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Translation is the fundamental process of protein synthesis and is catalysed by the
ribosome inallliving cells'. Here we use advances in cryo-electron tomography and
sub-tomogram analysis® to visualize the structural dynamics of translation inside the
bacterium Mycoplasma pneumoniae. To interpret the functional states in detail, we
first obtain a high-resolution in-cell average map of all translating ribosomes

and build an atomic model for the M. pneumoniae ribosome that reveals distinct
extensions of ribosomal proteins. Classification then resolves 13 ribosome states that
differ in their conformation and composition. These recapitulate major states that
were previously resolved in vitro, and reflect intermediates during active translation.
Onthe basis of these states, we animate translation elongation inside native cells and
show how antibiotics reshape the cellular translation landscapes. During translation
elongation, ribosomes often assemble in defined three-dimensional arrangements to
form polysomes*. By mapping the intracellular organization of translating ribosomes,

we show that their associationinto polysomes involves alocal coordination
mechanism thatis mediated by the ribosomal protein L9. We propose that an
extended conformation of L9 within polysomes mitigates collisions to facilitate
translation fidelity. Our work thus demonstrates the feasibility of visualizing
molecular processes at atomic detail inside cells.

Translation of genetic information through messenger RNAs (mRNAs)
into proteinsis performed by the ribosome, one of the primordial mac-
romolecular machinesin cells'. The ribosome consists of asmalland a
large subunit (30S and 50S in prokaryotes), which form the aminoacyl
(A), peptidyl (P) and exit (E) transfer RNA (tRNA) binding sites at their
interface. The translation process can be divided into four phases:
initiation, elongation, termination and recycling'®. During the elon-
gation phase, the ribosome undergoes a fundamental cycle to add
oneamino acid to the nascent peptide chain, which can be subdivided
intothree steps: decoding, peptidyl transfer and translocation. These
stepsinvolve structural changesin the ribosome thatinclude subunit
rotations, elongation factor association and tRNA accommodation®”.
Many intermediates during the elongation cycle have beenidentified on
the basis of structures derived by cryo-electron microscopy (cryo-EM)
and computational image classification®¢. Most available structures,
however, are of ribosomes that were isolated from model bacteriasuch
as Escherichia coliand Thermus thermophilus, and were often trapped
in specific states by antibiotics, GTP analogues or mutations™>". Thus,
adetailed structural description of the translation process within the
native cellular context is lacking. Although actively translating ribo-
somes have been visualized inside cells by cryo-electron tomogra-
phy (cryo-ET), the maps generated in previous studies were limited
to resolutions on the nanometre scale?’®?2, We have recently devel-
opedimage-processing algorithms for cryo-ET that make it possible to

resolve stalled ribosomes toresidue level inside the genome-reduced
bacterium M. pneumoniae®. Here, we use these technical advances
to perform large-scale structure classification and spatial analysis of
ribosomes, to visualize parts of the translation process in great detail
inside M. pneumoniae as a prokaryotic minimal cell model™.

In-cell structure of the M. pneumoniaeribosome

To investigate the structural details of the translation machinery,
we first obtained 3.5-A consensus maps by averaging all ribosomes
detected in cryo-electron tomograms of intact M. pneumoniae cells
(Fig.1a,b, Extended Data Fig. 1, Supplementary Table 1, Supplemen-
tary Discussion and Methods). Focused refinements on the 30S and
50S subunits improved the map quality and revealed well-resolved
ribosomal RNA (rRNA) bases and ribosomal protein amino acid side
chains (Fig.1b and Extended Data Fig.2a-c). The high-resolutionin-cell
consensus maps allowed us to build de novo an atomic model for the
M. pneumoniae ribosome (Extended Data Fig. 2d—-g and Methods).
The structure shows high similarity to other bacterial ribosomes, but
alsoreveals several new features (Fig. 1c and Extended Data Fig. 2d-g).
Specifically, 11 of the 52 ribosomal proteins in M. pneumoniae have
extended sequences compared to £. coli (Extended Data Fig. 3a and
Supplementary Discussion). Most of these extensions are predicted
to be disordered, but those of ribosomal proteins S6, L22 and L29
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Fig.1|Ribosomestructurein M. pneumoniaecells. a, Adenoised
tomographicslice of aM. pneumoniae cell. AO, attachment organelle; PM,
plasmamembrane. Examples of ribosomes are circled. The representative
tomogram (selected from 15) was acquired with a Volta phase plate for better
visualization of the cellular morphology. Similarimaging conditions, excluding
theuse ofaphase plate, were used for the acquisition of all tomograms for

form secondary structures and were built in the model (Fig. 1c and
Extended Data Figs. 2d-e and 3a). We found such extensions to be
common throughout the bacterial kingdom (Extended Data Fig. 3b,
Supplementary Discussion and Supplementary Table 2), possibly rep-
resenting ribosome diversity inadaptation to different environments
and lifestyles®. Although the functions of these extensions remain
largely elusive, their disruption affects cellular fitness or survivalin M.
pneumoniae* (Supplementary Discussion). Thus, the high-resolution
ribosome map and the atomic model derived from intact M. pneumo-
niae provide the basis to investigate in detail the conformational and
compositional changes of ribosomes during translation inside cells.

Structural dynamics of translationin cells

Toanalyse the structural changes that are associated with the transla-
tion processinside cells, we performed computational classification of
101,696 ribosomes from 356 tomograms of native cells, and obtained 13
distinct ribosome classes (Extended DataFig. 4, Supplementary Table 3
and Methods). Ten classes determined at resolutions ranging from 4
to10 A were assigned to the translation elongation phase on the basis
of elongation factor and tRNAs binding to the ribosome (Fig. 2a and
Extended Data Figs. 4-7). The remaining three classes represent 70S
with asingle P/E-site tRNA, 50S incomplex with the ribosomerecycling
factor, and free 50S subunits (Extended Data Figs. 4-7 and Supplemen-
tary Discussion). The ten classes within the elongation phase account
for 70% of the detected ribosomes, consistent with the expectation
that most ribosomes inside living cells are engaged in the elongation
phase, whichlasts considerably longer than theinitiation, termination
and recycling phases®?.

Theidentified elongation classes can be ordered to reconstruct the
translation elongation cycle'’. By flexible fitting of our M. pneumoniae
ribosome atomic model into the classified maps (Methods and Sup-
plementary Table 3), we obtained pseudo-atomic models that delineate
conformational and compositional changes of the ribosome complex,
including rotations of 30S body and head, coordination of elongation
factors, movement of tRNAs through the A-P-E sites and dynamics of
the L1stalk (Fig. 2, Extended DataFig.7a-jand Supplementary Videos 1
and 2). The number of ribosomes within each of the classes provides
therelative abundance of translation elongation intermediates, which
together reflect asteady state distribution determined by their relative
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rates of formation and depletioninside the cells (Fig. 2a and Extended
Data Fig. 4a). The classic, non-rotated 'A, P' state was the most popu-
lated and determined at the highest resolution, showing clear density
for mRNA, tRNAs and the nascent peptide (Fig. 2b). In the following
states, we observed the oscillation of A-and P-site tRNAs into the hybrid
A/Pand P/E state, coupled with 30S subunit rotations and L1stalk move-
ment (Fig. 2a,c,d and Extended Data Fig. 7a-j), consistent with in vitro
studies®®%122630_Along this trajectory, we also determined a partial
hybrid 'A*, P/E' state with rotated 30S and deacyl-tRNA in the hybrid
P/E site, but with only marginally relocated peptidyl-tRNAin the Asite
(Fig.2a,d and Extended Data Fig. 8a), similar to a previously reported
pre-translocational H2* state®'*?, When viewed in the context of this
trajectory, the high enrichment of the 'A, P' state could suggest that
inter-subunit rotation represents a rate-limiting step for translation
elongation in M. pneumoniae. However, in view of the entirety of the
elongation cycle, processive inter-subunit rotation leading to effi-
cienttranslocationrequiresthe binding of the elongation factor EF-G.
Notably, EF-G was found to bind to the ribosome in either the partial
hybrid or the full hybrid states (Extended Data Fig. 8b-m). EF-Gin the
partial hybrid state (class 6e) isless extended and its domain IV does not
overlap with the A site compared to the full hybrid state (Extended Data
Fig. 8b-h). This EF-G-bound partial hybrid state therefore resembles
early translocation intermediates before phosphate release®* . In the
following full hybrid state (class 7), domain IV of EF-G extends about
20 A towards the A site, owing to both the rotation of entire EF-G and
its inter-domain rearrangement (Fig. 2c and Extended Data Fig. 8f).
Class 8 next shows areverse rotation of the 30S body, the largest mag-
nitude for 30S head swivel, the fully extended EF-G and the chimeric
'ap/P, pe/E' tRNAs (Fig. 2c,d and Extended Data Fig. 8g, j), indicating
thatitis alate translocation intermediate®®**¢%, We thus demonstrate
the existence of continual intermediates from early to late translo-
cation stages during active translation elongation inside cells. Two
EF-Tu-associated structures were also determined, with and without
E-site tRNA (Fig. 2aand Extended DataFig. 7c,d). This suggests that the
binding of EF-TustRNA to the ribosome and the disassociation of E-site
tRNA areindependent of each other. The 'P, E' class has arelatively low
abundance, which suggests that the E-site tRNA is not stable and tends
to disassociate quickly after translocation. This is in agreement with
previous single-molecule fluorescence studies showing rapid release
of the E-site tRNA**?, and helps to resolve along-standing controversy
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Fig.2|Ribosome classification reconstructs the translationelongation
cycle.a, Ten70S structures determined inside M. pneumoniae cells represent
translation elongationintermediate states, which are characterized by the
binding of different elongation factors (EFs) and tRNAs. The frequencies of
occurrence for differentintermediates are calculated from the classified
particlenumbers (Extended DataFig.4). b, Densities for mRNA, tRNAs and the

over its disassociation time point*'***, In summary, these results reca-
pitulate major steps in translation elongation that have been defined
by controlledinvitro studies and reconstruct the structural dynamics
ofthe elongation cyclesinside cells, highlighting the possible various
paths of the reaction catalysed by the ribosome complex. Furthermore,
with these results, a probability map for the occurrence of intermedi-
ate states can be derived to illustrate a putative energy landscape of
translation elongation in cells. Energy landscapes of translation are
suggested to be rugged®'2***, depending on factors such as Mg con-
centrations®*¥, the presence of EF-G***® and temperature®. In M. pneu-
moniae, the intracellular concentrations of ribosomes, translation
elongation factors and substrates can be up to ten times lower than
those in E. coli (Supplementary Discussion). It is therefore possible
thatthe energy landscapes of translation vary for different organisms,
cell types and conditions. Applying the analysis introduced here to
other cell types and conditions can deepen our understanding of the
translation process within the native cellular context.

Antibiotics alter translation landscapes

The ribosome is one of the most important targets for antibiotics,
many of which are known to stall translation by stabilizing certain

30S body 30S head L1 stalk
rotation (°) swivel (°) opening (A)
nascent peptide chain are well-resolved in the most-populated ‘A, P' state.
¢, Trajectories of the elongation factors EF-Tu and EF-G and the A-, P-and E-site
tRNAs along translation elongation. d, Major conformational changes of the
ribosome along the elongation trajectory:30S body rotation, 30S head swivel
and L1stalk opening.

intermediates in the process®. To investigate the effects of antibiot-
ics on the cellular translation machinery, we analysed ribosomes in
cellsthat were treated for ashort time (15-20 min; Methods) with two
representative ribosome-targeting antibiotics: chloramphenicol
(Cm), which binds to the peptidyl transfer centre in the 50S subunit
and inhibits peptide bond formation*®*; and spectinomycin (Spc),
which binds to the 30S neck and blocks translocation'*?**2, Qverall, our
sub-tomogram analysis of antibiotic-treated cells resultsin17 ribosome
maps, and shows that translation landscapes are markedly reshaped by
different antibiotics (Fig. 3a, Extended Data Figs. 9-11, Supplementary
Tables 4-6 and Supplementary Discussion).

In Cm-treated cells, 72% of 70S ribosomes are trapped in the 'A, P’
state (class 4), owing to the inhibition of peptidyl transfer® (Fig. 3a-d,
Extended DataFig. 9 and Supplementary Table 4). The Cm molecule was
resolved inits canonical binding site*>* (Extended Data Fig. 9d,g). Of
note, 28% of ribosomes were found in several other elongation states,
either before or following the major 'A, P' state (Fig. 3a and Extended
Data Fig. 9). The existence of an EF-Tu-tRNA-bound state (class 3) is
reminiscent of the effects of other antibiotics that inhibit peptidyl
transfer in asimilar manner*™*,

Spcis suggested to inhibit translocation by blocking head swivel
of the 30S subunit**?***2, We found that 67.5% of 70S ribosomes were
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Fig.3|Antibioticsinduce distinct translation elongationlandscapesin
cells. a, Distribution of translation elongationintermediates in native
untreated cells, and in cells treated with three different antibiotics. Bar and
whiskersindicate meanands.d.for each classacrossall cellsin the different
treatment groups: untreated (n =356 cells); +Cm, chloramphenicol-treated
(n=65cells); +Spc, spectinomycin-treated (n =70 cells); and +PUM,
pseudouridimycin-treated (n = 86 cells). b, Ribosomes in Spc-treated cells are
largely stalled in the 'EF-G, A/P*F¢, P/E'state. ¢, The Spc molecule (magenta) is

stalled inthe 'EF-G, A/PS", P/E' statein Spc-treated cells, a state similar
to the pre-translocational 'EF-G, A/P, P/E' state (class 7) in untreated
cells (Fig. 3a-d, Extended Data Fig. 10 and Supplementary Table 5).
The Spc molecule density is clearly visible near helix 34 within the
30S neck region (Fig. 3b,c and Extended Data Fig. 10d,g), consistent
with its reported binding site'**2. These results show that Spcinhibits
translocation by impeding the dynamics of the 30S subunit. Similar to
Cm, ribosomesin three additional elongation states could be detected
with lower frequencies (Fig. 3a and Extended Data Fig. 10e,f).

Perturbation of other molecular pathways that are functionally
coupled to translation in bacterial cells also affects the translation
landscape; RNA polymerase stalled by pseudouridimycin (PUM) can
physically block mRNA translocation in the ribosome that collides
withit during transcription-translation coupling?. Consistently, 59.5%
of 70S ribosomes in PUM-treated cells were found in the 'EF-G, A/
P""™ P/E' state (Fig. 3a, Extended Data Fig. 11 and Supplementary
Table 6), which resembles the pre-translocational 'EF-G, A/P, P/E'state
inuntreated cells and the stalled 'EF-G, A/P", P/E' state in Spc-treated
cells (Fig.3d). Our finding that physically obstructing mRNA transloca-
tion by a PUM-stalled RNA polymerase and chemically impeding 30S
head dynamics by Spclead to similar structures further confirms that
mRNA translocation and 30S rotations are directly coupled.

The observation that treatment with antibiotics resulted in minor
states that are not expected from their specific binding prompted us to
investigate possible cell-to-cell variability in response to the antibiotics.

208 | Nature | Vol 610 | 6 October 2022

T m‘mﬁmﬂ%ﬂ

Ribosome classes in each cell (%)

+PUM:
Untreated: EF-G, A/P, P/E

o +PUM +Spc: EF-G, A/PSPe, P/E

well-resolved and builtin the 'EF-G, A/P%¢, P/E' ribosome model. Itis
surrounded by several 16§ rRNA bases and loop 2 of ribosomal protein S5near
the30S neck. d, The major state in Spc-treated cellsis similar to the 'EF-G, A/
PP P/E' classin PUM-treated cells (light blue) and the 'EF-G, A/P, P/E' classin
untreated cells (light grey), differing only in the position of the A/P-site tRNA
onthe 50Sside. e, Single-cell clustering analysis on the basis of the translation
elongation states of 577 individual cells under native and different antibiotic
treatment conditions.

To this end, we performed clustering analysis on the basis of transla-
tion elongation profilesin 577 tomograms of single cells under native
and antibiotic treatment conditions. The analysis resulted in four
major clusters in accordance with the four treatment groups, dem-
onstrating small cell-to-cell variability within each cluster (Fig. 3e).
Thus, our results show that the translation landscapesin cells are glob-
ally reshaped by small molecules specifically binding to ribosomes, as
well as to other targets (Supplementary Discussion and Supplementary
Table 8). The presence of minor elongation states under antibiotic
treatment is reminiscent of previous studies that have shown ongoing
slowtranslationin antibiotic-treated cells and context-dependent inhi-
bition*¢*8, For example, Cminhibitionis affected by specific residues
of the nascent peptide***”. Most antibiotics, including Cm and Spc,
are known to inhibit cell growth but do not immediately kill the cell®.
Itis possible that the reshaped translation landscapes by antibiotics
lead to animbalance in protein synthesis, which in the long run has
detrimental consequences for the cell.

Spatial and functional organization of translation

Finally, we investigated the spatial organization of active translation
innative M. pneumoniae cells (Fig.4aand Supplementary Discussion).
Itis known that ribosomes translating on the same mRNA can assemble
closely in space to form polysomes*?. We defined polysomes using a
distance cut-off of 7 nm from the mRNA exit site to the mRNA entry site



Fig. 4 |Spatial and functional organization of ribosomesin native cells.

a, Three-dimensional map of ribosomesinarepresentative native untreated
cell (selected from 356). Top, x-y view; bottom, orthogonal view. The 70S
intermediates within the translation elongation cycle (classes1-8, asin Fig. 2a),
and additional classes (classes 11-13 and 50-51as detailed in Extended Data
Fig.4) are coloured as indicated in the colour scheme (inset). 50S: light grey.

b, 'top-back’ (t-b) and 'top-top' (t-t) assembly patterns of adjacent ribosomes in
polysomes.c,d, Representative long polysomes of loose (c) and tight (d)
topologies, with the corresponding putative mRNA paths and nascent chain
vectors shownunderneath (not drawntoscale). e, Distribution of polysome
lengths. f, Distribution of elongation states in polysomes compared to all
ribosomes and mono-ribosomes. Bars and whiskers are mean ands.d. across
356 tomograms of untreated cells (n =356 cells). Highlighted are states for

between neighbouring ribosomes (Extended DataFig.12a-e, Methods
and Supplementary Discussion). The detected polysomes account for
26.2% of all 70S ribosomes, and two arrangement patterns between
neighbouring ribosomes canbe defined (Fig.4b-e and Supplementary
Discussion): the so-called 'top-top' (t-t; 78.5%, mRNA exit-to-entry
distance 4.2 +1.4 nm) and 'top-back’ (t-b; 21.5%, 5.4 + 1.5 nm) configu-
rations*. We also observed various topologies for long polysomes,
ranging from loose assembly to tight packing with helix-like configu-
rations****° (Fig. 4c,d).

Whether translation elongation is synchronized or coordinated
within polysomes is a long-standing question*'**°, To address this,
we firstexamined whether the distribution of elongation states differs
between the total ribosome population and polysomes. We found that
although most states occurred equally frequently in both populations,
the fractions of two states before EF-G binding (class 5, 'A*, P/E' and
class 6a,'A/P, P/E') are more frequent in polysomes (Fig. 4f). We next
calculated the frequencies of state pairs between two adjacent ribo-
somes (preceding versus following) and compared them to theoretical
pair frequencies calculated from the bulk distribution (Extended Data
Fig.13a-c). This comparison revealed that the occurrence of states
among preceding and following ribosomes is not symmetric: following
ribosomes more frequently populate states that require elongation fac-
torbindingto proceed to the next state (classes1,2a,5and 6a; Fig. 4g).
We statistically validated such differences with a permutation test, and

(1]
=h

8716 1
& 12
c
g 8 2a
&) 4
0 2e
2 3 4 5 6-13
Polysome length (ribosomes) 3
[
9 - ) 8
Following ribosome (i+1) state T o4
1 2a2% 3 4 5 6abe 7 8 o
o £
2 _ 9o
© T @ 5
] S 8
— =
= o
) o 6a
£ 5]
<] ES]
@ =
Qo < 6e
o
£ E 7 1 All ribosomes
3 g = Monosomes
§ P} 8 B Polysomes
o

0 10 20 30 40 50
Class distribution (%)

which the fractionin polysomes differs by more than 50% compared to all
ribosomes or mono-ribosomes. Asterisksindicate false discovery rate
(FDR)-adjusted Pvalue (Pgpg) < 0.01 (two-sided Wilcoxon rank sum test).

Pz values for class 5: 6.44 x 1072 (polysome versus all) and 2.76 x 107

(polysome versus monosome); class 6a:3.06 x 10 *and1.44 x 107,
respectively. g, Occurrence frequencies of elongation state pairs ofadjacent
ribosomesin polysomes normalized to the theoretical probability of random
pairs. States thatrequire elongation factor binding to proceed are 1, 2a, 5and
6a(inbold). h, Map of adi-ribosome within polysomes shows the intervening
mRNA density (inset: blue arrowhead) and the extended L9 of the preceding
ribosome (i). The C-terminal domain of extended L9 caninterfere with
elongation factor (EF) binding to the following ribosome (i+1).

further show that the asymmetry between preceding and following
ribosomes increases as the distance threshold used to define poly-
somes decreases (Extended Data Fig.13d-h, Methods and Supplemen-
tary Discussion). This suggests that local coordination of translation
elongation between adjacent ribosomes within the polysomeis likely
tobe achieved by obstructing elongation factor binding thatisrequired
for the following ribosome to proceed to the next elongation state.
To investigate whether local coordination arises from structures
specific to ribosomes engaged in polysomes, we performed struc-
tural classification of ribosome pairs to better resolve the ribo-
some-ribosome interface (Fig. 4h and Extended Data Fig. 12j,k).
We found that within the interface of tightly packed polysomes,
the ribosomal protein L9 of the preceding ribosome adopts an
extended conformation and its C-terminal domain protrudesinto the
elongation-factor-binding site of the following ribosome (Fig. 4h and
Extended Data Fig.12j-m). Independent focused classification on L9
ofallribosomes showed thatit mainly (68.9%) adopts a flat conforma-
tionon theribosome surface, whereasitis extendedin20.2% of 70S
ribosomes (Extended Data Fig.12n). Ribosomes with the extended L9
largely overlap with the ribosomes detected as polysomes, especially
those with a tighter 't-t' arrangement (Extended Data Fig. 12n-p).
These results suggest that L9 tends to have a flat conformation in
single ribosomes and to adopt the extended conformation within
tightly assembled polysomes. This clarifies previous observations
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of L9 being extended in X-ray crystallography structures in which
the crystal packing recapitulates configurations of compacted poly-
somes, but being found in the flat conformation in cryo-EM struc-
tures of isolated ribosomes®.. Although L9 has been reported to be
non-essential, its mutations can cause increased frameshifting and
ribosome compaction by one codon®**?, We therefore propose that
within tightly assembled polysomes, L9 of one ribosome can adopt
anextended conformation that sterically interferes with elongation
factor binding to the following ribosome. This local coordination
mechanism can buffer adjacent ribosomes and help to maintain
translation fidelity by avoiding direct collision within polysomes
during active translation elongation.

Conclusions

Our study demonstrates the potential of cryo-ET in shedding light on
dynamic processes that are performed by macromolecular machines
inliving cells at a high level of detail. The analysis captures the struc-
turaland functional diversity of actively translating ribosomes inside a
genome-reduced bacterium. The translation elongation cycle retrieved
fromthe cellular cryo-ET datarecapitulates and complements current
mechanistic models of translation that are derived from controlled
in vitro studies. The quantitative structural profiling of the cellular
translation machinery presented hereimproves our understanding of
protein biogenesis by providing distribution probabilities of transla-
tion intermediates. It also reveals how the translation machinery that
functionsas aninterconnected systemresponds to different antibiotic
perturbations on the single-celllevel. Our investigation of polysomes
further illustrates the advantage of in-cell structural biology, which
canrelate functional states of a molecular machine to its molecular
sociology and cellular context, leading to the discovery of anelongation
coordination mechanism mediated by L9. The approaches developed
here establish a framework to analyse structural dynamics of cellular
processesin the future and will contribute to the construction of func-
tional cell models at atomic detail.
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Methods

Cryo-ET sample preparation and data collection

The M. pneumoniae cultivation, sample preparation and data collection
were described previously®. The three datasets of native untreated,
Cm-treated and PUM-treated cells were re-processed in Warp and M
1.0.7 (the alpha versions that were officially released as v.1.0.9.)>**. A
small dataset of 15 tomograms acquired with Volta phase plate was
processed with the denoising network in Warp 1.0.9 for visualization
purposes only (as shownin Fig. 1a).

Adataset of spectinomycin-treated cells was collected following the
same procedure as before?. In brief, spectinomycin (Sigma-Aldrich)
at a final concentration of 0.4 mg ml™ was added into the culture
medium, 15-20 min before plunge-freezing. Tilt-series collection
with the dose-symmetric scheme® was performed on a Titan Krios
transmission electron microscope equipped withaK3 camera (Gatan)
using SerialEM 3.8 (ref. >®) with the following parameters: magnification
81,000x, pixel size 1.053 A, tilt range —~60° to 60° with 3° increment,
total dose120-140 e” A2

In total, 356 native untreated, 65 Cm-treated, 86 PUM-treated and
70Spc-treated cellular tomograms were analysed in this work. Details
of cryo-EM data collection, refinement and validation statistics are
provided in Supplementary Tables1and 3-6.

Image processing, ribosome template matching and map
refinement

Pre-processing (motion correction, CTF estimation, dose filtering and
tilt-series sorting) was performedin Warp 1.0.9 (ref.). For the untreated,
Cm-treated and PUM-treated datasets, the ribosome coordinates
were adopted from previous particle picking?. For the Spc-treated
dataset, template matching was performed in PyTom?, followed by
computational classification in RELION 3.0 (refs.’®* to exclude false
positives, without manual cleaning. Intotal, 109,990 untreated, 21,299
Cm-treated, 23,014 PUM-treated and 13,418 Spc-treated ribosome
sub-tomograms were reconstructed in Warp.

Three-dimensional (3D) refinement and classification were per-
formed in RELION 3.0 (refs. ***°). We then used the software M (v.1.0.9)
to perform multi-particle refinement of the tilt-series and refine the
average map>. Refinement of both geometric (image and volume defor-
mation) and CTF parameters was done for five rounds in a sequential
manner. After Mrefinement onthe 70S, we performed focused refine-
mentonthe30S and 50S subunits separately toimprove the local map
quality. Fourier shell correlation (FSC) calculation between indepen-
dently refined random half subsets, local resolution estimation and
post-processing were done in M and RELION.

Atomic model building in high-resolution ribosome maps

Atomic models for the 30S and 50S subunits were built de novo using
maps from focused refinement of Cm-treated ribosomes reported in
our previous work®, which were deposited in the Electron Microscopy
Data Bank (EMDB) under the accession codes EMD-11998 and EMD-
11999. Homology models for M. pneumoniaeribosomal proteins were
generated using the SWISS-MODEL®° online server (https://swissmodel.
expasy.org/; accessed April 2020), with a Bacillus subtilis ribosome (Pro-
tein Data Bank (PDB) 3J9W) as the template, except for the ribosomal
proteins L9 (PDB1DIVand 4V63),L10 (PDB1ZAV) and S21 (PDB 5MM)).
rRNA sequences (REFSEQNC_000912) were aligned to the E. colirRNA
(PDB 4YBB) using the SINA online server®. ModeRNA® was used to
build homology models for rRNAs on the basis of the alignment, with
PDB 4YBB as the template. Homology models were rigid-body-fitted
into the cryo-ET densities using Chimera®, followed by iterative refine-
ment using PHENIX real-space refinement®* and manual adjustmentin
Coot®. Theribosomal proteins L9, L10 and L11 were only fitted as rigid
bodies into the map owing to the less-resolved local density. The flat
conformation of L9 that resides on the ribosome surface was found to

be predominant according to the focused classification (see Extended
DataFig.12n) and was thus builtin the model. Sequence extensions for
ribosomal proteins S6, L22 and L29 were built de novo. Models were
validated using MolProbity®. FSC curves between the model and the
map were also calculated for validation®’.

Bioinformatic analysis of ribosomal proteins

Bioinformatic sequence analysis of ribosomal proteins in M. pneumo-
niae and the comparison with E. coli homologues were performed as
follows, with the different steps described in detail below: (i) protein
sequences and RefSeq genome annotation for the M. pneumoniae strain
M129 (ATCC 29342) were downloaded from NCBI; (ii) protein sequences
were also annotated with eggNOG-mapper to obtain COG (Clusters
of Orthologous Groups) IDs*%; (iii) for the annotated ribosomal pro-
teins, the corresponding COG multiple sequence alignments from
representative bacterial species were downloaded from the eggNOG
database®; (iv) as M. pneumoniae M129 is not among the representative
species, its protein sequences were added to the multiple sequence
alignments with MAFFT software™; (v) for each COG multiple sequence
alignment, the number of amino acidsin every representative species
(including M. pneumoniae M129) present at positions before the N ter-
minus and after the C terminus positions of E. coli K-12 substr. MG1655
were calculated; (vi) the presence of N- or C-terminus extensions longer
than 20 amino acids wasillustrated iniTOL using NCBI taxonomy tree
as the basis’™; (vii) for all COGs corresponding to proteins with N- or
C-terminus extensions in M. pneumoniae that are longer than 20 amino
acids, protein disorder and secondary structure were analysed for
all representative strains. The presence of cross-links or transposon
insertions was also analysed.

RefSeq genome annotation and protein sequences for the M. pneu-
moniaestrain M129 (ATCC 29342) were downloaded from NCBI for the
M. pneumoniae M129 GCF_000027345.1 assembly from https://ftp.
ncbi.nlm.nih.gov/genomes/all/GCF/000/027/345/GCF_000027345.1_
ASM2734v1/ (accessed 21 April 2021). The file GCF_000027345.1_
ASM2734v1_genomic.gff was used to identify ribosomal proteins
annotated by RefSeq. The file GCF_000027345.1 ASM2734v1_protein.
faa with protein sequences in FASTA format was used as input to the
online tool eggNOG-mapper v2, which uses precomputed eggNOG v5.0
clustersand phylogenies for fast orthology assignment®’2, The anno-
tation tables by RefSeq and eggNOG-mapper were merged by protein
ID. In total, 52 ribosomal proteins were annotated and mapped to 51
unique COGs®®. Two proteins, WP_010874426.1 and WP_010874827.1,
were mapped to the same COG0267 corresponding to the ribosomal
protein L33. Multiple sequence alignments for the annotated proteins
fromrepresentative bacterial species were downloaded from theegg-
NOG v5.0 database®. For each of the 51 COG IDs mapping to ribosomal
proteinsin M. pneumoniae, the trimmed alignments were downloaded
from http://eggnogapi5.embl.de/nog_data/text/trimmed_alg/COG_ID
('COG_ID'inthe urlshould be changed to the corresponding COGID). As
M. pneumoniae M129 is not among the imported representative spe-
cies, its sequences were added to the multiple sequence alignments.
The sequence of each of the proteins was saved in a separate fasta
file, and the MAFFT software v.7.475 was used in the add mode for
each alignment as follows: mafft --reorder --add protein.fasta --auto
trimmed_alg_COG.fa>output file (ref. ”°). For COG0627, the protein
WP_010874827.1 from M. pneumoniae was used.

For each of the ribosomal COGs, the amino acid positions of the pro-
tein fromthe E. colistrain K-12 substr. MG1655 was taken as a reference,
and for each protein from representative species (including M. pneumo-
niaeM129), the number of amino acids before the N-terminus and after
the C-terminus locationsin E. coliwas calculated. In total, 11 ribosomal
proteins that had N- or C-terminus extensions of more than 20 amino
acidsin M. pneumoniaeM129 were considered to have extensions (2 pro-
teins with N-terminus extensions and 9 proteins with C-terminus exten-
sions). Ribosomal protein S3 (COG0092), which has a 17-amino-acid
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extension at the C terminus, was also retained for further analysis.
NCBI bacterial taxonomy file new_taxdump.zip was downloaded from
https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/ (version
on 24 April 2021). The file names.dmp was used to map NCBI IDs to
taxonomy names. Tree was reconstructed from the file taxidlineage.
dmpinPythonv.3.7.7 with ETE3 Toolkit v.3.1.2 (ref. ). EggNOG protein
IDs containing NCBI species IDs were directly mapped to the NCBI
tree nodes. The presence of ribosomal protein extensions was saved
astablesand converted toiTOL format with table2itol utility (https://
github.com/mgoeker/table2itol) in R v.3.6.1. The tree was visualized
withiTOL v.6 (ref. ™).

Sequences for the 11 ribosomal proteins annotated with extensions
inM. pneumoniae, and their orthologues in other species, were further
analysed in terms of protein disorder and secondary structures. For
disorder prediction, all protein sequences from the multiple sequence
alignment files were saved in FASTA format without gaps. The I[UPred2A
toolin Pythonv.3.7.7 was run with the input parameter 'long' for each
proteinsequence™. The number of disordered amino acids and disorder
lengthin extended regions were calculated on the basis of the position
of the extended region relative to £. coli,and an IlUPred2A score of 0.5
was used asthe disorder threshold. The JPred prediction tool” was used
to predict the secondary structure of each protein using the jpredapi
utility and JPred-big-batch-submission utility for alarge number of sub-
missions (https://github.com/fabianegli/JPred-big-batch-submission).
The number of helicesin extended regions was calculated on the basis
ofthe position of the extended region relative to E. coli protein.

Forthe 11 ribosomal proteins with extensions in M. pneumoniae, the
positions of cross-links linking to the same protein or adifferent protein
were mapped accordingto theamino acid cross-link positions reported
previously® To analyse transposon insertions in M. pneumoniae ribo-
somal proteins with extensions, the supplementary materials from a
previous publication? were used. All the files in the 'Supplementary-
Datal_fastqins_processed.zip folder' (files with extension'.qins' but not
' fw.qins'or'_rv.qins') were concatenated to obtain alist of nucleotide
coordinates of transposon insertions in the sequence of M. pneumoniae
M129 NC_000912.1. The transposon insertion locations in the 11 ribo-
somal proteins were selected on the basis of their genomic locations
as per RefSeq annotations (GCF_000027345.1_ ASM2734v1_genomic.
gff). Nucleotide locations were converted to amino acid locations by
calculating the difference between each transposon location and the
start coordinate of the corresponding gene and dividing the number
of nucleotides by three. All datawere mapped to the protein sequences
to derive Extended Data Fig. 3.

Sub-tomogram classification of the translation states of
ribosomes

Maximume-likelihood 3D classification” was performed in RELION
3.0 (refs.%3*%) with the re-extracted ribosome sub-tomograms after M
refinement. A hierarchical and exhaustive classification strategy (Sup-
plementary Discussion) with at least three tiers was used to handle the
heterogeneity in the native untreated dataset, whichis described here
indetailandillustrated in Extended Data Figs. 4 and 5. A similar proce-
durewasapplied for all antibiotics-treated datasets, and is detailed in
Extended Data Figs. 9-11.

In the first tier, 109,990 sub-tomograms were classified into 70S
and free 50S with a global spherical mask (320-A diameter). The 24,157
free 50S were further classified into two classes, with alocal spherical
mask focusing on the ribosome recycling factor binding site. Before
extensive 70S classification, structural heterogeneity was evaluated
by visualinspection, multibody refinement and test classification runs
in RELION. Classification set-ups were extensively tested, including
different masks (global 70S mask, local 30S mask, spherical tRNA path
mask, solvent tRNA path mask, spherical EF mask, solvent EF mask),
initial references (ribosome average, features-less sphere or none),
angular search options (global, local or without alignment) and RELION

optimization parameters (class numbers 2-16, T values 2-10, itera-
tions 25-40, limit resolution E-step 5-10 A). To avoid bias, we mostly
used asphere or other featureless shapes with soft edges as the mask.
Local spherical masks covering factors (elongation factors and/or
tRNAs) generally provided more consistent and stable classification
results than those obtained when using larger masks for the untreated
data. The class number was made higher than the number of distinct
structures that could be retained in one classification job and similar
resulting classes were grouped.

Inthe second tier, the 77,539 identified 70S ribosomes were further
classified with a local mask (Extended Data Fig. 4a, mask I) focusing
on the tRNA path region, roughly covering the A, P and E sites. This
resulted in four major classes with different tRNA occupancies: 'P, E',
'a, P/E','P'and 'A, P'. In the following rounds, we could further classify
the'a, P/E' classinto'A*, P/E'and 'A/P, P/E'.In addition, a 70S class with
only one hybrid 'P/E' tRNA was classified. Two of the resulting classes
were notinterpretable: 2,150 particles with dim 30S density that were
poorly resolved and 1,484 particles with density near the P site that
does not resemble a tRNA.

In the third tier, focused classification with a local mask (Extended
DataFig.4a, maskIl) around the elongation factorand A/T tRNA binding
sites was carried out. For the previous class with 'P, E' tRNAs, further
classification resulted in 1,803 particles without additional density,
3,324 particles with EF-G (updated as 'EF-G, ap/P, pe/E') and 4,634 parti-
cleswith EF-Tu-tRNA. For the classes with partial and full hybrid tRNAs,
sub-classes with EF-G were obtained. For the class with only 'P' tRNA,
12,464 particles with additional EF-TustRNA were classified.

For eachclassificationstep, at least three parallel RELION classifica-
tionjobs with the same or slightly different parameters (either 30S mask
or spherical EF/tRNA mask, local angular search range, class number,
Tvalue) were carried out for comparison. The classification job with the
most stable result was selected and used for sorting sub-tomograms
(Extended Data Fig. 5a-g). After sorting, subsequent validation clas-
sification runs were performed for each sorted class to test whether
new structures emerge or whether particles were 'wrongly’ classified.
Misclassified particles were relocated to the corresponding class and
the validation runs were repeated until convergence. This approach
was performed for all classification steps. For each of the final classes,
refinement and post-processing were done in RELION. Further classi-
fication performed with the new refinement results as inputs did not
generate any new classes.

Model building and comparison of the ribosome translation
states

Tobuild models for the ribosome classes, the 30S and 50S models built
as described above were used as starting models for flexible fitting.
Homology models of EF-G and EF-Tu were generated by SWISS-MODEL
(https://swissmodel.expasy.org/; accessed April 2020) with PDB struc-
tures 4V7D and 4V5L as the template, respectively. For tRNA homol-
ogy models, thetRNAinanE. coliribosome structure (PDB4V7C) was
used as the template and mutated to the sequence of M. pneumoniae
Phe-tRNA (REFSEQNC_000912). The mRNA and nascent peptide were
built using PDB 3J9W as the template. The homology model of the ribo-
some recycling factor was built using PDB 1EH1 as the template. For each
class, the starting models were first rigid-body-fitted into the density
using Chimera and then flexible fitting was done using Namdinator” 7,
Validation was performed as described above.

For measuring 30S body rotations, structures of all classes were first
aligned to the 50S subunit and then the rotation angles were estimated
witha pivot point near nucleotide 11 of the 16S rRNA. With the perspec-
tive from the solvent side of the 30S subunit, positive numbers equal
counter-clockwise rotations and negative numbers equal clockwise
rotations. For measuring 30S head rotations, all class structures were
firstaligned to the 30S body and then the rotation angles were deter-
mined with the axis near the 30S neck. For both rotations, the angles
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inthe'A, P' class were defined as 0°. To describe the L1 dynamics, the
distance between the mass centre of the L1stalk (near nucleotide 2,181
ofthe 23SrRNA) and afixed point near the centre of the classical E site
(determined onthebasis of the 'P, E' class) was measured after aligning
all classes on the 50S subunit (excluding the L1 stalk).

Spatial analysis of ribosomes and polysomes

Spatial mapping of ribosomes within cellular tomograms was achieved
by projecting back the ribosome structures into the tomograms, with
coordinates determined by template matching and shifts and rotations
determined by RELION refinement. The projection was performed
using the TOM toolbox® after Euler angle format conversion, at four
times binning (voxel size 6.8 A). To calculate the ribosome concentra-
tion, we first estimated the cellular volume covered in the tomogram
and then divided the total number of detected ribosomes by the vol-
ume.

Detection of the polysomes was based on both position and orien-
tation information (Extended Data Fig. 12¢), using a custom script in
MATLAB 2016b. Itis noted that the annotated polysomes only refer to
those assembled closely in space and thus canbe detected on the basis
of their spatial proximity. The positions of mRNA entry and exit sites
forall 70S ribosomes were calculated on the basis of the rotations and
shifts determined during RELION refinement. The distances from the
mRNA exit site of one ribosome (defined as the preceding ribosome
i) to the mRNA entry sites of all neighbouring ribosomes (as poten-
tial following ribosomes i+1) were calculated. A distance threshold of
7 nm was used to define whether two ribosomes belong to the same
polysome. The calculation and polysome definition were done for all
70Sribosomes. Auniqueidentifier was assigned to each polysome, as
well as the sequential number for all ribosomes within the polysome.

The distribution of relative positions of adjacent ribosomes within
the polysome—that is, the position of the following ribosome (i+1)
relative to the preceding ribosome (i)—was analysed after normaliz-
ing the relative position vectors with rotations of the preceding ribo-
some determined from RELION refinement. The relative rotation of
the following ribosome to the preceding ribosome was represented as
three Euler angles (¢, 8, @ in XYZ system). Using the k-means clustering
functionin MATLAB 2016b, we determined two major arrangement
configurations for adjacent ribosomes within the polysome; that s,
how the following ribosome rotates relative to the preceding ribosome
(as shown in Extended Data Fig. 12f,g). These two configurations are
identical to the previously reported 'top-top’ (t-t) and 'top-back’ (t-b)
configurations®*, and the naming was adopted.

To further refine the ribosome-ribosome interface in polysomes,
RELION classification was performed with sub-tomograms extracted
withalarge box size that can accommodate two ribosomes. After refine-
mentonthepreceding ribosome (i), classification without refinement
was performed with a local mask focusing on the following ribosome
(i+1). Only ribosome pairs within tightly packed polysomes (5,083 pairs
from 5 di-ribosome classes; all with a't-t" arrangement and extended
L9 in between) resulted in average densities with both ribosomes
well resolved. Models for the resulting classes were generated with
rigid-body-fitting of the above described ribosome models and the
L9 homology model with the extended conformation (PDB 4V63).

Statistical analysis of translation elongation states in polysomes
To compare the experimental elongation state frequencies in poly-
somes with theoretical frequencies, the distributions of frequencies
of each elongation state calculated across 356 tomograms of the
untreated cells were compared between polysomes and all ribosomes,
and between polysomes and mono-ribosomes by calculating the fold
change between distribution medians. Statistical significance was
assessed with a two-sided Wilcoxon-Mann-Whitney test using the
ranksum functionin MATLAB 2019b. The theoretical frequency of each
ribosome pair was calculated as the product of the overall frequencies

of the ribosome classes for the preceding ribosome (i) and the fol-
lowing ribosome (i+1). Experimental polysome pair frequencies were
calculated by summarizing the numbers of all ribosome pairs engaged
inpolysomes, and dividing these numbers by the total number of pairs.
Experimental and theoretical pair frequencies were compared by cal-
culating the fold change per pair.

Permutation analysis was performed to test the significance of dif-
ferences between occurrence frequencies of the experimental pairs
compared to the theoretical pairs. The ribosome pair sequences in
polysomes were represented as amatrix with single polysomes as rows
and ribosome positions as columns, in which each matrix cell con-
tains the ribosome class representing its elongation state. Columns
with positions beyond each ribosome’s length were assigned to NaN
(not-a-number). All polysomes across all tomograms were combined
inone matrix (8,641 polysomesin total). For permutation analysis, all
elements of the polysome matrix were randomly shuffled for 10,000
times with the randperm function in MATLAB 2019b. For each row,
the elements were sorted so that the ribosome classes are in the front
columns followed by NaNs occurring in the same row after shuffling.
Rows with fewer than two ribosomes in the sequence were deleted.
Shuffled ribosome pair frequencies were calculated in the same way
as experimental pair frequencies. The permutation Pvalue for each
ribosome pair was calculated as the minimum between the number
of permutations in which the pair frequency was less or equal to the
experimentally observed frequency divided by the total number of
permutations, and the one minus this value. Permutation Pvalues were
adjusted for multiple hypotheses testing with the Benjamini-Hochberg
procedure using the mafdr functionin MATLAB 2019b with parameters
('bhfdr’, 'true’).

For polysome distance threshold analysis, matrices were created
from the full ribosome dataset by varying the distance threshold to
the nearest neighbour in the range from 3 to 10 nm. The distances for
polysome definition were calculated between the mRNA exit site of one
ribosome and the mRNA entry site of another ribosome as described
above. The fractions of elongation states in ribosome pairs were calcu-
lated as for the original ribosome set (with the threshold of 7 nm). For
each distance threshold and each ribosome class, the ratio between
the number of pairs in which the preceding ribosome has this class
and the number of pairsin which the following ribosome has this class
was calculated.

Single-cell clustering analysis
The distributions of 70S ribosome classes identified in the transla-
tion elongation phase for all four datasets (356 untreated cells, 65
Cm-treated cells, 70 Spc-treated cells and 86 PUM-treated cells) were
used for clustering analysis. As each tomogram covers most of one
cell, the sub-tomograms in each class could be further separated by
which cell they belong to. Classes in the antibiotic-treated cells were
assigned with the class identifiers according to the closest classes in
the untreated dataset. The percentages of different classes withineach
cell were calculated and these numbers were used as inputs for clus-
tering analysis. Hierarchical clustering analysis was done using the
clustergram functionin MATLAB 2016b.

Structure visualization, preparation for figures and videos were
donein Chimera® and ChimeraX®..

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Maps have been deposited in the EMDB under accession codes 13234,
13272,13273,13274,13275,13276,13277,13278,13279, 13280, 13281,
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13431,13432,13433,13434,13435,13436,13445,13446,13447,13448,
13449,13450, 13451, 13452,13287,13288 and 13289. Models have been
depositedinthe PDB under accessioncodes: 700C,700D, 7P6Z, 7PAH,
7PAl, 7PAJ, 7PAK, 7PAL, 7PAM, 7PAN, 7PAO, 7PAQ, 7PAR, 7PAS, 7PAT,
7PAU, 7PH9,7PHA, 7PHB, 7PHC, 7PI8, 7PI19, 7PIA, 7PIB, 7PIC, 7P10O, 7PIP,
7P1Q, 7PIR, 7PIS and 7PIT. Detailed information for all maps and models
generated in thisworkis provided in Supplementary Tables 1and 3-6.
Maps and atomic models used from previous studies were obtained
fromthe EMDB (11998 and 11999) and the PDB (3J9W, 1DIV, 4V63,1ZAV,
5MMJ, 4YBB, 4V7C, 4V7D, 4V5L and 1EH1).
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The codeand associated data for bioinformatics analysis of ribosomal
protein extensions (Extended Data Fig. 3) and statistical analysis of
polysome sequences (Fig. 4 and Extended Data Fig.13) are deposited at
GitHub (https://github.com/mszimmermann/mycoplasma_ribosome).
The MATLAB script for polysome annotation (Fig. 4 and Extended
Data Fig. 12) can be found at https://github.com/xueliang4906/poly-
some_detect.
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Extended DataFig.1| M. pneumoniaein-cellribosome maps. a, 70S
ribosome map determined from 77,539 sub-tomograms from 356 untreated
M. pneumoniae cells.b, Map coloured by local resolutions. 50S has the highest
localresolutions as it dominates the overall alignment. The relatively lower
localresolutions of the 30S indicate their high flexibility during active
translation. ¢, Fourier shell correlation (FSC) curves for global 70S and focused
30Srefinement, and the reported resolution value at FSC = 0.143. The Nyquist
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Extended DataFig. 2| Structural features of the M. pneumoniaeribosome.
a,b, Examples of regions of the atomic model fitted into the density map for
rRNAs (a) and proteins (b). ¢, Densities corresponding toions are also
observed. d, Extensions of ribosomal proteins S6,L22 and L29 form secondary
structures (between arrowheads) that were clearly resolved in the map. e, The
70S model showing ribosomal proteins with sequence extensions (dark green).
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Extended DataFig. 5| Validation of ribosome detection and classification.
a, Mask Ifor focused classification on tRNA pathregion. b, Arepresentative
RELION classificationjob with mask 1. Eachlineindicates the changein particle
numbersinone class over 25 iterations. Classes that show the same structure
were grouped according to the tRNA occupancy (‘a, P/E','P,E','P','A,P")."a, P/E'
contains heterogeneous density around the Asite. ¢, Results of the
classificationjob asshowninb, and of three additional parallel jobs. d, Results
of following classification jobs that further classify the 'a, P/E' class into 'A%, P/E'
and'A/P,P/E'.e, Mask I for focused classification on elongation factor (EF) and
A/TtRNAsites. f, Changesin particlenumbers over iterationsina
representative classification job with the maskI. g, Results of parallel focused
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classification jobs with mask 1. h, Distribution of the ribosome classes against
template matching cross-correlation scores used for ribosome localization.
Foreach ofthe 356 tomograms of untreated cells, the 400 highest scoring hits
were extracted and ranked. Obvious false positives were manually excluded
first. Additional false positives were identified during RELION classification.
70S classes thatare structurally similar were grouped in the plot for better
visualization. i, Same as h, but only showing the 70S classes in the elongation
phase. The proportions of different 70S classes remain stable across the top
400 hits, demonstrating that the classification results are not biased by the
ribosome picking.
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(Extended DataFig.4), coloured by local resolution calculated in RELION.
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Extended DataFig.7|Model building for ribosome classesin untreated cells. a-j, Models of the ten ribosome classes in the elongation phase constructed by
flexible fitting. k, The model for the ribosome with hybrid P/E-site tRNA. 1, Free 50S in complex with ribosome recycling factor (RRF).
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Extended DataFig. 8| Early-to-late translocationintermediates during
elongation. a, Early translocationintermediates prior to EF-G binding. Only
tRNAsinthealigned class models are displayed. b, Early-to-late translocation
intermediatesin the presence of EF-G. Continuous structural changes are
observed fromclass 6eto 7 to 8, including a roughly 20 A movement of EF-G’s
domainIVtoward the Asite (black arrow), an overall rotation of the entire EF-G
(orange arrows) and inter-domain conformational changes. c-e, Densities and
models for EF-Gand tRNAsinclasses 6e,7and 8. In class 6e, EF-G’s domain IV is
lessresolved inthe map (red circle). It may contain a mixture of intermediate
states with domain IV moving toward the Asite. The fitted model represents
the average position. Further classification could not address the high
flexibility. f, From class 6e to 7, EF-Gundergoes a small overall rotation (orange
arrows) and aninter-domain rearrangement. Inset (rotated view, aligned on

EF-G domains I-11I) shows rotation of domain IV relative to other domains.
Movement of EF-G’s domain IV towards the A site results from both overall
rotationontheribosomeand inter-domainrearrangement. g, Fromclass7to 8,
EF-Grotates as one body without significantinter-domain rearrangement
(inset, rotated view, aligned on EF-G domains I-111). h, Class 6e shows structural
similarity toareported early translocation state 'H1-EF-G-GDP-pi' (PDB 7PJV)
determined by Petrychenko et al.2021%.i, Class 7 resembles 'PRE-EF-G-GDP-
Pi' (PDB 7SSL) reported by Carbone et al.2021'%, and 'INT1' (PDB 7N2V, not
shown) by Rundlet et al.2021'.j, Class 8 resembles the late translocation
intermediates reported by Rundlet etal.2021** ('INT2', PDB 7N2C) and
Petrychenko et al.2021" ('CHI1-EF-G-GDP', PDB 7PJY). k-m, Minor inter-domain
conformational difference found between EF-Gsin our models and those in the
reportedinvitrostructures.



a 65 tomograms (65 chloramphenicol-treated Mycoplasma pneumoniae cells)
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Extended DataFig. 9| Classification, refinement and modelling of
ribosomesin Cm-treated cells. a, Image-processing workflow for the
Cm-treated dataset. The sub-tomogram classification and refinement are
similar to those developed for the untreated dataset (Extended Data Fig. 4a).
Heterogeneity may exist in the minor classes (2a, 3, 5), but the low particle
numbers hindered further classification. b, FSC curves for all classes calculated
following RELION refinements. ¢, Local-resolution maps. d, Density of the Cm

focused Class3D
on A-P-E tRNAs
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1,786
85A

EF-TutRNA ;&\
moleculeisresolvedinthe major'A, P' class, but notinthe other three minor
classes owing torelatively low resolutions of these maps. e, Models built for the
four classes, fitted into their corresponding densities. f, Elongation factors and
tRNAsinthefourclasses.g, Inthe predominant'A, P' class, mRNA, A- and P-site
tRNA, the nascent peptide chain, and the Cmdrug are well-resolved. The
nascent chain has strong continuous density linked to the P-site tRNA,
resulting from the inhibition of peptidyl transfer by the Cm molecule.
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Extended DataFig.10 | Classification, refinement and modelling of
ribosomesin Spc-treated cells. a, Image-processing workflow for the
Spc-treated dataset. The sub-tomogram classification and refinementare
similar to those developed for the untreated dataset (Extended Data Fig. 4a),
except for exclusion of the manual inspection step after template matching.
b, FSC curves for all classes calculated following refinements. ¢, Local-
resolution maps for Spc-treated 70S classes. d, Density corresponding to the

EF-TustRNA

Spcmolecule (magenta) is clearly resolved in the major 'EF-G, A/PSP¢, P/E' class.
Densities from the untreated and PUM-treated data, where Spcis not present,
areshown for comparison. e, Models built for the five Spc-treated 70S classes.
f,Elongation factors and tRNAs in the five classes. g, The model of 'EF-G, A/PSP¢,
P/E'shows Spcbinds tothe 30S neck region, confirming its rolein inhibiting
30S head dynamics and mRNA translocation.



a 86 tomograms (86 pseudouridimycin-treated Mycoplasma pneumoniae cells)
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Extended DataFig. 11| Classification, refinement and modelling of
ribosomesin PUM-treated cells. a, Image-processing workflow for the
PUM-treated dataset. The sub-tomogram classification and refinementare
similar to those developed for the untreated dataset (Extended Data Fig. 4a).
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Extended DataFig.12|See next page for caption.
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Extended DataFig.12|Spatial analysis of ribosomes and polysomesin
native untreated cells. a, 70S ribosomes (grey) and detected polysomes
(lightblue) inarepresentative tomogram.b, Distribution of neighbouring
ribosomes withina 50 nm centre-to-centre distance. Rotation normalized.

¢, Illustration of the polysome detection approach based on the distance from
the mRNA exit site of one ribosome to the mRNA entry site of the next.

d, Histogram of distances from the mRNA exit site of one ribosome to the
mRNA entrysites of all neighbouring ribosomes. e, Percentages of ribosomes
detected as polysomes using different distance thresholds (d). Meanand s.d.
areacross 356 tomograms (n =356 cells). A7 nmthreshold was selected. f, In
polysomes, the following ribosome (i) adopts various orientations relative to
the precedingribosome (i+1), mainly with regard torotationaround a plane
perpendiculartothe preceding ribosome’s mRNA exit site. g, Rotations of the
following ribosome relative to the preceding ribosome in polysomes. The two

clusters correspond to the previously defined 't-t'and 't-b’ configurations.

h-i, Positions of the following ribosomes (coloured according to different
rotations) relative to the preceding ribosome (triangle indicates the mRNA exit
site).j-k, Tworepresentative di-ribosome pairsin polysomes with extended
L9.1-m, Clash between the C-terminal domain of the extended L9 and the
superposed EF-G and EF-Tu, respectively. n, De novo focused classification on
theL9region using aspherical mask (light green) of 70S ribosomes resulted in
three classes:no L9 resolved (1), flat L9 (I1) and extended L9 (111). The additional
density connecting to the extended L9 originates from the neighbouring
ribosome. o, Overlap between polysomesindependently defined based on
spatial analysis, RELION classification for polysomes and classified ribosomes
withtheextended L9.p, The extended L9 is more frequentin the 't-t' ribosome
pairs, especially incompacted ones.
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Extended DataFig.13|Correlation of translation elongationstates within
polysomesinnative untreated cells. a, Occurrence frequencies of elongation
state pairs of two adjacent ribosomes (preceding ribosomeiversus following
ribosome i+1) within polysomes calculated from the experimental data.

b, Theoretical frequencies of elongation state pairsifthereisno cross-
influence within the polysome and ribosome state pairs formrandomly.

¢, Frequencies of elongation state pairs calculated after random shuffling of
the experimental data.d, Schematic representation of polysome shuffling
analysis and permutation p-value calculation. Detailed procedure can be found
inthe Materials and Methods. e, Comparison of the experimental and shuffled
pair fractions for all major pairs. f, Fold changes between the experimental and
shuffled pair fractions from the shuffling experiments. Ribosomes of states

thatneed elongation factor binding to proceed (states 1and 2a for EF-Tu, and
states Sand 6afor EF-G) are more frequently engaged as the following
ribosomes. Permutation p-values were adjusted for multiple hypotheses
testing with the Benjamini-Hochberg procedure, and are provided in
Supplementary Table 7. g, Difference between experimental and theoretical
pair frequencies when using different distance thresholds for polysome
definition. h, Ratios of the number of ribosomesin each state being the
preceding one against the following one in polysome pairs (across all
polysomes), calculated using different distance thresholds to define
polysomes. Symmetricengagementas the preceding and following ribosome
resultsinaratioof 1.
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Data collection SerialEM 3.7 or 3.8 (10.1016/j.jsb.2005.07.007)

Data analysis IMOD 4.9.4, doi: 10.1006/jsbi.1996.0013;
Warp 1.0.9, doi: 10.1038/s41592-019-0580-y;
MATLAB 2016b & 2019b (https://www.mathworks.com);
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repository https://github.com/mszimmermann/mycoplasma_ribosome.
Custom MATLAB script for polysome annotation: GitHub repository https://github.com/xueliang4906/polysome_detect.
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Cryo-EM maps were deposited in the Electron Microscopy Data Bank (EMDB) under accession numbers: 13234, 13272, 13273, 13274, 13275, 13276, 13277, 13278,
13279, 13280, 13281, 13282, 13283, 13284, 13285, 13286, 13410, 13411, 13412, 13413, 13414, 13431, 13432, 13433, 13434, 13435, 13436, 13445, 13446, 13447,
13448, 13449, 13450, 13451, 13452, 13287, 13288, 13289. Models were deposited in the Protein Data Bank (PDB) under accession numbers: 700C, 700D, 7P6Z,
7PAH, 7PAI, 7PAJ, 7PAK, 7PAL, 7PAM, 7PAN, 7PAO, 7PAQ, 7PAR, 7PAS, 7PAT, 7PAU, 7PHS, 7PHA, 7PHB, 7PHC, 7PI8, 7PIS, 7PIA, 7PIB, 7PIC, 7PIO, 7PIP, 7PIQ, 7PIR,
7PIS, 7PIT. Maps and atomic models used from previous studies were obtained from EMDB (11998, https://www.emdataresource.org/EMD-11998; 11999, https://
www.emdataresource.org/EMD-11999) and PDB (3J9W, https://www.rcsb.org/structure/3j9w; 1DIV, https://www.rcsb.org/structure/1div; 4V63, https://
www.rcsb.org/structure/4v63; 1ZAV, https://www.rcsb.org/structure/1zav; SMMJ, https://www.rcsb.org/structure/Smmj; 4YBB, 1EH1https://www.rcsb.org/
structure/4ybb; 4V7C, 1EH1https://www.rcsb.org/structure/4v7c; 4V7D, https://www.rcsb.org/structure/4v7d; 4V5L, https://www.rcsb.org/structure/4vsl; 1EH1,
https://www.rcsb.org/structure/1eh1). The Mycoplasma pneumoniae M129 protein and RNA sequences are from NCBI Reference Sequence NC_000912.1(https://
www.ncbi.nlm.nih.gov/nuccore/NC_000912.1; access time March 2020).
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Sample size No sample size calculation was performed. The untreated, chloramphenicol(Cm)-treated and pseudouridimycin(PUM)-treated cellular
tomograms were collected in a previous study (DOI: 10.1126/science.abb3758). The spectinomycin-treated data is of a similar size as the
other two antibiotic datasets. For each data collection, at least 3 grids were prepared, and typically only 1 of these was used for final data
collection. In one grid, there are at least few hundreds of cells that can be used for data collection and only a small percentage were used. The
sample size for each experiment was considered sufficient as the obtained maps were resolved at resolutions close to the pixel size (Nyquist)
limit of the data. After extensive classification, most classes contain more than one thousand particles, which are expected to ensure reliable
classification results in RELION (DOI: 10.1016/bs.mie.2016.04.012). These factors indicate that the current data size is sufficient for the
structural and computational analysis presented here.

Data exclusions  For cryo-ET data collection, grids with thick ice or severe mechanistic deformation were discarded. Cells that are clustered in thick ice areas
were excluded, because these cells do not contribute sufficiently high-quality data for the structural analysis.
For data processing, tilt-series that contained ice contaminants or more than 4 tilt images with failed tracking were excluded from the final
analysis. Such data represented less than 5% of all imaged cells.
For polysome percentage estimation in native untreated cells, the first two processing sessions of 98 tomograms (out of the total 356
untreated tomograms) are not included. Their visual curation with respect to the template matching hits was more stringent than later
processed data for the untreated and antibiotic-treated data which may cause some true hits are excluded in these two sessions. To ensure
the percentage comparison is valid, the first 98 untreated tomograms was not used. For all other polysome analysis, the total of 356 from
untreated cells were used.

Replication For cryo-ET sample preparation and data collection, at least 3 grids were prepared for each of the experimental consditionds and cryo-ET data
were collected on the grid with the best ice thickness in each of the sessions. All computational experiments were repeated to find out the
best setups and reproduce the results. For refinement in RELION or M, jobs were repeated to ensure the same resolution can be achieved.
The refinement and post-processing (resolution determination) follows the "gold standard" in the cryo-EM/ET field, i.e. the data is randomly
split into to half sets and the half sets are refined independently. The reported resolution is based on FSC at 0.143 between densities based on
the half sets. For classification, more than 3 parallel jobs were performed to mitigate variations associated with single jobs and to ensure the
classification is exhaustive. More follow-up classification jobs were performed to test the convergence of the previous classification.
Reproducibility of classification jobs is validated as presented in Extended data figure 5. For polysome annotation and polysome state analysis,
the scripts were run for multiple thresholds (presented in Extended data figure 12) before generating the results presented in the manuscript.
For all structural modeling, at least 2 rounds of refinements were done, which are usually followed by validation and visual inspection to
confirm the model quality.

Randomization  No complete randomization was performed for cryo-ET sample preparation data collection. The selection of grids/cells for data collection was
based on ice thickness, position within the film hole, fiducial bead distribution, etc. For cells in regions meeting these quality standards that
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are required for high-quality cryo-ET data, the subsequent processing was performed without considerations of cell shapes or other visible
features. For structure refinement in M or RELION, particles were randomly divided into two half datasets by the software. For classification,
particles are first randomly divided evenly into classes by RELION. For bioinformatics analysis, structure modeling, and polysome annotation,
randomization is not relevant because all were performed according to the confirmed sequences, maps and coordinates. For translation

elongation state distribution analysis in polysomes, randomization was performed by reshuffling the polysome sequences 10,000 times with
the randperm function in MATLAB 2019b.

Blinding No blinding was performed as the exact identities of the samples need to be known for the analysis.
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Materials & experimental systems Methods

>
S~
Q

Involved in the study

|:| Unique biological materials
|:| Antibodies

|:| Eukaryotic cell lines

n/a | Involved in the study

|:| ChiIP-seq

|Z |:| Flow cytometry

|:| MRI-based neuroimaging

|:| Palaeontology
|:| Animals and other organisms

XX XX XX

|:| Human research participants

>
Q
—
C
=
(D
=
(D
wn
(D
Q
=
e
>
=
(D
©
O
=,
>
(@)
wn
c
=
Q
=
<




	Visualizing translation dynamics at atomic detail inside a bacterial cell

	In-cell structure of the M. pneumoniae ribosome

	Structural dynamics of translation in cells

	Antibiotics alter translation landscapes

	Spatial and functional organization of translation

	Conclusions

	Online content

	Fig. 1 Ribosome structure in M.
	Fig. 2 Ribosome classification reconstructs the translation elongation cycle.
	﻿Fig. 3 Antibiotics induce distinct translation elongation landscapes in cells.
	Fig. 4 Spatial and functional organization of ribosomes in native cells.
	Extended Data Fig. 1 M.
	Extended Data Fig. 2 Structural features of the M.
	Extended Data Fig. 3 Ribosomal protein extensions.
	Extended Data Fig. 4 Classification and refinement of ribosomes in native untreated cells.
	Extended Data Fig. 5 Validation of ribosome detection and classification.
	Extended Data Fig. 6 Local-resolution maps for ribosome classes in untreated cells.
	Extended Data Fig. 7 Model building for ribosome classes in untreated cells.
	Extended Data Fig. 8 Early-to-late translocation intermediates during elongation.
	Extended Data Fig. 9 Classification, refinement and modelling of ribosomes in Cm-treated cells.
	Extended Data Fig. 10 Classification, refinement and modelling of ribosomes in Spc-treated cells.
	Extended Data Fig. 11 Classification, refinement and modelling of ribosomes in PUM-treated cells.
	Extended Data Fig. 12 Spatial analysis of ribosomes and polysomes in native untreated cells.
	Extended Data Fig. 13 Correlation of translation elongation states within polysomes in native untreated cells.




