of its k-nearest neighbors that belong to the same class as ap. The
NH for a whole projection is the average NH over its points. When
displaying classification results for a test set in a projection, we use
triangle glyphs to show misclassified observations, colored by their
(incorrect) classifications (e.g., inset in Fig. 3b).

Implementation of all our work is based on Python, Keras,
Theano [3], NumPy [45], scikit-learn [34], and our extension of the
feature-space exploration tool developed by Rauber et al. [37], which
we used to conduct most of our visual exploration2.

5 T1: RELATIONSHIPS BETWEEN LEARNED REPRESENTA-
TIONS

This section presents the results of the experiments conducted to eval-
uate our proposed visualization of relationships between learned rep-
resentations of observations (T1). For brevity, we focus on the most
distinctive results and insights obtained for each dataset (Secs. 5.1 -
5.3). In Sec. 5.4, we present a novel visualization of the evolution of
learned representations.

5.1 MNIST dataset: Exploring effects of training

The MNIST dataset is known as a relatively easy classification bench-
mark. This is confirmed by the clear visual separation between classes
in the (raw data) projection of a subset of 2000 test observations (784-
dimensional vectors), shown in Fig. 2. Points are colored according to
their classes.

What untrained ANNs know: As already mentioned, we aim to
understand the relationships between the alternative representations
learned by ANNs trained for pattern classification. Firstly, consider
an untrained MLP, whose parameters are randomly initialized accord-
ing to Sec. 2. It is reasonable to hypothesize that a projection of the
hidden layer activations of this MLP would have a significantly poorer
visual separation between classes than the one shown in the projection
in Fig. 2. To assess this, we show in Fig. 3a the projection of the last
MLP hidden layer activations before training, for the same test sub-
set used in Fig. 2. We see that our hypothesis was contradicted, since
both projections in Figs. 2 and 3a show similar visual separation be-
tween classes. The good separation in Fig. 3a cannot be due to class
information, since class labels are not used by the dimensionality re-
duction technique. Thus, there must be a clear structure in the hidden
layer representations before training, which leads to the reasonably
good NH of 83.78%. We are unaware of any previous visualizations

2Available at http://www.cs.rug.nl/svcg/People/

PauloEduardoRauber-featured.

http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-featured
http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-featured


Fig. 2. Projection of observations, MNIST test subset (NH: 89.12%).

showing this qualitative insight, which could be used to compare dif-
ferent ANN initialization strategies. Alternatively, while it would be
possible to train and evaluate a separate learning algorithm using the
hidden layer activations before training, such approach would be more
time-consuming, and would not convey the structure of the data in an
easily interpretable manner. For instance, see the relationship between
the visual clusters that correspond to classes 4 and 9 in Fig. 3a.

Training effects: A second natural hypothesis is that visual separation
between classes would become better after training. This is related to
the commonly-held view that ANNs learn to detect higher-level fea-
tures that are useful for class discrimination [4]. To study this hypoth-
esis, consider the projection of the last MLP hidden layer activations
after 100 training epochs (Fig. 3b). Compared to Figs. 2 and 3a, we
see a dramatic improvement in the visual separation between classes.
Hence, the learning process definitely arrived at an alternative repre-
sentation of the data that captures class structure, which is reflected by
the projection.

Understanding misclassifications: Figure 3b shows several visual
outliers, i.e., points whose neighbors belong to a different class. As-
suming the projection preserves the high-dimensional data structure,
we could suspect that such outliers would be misclassified by the
ANN. To check this, we color all points by their classes, and mark
misclassifications by triangle glyphs. The inset in Fig. 3b shows sev-
eral such misclassifications. When inspected, the visual outliers often
correspond to observations that even humans would recognize as hard
cases. For instance, Fig. 3b shows how an image of the digit 3 is (un-
derstandably) mistaken for the digit 5, and placed near the visual clus-
ter corresponding to digit 5. This example shows that, despite the fact
that projections may sometimes not fully preserve the data structure,
as we discuss in Sec. 7, they are often predictive about class assign-
ment. In other words, the similarities between hidden layer activations
(shown by the projection) are a good predictor of the final class assign-
ment by the ANN. This type of feedback is particularly useful when
projections are combined with background knowledge and manual in-
spection of ANN inputs, as we continue to show in the next section.

5.2 SVHN dataset: Interpreting visual clusters

This section presents a compelling case for the visualization of learned
representations in a second dataset (SVHN). Visualization provides a
particular qualitative insight that is not easily available by other means.

The SVHN dataset is much more challenging for classification than
MNIST. This is reflected, before training, in the visual separation be-
tween classes in the projection of the last hidden layer activations of an
MLP, which is considerably poorer for SVHN (Fig. 4) than for MNIST
(Fig. 3a) This is also confirmed by the corresponding NHs. Just as for
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Fig. 3. Projection of the last MLP hidden layer activations, MNIST test
subset. a) Before training (NH: 83.78%). b) After training (NH: 98.36%,
AC: 99.15%). Inset shows classification of visual outliers.

MNIST, the visual separation is significantly improved after training,
as shown by Fig. 5b.

Comparing different layers: All projections presented so far showed
activations of last MLP hidden layers. However, our MLP architecture
has four hidden layers. It is often hypothesized (but not usually sup-
ported by evidence) that a properly trained deep ANN has activations
at later layers that correspond to discriminative higher-level features
of the original observations [4]. We can verify this by inspecting ac-
tivations of earlier layers which, in our case, have the same number
of neurons. Consider the projection of the activations of the first MLP
hidden layer after training (Fig. 5a). Visual separation between classes
is clearly inferior to the one shown in the last hidden layer (Fig. 5b).
We saw this phenomenon for most of the ANNs trained in our study.
This is a new finding, which is not documented in the existing litera-
ture on ANNs. Note that there are no easy alternatives to obtain such
an insight. For instance, confusion matrices could be used to diag-
nose the confusion between classes for a learning algorithm trained on
the hidden layer activations. However, a confusion matrix would not
convey nearly as much information about the structure of the data as
a projection. Furthermore, a confusion matrix for a 10-class problem
(our case) has 45 independent scalar values (after considering symme-
tries), which makes it quite difficult to inspect.

In comparison to the results obtained with the MLP (AC: 77.38%),
the CNN obtains considerably better classification results on the test
set (AC: 93.76%). Figure 6 shows the projection of the last CNN hid-



Fig. 4. Projection of the last MLP hidden layer activations before training,
SVHN test subset (NH: 20.94%). Poor class separation is visible.

den layer activations after training. Clearly, visual separation and clas-
sification results improved together (cf. Fig. 5b), which is another
example of the predictive power of projections.

Improvement based on visual feedback: We now present a partic-
ularly salient example of the value of the insight provided by projec-
tions. In Fig. 5b and (most notably) in Fig. 6, we notice a very dis-
tinctive pattern: each class (color) seems to be split into two visual
clusters. Upon further inspection (brushing points), we found that one
of the same-colored visual clusters corresponds to dark digits on light
backgrounds, and the other to light digits on dark backgrounds (see
examples in Fig. 6). We are unaware of previous work that documents
such a remarkable pattern (visual or otherwise) in learned represen-
tations for the SVHN dataset, even though this dataset has been ex-
tensively used to evaluate ANNs in hundreds of publications. This is
an example of how qualitative feedback can be hard to obtain by the
typical quantitative approaches used to evaluate ANNs.

Since the projection in Fig. 6 suggests that, for each class, there are
two kinds of images that have dissimilar internal representations, we
naturally suppose that removing such (apparently unnecessary) vari-
ability in the input images would improve classification efficacy. To
evaluate this, we preprocessed the images in SVHN in a simple man-
ner: we apply the Sobel operator, after a small Gaussian blur, to ap-
proximate the gradient magnitude of the grayscale counterpart to each
image. This yields grayscale images that are bright on the edges be-
tween background and foreground, and avoids the task of detecting if
a digit is light or dark, which is not trivial given the high variability of
the images (see supplemental Fig. 3). Next, we use the experimental
protocol in Sec. 4 to classify the preprocessed test set. We obtain an
increase in accuracy of 3.96% (1030 test observations) with the MLP,
and 0.65% (169 test observations) with the CNN. While the CNN gain
is small, we stress that it was obtained by exactly the same network ar-
chitecture that was used for the original images. In contrast, the MLP
gain is quite significant. The difference in gains for the two architec-
tures can be explained by two facts. Firstly, it is easier to obtain gains
when a model is further away from ideal performance, as in the MLP
case. Secondly, our preprocessing is highly related to the operation of
convolutional layers. This can be sufficient to enable good generaliza-
tion in the CNN case, given the large amount of labeled data available
for training. Finally, we also note that, in contrast to Figs. 5b and 6,
the corresponding projections of the preprocessed test subset (supple-
mental Figs. 1 and 2) do not show two distinct visual clusters for each
class. The increase in neighborhood hit (MLP 9.06%, CNN 1.43%)
for those projections also mimics the increase in accuracy. Overall,
these facts corroborate our hypothesis about the semantics of the in-
ternal ANN representations.

We note that it is already known in the literature that preprocess-
ing this dataset (by local contrast normalization) sometimes leads to
better performance [12]. However, this procedure was never justified
by the foreground-background insight that we discovered. In the gen-
eral case, a practitioner might be unaware of important preprocessing
steps for a particular domain or dataset. In such situations, we claim
that projections can provide highly valuable qualitative information
about the representations learned by ANNs. As we already argued,
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Fig. 5. Projection of the MLP hidden layer activations after training,
SVHN test subset. a) First hidden layer (NH: 52.78%). b) Last hidden
layer (NH: 67%).

such feedback is very hard to obtain by other (non-visual) means.

Explaining misclassifications: Consider the cyan point outlined in
Fig. 6, which corresponds to digit 9, but is placed near the green
cluster corresponding to dark digits 2 on light backgrounds. No-
tice how the dark border to the right of the digit 9 could be inter-
preted as a malformed digit 2. Knowing the semantics behind the
green cluster, we can explain the misclassification more easily. While
an experienced practitioner may have guessed why the misclassifica-
tion occurred without the visual feedback, the semantics assigned to
the visual clusters (found through visualization) provides extra evi-
dence about the misclassification. In the general case, misclassifica-
tion causes may be less obvious, and the visualization of learned rep-
resentations becomes even more useful. Understanding the causes of
misclassifications is useful both for improving models and for decid-
ing when a model has achieved satisfactory performance.

Assessing training: All the projections presented so far were created
from activations from a subset of a test set. However, insight can also
be gained by inspecting projections of a subset of a training set. For
training data, it is natural to expect that the visual separation between
classes will be even better than in test data. To verify this, we compare
the projection of a subset of the SVHN training set activations in the
last MLP hidden layer (Fig. 7) with that of the corresponding test set
(Fig. 5b). Indeed, we see a better visual class separation in the former,
which is also reflected by a better NH (71.43% vs 67%). Compar-
ing the two visual separations (training vs test data) supports several
assessments. Firstly, a badly separated training set projection may in-
dicate a poorly trained network, which has low chances of performing
well on test data. A very well separated training set projection and a
poorly separated test set projection may indicate poor generalization
(caused, for example, by overfitting). Such assessments can also be



Fig. 6. Projection of the last CNN hidden layer activations after training,
SVHN test subset (NH: 85.02%). Insets show example observations
(images) from the visual clusters.

restricted to parts of a projection. In Fig. 7, for example, we see bad
visual separation in the center. This is also the area where most classi-
fication errors (marked by triangles) are found.

Fig. 7. Projection of last MLP hidden layer activations after training,
SVHN training subset (NH: 71.43%, AC: 81.65%).

In the CNN case, similar results are obtained by comparing Fig. 8
(projection of last CNN hidden layer activations after training, for a
training subset) with Fig. 6 (corresponding projection for the test sub-
set). Comparing projections from different architectures is also in-
sightful: in our case, we see that the CNN performs considerably better
on the training set than the MLP, which matches the perceived visual
separation and NH for Figs. 7 and 8. In fact, the CNN yields only
two training set misclassifications. By brushing them in the projection
(Fig. 8), we discover that one of them is incorrectly labeled (bottom
right inset in Fig. 8).
Discovering potential overfitting: Figure 8 provides a final interest-
ing insight. Consider the two gray points placed near the orange visual

Fig. 8. Projection of last CNN hidden layer activations after training,
SVHN training subset (NH: 93.83%, AC: 99.9%).

cluster (top left). Although the CNN assigns the correct class to these
points (digit 7), the representation of the last hidden layer places them
near orange points (digit 1). This appears to be due to the fact that the
two images of the digit 7 actually resemble images of the digit 1. The
placement of these two points in the projection can be a sign that the
last layer learned to work around (overfit) the internal representation
(recall that we are looking at training data). This could mean that the
network will not work well in similar cases, classifying digits 7 as dig-
its 1. Naturally, care must be taken when drawing conclusions from
the placement of small sets of points, as we discuss in Sec. 7.

5.3 CIFAR-10 dataset: Interpreting confusion zones

The CIFAR-10 dataset is considerably more challenging for classifica-
tion than the previous two (Tab. 1). This dataset provides another ex-
ample where poor visual separation between classes predicts low clas-
sification accuracy. The projection of the last CNN hidden layer acti-
vations after training shows significant overlap between visual clusters
(Fig. 9), matching the somewhat low classification accuracy (78.7%).
Similarly to Fig. 7, the area with poorest separation between classes,
or confusion zone, predicts well where most misclassifications occur
(triangles in the center of Fig. 9).

As in Sec. 5.2, inspecting the visual outliers is also interesting. Con-
sider the outlier in the middle of the large cyan visual cluster in Fig.
9. Since the class in cyan corresponds to truck images, and the outlier
observation (automobile) looks very similar to members of that class,
it is not surprising that the corresponding point becomes a visual out-
lier given the learned representation. Many other examples like this
can be found in the projection.

5.4 Evolution of learned representations

The previous sections presented projections of learned representations
(activations) for combinations of datasets, training stages (epochs),
and layers. However, a single projection does not show how these
representations evolve. The goal of this section is to introduce a com-
pact visualization that summarizes two dimensions of evolution: inter-
epoch and inter-layer. Given an observation and a layer, inter-epoch
evolution refers to changes to the activations of that layer that are a
consequence of learning (parameter changes as epochs progress). Sep-
arately, given an observation and an epoch, inter-layer evolution refers



Fig. 9. Projection of last CNN hidden layer activations after training,
CIFAR-10 test subset (NH: 53.43%, AC: 78.7%).

to the changes in internal representation as the observation “flows”
through the layers of the network.

LetA[1], . . . ,A[T ] be a sequence of sets of (high-dimensional) ac-
tivations, where each activation a[t] ∈ A[t] originates from the same
observation as a single activation a[t + 1] ∈ A[t + 1]. One way
to visualize the evolution in such sets of activations is dimensionality
reduction, applied in such a way that changes in the resulting projec-
tions will reflect changes in the corresponding high-dimensional data
(as in the work of Jäckle et al. [18], for instance). This can be done
by creating a projection Ap[t] for each activation set A[t]. When do-
ing this, it is essential to eliminate variability between projections that
does not reflect changes in the high-dimensional data. The (arguably)
simplest way to do this is to compute Ap[t] independently for each t,
and use point-cloud registration [13] to align the resulting projections.
However, dimensionality reduction techniques, including t-SNE, often
yield large changes in global visual cluster placement for small data
changes, which registration cannot eliminate [10]. For iterative tech-
niques such as t-SNE, another intuitive solution is to initialize the po-
sitioning inAp[t+1] with the previously computedAp[t]. We verified
that this is a poor alternative, as it significantly biases the sequence of
projections to show the evolution due to initialization in a (likely) bet-
ter state with respect to the optimization goal. Instead, we employed a
simple strategy: computing a (randomly initialized) projection Ap of
A[1] using t-SNE, and using Ap to initialize each Ap[t].

The resulting sequence of projections can be visualized in several
ways. We discard animation, since it is hard to track the motion
of a large number of colored points over many frames [38]. An
alternative is to create a 2D trail for each sequence ap[1], . . . ,ap[T ]
of corresponding points. However, directly drawing these trails causes
a large amount of clutter and occlusion. We address this by using
trail bundling. This is analogous to earlier applications of bundling
to visualize vehicle and eye-tracking trails [17]. We employ a recent
high-performance GPU-based bundling algorithm [46], which allows
a high degree of control in real time. The following examples show
how the resulting bundled images can be explored.

Inter-layer evolution: Figure 10 shows the inter-layer evolution of a
MNIST test subset (after training). The bundled image summarizes a
sequence of four projections, one per hidden layer, shown as thumb-
nails. Trail hues encode classes, and edge brightness encodes layer
number (depth). Thus, the brightness gradient shows how activation
data “flow” through the four network layers. The bundle shapes show
that the visual clusters are quite stable over all layers. Hence, the

network arrives at a reasonably good separation between classes al-
ready at early layers. The gradients also show that some visual clus-
ters become more compact in later layers (e.g., tight bright area in
the green cluster, whose evolution is indicated by the gray arrows in
the figure), and that some clusters distance themselves from the others
(e.g., brightness pattern in the purple cluster). Thus, later network lay-
ers strengthen the class coherence and separation achieved by the first
layer. We also see that there are only a few visual outliers (stray trails)
that connect distinct visual clusters. Therefore, only few observations
change clusters as the activation data flow through the network. In
summary, we infer that the network layers after layer 1 mainly refine
cluster coherence.

layer 1 layer 4

Fig. 10. Inter-layer evolution, four MLP hidden layers after training,
MNIST test subset. Brighter trail parts show later layers.

Inter-epoch evolution: We could employ the same ideas to visualize
inter-epoch evolution. However, our results in this case show that the
images are significantly harder to interpret (e.g., supplemental Fig. 4).
This is due to a combination of large changes in the very first epoch,
high intra-visual-cluster variance between epochs, and a much larger
number of frames (typically hundreds) to be summarized. For this
reason, we employed a different strategy to visualize inter-epoch evo-
lution. Consider again the sequenceA[1], . . . ,A[T ] of activation sets.

For inter-epoch evolution,A[t] ⊂ R
k for a fixed k, for all t. Hence, we

can create a projection for the set
⋃

tA[t], which contains activations
for all epochs. As we compute a single projection, there is no spurious
inter-frame variation. Figure 11 shows the inter-epoch evolution for
the last CNN hidden layer activations using this strategy, from epochs
0 to 100, in steps of 20 (12K points in total). Hues indicate class, and
brighter edge fragments correspond to later epochs. The thumbnails
in Fig. 11 show points from three selected epochs. It is interesting
to note how the dimensionality reduction technique placed the points
corresponding to earlier epochs (darker) in the center of the projec-
tion, considering that it does not explicitly receive this information.
This phenomenon also happens for SVHN and CIFAR-10.

Finally, we note that our choice of bundling algorithm provides a
high degree of control over the level of trail simplification [46], which
leads to a visualization that can also be explored in different levels of
abstraction.

6 T2: RELATIONSHIPS BETWEEN NEURONS

The projections shown in Sec. 5 help understanding the relationships
between the learned representations of observations. However, they
do not represent relationships between the neurons in a given layer, or
how neurons interact to fulfill their discriminative tasks. For this, we
complement the activation projections shown so far by neuron pro-
jections. In a neuron projection, a point depicts a neuron. Points are



training epochs

Fig. 11. Inter-epoch evolution, last CNN hidden layer, epochs 0-100, in
steps of 20, MNIST test subset. Brighter trail parts show later epochs.

placed in 2D based on the similarity between neurons. To our knowl-
edge, this is the first time artificial neurons are visualized this way.

We define the dissimilarity di,j between neurons i and j as di,j =
1−|ri,j |, where ri,j is the empirical (Pearson’s) correlation coefficient
between neurons i and j on a dataset composed of layer-l activations
(recall that each element of an activation vector is a neuron output).
This metric captures both positive and negative linear correlations be-
tween pairs of neurons. From the matrix of pairwise dissimilarities, we
compute a projection using (absolute metric) multidimensional scal-
ing (MDS) [6]. While t-SNE is particularly concerned with preserv-
ing neighborhood relationships [44], absolute metric MDS attempts to
preserve global pairwise dissimilarities as well as possible [6], which
is more appropriate in this scenario. As we confirmed through prelimi-
nary experiments, MDS presents more coherent relationships between
neurons that are discriminative for a particular class, which is impor-
tant for a neuron projection (see Secs. 6.1 - 6.2).

6.1 MNIST dataset

We use the MNIST dataset to introduce neuron projections. Figure
12c shows the activation projection and Figure 12d the correspond-
ing neuron projection for the last CNN hidden layer activations, after
training. Ignoring the colors for a moment, we see no clear pattern
in the neuron projection (Fig. 12d), except for some ill-defined visual
clusters. We next color each point (neuron) based on its ability to dis-
criminate between class 8 (marked yellow in Fig. 12c) and all other
classes, computed by a standard feature selection technique, based on
extremely randomized trees [11]. A very clear pattern emerges: all dis-
criminative neurons for class 8 are placed near each other in the neuron
projection. In contrast, consider the corresponding activation/neuron
projections for the same hidden layer before training (Figs. 12a,b):
the discriminative neurons for class 8 are scattered over the neuron
projection. This shows that training creates sets of highly related neu-
rons, which work together in the classification task. An analogous
phenomenon can be observed for all other classes (see supplemental
Fig. 5).

We can use feedback about the relationships between neurons and
classes to diagnose the absence of specialization for a particular class
in a given layer. This can help pinpoint causes of poor classification ef-
ficacy. As a related example, consider dropout, a widespread heuristic
for training deep ANNs [41]. Dropout is often justified by its hypoth-
esized capacity to inhibit co-adaptation of artificial neurons [41]. We
believe our approach could be applied to qualitatively investigate and
compare this and similar heuristics (e.g., DropConnect [47]), which
are still poorly understood [47].

Fig. 12. Activation and neuron projections of last CNN hidden layer acti-
vations before and after training, MNIST test subset. Neuron projection
colors show the neurons’ power to discriminate class 8 vs rest.

6.2 SVHN dataset

As mentioned in Sec. 6.1, some feature selection methods provide a
score that measures the importance of a given neuron (feature) to dis-
criminate between a given class and other classes. We show next how
this information can be used to depict how each neuron contributes to
class discrimination.

For a given feature scoring technique (extremely randomized trees,
in the next example), each neuron j receives a normalized score
sc,j ∈ [0, 1], which measures the power of neuron j, relative to other
neurons, to discriminate between class c and all other classes. We as-
sociate neuron j to the class c∗j = argmaxc′ sc′,j . We depict this by
coloring point j with the hue associated to class c∗j , and with a satu-
ration given by sc∗

j
,j . We call this depiction a discriminative neuron

map. Notice that the score sc,j is normalized over neurons for each
class, so a highly saturated point in the visualization may have a low
absolute discriminative power.

Figure 13 shows the discriminative neuron map for the SVHN test
subset, last hidden layer activations, after training. The presence of
compact visual clusters shows how the entire set of neurons can be
(almost) partitioned into groups with related discriminative roles (spe-
cializations), even though the neuron projection is created without any
class information.

The activation and neuron projections can be combined to elucidate
the role of particular neurons. Consider neuron 460, which is highly
associated to class 3 according to Fig. 13. The activation of this neu-
ron is encoded using colors in Fig. 14, for all inputs in the test subset.
According to that image, neuron 460 is responsible for finding one of
the two red visual clusters in the projection (see bottom left inset in
Fig. 14), which corresponds to images of the digit 3 on a light back-
ground (as we discovered through visualization in Sec. 5.2). It is also
interesting to note that an observation that has a high activation for
that neuron, and belongs to another visual cluster, resembles a digit
3 upon closer inspection (digit 5 on a light background, top left in-
set in Fig. 14). Obtaining these informations by typical approaches
employed in machine learning would be significantly more difficult
and time-consuming, which is key to the importance of our visual ap-
proach. Finally, as already mentioned in Sec. 2, understanding the role



Fig. 13. Discriminative neuron map of last CNN hidden layer activations
after training, SVHN test subset.

of particular neurons in ANNs is considered a very important problem,
for which the discriminative neuron map is a novel approach.

Fig. 14. Activation projection of the last CNN hidden layer after training,
SVHN test subset. Color shows the activation of neuron 460, highly
associated to class 3 (see also Fig. 13).

7 DISCUSSION

In this section, we discuss several important aspects of our proposed
visualizations and the experimental analysis conducted to evaluate
them.

Scalability: Although dimensionality reduction is among the most
scalable methods for high-dimensional data visualization, it still has
some issues. Firstly, visual clutter occurs when visualizing a large
number of activations or neurons. Secondly, considering the activation
projections, although our particular choice of technique (Barnes-Hut
t-SNE) is computationally scalable, it still requires approx. 10 minutes
to compute a projection containing 70K 50-dimensional observations
[43]. Fortunately, preliminary experiments with dimensionality reduc-
tion techniques that are able to deal with hundreds of thousands of ob-
servations at interactive paces [33, 19] were also promising. Thirdly,
we use categorical color-coding to show class information. This cre-

ates well-known clutter and color-distinguishing challenges in scatter-
plot visualization when the number of classes is large.
Techniques: Our choice of (Barnes-Hut) t-SNE is justified by its
widespread popularity and well-known ability to preserve clusters and
neighborhoods in projections [44]. Although the latter property is very
important to understand relationships between learned representations,
our proposal is not highly coupled to t-SNE. Similarly, neuron projec-
tions are not coupled to absolute metric MDS. In both cases, other
dimensionality reduction techniques can be used, provided that they
preserve neighborhoods and distances well, respectively.
Coverage: As an experimental study that involves many free parame-
ters, our conclusions are limited to the datasets and networks that we
presented. However, our findings for all datasets and networks were
consistent. In particular, there were no cases where projections would
not provide any useful feedback. Additionally, the extent of our vali-
dation (i.e., experimental protocol, number of datasets) is in line with
comparable works in visual analytics and machine learning.
Validity: We employed good practices to train artificial neural net-
works in well-known benchmark datasets, and carefully detailed our
experimental protocol to maximize reproducibility.

It is extremely important to address a specific threat to the valid-
ity of our approach: the fact that dimensionality reduction techniques
provide few quality guarantees, and may introduce misleading visual
artifacts [28]. For instance, different initializations of t-SNE may or
may not yield the visual outliers presented in Sec. 5. To solve this
issue, users should primarily evaluate the quality of a given projection
using existing metrics [28, 2]. Such metrics support both global as-
sessment (overall quality of an entire projection) and local assessment
(i.e., whether a subset of points is placed well).

If a projection (or some of its parts) has poor quality, it should be
discarded from further use. Conversely, if a projection (or some of
its parts) has high quality, the patterns it shows are actually present
in the data, an can be relied upon. As a side note, it should be clear
that most interesting phenomena observed in the projections in Secs. 5
and 6 would be extremely unlikely artifacts (e.g., visual cluster separa-
tion, partition of visual clusters between light/dark digits on dark/light
backgrounds, and partitioning of neurons into specialties). Finally,
we note that the feedback given by (activation) projections for classi-
fication problems is, in a sense, asymmetric: clear visual separation
between classes surely implies an easy classification task, whereas un-
clear separation does not necessarily imply a difficult task.

8 CONCLUSION

In this paper, we have shown how dimensionality reduction can be
used to visualize the relationships between learned representations
(T1) and between neurons (T2) in artificial neural networks. Con-
cerning the first task, our visualizations support the identification of
confusion zones, outliers, and clusters in the internal representations
computed by such networks. Separately, we also show how to visually
track inter-layer and inter-epoch evolution of learned representations.
Concerning the second task, we enable the inspection of relationships
between neurons and classes (specialization), and similarity between
neurons. In experiments on traditional benchmark datasets, we have
shown that both our contributions can provide valuable visual feed-
back for network designers. This feedback may confirm the known,
reveal the unknown, and prompt improvements along the classifica-
tion pipeline, as we have shown through concrete examples.

There are several possibilities for future work. They include vi-
sualizing representations learned by recurrent networks, which cur-
rently achieve state-of-the-art results in many sequence-related tasks
[14, 15]. The sequential nature of these networks introduces yet an-
other challenge for visualization. Our approach for evolution visual-
ization would also benefit from dimensionality reduction techniques
designed specifically for time-dependent datasets.
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