
Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery

Xiaosheng Yan1,Feigege Wang1,Wenxi Liu1∗,Yuanlong Yu1∗,Shengfeng He2,Jia Pan3

1College of Mathematics and Computer Science, Fuzhou University∗

2School of Computer Science and Engineering, South China University of Technology
3Department of Computer Science, The University of Hong Kong

Abstract

In this paper, we propose a novel iterative multi-task

framework to complete the segmentation mask of an oc-

cluded vehicle and recover the appearance of its invisible

parts. In particular, firstly, to improve the quality of the

segmentation completion, we present two coupled discrim-

inators that introduce an auxiliary 3D model pool for sam-

pling authentic silhouettes as adversarial samples. In ad-

dition, we propose a two-path structure with a shared net-

work to enhance the appearance recovery capability. By

iteratively performing the segmentation completion and the

appearance recovery, the results will be progressively re-

fined. To evaluate our method, we present a dataset, Oc-

cluded Vehicle dataset, containing synthetic and real-world

occluded vehicle images. Based on this dataset, we conduct

comparison experiments and demonstrate that our model

outperforms the state-of-the-arts in both tasks of recovering

segmentation mask and appearance for occluded vehicles.

Moreover, we also demonstrate that our appearance recov-

ery approach can benefit the occluded vehicle tracking in

real-world videos.

1. Introduction

In recent years, segmentation techniques have made sig-

nificant progress due to the development of deep learn-

ing [29, 49, 6, 16, 10, 5, 28]. Despite the achieved im-

pressive performance, it is still difficult to accurately reason

about objects under occlusions in an image. On the con-

trary, according to the study on amodal perception [21], one

main strength of the human visual system is the ability to

reason about the invisible, occluded parts of objects with

high fidelity. To reduce the gap between the vision models

and the human visual system, recent works start to investi-

gate the problem of inferring the invisible part of objects,

including amodal instance segmentation [25, 58] and gen-

erating the invisible part of objects [12].

In this paper, we focus on the task of appearance recov-

ery for occluded vehicles. As we know, identifying vehi-

cles is crucial for the applications of visual surveillance,

∗Wenxi Liu and Yuanlong Yu are the corresponding authors.

(a) Input image with an occluded car (b) Recovered appearance

(c) Tracking in original videos (d) Tracking in recovered videos

Figure 1: (a-b) Given the input image with an occluded car, our

approach is capable of recovering the appearance of its invisible

part. Illustration of tracking occluded vehicles in the original video

(c) and the processed video (d) where the appearance of the target

vehicles from occlusions have been recovered.

intelligent traffic control, path prediction, and autonomous

driving. However, in scenarios with vehicles and pedes-

trians, the occlusions are often observed and they increase

the difficulty of learning visual representation of vehicles.

As shown in Fig. 1, the tracker fails to follow the target un-

der occlusions, since the occlusions prevent the tracker from

learning the complete appearance representation of the tar-

get. In this situation, recovering the appearance of the invis-

ible parts can mitigate such problem and benefit tracking.

To accomplish the appearance recovery, we propose an

iterative multi-task framework of segmentation completion

and appearance recovery for occluded vehicles. Our frame-

work consists of two modules: a segmentation completion

network that aims at completing the incomplete segmenta-

tion mask of the occluded vehicle, and an appearance re-

covery network that aims to recover its appearance. In par-

ticular, to accurately recover the segmentation of the oc-

cluded vehicles, we propose two coupled discriminators,

i.e., one object discriminator and one instance discrimina-

tor, in the segmentation completion network (see Fig. 2).
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The instance discriminator encourages the network to gen-

erate a segmentation mask similar to the ground-truth of the

instance, while the object discriminator forces the produced

mask to appear similar as a real vehicle. To accomplish this,

we introduce an auxiliary 3D model pool to generate adver-

sarial samples. Although the rendered 3D models are visu-

ally different from the real cars, their silhouettes are authen-

tic compared with the real ones and thus they are suitable as

the adversarial samples to further improve the generation

quality. Since there are a large amount of vehicle models

with varied types and poses in the 3D model pool, it implic-

itly brings richer prior into the segmentation completion.

In addition, to generate the visible parts from occlusions,

we propose a two-path network architecture as the appear-

ance recovery model (see Fig. 3). On the training stage,

one path learns to fill in the colors of the invisible parts,

while the other path is assigned with a more challenging

task for inpainting the entire foreground vehicle given the

image context. Since the parameters of networks on both

paths are shared during training, the capability of the ap-

pearance recovery network will be enhanced. At test time,

only the first path is deployed for generation. Lastly, our

proposed multi-task framework allows the recovered image

to be processed multiple times for refinement. To evalu-

ate our method, we present an Occluded Vehicle dataset

(OVD) that contains synthetic and real images. We test

our approach on this dataset by comparing with the state-

of-the-art methods in tasks of segmentation completion and

appearance recovery, respectively. Moreover, we also ap-

ply our approach to recover the occluded vehicles in several

real-world video sequences and demonstrate that our recov-

ery approach can benefit the tracking as well. Hence, our

contributions are summarized:

• We propose an iterative multi-task framework consist-

ing of two separate modules for amodal segmentation

of an occluded vehicle and appearance recovery.

• To infer the complete segmentation of a vehicle, we

propose a segmentation completion network which has

two coupled discriminators, which integrates an auxil-

iary 3D model pool to generate adversarial samples.

• We present a two-path appearance recovery network,

which incorporates a foreground inpainting task with

the appearance recovery of the invisible parts on the

training stage to improve the recovery quality.

• We present a dataset, Occluded Vehicle Dataset

(OVD), containing synthesized and real images of oc-

cluded vehicles for training and validation. Based on

this dataset, we demonstrate that our work outperforms

the state-of-the-art methods. Besides, we also collect

several video sequences to demonstrate our approach

can benefit occluded vehicle tracking.

2. Related Works

We survey the related literature on occlusion handling,

generative adversarial network, and vehicle related works.

Occlusion handling. The occlusions are often observed

in images or videos, which is often challenging in many

vision problems. Thus, there are prior works studying the

occlusion reasoning [48, 14, 43, 8, 18]. It has also been

extensively studied in the detection and tracking commu-

nity [23, 47, 40, 53, 19, 33], but these works do not con-

sider recovering the appearance of the occluded objects.

On the other hand, the amodal segmentation problem has

been specifically presented and studied by [25, 58, 12, 13],

which aim at providing a complete mask for occluded ob-

jects. Among the prior works, most similar to ours is Ehsani

et al. [12], which presents a model, SeGAN, to generate

the invisible parts of objects from indoor scenes. In their

model, they deploy a residual network to produce a com-

pleted segmentation mask, which is too trivial to fully learn

and recover the mask of the occluded objects with various

shapes and poses. Besides, the resolution of their produced

segmentation mask is much lower than that of the input im-

age, which degrades its performance. Unlike SeGAN, we

present an improved GAN model with two coupled discrim-

inators to generate high-quality masks with the assistance

of the silhouette masks sampled from various 3D models as

adversarial samples.

Generative adversarial network. Generative adversar-

ial network (GAN) is composed of a generative model and

a discriminative model competing against each other in a

two-player min-max game. It has been extensively stud-

ied [15, 7, 1] and widely applied in many applications, e.g.

image-to-image translation [20, 57]. Besides, GAN has

been applied in image inpainting [35, 50, 49]. SeGAN [12]

also adopts GAN to generate the appearance of the invisi-

ble parts. However, their model requires the previously re-

covered segmentation mask as the only input, and thus it

heavily relies on the quality of the input segmentation mask

and lacks image contextual information. In our work, we

present a two-path architecture integrated with an inpaint-

ing task that allows the network to thoroughly learn from

the image context.

Vehicle related works. There are extensive studies on

vehicles in the vision community, including detection [41,

46], tracking [32], counting [52], and re-identification [39,

45, 56]. In addition, with the rapid advancement in au-

tonomous driving, more related research topics have been

investigated [22, 2, 37, 31]. However, there are only a few

recent works focusing on occluded vehicles, including vehi-

cle detection under occlusion [54, 30, 4] and vehicle track-

ing with occlusions [34, 55]. Different from prior works,

our work focuses on image-based occluded vehicle appear-

ance recovery.
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Figure 2: Illustration of the segmentation completion network. The input image I is passed to the pretrained segmentation model

F and then concatenated with the computed incomplete mask M̂ to produce the recovered segmentation mask M . In our framework,

we present two coupled discriminators, both of which are fed with the same samples for different classification tasks. For the object

discriminator Dobj , it aims to categorize the ground-truth M
gt and the sampled silhouette mask M

s as real and the recovered mask M as

fake. For the instance discriminator Dins, it aims to classify the ground-truth M
gt as real, while to classify the sampled silhouette mask

M
s and the recovered mask M as fake. Specifically, the silhouette mask M

s is sampled from the 3D model pool as an adversarial sample.

3. Our Proposed Framework

3.1. Overview

Our framework is composed of two networks: the seg-

mentation completion network (Fig. 2) and the appearance

recovery network (Fig. 3). In particular, given the input

image containing an occluded vehicle, the segmentation

completion network generates the recovered segmentation

mask. Then, the recovered segmentation mask is passed

through the appearance recovery network to produce the in-

visible parts of vehicles. After painting the invisible parts

back to the original image, the occluded vehicle will be on

the foreground of the image (see Fig. 1(b)). Lastly, the im-

age will be fed through the segmentation completion net-

work and the appearance recovery network multiple times

to refine and enhance the recovery quality. In the following

subsections, we will introduce the details of both networks.

3.2. Segmentation Completion Network

As illustrated in Fig. 2, the segmentation completion net-

work is based on a GAN model. In specific, the input image

I containing occluded vehicles is first fed into a segmenta-

tion model F pretrained on public semantic segmentation

datasets to generate the initial incomplete mask. The in-

complete segmentation mask, M̂ , is then concatenated with

the input image I and then passed into an encoder-decoder,

i.e. the generator G1. Its loss is the combination of the

reconstruction loss (i.e. L1 loss) and the perceptual loss.

In a standard GAN, the generated sample and its cor-

responding ground-truth will be passed to a discriminator

for classification, but the standard GAN tends to produce

coarse results. To improve the quality of produced segmen-

tation mask, we present two coupled discriminators includ-

ing an object discriminator Dobj and an instance discrimi-

nator Dins. In particular, the instance discriminator, same

as the standard discriminator, is used to force the network

to generate a mask identical with the ground truth. The ob-

ject discriminator, on the other hand, aims to encourage the

network to generate a mask similar to a real vehicle.

To accomplish this, we introduce an auxiliary 3D model

pool, which collects a variety of rendered 3D vehicle

models and their corresponding accurate silhouettes from

ShapeNet [3]. Although there exists sim-to-real gap be-

tween the rendered 3D models and the real cars, the sil-

houettes of 3D models are visually similar to the real ones.

And it is easy to extract accurate contour masks from the

rendered images of these models. Thus, they can be used as

the adversarial samples to improve the generation quality.

By randomly selecting a silhouette as the adversarial sam-

ple, we collect three types of masks for discrimination, i.e.

the ground-truth mask Mgt, the recovered mask M , and

the sampled silhouette Ms. Inspired by the discriminator

design of [51], as illustrated in Fig. 2, the object discrimi-
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Figure 3: Illustration of the appearance recovery network. On the training stage, its generator has two paths to perform separate gen-

eration tasks but shares the same network. The first path aims at filling in colors for invisible parts. The second path aims at inpainting the

image foreground given the image culling out the foreground object. At test time, only the first path is adopted for generating appearance.

nator aims to classify whether its input masks are real vehi-

cle masks or not, i.e., to categorize the ground-truth and the

sampled silhouette as real, and the recovered mask as fake,

which is formulated as:

Ladv(G1, Dobj) = E
M̂
[log(1−Dobj(G1(I, M̂))]+

1

2

(

EMgt [logDobj(M
gt)] + EMs [logDobj(M

s)]
)

, (1)

The purpose of the instance discriminator is to classify

whether the input mask is the segmentation of the vehicle,

i.e., to categorize the ground-truth as real, but the sampled

silhouette and the recovered mask as fake, which is defined:

Ladv(G1, Dins) = EMgt [logDins(M
gt, I, M̂)]+

1

2
(E

M̂
[log(1−Dins(G1(I, M̂), I, M̂))]+

EMs [log(1−Dins(M
s, I, M̂))]). (2)

Note that Dins uses the image I and mask M̂ as additional

inputs to attentively focus on the visible part of the occluded

vehicle for discrimination. During training, a variety of dif-

ferent vehicles silhouettes are sampled, which encourages

the network to learn the representative feature of real ve-

hicle masks (e.g. the positions and shapes of wheels), and

thus to encourage the produced masks to appear similar as

real vehicles. Hence, the final objective of the segmentation

completion network is to minimize:

Lseg = Ladv(G1, Dobj) + Ladv(G1, Dins)+

λLL1(G1) + βLperc(G1), (3)

where LL1(·) and Lperc(·) denote the reconstruction loss

and the perceptual loss, respectively.

3.3. Appearance Recovery Network

With the recovered segmentation mask M , our frame-

work aims to generate the appearance of the invisible parts

for the occluded vehicle in the next step. As illustrated in

Fig. 3, the appearance recovery network is also based on a

GAN model.

As the generator, we propose a two-path network archi-

tecture which performs two separate tasks while sharing the

same network G2. For the first path, the recovered segmen-

tation mask M is concatenated with the input image I and

the incomplete mask M̂ , to fed into the network. Since the

incomplete mask indicates the visible parts and the recov-

ered mask estimates the silhouette of the whole unoccluded

vehicle, the purpose of this path is to fill in the colors for

invisible parts.

In addition, the second path is supervised to perform a

more challenging task, i.e., to inpaint the whole vehicle

based on image context. It receives the concatenation of

the recovered mask M and the ground-truth background Î

along with a zero map φ for padding in order to learn for in-

painting. When training, the network G2 is shared on both

paths, so it will be endowed with the ability that not only

recovers the invisible parts but also the entire vehicle based

on contextual information, which significantly improves the

capability of the generator. The recovered images are sent to

the discriminator D2 to guarantee the image quality. Thus,

the objective of the appearance recovery network is:

Lapp =Ladv(G2(I, M̂ ,M), D2) + Ladv(G2(Î , φ,M), D2)+

λ1LL1(G2(I, M̂ ,M)) + β1Lperc(G2(I, M̂ ,M))+

λ2LL1(G2(Î , φ,M)) + β2Lperc(G2(Î , φ,M)).

On the testing stage, since the ground-truth background of

the test image is unknown, the second path is disabled and

the generator on the first path is applied only.

3.4. Iterative Refinement

On the testing stage, the recovered image can be pro-

duced by passing the input image I through both generators,

7621



i.e., Ir = G2(G1(F(I))), where F refers to the pretrained

segmentation model. With the invisible parts of the vehi-

cle recovered in the input image, the occluded vehicle in

the image will appear on the foreground. However, there

may exist artifacts in the recovered image Ir. Our multi-

task framework allows the recovered image to be processed

multiple times and finally produces a refined image. For

example, the synthesized image in the second iteration is

produced as: I
(2)
r = G2(G1(F(I

(1)
r ))), where I

(1)
r = Ir.

The intuition of the recursive process is based on the cor-

relation between the segmentation completion and the ap-

pearance recovery. In each iteration, the completeness of

the recovered segmentation mask affects the quality of the

appearance recovery. In the same iteration, the appearance

recovery network recovers the appearance while implicitly

refining its segmentation mask. Hence, the iterative pro-

cess may progressively improve the quality of generation,

as shown by the example in Fig. 6.

4. Experiments

4.1. Implementation details

3D model pool. From ShapeNet [3], we select 401 dif-

ferent classes of vehicles and, for each vehicle, we screen-

shot each rendered image from 80 different viewpoints.

Since the background of the rendered image is very clean,

we can simply extract the accurate silhouettes by threshold-

ing. In this way, we collect 32,080 silhouettes to form the

auxiliary 3D model pool.

Network structure and training. In practice, as

encoder-decoder structure, both G1 and G2 downsample

the resolution from 256 to 64 and then upsample to the

original spatial resolution. As the middle layers, there are

8 residual blocks with the dilation rate 2. D2 adopts the

Patch-GAN discriminator [20], while Dobj and Dins use

the same structure except that they have an additional fully

connected layer for classification. For hyper-parameters, we

set λ = λ1 = λ2 = 10 and β = β1 = β2 = 1. In prac-

tice, we employ [16] as the pretrained segmentation model

F . Our model is implemented in Tensorflow on PC with In-

tel Core i7-6700 CPU, 32GB RAM, and a single NVIDIA

Titan Xp. We first train the segmentation completion net-

work and the appearance recovery network separately us-

ing 256×256 images with a batch size of 4, with Adam

solver. To train each network, we set the learning rate as

10−4 until the loss plateaus and then lower it to 10−5 until

convergence. We then train both networks in an end-to-end

manner with the learning rate 10−6.

Metrics. We evaluate our methods in two tasks. For

the recovered segmentation mask, we adopt precision, re-

call, F1-score, Intersection over Union (IoU), the per-pixel

L1 error, and the per-pixel L2 error as the evaluation met-

rics. For the recovered appearance of the vehicle, we adopt

the per-pixel L1 error and per-pixel L2 error. Additionally,

to evaluate the generation quality, the inception score [38]

is often used. Since we care about the generation quality

rather than the diversity, we simply adopt the conditional

probability computed by the pretrained Inception [42] for

evaluating the recovered vehicles, denoted as Inception con-

ditional probability (ICP). Besides, similar to the incep-

tion score and the FCN-score used in [20], we also ap-

ply the state-of-the-art segmentation model [16] trained on

Cityscape [9] to segment the whole recovered image with

the reference of the ground-truth labels. The intuition is

that, if the recovered vehicle in the image is realistic, the

segmentation model trained on real images will be able to

classify it correctly. Thus, its segmentation accuracy for

vehicles is adopted as another metric, denoted as Segmenta-

tion Score (SS).

4.2. Occluded Vehicle Dataset

To our best knowledge, there is no public dataset provid-

ing occluded vehicles with unoccluded segmentation and

appearance ground-truth. For experiments, we present a

new dataset called Occluded Vehicle Dataset (OVD). To

produce synthesized data, we leverage the images of the

Cars dataset [24] as the base images for synthesis. The

original dataset contains 16,185 images with 196 classes of

cars. Since most cars from the dataset are unoccluded, we

manually label the segmentation of the cars as ground truth.

Besides, we randomly place some real pedestrians, vehicles,

and other objects, which are randomly cropped from COCO

[26] and CityScape [9], as occlusions over the vehicles of

these base images. Then, we adopt the Deep Harmonization

technique [44] to make these synthetic images look natural.

In this way, we collect a total of 33,100 images for training

and 1000 images for testing. Note that the vehicles in the

test images are unseen in the training set. In addition, we

also collect and label 100 real-world images as part of the

dataset for testing. Therefore, we enrich the diversity of the

images in four aspects: (1) the number of vehicles; (2) the

classes of vehicles; (3) the poses of vehicles; (4) the types of

the occlusions. Moreover, we collect and label 4 video se-

quences (i.e. Vid-1, Vid-2, Vid-3, Vid-4) with occluded ve-

hicles, which are captured from underground parking lots,

crowded exhibitions, and streets. More examples of OVD

are shown in the experiment section.

4.3. Ablation studies

To analyze our proposed framework, we first evaluate

our proposed discriminators in the segmentation completion

network, and then evaluate the two-path structure of the ap-

pearance recovery network and the effect of recovered mask

for appearance recovery. Lastly, we analyze our iterative

generation method. All the ablation studies are performed

on the synthetic and real images of the testset in OVD.
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Structure Input L1 ↓ L2 ↓ F1 ↑ IoU ↑

Dstandard Syn.
0.0702 0.0667 0.8403 0.7421

{Dobj , Dins} 0.0559 0.0535 0.8798 0.7939

Dstandard Real
0.0338 0.0335 0.8890 0.8067

{Dobj , Dins} 0.0322 0.0314 0.8981 0.8193

Structure Input L1 ↓ L2 ↓ ICP ↑ SS ↑

one-path
Syn.

0.0421 0.0181 0.6214 0.8350

two-path 0.0364 0.0161 0.6676 0.9411

one-path
Real

0.0201 0.0077 0.8058 0.9131

two-path 0.0171 0.0063 0.8216 0.9292

Structure Input L1 ↓ L2 ↓ ICP ↑ SS ↑

w/o Mask
Real

0.0325 0.0124 0.6716 0.8849

w/ Mask 0.0173 0.0063 0.8350 0.9356

Table 1: Ablation experiments for our architectures.

Segmentation recovery Appearance recovery

Iter. Input L1 ↓ L2 ↓ F1 ↑ IoU ↑ L1 ↓ L2 ↓ ICP ↑ SS ↑

1

Syn.

0.0559 0.0535 0.8798 0.7939 0.0364 0.0161 0.6676 0.9411

2 0.0499 0.0480 0.8935 0.8137 0.0341 0.0146 0.6765 0.9545

3 0.0510 0.0493 0.8902 0.8080 0.0343 0.0148 0.6748 0.8458

1

Real

0.0322 0.0314 0.8890 0.8066 0.0171 0.0063 0.8216 0.9292

2 0.0320 0.0314 0.8898 0.8067 0.0173 0.0063 0.8350 0.9356

3 0.0342 0.0336 0.8810 0.7926 0.0178 0.0066 0.8206 0.9314

Table 2: Ablation experiments for studying the iterations of our

model in the tasks of segmentation and appearance recovery.

Input image Dstandard {Dobj , Dins}

Figure 4: Generated complete segmentation masks on exemplar

synthetic and real images for evaluating our discriminators.

By evaluating the discriminators in the segmenta-

tion completion network, we compare our proposed

model ({Dobj , Dins}) against the standard discrimina-

tor Dstandard that is a single discriminator network for

real/fake classification. As illustrated in Tab. 1, the qual-

ity of segmentation completion from our proposed model is

generally improved. As shown in Fig. 4, the completed seg-

mentation masks may be coarse and noisy using Dstandard.

To demonstrate the effectiveness of the two-path struc-

ture, we compare our two-path structure with the one-path

structure which contains the first path only. The second path

requires the ground-truth labels, so it cannot be applied in

test solely. In Tab. 1, the two-path structure shows the obvi-

ous advantages over its counterpart, as one-path may not be

Input image One-path structure Two-path structure

Figure 5: Recovered appearance on exemplar synthetic and real

images for evaluating our proposed two-path structure.

Input 1
st iteration 2

nd iteration

Figure 6: Illustration of an example on our iterative refinement.

The first column refers the input image and its corresponding in-

complete mask. The second and third column refer to the results

produced at the first and the second iteration, respectively.

capable enough to fully recover the appearance from the in-

visible parts, as shown in Fig.5. Furthermore, Tab. 1 depicts

the recovered masks that strenghten appearance recovery.

Lastly, we analyze the performance of running our model

for 1, 2, and 3 iterations in the tasks of segmentation com-

pletion and appearance recovery. In specific, the model run-

ning for 1 iteration refers to the process of passing input im-

ages through two generators once. Generally, we obtain the

optimal performance in the second iteration. For synthetic

images, due to different kinds of synthetic occlusions in im-

ages, our model requires multiple iterations to progressively

remove the occlusions and recover the missing details. We

show an example of the progressive refinement in Fig. 6.

For real images with less severe occlusions, the second iter-

ation only slightly improves the performance of recovering

segmentation and appearance, since the model on the first

iteration has already produced recognizable shapes. But its

improvement on ICP indicates that the iterative process still

manages to refine the appearance for the recovered object.

Besides, based on our observation, the performance will de-

grade for more than 3 iterations. This is because, as the re-

sults cannot be further refined, the error of both stages will

be accumulated with more iterations.
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Synthetic images Real images Real vehicles in [26]

Model Prec. ↑ Recall ↑ F1 ↑ IoU ↑ L1 ↓ L2 ↓ Prec. ↑ Recall ↑ F1 ↑ IoU ↑ L1 ↓ L2 ↓ F1 ↑ IoU ↑ L1 ↓ L2 ↓

Mask R-CNN [16] 0.7803 0.7914 0.7653 0.6246 0.1174 0.1162 0.7066 0.9197 0.7953 0.6619 0.0731 0.0730 0.7577 0.6213 0.1281 0.1281

Deeplab [6] 0.8810 0.8779 0.8794 0.7937 0.0574 0.0559 0.8918 0.7508 0.8111 0.6976 0.0545 0.0544 0.7459 0.6213 0.1182 0.1182

SharpMask [36] 0.8286 0.9404 0.8751 0.7840 0.0646 0.0635 0.8025 0.9518 0.8669 0.7693 0.0463 0.0462 0.7903 0.6627 0.1509 0.1266

pix2pix [20] 0.8865 0.8906 0.8821 0.7932 0.0575 0.0557 0.8471 0.9055 0.8718 0.7763 0.0414 0.0407 0.7726 0.6429 0.1224 0.1218

SeGAN [12] 0.7931 0.9016 0.8367 0.7236 0.0846 0.0835 0.7477 0.9417 0.8303 0.7133 0.0603 0.0602 0.8085 0.6894 0.1123 0.1123

Ours (1st iter.) 0.9590 0.8229 0.8798 0.7939 0.0559 0.0535 0.9821 0.8176 0.8890 0.8067 0.0322 0.0314 0.8190 0.7113 0.0921 0.0904

Ours (2nd iter.) 0.9625 0.8416 0.8935 0.8137 0.0499 0.0480 0.9854 0.8148 0.8898 0.8066 0.0320 0.0314 0.8234 0.7133 0.0915 0.0893

Table 3: The comparison results of segmentation completion in Occluded Vehicle dataset. On each column, the top performer is marked

in red while the second one is marked in blue.

4.4. Results analysis

We compare our model with the state-of-the-art methods

in two tasks, i.e. segmentation completion and appearance

recovery. For the task of segmentation completion, we com-

pare with Mask R-CNN [16], Deeplab [6], SharpMask [36],

pix2pix [20], and SeGAN [12]. For appearance recovery,

we compare with Deepfill [50], Liu et al.[27], Pathak et

al. [35], pix2pix, and SeGAN. Specifically, Mask R-CNN

and Deeplab are the state-of-the-art segmentation models.

SharpMask has been proposed to complete and refine the

generated masks. As a supervised GAN model, pix2pix

can be applied in several applications, including segmen-

tation and image synthesis. Deepfill [50], [27], [35] are the

state-of-the-art inpainting methods and SeGAN claims to

achieve the state-of-the-art performance in both amodal seg-

mentation and appearace recovery. In experiments, deeplab,

pix2pix, and Mask R-CNN are trained from scratch, while

SharpMask, SeGAN, and the inpainting models are fine-

tuned on the pre-trained models that gains better perfor-

mance. Besides, we run our model for 1 iteration and 2

iterations respectively for comparison. The evaluations are

separately performed on the synthetic images and the real

images of our dataset.

Segmentation completion. Aside from OVD, we also se-

lect the real vehicles from [26] for evaluation. We demon-

strate the comparison results in Tab. 3. Generally, the re-

sult shows that our model with or without the iterative re-

finement outperforms the prior methods. As illustrated in

Fig. 7, our model can produce masks with smooth con-

tours and clear shapes of wheels and bodywork, due to the

involvement of the object discriminator and the auxiliary

3D model pool. The results of Deeplab are comparable to

ours, but the shapes of wheels and bodyworks are not clear.

Since SeGAN generates masks with the low-resolution (i.e.

58 × 58) and upsamples them to 256 × 256, their results

appear to be coarse. SharpMask and pix2pix can produce

more complete and finer masks than SeGAN, but their con-

tours are not smooth enough.

Appearance recovery. The comparison results are shown

in Tab. 4. Since Deepfill requires the image context without

vehicles, we provide the ground-truth segmentation mask

Mgt. For fair comparison, we also provide the ground-

Model Type Input L1 ↓ L2 ↓ ICP ↑ SS ↑

Deepfill [50] 0.0284 0.0107 0.5620 0.8295

Liu et al. [27] 0.0272 0.0074 0.6284 0.8672

Pathak et al. [35] 0.0207 0.0088 0.5708 0.8517

pix2pix [20] Syn. Mgt 0.0174 0.0060 0.7081 0.9410

SeGAN [12] 0.0181 0.0055 0.6662 0.9371

Ours (1st iter.) 0.0159 0.0038 0.7436 0.9458

Ours (2nd iter.) 0.0158 0.0039 0.7267 0.9447

pix2pix [20]

Syn. M

0.0455 0.0226 0.6337 0.8825

SeGAN [12] 0.0499 0.0224 0.6138 0.9165

Ours (1st iter.) 0.0364 0.0161 0.6676 0.9411

Ours (2nd iter.) 0.0341 0.0146 0.6765 0.9545

pix2pix [20]

Real M

0.0182 0.0074 0.7888 0.9165

SeGAN [12] 0.0256 0.0114 0.4984 0.9192

Ours (1st iter.) 0.0171 0.0063 0.8216 0.9292

Ours (2nd iter.) 0.0173 0.0063 0.8350 0.9356

Table 4: The comparison results of Appearance recovery for the

synthetic and real images. In order to perform fair comparisons,

we assign the ground-truth segmentation mask M
gt and the pre-

dicted recovered segmentation mask M as the inputs, respectively.

truth masks for the other methods as well. As observed,

our method demonstrates superior performance over oth-

ers. However, since the ground-truth masks are provided,

the iterative refinement does not show much effect and even

degrades the model performance a little. In addition, we

perform comparisons of appearance recovery for methods

given their predicted masks. These comparisons are per-

formed in both synthetic and real images. According to ICP

for evaluating the recovered vehicles and SS for evaluat-

ing the recovered image, our method generates more plau-

sible images. As shown in Fig. 8, only Deepfill is provided

with the ground-truth mask, so its recovered vehicles have

more complete shape but without much details. The other

comparison results are generated based on the input images

or their predicted masks. Due to our appearance recovery

network, we can paint more details on the invisible parts.

Taking the first and the third row in Fig. 8 as examples,

our model manages to paint a wheel on the proper position

in the image. More recovered examples from [11, 58] and

OVD are illustrated in Fig. 9.

Occluded vehicle tracking. We apply our method in four

real-world videos (Vid-1, Vid-2, Vid-3, Vid-4) to recover

the vehicles to be unoccluded. Then, we apply the same

tracker KCF [17] to track the vehicles from the original
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Input Deeplab [6] SharpMask [36] pix2pix [20] SeGAN [12] Ours Ground truth

Figure 7: Examples of the segmentation completion comparison.

Input Incomplete mask Deepfill [50] pix2pix [20] SeGAN [12] Ours Ground truth

Figure 8: Examples of the appearance recovery comparison.

Figure 9: Examples of recovered real occluded vehicles from

public datasets [11, 58] and our OVD dataset.

videos and the recovered videos, respectively. The results

are illustrated in Tab. 5 in terms of average pixel error (APE)

and average overlap (AO) which indicates that our recov-

ered videos benefit the vehicle tracking (see Fig. 1).

APE ↓ AO ↑
Original Recovered Original Recovered

Vid-1 34.60 8.32 0.6489 0.8072

Vid-2 26.30 15.83 0.7285 0.8040

Vid-3 87.71 21.51 0.3584 0.6755

Vid-4 7.29 5.67 0.7494 0.7497

Table 5: Tracking performance comparison for the original and

the recovered videos. The better number in comparison is in bold.

4.5. Conclusion

In this paper, we propose an iterative multi-task frame-

work to recover the segmentation mask and the appearance

for occluded vehicles. In particular, we propose two cou-

pled discriminators and a two-path structure with a shared

network and evaluate our method in a proposed dataset.

Moreover, we show our method can benefit the occluded

vehicle tracking.
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