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Abstract—A large number of data mining methods are, as
such, not applicable to fast, intuitive, and interactive use. Thus,
there is a need for visually controllable data mining methods.
Such methods should comply with three major requirements:
their model structure can be represented visually, they can
be controlled using visual interaction, and they should be fast
enough for visual interaction. We define a framework for using
data mining methods in interactive visualization. These data
mining methods are called “visually controllable” and combine
data mining with visualization and user-interaction, bridging
the gap between data mining and visual analytics. Our main
objective is to define the interactive visualization scenario and
the requirements for visually controllable data mining. Basic
data mining algorithms are reviewed and it is demonstrated
how they can be controlled visually. We also discuss how
existing visual analytics tools fit to the proposed framework.
From a data mining perspective, this work creates a reference
framework for designing and evaluating visually controllable
algorithms and visual analytics systems.

Keywords-data mining; visual analytics; interactive visual-
ization; visually controllable data mining.

I. INTRODUCTION AND RELATED WORK

A central problem in information visualization is how
to navigate efficiently in information spaces. The problem
arises in applications where data as a whole is too large to fit
into a single view, or when a single view cannot efficiently
show all interesting features of the data. This problem is
also known as the focus and context problem.

Furnas [5] introduced an elegant formalization of this
problem in terms of graphs, according to which one can view
any information structure as a graph where nodes correspond
to different views and directed links represent possibilities
to move from one view to another via interaction. Furnas
argued that this logical structure graph should enable the
user to navigate between different views in short time
without getting lost.

The necessary and sufficient conditions are traversability
and navigability.

• Traversability. The views must be small enough, be-
cause it would otherwise be not possible to show them
on a screen. Additionally, there must exist a short path
between all nodes in the structure. A logical structure
graph satisfying this property is called traversable.

• Navigability. It is not enough that a short path between
two nodes exists, but the user must also be able to
find that path. Navigability is related to the concept

of information scent in the information foraging the-
ory [15], [16] according to which as animals rely on
“scents” to guide them to promising areas where they
can find their prey, so do humans rely on various cues
in the information environment to get similar answers.
A logical structure graph that satisfies this property is
called navigable.

A logical structure graph is effective view navigable if it is
both traversable and navigable, and this property is called
effective view navigability (EVN). If the logical structure
graph is EVN it is possible for the user to access any view
in a short time from any initial condition. Conversely, it is
quite obvious that the user may get lost or it will take a long
time to traverse the graph if either of these two requirements
is violated.

Figure 1. Comparing traditional data mining (top) and information
visualization (bottom) analytic processes [3].

EVN is not directly applicable to many problem settings
in the emerging field of visual analytics [20]. In EVN the
user should be able to find a particular view efficiently.
Nonetheless, the goal in interactive visualization or visual
analytics may often be explorative. Users do not necessarily
need to find any particular view—often they may not even
know which view they would like to see. One can imagine
that, instead of looking for any specific aspect of the data, the
user is performing some task that could (at least in principle)
be described by some utility function. The task could be, for
example, to find outlier points in the data or to find the model
that describes the data. In addition to straightforward data
transformations and selections, the user may want to use
some knowledge discovery and data mining (KDD) method
during the task, such as clustering or regression.



There exist several visual analytics software tools to
explore or analyze information using data mining methods,
such as Matlab1 , R2, IBM SPSS Statistics3, WEKA4 and
KNIME5. The first three have been developed and are
being used for statistical and mathematical computing and
visualization, though they support limited user interaction.
A collection of KDD algorithms for data mining tasks
is contained in WEKA and KNIME; user interaction is,
however, limited.

We propose a novel framework for interactive visual
exploration when a data mining algorithm is used. To our
knowledge, there is yet no formalization for the exploration
task. Several process models, like the ones shown in Figure
1, have been developed for data mining and visualization,
respectively, but there is little work on combining the data
mining and visualization tasks together; see Bertini et al. [3]
for review and references of the current state of the art.

A well known and one of the most common data mining
process models is CRISP-DM: CRoss Industry Standard
Process for Data Mining6. CRISP-DM contains several
phases, and it is iterative, but the timescales of the models
are different from our viewpoint: we are interested in in-
teractive timescales (like 10 seconds or less), while CRISP-
DM describes a whole data analysis process which involves
steps with timescales of several days or even months. One
drawback of the CRISP-DM cycle is the limited user-control
on the data mining process. The CRISP-DM model allows
to move from one phase to another and roll back and forth
to improve the quality of the results, but it does not address
the interactivity discussed in this paper.

Visualization is considered necessary by the data mining
community, but there is no principled approach to build
algorithms for visual analytics. A typical data mining con-
tribution would evaluate the “goodness” of a method using
some measure, such as classification accuracy. There are
currently no good measures to evaluate the suitability of
an algorithm to a visual analytics task.

The lack of a principled framework or evaluation criteria
makes it difficult for the KDD community to evaluate data
mining contributions to visual analytics. The integration of
data mining and visual analytics methods and communities
is currently under active discussion, see, e.g., the recent
ACM SIGKDD Workshop on Visual Analytics and Knowl-
edge Discovery (VAKD ’09) [17].

We propose a novel class of visually controllable data
mining algorithms that can be used for interactive analysis.
This idea was originally briefly mentioned, but not further
discussed, in Puolamäki et al. [18]. We essentially require

1http://www.mathworks.com/
2http://www.r-project.org/
3http://www.spss.com/statistics/
4http://www.cs.waikato.ac.nz/ml/weka/
5http://www.knime.org/
6http://www.crisp-dm.org/

that the model structure of the data mining method can be
represented and controlled visually, and that the algorithms
are fast enough so that visual interaction is feasible in
real time. Some basic data mining algorithms are reviewed
and it is shown what is required from them to be visually
controllable.

This formalization can be used as a theoretical starting
point in designing and evaluating visual analytics systems
and data mining methods that are suitable for such systems.

The remainder of this paper is organized as follows: in
Section II, we formalize the proposed framework by pro-
viding formal definitions, introducing and analyzing several
properties of the framework, and present some preliminary
examples. In Section III, we provide a set of examples on
how some existing data mining methods can be visually
controlled. In Section IV, we present several existing visual
analytics tools and discuss how they fit to the proposed
framework. Finally, Section V concludes the paper and
suggests directions for future research.

II. FRAMEWORK

In this section, we formally define visually controllable
data mining and explain why it is needed. We define the
minimal set of requirements that should be satisfied by a
system that enables to visually explore information struc-
tures using a data mining method.

A. Effective View Analyzability

We extend the definition of the effective view navigability
(EVN) [5] to situations where information is explored using
interactive visualization and data mining methods.

The EVN property applies to navigation tasks where the
objective is to find a specific view. A typical analytics task
is different and explorative: users may not be looking for a
specific view. It is difficult to give a general formulation for
all analytics tasks. We assume that the user tries to optimize
some unknown objective or utility function. This objective
function could be related to finding interesting information
in the data, or forming some hypothesis about the data. For
example, if the task would be to find outliers, the objective
function could be the number of outlier points visible in a
view. We can assume that each set of views is associated
with a cost and the user tries to optimize the objective
function by finding one or more views that minimize the
cost. It would, however, be very difficult to formulate such an
objective function explicitly, even if we knew the motivation
of the user. In this paper, we do not try to find or formulate
such an objective function. Instead, we try to construct a
system that would be usable for any reasonable objective
function.

The purpose here is, thus, not just to enable navigability,
but to make it easy for the user to find the nodes with high
utility. In fact, as far as an analytics task is concerned, EVN
is not strictly required. It does not matter if the user is



unable to reach nodes where the objective function has a
low value. We define a new concept, called effective view
analyzability (EVA), that differs from EVN by taking the
new task description into account (optimizing an unknown
objective function vs. finding a specific view).

It is useful to consider an analogue to numerical opti-
mization algorithms, such as gradient ascent [2], conjugate
gradient [8], Newton’s method, or simulated annealing [11].
Typically, these algorithms require access to a method that
evaluates the objective function at a given point. The al-
gorithms try to find a set of parameter values such that
the value of the objective function is maximized. Many
optimization algorithms also use first or second derivatives
of the objective function. An optimization algorithm does
not typically have access to the “full” objective function: it
only knows the value of the objective function at the points
where the optimization algorithm chooses to evaluate it.

The analogue to our scenario is that in EVA the user
(instead of a numerical optimization algorithm) makes a
decision to move from one point or view to another in a
way that the expected utility is maximized. The visualization
must give the user necessary hints to make this decision: for
example, in analogue with gradient ascent, for each possible
navigation step (out-links in the logical structure graph), the
user should be able to guess whether the objective function
is expected to increase or decrease for a view that would
follow the navigation step. The idea behind EVA is to display
the information so that the user can efficiently find optimal
values of his or her objective function, i.e., the user can act
as an optimization algorithm. The logical structure graph, the
views, and the transitions described by links must be such
that they allow the user to find high values of the objective
function.

Numerical optimization algorithms use various strategies
to choose the next point to evaluate the objective function.
For example, the gradient ascent chooses the direction
where the value of the objective function increases most.
Simulated annealing includes a “temperature” parameter in
the computation. It is based on the idea that the original
objective function can be thought of as the “cold” solution.
In “hot” temperature the details are blurred out and only
large scale features are left in the system. The objective
function is first optimized in hot temperature and then the
temperature is gradually decreased, or relaxed, towards the
original objective function. The advantage of this approach
is that this way it is more likely to find a global optimum
solution, instead of getting stuck into a local optimum. The
visualization analogue of simulated annealing is the focus
and context approach. The temperature parameter indicates
the detail level that is visualized: high temperature corre-
sponds to showing the context, while small temperatures
show more detail.

So far we have been referring to the concept of “view”
without explicitly defining it. By view we mean the graphical

presentation of data and data mining model. The view may
include a possibility to select other types of presentations,
or to modify some parameters of the data mining model.
These choices will result in different views. The definition
of a view can be considered identical to the generic definition
in EVN [5], the views can be represented as nodes in the
logical structure graph and possibilities to move to other
views (e.g., by modifying the parameters of the data mining
model). We give some concrete examples in Section III.

For a given objective function it is necessary that the
user can efficiently find the views with high values of the
objective function. It does not matter if the path to views
with small values of the objective function are unreach-
able. However, if we assume that the objective function is
unknown, the logical structure graph should be such that
all views can be reached efficiently, because it is a priori
possible that any view could have a high value of the
objective function.

We therefore, like in EVN, require that the logical struc-
ture graph is traversable, i.e., the views are small enough
and that there exists a relatively short path between any
two views. We can, however, relax on the condition of
navigability. The difference to EVN is that we are not
interested in a specific view, but just in the value of the
objective function associated with the views. It is enough
if we can find a short path which leads to large values of
the objective function. At minimum, it is required that each
node in the structure graph contains information about the
change of the objective function in the set of nodes to which
its out-links lead. The out-link information should also be
small enough in order to fit to the current view of the user.
For example, in analogue with gradient ascent, the out-link
info could contain information from which the user is able
to infer the expected change in the objective function if the
link were followed.

The optimization task differs from the navigation task in
the sense that it is more important to be able to recover from
wrong choices. For the navigation task it is sufficient to find
the next view that is closer to the target view and there
is no need to backtrack the steps (at least in the simplest
navigation task of finding some pre-defined view). In the
optimization task it is more likely to make bad navigation
choices. It is possible that the selections lead to a local
optimum, and if the out-link information is imperfect it
may be that the navigation choice does not really increase
the objective function. In both cases, the user would like
to backtrack. We therefore require that the logical structure
graph is symmetric, that is, it is always possible to backtrack
the navigation steps. In practical terms, this means that the
user must be able to try a view and return to the original
view if necessary.

A logical structure graph that satisfies the following three
requirements is called optimizable:

• Requirement EVO1 (out-link info). The out-links must



contain information from which the user can infer
knowledge about value of the objective function in the
set of nodes to which the out-link leads.

• Requirement EVO2 (small views). Out-link info must
be “small”, i.e., it must be easy to represent it on a
computer screen.

• Requirement EVO3 (symmetry). The logical structure
graph must be symmetric, i.e., the user must be able to
backtrack any navigation step.

We call a logical structure graph effective view analyzable
(EVA) if it is both traversable and optimizable.

B. Visually Controllable Data Mining

It is possible to have an EVA structure with traditional
visualization techniques that use smartly designed data trans-
formations or selections, but do not incorporate any com-
putational data mining methods or other sophisticated data
transformations. An essential part of our contribution is how
to integrate data mining methods in the EVA framework.
The views can present, in addition to the data, the model
structure of the data mining method, and navigation steps
can be defined as modifications of the KDD model structure
(as in our examples in Section III).

Definition 1: Visually controllable data mining method.
A data mining method is visually controllable if it satisfies
the following three properties: the parameters of the method
as well as the extracted data mining models and original
data should be visually representable (VC1), the method
should be controllable via visual interaction (VC2), and the
method should be fast enough to allow visualization and
visual interaction (VC3).

Property 1: VC1 (visual representation). The first prop-
erty of a visually controllable data mining method is that
the involved parameters as well as the produced models
are visually representable. This essentially places two sub-
requirements: (i) there should be a way to visualize the
model space and the data, and (ii) the visualization should
convey an intuitive mapping between the model and data
space, it should be conceptually sound, and comprehensible
to the end-user so that it can be used for further analysis.
From the EVA point of view, we require that the system is
EVA and satisfies EVO2, i.e., it must be possible to form a
view of the data and the model.

Example 1: An example of a visually representable
model space is a linear regressor (e.g., Section III-A2). There
is an intuitive mapping between the model space and the
data space. An example of a non-representable regressor is
a multi-layer perceptron (MLP), where the connection of the
model space can, in general, not be intuitively linked to the
data.

Property 2: VC2 (visually controllable). The second
property is that there should be an intuitive visual interaction
that enables the user to modify the model space. In addition,
due to the requirement EVO1 the visualization should give

the user an idea whether the interaction may lead to nodes
with high values of the objective function. The interaction
should be predictable. It follows from EVO3 that there
should exist a one-to-one mapping between the views and
the model space. Any navigation step should be retractable.
For example, if the user chooses to “split” a cluster, the user
must be subsequently able to choose to “merge” that cluster
(i.e., undo the splitting and return to the original view).

Example 2: Consider for example the standard hierarchi-
cal clustering approach where data is clustered in different
levels and then, depending on the demanded degree of
granularity, one can go to lower or higher levels in the
hierarchical tree and get various cluster representations of
the data. This example is discussed in more detail in Section
III-B2.

Property 3: VC3 (speed). The third property requires that
visual interaction should be fast. This does not necessarily
mean that the global solution must be found fast, or that
the algorithm should be fast for arbitrarily large data sets.
What is required is that a change induced by a typical visual
interaction can be implemented in a sub-second response. It
is possible that preprocessing takes some time, but a single
user interaction can be computed fast. As far as scalability
is concerned, it might not make sense to visualize very
large data sets. This of course depends on the nature of
the application domain. Therefore, it may be sufficient for
the algorithm to be fast enough for data sets up to a certain
size depending on the application.

It should be noted that all properties discussed above
are just a reformulation of the EVA property from the
data mining viewpoint. Effectively this implies that EVA
and visually controllable data mining refer to the same
concept. Their main difference is that EVA is a generic
formulation and visually controllable data mining specifies
the requirements in terms of the data mining algorithm.

III. EXAMPLES

The main target of this paper is to define the interactive
visualization scenario and the requirements for visually con-
trollable data mining. In this section, we use the formulation
of Section II to study some commonly used data mining
methods via illustrative examples and discuss the applica-
bility of the proposed framework. The example applications
are taken from the fields of supervised (regression, classifica-
tion) and unsupervised learning (clustering, dimensionality
reduction). Besides the studied algorithms, there are most
likely many other algorithms which are or could be made
visually controllable.

A. Supervised Learning

The KDD technique for deducing a function from training
data is called supervised learning. Next, we discuss the
applicability of the proposed framework to several existing
supervised learning tasks.
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(a) Initial least-squares linear regression.
The fit is rather poor, as indicated by the
R2 value.
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(b) Split the model into two parts at x= 0.0.
The fit for the left part is good, but the on
the right the fit is poorer than previously.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X

Y

●
●

●

●

●

● ●

●

●

●●

●

●

●

R2 = 0.89 R2 = 0.83

(c) Remove the outlying data point in the
top right corner. The fit is now quite good
and we are satisfied with the constructed
model.

Figure 2. Three steps during interactive analysis using linear regression. We build a simple model for a small data set by splitting the data into two parts
and removing an outlier.

1) Methods: A large variety of supervised learning tasks
exist in the data mining literature, including linear regression
and classification. For a review of supervised learning see
Kotsiantis et al. [12].

Linear Regression. The main task in linear regression is,
given some input data, to find the linear model or set of
linear models that best fit the data. From the perspective of
our framework, linear regression could be used to visually
fit the data, detect outliers, and further adjust the regression
parameters, for example, the number of linear models to be
used to fit the data, and thus, decrease the number outliers
while defining a user-controlled fitting of the data. One
main challenge here is to properly identify the appropriate
domains for the linear regressor (i.e., number of linear
models or regressors to fit the data).

Classification. In classification, the aim is to predict the
label of some input object. We can have two types of
classification: binary and multi-class. The former requires
discerning between two classes, whereas the latter assigns
an object to one of several classes. A simple classifier is
the Naive Bayes classifier, where conditional independency
of data features is assumed. From our viewpoint, the user
could for example vary the weight of the variables or
the data points. This will allow for efficient visual user-
interaction, where the user can adjust the weights accord-
ing to his/her objective function. Similarly, classification
trees and k-nearest neighbor classifier could be visually
controllable. The multi-layer perceptron (MLP) is a more
complex classifier. As the number of hidden nodes/levels
increases visualization becomes less and less feasible (VC1
is violated), and computation may require significant amount
of time (VC3 is also violated). Finally, there are techniques
to combine several weak classifiers to build a single strong
classifier [13]. In these case, the user could visually obtain
a strong classifier by interactively adding/removing weak

classifiers.

2) Linear Regression Example: We conduct a case study
to show how linear regression can be used in visual in-
teractive analysis of a data set. We use a small artificially
generated two-dimensional data set and try to build a model
that explains the data. In Figure 2(a) we observe the data
in a scatter plot over the two dimensions of the data, along
with the simple linear fit, where each data point has equal
weight. In the view we also see the R-squared value of the
fit, to give a measure on the goodness of linear model. As
users, we immediately observe that that the data cannot be
explained well by a straight line. Suppose our out-links to
other views consist of ignoring data points and splitting the
data into parts using straight lines, and the respective reverse
operations (unignoring data points and removing splits). A
user may hypothesise that the data actually consists of two
parts, instead of one as in the initial view. So, we introduce
a split of the data points at x = 0.0. The new view is given
in Figure 2(b). The model for the left part is reasonably
convincing, but the right part is not. This is probably due
to the point in the top right corner. The user may decide
to ignore this outlier, hence obtaining the view in Figure
2(c). The user is now very happy with the current view and
underlying model so decides to stop. As a result, we obtained
a model for the data and identified one outlier point.

VC1 is satisfied, because the view gives an accurate and
understandable view of the both the data and the regression
model. VC2 is also satisfied, because the effects of the
parameters of the model (ignoring points and splitting the
data) are intuitive and a user can predict quite well what
happens when changing between views. Linear regression
in general satisfies VC3, even if we simply recompute the
whole solution for each new view.
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(a) Initial clustering. We want to split the top cluster (2).
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(b) Three clusters. We want to split the bottom cluster (1) as well.
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(c) Four clusters. We do not like the split of the bottom cluster (1 & 4), so merge it again, but split top cluster (2) again.
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(d) Final four clusters, we do not want to split any further.

Figure 3. Four steps in the process of interactive analysis of the Old Faithful data set [6] using agglomerative hierarchical clustering. We show a scatter
plot of the data over the two variables in the data set (left), and the corresponding dendrogram representing the distances between the data points (right).
The red line indicates the cut-off corresponding to the commands given by the user, which defines the clustering shown in the corresponding left figure.
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1

1

1 1

1 11 1
11 1
1
111

1
1

1

1

11

111 1

1

1

11

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

Eruption size

W
ai

tin
g 

tim
e

2

2

2

22

2

2

2

2
2

2

2

2

2 2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2
2

22

2 2

2

2
2

22

2

2 22
2

2

22 2

2 22 2

2 2

2
2

2

2

22 2

2

2

2

3

3

33 3 3

3 3
3

3

3

3

3
3

3

3

3

3

3

3

3
3

3

3

3

3

3
3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

3

3
3

3
3 3

3

3

3

3

3

3

3 3

3

3

3

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3 3
3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3

3

33

3 3

3

3

3 3

33

3

3

3

4 44
4

4

4 444
4

4
4

4

4 4 4

444 4

4

4

4

4

4
4

4
4 4

44 444

4

4
4

55

555 5

5

55

5

5
5

5

5

5 5

55 5 55

5

5

5

5

5

5 5

5

5
5

(c) Five clusters. The obtained
clustering is very different from the
previous clustering.
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(d) Five clusters. Rerunning the al-
gorithm with the same parameters
can give very different results.

Figure 4. Possible steps during interactive clustering of the Old Faithful data set [6] using k-means clustering.

B. Unsupervised Learning

Unsupervised learning is a KDD task where, as opposed
to supervised learning, the objective is to learn a model
of the data. Clustering and dimensionality reduction are
examples of unsupervised learning tasks.

1) Methods: Dimensionality Reduction is the process of
reducing the number of data features under consideration
by focusing on those that convey the most interesting
information. Typically, a dimension reduction method re-
duces a data set to a form that can be plotted to two
dimensions. Several dimensionality reduction methods ex-
ist. The most common ones include Principal Component
Analysis (PCA), Factor Analysis (FA), Independent Com-
ponent Analysis (ICA), Multidimensional Scaling (MDS),
ISOMAP, Laplacian eigenmap, etc. Different methods try
to preserve different features. For example, PCA and MDS
try to preserve large distances, while spectral methods such
as ISOMAP and Laplacian eigenmap try to preserve local
neighbourhoods. Projection pursuit methods such as PCA,
FA and ICA find a linear projection of the data to a direction
that maximizes some measure, such as variance (PCA and
FA) or non-gaussianity (ICA). For a thorough survey see
Fodor [4], and Lee et al. [14] for a recent review on non-
linear methods. The models of dimensionality reduction can
often be parametrized by several parameters, for example,
we can weigh different data points or attributes differently.
Dimensionality reduction looses always some information of
original data and this is why the interesting features may be
visible in an alternatively parametrized view.

Clustering. Clustering is one of the basic data analysis
methods. The objective in clustering is to partition the data
into subsets in a way that the data items within the subset
are similar to each other and, conversely, different across
clusters. There are a large number of approaches based on
different similarity and optimization criteria, using various
algorithms approaches, see Jain et al. [9] for a review. We
will discuss two clustering examples in the next subsection.

2) Clustering Examples: In this section we discuss vi-
sual interactive analysis using two clustering methods. First
we study hierarchical clustering, which satisfies all three
requirements well, and second we study k-means clustering,
which we show to have some undesirable properties as a
visually controlled data mining method. We us the well
known Old Faithful geyser data set [6] and GNU R [19]
in both examples. Our objective is to find if this data has
some interesting cluster structure.

In Figure 3(a) we see on the left a scatter plot with all
data points in the two dimensional space and on the right
the dendrogram produced by the agglomerative hierarchical
clustering algorithm. In the scatterplot each data point is
represented by the number of the cluster that it belongs to.
The dendrogram is cut by a line, which corresponds to the
same clustering as shown in the scatter plot. We allow the
user to split and merge clusters, where merging is just the
symmetric operation of splitting.

The first operation we want to try is splitting the big
cluster at the top. In Figure 3(b) we find a small collection of
points (in the center) is separated from cluster two. We are
pleased with the result, so let us also try to split cluster one.
In Figure 3(c) we observe two points end up in a separate
cluster. We do not want to get two loose points, so we reverse
the operation by merging cluster four again. We also split
cluster two again to see what happens. In Figure 3(d) we
observe the new situation. We decide to stop the analysis
and conclude this data set is perhaps best described by two
or three clusters, because the views with four clusters were
not very convincing. Let us also look at splitting the data
into more clusters with the k-means algorithm.

In Figure 4(a) we find the three cluster solution for the
same data set, using k-means [7] instead of hierarchical
clustering. The top right part of the data set is split right
in the middle to two clusters, which is quite different from
the previous clustering. In ordinary k-means we can only
increase or decrease the number of clusters and restart the
algorithm. We increase k to four and obtain the view in
Figure 3(b). This is quite similar to the four cluster solution



in the previous example. Note the cluster model obtained
from k-means is well represented by the view. It is easy
to understand and gives full overview of the model, hence
VC1 is satisfied. However, we should notice it is not directly
obvious which points change from one cluster to another
between Figures (a) and (b). Let us increase k to five. In
Figure 3(c) we see the top cluster suddenly merged again
and the bottom cluster was split into three parts. A user
might become very confused because of the large change
in the view. Also, if we restart the algorithm with the same
parameters, we may obtain the view in Figure 3(d), which
is very different from (c). These are both violations of
the requirement of predictability, thus VC2 is not satisfied
in this scenario. VC3 is hard to assess in general for k-
means, because it is known for certain data the time to reach
convergence is super-polynomial, but at least for moderately
sized data sets the algorithm is in practice fast enough [1].

IV. EVALUATION OF EXISTING VISUAL ANALYTICS
TOOLS

A large variety of visual data mining and visual analytics
tools have been developed for different tasks. In this section
we discuss three representative tools and connect them to
the proposed framework.

A. HCE: Hierarchical Clustering Explorer

HCE7 is a visual analytics tool is used for interactive
exploration of multidimensional data. The application do-
main of this tool is on Genome research, where cluster
analysis is used to find meaningful groups in microarray
data. HCE provides an overview of the whole dataset at
any time by using several types of 2-D plots (such as bar
charts, etc). Its key feature is that it performs hierarchical
clustering without a predetermined number of clusters, and
then enables users to determine the natural grouping with
interactive visual feedback (dendrogram and color mosaic)
and dynamic query controls that enable EVA. Users have
the option to cluster with respect to a set of data attributes
and choose between different distance measures and linkage
methods. The clustering distance cut-off can be adjusted
by the user and thus navigate through the dendrogram.
In addition, users can compare clustering results produced
by different clustering settings using either K-means or
hierarchical clustering.

Nonetheless, HCE suffers from some major limitations.
Firstly, some navigation features could be improved. For
instance, when zooming in a cluster, the overall view of
the clustering is poorly represented—zooming out is not
possible. Also, navigation within the dendrogram is always
performed at the same level for all sub-trees. A better version
would be to only zoom in at some selected subtree(s).
Finally, the user can not interactively change the number
of clusters.

7http://www.cs.umd.edu/hcil/hce/.

Thus, all three properties (VC1-VC3) are satisfied by
HCE. However, there is room for improvement as regards
VC1 and VC2.

B. Expression Profiler

Expression Profiler [10] is an extensible web-based col-
laborative platform for microarray gene expression, se-
quence, and PPI data analysis. It includes several data
analysis components for gene expression: data selection
(the user can get a brief statistical overview of the data),
data transformation (e.g., K-nearest neighbor imputation to
fill in missing values), similarity Search (the user specifies
one or several genes, chooses a similarity measure and
receives those genes most closely co-expressed with the
selected genes within the dataset), clustering (provides both
hierarchical and partitioning-based clustering methods). The
hierarchical clustering tree produced for large datasets can
be difficult to comprehend all at once, thus the user has
the option of displaying a quick high-level overview of the
clustered data by selecting the percentage of major tree-
branches that should be displayed. In addition, significant
gene finding, between group analysis, and other statistical
components are available.

A major limitation of this tool concerns navigability: the
user should always be on the same window in order to be
aware of the overall clustering structure. Also, this tool is
only designed for microarray data.

Again, all three properties (VC1-VC3) are satisfied. How-
ever, there is room for improvement as regards VC1.

C. Visual Data Mining Platforms

Several visual data mining platforms exist, such as KN-
IME, Weka, and RapidMiner. KNIME8 is a modular data
exploration platform that enables the user to visually create
data flows, selectively execute some or all analysis steps,
and later investigate the results through interactive views
on data and models. The key advantage of KNIME is its
inherent modular workflow approach, which documents and
stores the analysis process in the order it was conceived and
implemented, while ensuring that intermediate results are
always available. Similar to KNIME, Weka9 is a collection
of machine learning algorithms for data mining tasks, which
allows to create pipelines in order to perform data pre-
processing, classification, regression, clustering, association
rules, and visualization. RapidMiner10 is an environment
for machine learning and data mining tasks, which allows
users to create data flows, perform data preprocessing and
visualization, and integrate several learning schemes and
attribute evaluators.

As far as visually controllable data mining is con-
cerned, all three platforms use existing data mining methods

8http://www.knime.org/
9http://www.cs.waikato.ac.nz/ml/weka/
10http://rapid-i.com/



and tools and allow users to visually interact with them.
Nonetheless, they do not interfere at all in the details of data
mining process; they rather employ data mining methods as
black boxes that connect to each other allowing for visual
interaction.

Clearly, VC1 is satisfied as all tools as well as their
subcomponents (data mining models produced by the meth-
ods) are visually representable. VC2 is satisfied, as users
can visually modify the model space. However, this can be
achieved by adding or deleting several components from an
existing data flow. There is room for improvement as regards
VC2 by adding visual interaction capabilities to the data
mining process rather than using these methods as black
boxes. Finally, VC3 is satisfied as well.

V. DISCUSSION AND CONCLUSION

We have defined a formal framework for using data
mining methods in interactive visual analysis as well as
the interactive visualization scenario and the requirements
for visually controllable data mining. Our intention is not
to rank data mining methods or visualization systems, but
present necessary and sufficient conditions for a visual
analytics system that uses KDD methods. Thus, we present
a reference framework for evaluation and design of visually
controllable algorithms and visual analytics systems. There
are several interactive visualization tools in which KDD
methods are implemented, though not at all of them are
optimized for interactive analysis. One reason for this is
that visual analytics systems and data mining methods have
been designed separately, and data mining algorithms have
not usually been designed with the interactive visualizations
in mind. Our key objective in this work is to bridge the gap
that currently exists between the KDD and visual analytics
communities.

Further topics for research would be to study if the current
systems satisfy these criteria and if they could be improved.
It would also be interesting to study which of the commonly
used KDD methods satisfy or could be adapted to satisfy the
visual controllability criteria.
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