
J Intell Inf Syst
DOI 10.1007/s10844-011-0159-2

Visually exploring movement data
via similarity-based analysis

Nikos Pelekis · Gennady Andrienko · Natalia Andrienko ·

Ioannis Kopanakis · Gerasimos Marketos · Yannis Theodoridis

Received: 20 May 2010 / Revised: 30 March 2011 / Accepted: 30 March 2011
© Springer Science+Business Media, LLC 2011

Abstract Data analysis and knowledge discovery over moving object databases dis-
covers behavioral patterns of moving objects that can be exploited in applications like
traffic management and location-based services. Similarity search over trajectories is
imperative for supporting such tasks. Related works in the field, mainly inspired from
the time-series domain, employ generic similarity metrics that ignore the peculiarity
and complexity of the trajectory data type. Aiming at providing a powerful toolkit
for analysts, in this paper we propose a framework that provides several trajectory
similarity measures, based on primitive (space and time) as well as on derived
parameters of trajectories (speed, acceleration, and direction), which quantify the

N. Pelekis (B)
Department of Statistics and Insurance Science, University of Piraeus,
Piraeus, Greece
e-mail: npelekis@unipi.gr

G. Andrienko · N. Andrienko
Fraunhofer Institute Intelligent Analysis and Information Systems,
Sankt Augustin, Germany

G. Andrienko
e-mail: gennady.andrienko@iais.fraunhofer.de

N. Andrienko
e-mail: natalia.andrienko@iais.fraunhofer.de

I. Kopanakis
Tech. Educational Institute of Crete, Ierapetra Crete, Greece
e-mail: i.kopanakis@emark.teicrete.gr

G. Marketos · Y. Theodoridis
Department of Informatics, University of Piraeus, Piraeus, Greece

G. Marketos
e-mail: marketos@unipi.gr

Y. Theodoridis
e-mail: ytheod@unipi.gr

J Intell Inf Syst

distance between two trajectories and can be exploited for trajectory data mining,
including clustering and classification. We evaluate the proposed similarity measures
through an extensive experimental study over synthetic (for measuring efficiency)
and real (for assessing effectiveness) trajectory datasets. In particular, the latter could
serve as an iterative, combinational knowledge discovery methodology enhanced
with visual analytics that provides analysts with a powerful tool for “hands-on”
analysis for trajectory data.

Keywords Trajectory databases · Similarity measures · Visual analytics

1 Introduction

A Moving Object Database (MOD) consists of spatial and temporal information
about objects whose location changes over time (e.g. moving humans or vehicles).
MOD management has emerged due to the integration of positioning technologies
into wireless devices that appears nowadays, and has posed great challenges to
the data mining community (Giannotti and Pedreschi 2008). One of the research
problems is how to measure the similarity between trajectories of moving objects.
Generally, the notion of similarity plays an important role in exploratory analysis
of large data collections. Visualization and interactive techniques, the primary
instruments of data exploration, do not straightforwardly scale to increasing amounts
of data. This is especially true for mobility data: even a few trajectories of moving
objects (i.e., the sequences of their locations with respect to time) when projected on
a 2D map or visualized in a 3D view may be hard to perceive and analyze due to their
high overlap. Visual Analytics (VA) (Thomas and Cook 2005), a research area that
has recently emerged in response to the demand from real-life applications, looks for
synergies between visual and computational techniques enabling human analysts to
make sense from large amounts of data (Keim 2005). One of the possible approaches
is based on clustering, i.e., grouping data items with respect to their similarity and
considering groups (represented in a summarized way) instead of individual items.
For this purpose, the analyst needs appropriate methods for assessing the similarity
between two items.

A VA framework for the analysis of movement data is proposed in (Andrienko
et al. 2007). One of its principal components is a spatial clustering tool, which groups
trajectories by similarity. Trajectories may be considered as similar in a number of
different respects: they may fully or partly coincide in space, or just have similar
shapes, or have common starts and/or ends; they may be fully or partly synchronous,
or they may be disjoint in time but with similar dynamic behaviour (speed, accel-
eration, etc.). It depends on the application and goals of analysis, which of these
respects are relevant. Therefore, the clustering tool is organized in such a way that
cluster building is separated from the computation of distances and neighbourhood.
Using the tool implies the availability of a kit of similarity measures, or trajectory

distance functions, where each function assesses distances between trajectories in
its own way. The analyst may choose a suitable distance function depending on the
goal of analysis or try different functions for a more comprehensive understanding of
the data.

J Intell Inf Syst

Furthermore, Andrienko et al. (2007) and Rinzivillo et al. (2008) advocate a kind
of analysis called progressive clustering: the analyst obtains clusters by means of one
of the distance functions and re-applies the clustering tool to a selected cluster or a
few clusters using another distance function (or different parameter settings), going
deeper and deeper in her analysis.

The efficient support of trajectory similarity search in MOD is very important for
the quality of data. This justifies the fact that during the last decade there has been
a lot of work in the literature regarding trajectory similarity search (Agrawal et al.
1993; Korn et al. 1997; Yi et al. 1998; Chan and Fu 1999; Vlachos et al. 2002b; Chen
and Ng 2004; Chen et al. 2005), to cite a few. The common characteristic of those
works is that they focus on the movement shape of the trajectories, which are usually
considered as 2D or 3D time series data. In other words, what is important in the
above cited works is only the sequence of the sampled positions while the absolute
information over the temporal dimension is ignored, leaving this information out of
the knowledge discovery process. In real world applications though, trajectories are
represented by finite sequences of time-referenced locations. What is more, such a
sequence may result from time-based (e.g. every 30 s), change-based (e.g. when the
location of an entity deviates from the previous one by a given threshold), location-

based (e.g. when a moving object is close to a sensor), event-based recording (e.g.
when a user requests for localization), or combinations of these basic approaches.
A different perspective is required therefore, capable of coping with real-world
application scenarios.

In this work, we study the problem of trajectory similarity search in MOD, where,
given the trajectories of two moving objects we detect and quantify their (dis-
)similarity or distance. Having in hand a powerful set of distance operators, each of
them describing semantically different interrelation properties between trajectories,
we also investigate their utilization in data mining (clustering and classification) tasks
and exploratory analysis, which fundamentally rely on the notion of distance among
the data under analysis.

To the best of our knowledge, there is no related work on defining a palette of
different similarity functions based on these underlying features of the trajectories.
Instead, our approach takes under consideration various factors characterizing a
trajectory (locality, temporality, directionality, rate of change) and formulates a
flexible framework for the comparison of trajectories based on the above factors.
Furthermore, the incremental and local nature of the defined distance operators
makes them capable of comparing trajectories locally, identifying similarities even
in portions of their route. This is in contrast to other approaches that only define
global metrics for the whole lifespan of the trajectories.

This paper improves and extends (Pelekis et al. 2007). In outline, the major
contributions of this paper are the following:

• We consider several types of similarity between trajectories, focusing on the most
interesting motion properties inherent in MOD, i.e. (a) fundamental types of
(time-aware or not) spatial similarity search over trajectories and (b) interesting
variations exploiting on derived information (speed, acceleration, direction).
For each type we formally define appropriate distance operators and propose
respective query processing algorithms, which include major improvements with
respect to those originally proposed in (Pelekis et al. 2007).

• We study the metric properties of the proposed distance functions.

J Intell Inf Syst

• Exploiting on a state-of-the-art visual analytics tool (Andrienko et al. 2007), we
demonstrate the efficiency of the proposed similarity-based query framework
through an iterative knowledge discovery process over a real dataset from the
fleet management domain.

• We conduct an extensive experimentation over synthetic trajectory datasets,
in order to evaluate our approach with respect to its efficiency as well as its
usefulness on data mining (classification and clustering) tasks.

The rest of the paper is structured as follows: Section 2 discusses the motivation
for our work as well as related work. In Sections 3 and 4, which constitute the core
of the paper, we present formal definitions and algorithms for the proposed distance
functions. Section 5 presents the exploitation of the proposed similarity types on a
VA application over a real dataset as a proof-of-concept and Section 6 evaluates the
efficiency of our proposals through an extensive experimental study over synthetic
datasets. Section 7 discusses related work in comparison with our proposal. Finally,
Section 8 concludes the paper and provides ideas for future work.

2 Motivation

Through the example that follows we intend to give an idea about the kind of analysis
where diverse trajectory similarity measures are required.

Let us consider a city traffic manager concerned with the movement of heavy
trucks transporting materials for construction over the city: they produce much noise
and air pollution and often obstruct the movement of the public transport. She wants
to investigate the current movement of the trucks in order to understand its specifics
and then develop a feasible policy (e.g., set of rules for the supply or transportation
companies owning the trucks) for alleviating the problems. For developing such a
policy, it is necessary to know (a) what are frequent origins and destinations of the
trips; (b) how the origins and destinations are connected; (c) what are the coverage
areas of different service providers; (d) whether there are distinct traffic zones with
different characteristics of the truck movement; (e) what are the typical routes of the
trucks of different providers; (f) whether two or more alternative routes between the
same locations are used and whether the choice depends on the time; (g) what are the
typical speed and acceleration patterns (which are related to the noise and pollution)
in different areas, on different routes, and in different times.

To find answers to these questions, the traffic manager uses a suitable dataset
consisting of trajectories of multiple trucks that were GPS-tracked over a sufficiently
long time period. In our example, we use a dataset with positions of 50 trucks
transporting concrete in Athens, Greece, between August and September 2002 (the
dataset illustrated in Fig. 1 is publicly available at R-tree Portal 2011). There are
112,300 position records consisting of the truck identifiers, dates and times, and
geographical coordinates. The temporal spacing is regular and equals 30 s (i.e. rate of
sampling from GPS devices). Out of this raw dataset, a number of 1,100 trajectories
can be identified by splitting the recordings of a truck in subsets when a temporal gap
larger than 15 min appears between two consecutive recordings.

Since the dataset is quite big, the traffic manager cannot explore in detail each
trajectory and therefore uses clustering, which can effectively help her to find
answers to her questions. Thus, to find the frequent origins and destinations of the

J Intell Inf Syst

Fig. 1 The ‘trucks’ dataset
(source: R-tree Portal 2011)

trips, the analyst would cluster the trajectories by spatial closeness of their starts
and ends. The discovery of starts and ends is an interesting stand-alone problem
that is essential for applications interested in the distribution of origins. Although
important our approach does not directly address it. However, in the literature, there
have been proposed specialised approaches that address this issue (Marketos et al.
2008). After the grouping of trajectories w.r.t. starts and ends, the analyst would focus
on particular clusters to investigate their distribution in space and in time, reveal
typical and alternative routes, typical dynamics of speed, times and places of stops,
etc. This may be done by applying clustering with different similarity measures to the
trajectories of the selected clusters, according to the idea of progressive clustering
(Rinzivillo et al. 2008).

The analysis process would be appropriately supported by an interactive visual
tool, such as the one illustrated in Fig. 2, where the analyst can conveniently select
the clusters to view and compare and to analyze further in more detail. The clusters
may be represented by different colouring of the trajectory lines (Fig. 2a) or in a
schematic form (Fig. 2b and c), giving an idea about the major directions and volumes
of the movement.

In this example application and in many others, the analysts need to run a variety
of cluster analysis tasks, such as:

• Task 1: spatiotemporal similarity: Find clusters of objects that follow similar
routes (i.e., projections of trajectories on 2D plane) during the same time interval
(e.g. co-location and co-existence from 3 to 6 p.m.) or

• Task 2: (time-relaxed) spatial-only similarity: Find clusters of moving objects
taking only their route into consideration (i.e., irrespective of time)

as well as variations of the above, such as:

• Task 3: speed- (or acceleration-) pattern based spatial similarity: Find clusters of
objects that follow similar routes and, additionally, move with a similar speed (or
acceleration) pattern, or

• Task 4: directional similarity: Find groups of objects that follow a given direction
pattern (e.g. first NE and then W), either concurrently or not.

J Intell Inf Syst

(a)

(b) (c)

Fig. 2 a–c An interactive visual tool for exploring trajectory clusters

Since our framework is based on query processing operators running on top
of Hermes MOD engine (Pelekis and Theodoridis 2006; Pelekis et al. 2006, 2008,
2011), the novelty of our approach is augmented by two inter-related facts: (1) the
combination of the tasks (using AND/OR clauses) provides analysis functionality

J Intell Inf Syst

unmatched so far (e.g. “find trajectories that moved closely in space but with very
dissimilar speed patterns”); (2) the output of each of the supported operators defines
similarity patterns that can be utilized to reveal local similarity features (e.g. “find
the most similar portions between two, in general, dissimilar trajectories”).

3 Trajectory similarity search

Before we define the different types of similarity search to be addressed in this
paper, we first present the notations utilized hereafter. Let D be a database of
N moving objects with object ids {o1, o2, . . . , oN}. The trajectory Ti of a moving
object oi consists of a sequence of |Ti| 3D Line Segments (3DLS), where each 3DLS
represents the continuous development of the moving object during two distinct
sampled locations assuming linear interpolation between the two locations. In other
words, the movement of an object from a starting position (xs, ys) to an ending
position (xe, ye) during a time period [ts, te] is described by a linear function of time
f (t). Projecting Ti on the spatial 2D plane (temporal 1D line), we get the route ri (the
lifespan li, respectively) of oi; an example appears in Fig. 3. Moreover, additional
motion parameters can be derived by f (t), including speed s, acceleration a, etc.
Obviously, no assumptions of equal distanced time intervals between the sampled
points are posed.

Definition 1 (most-similar trajectory) Let D be a database of trajectories Ti and Q

be a (reference) trajectory consisting of a set of 3DLS, the cardinality of which being
|Q| ≥ 1 and |Ti| ≥ 1 ∀Ti ∈ D. The Most-Similar-Trajectory (MST) S in D with respect
to Q is the one that minimizes a distance measure Dist(Q,Ti).

As already argued in the previous section, the distance measure Dist(Q,Ti) is
application-driven and may involve any combination of trajectory features, such
as spatial projection (route), temporal projection (lifespan), speed, and direction.
Taking both route and lifespan into consideration, Dist(Q,Ti) addresses Task 1
presented in Section 2; considering only route, Task 2 is addressed, and so on.

Fig. 3 A trajectory (solid
line), its route (dotted line),
and its lifespan (dashed line),
assuming linear interpolation
between sampled positions

y

x

t

(xi-1, yi-1, ti-1)

(xi, yi, ti)

(xi+1, yi+1, ti+1)

route

trajectory
lifespan

J Intell Inf Syst

Route, lifespan, speed, acceleration, and direction of a moving object trajectory
are classified as motion dependent parameters. There also exist data dependent

parameters that affect similarity search, such as length, scale, shift, sampling rate and
outliers’ existence, which have been addressed as the main research issues in related
work. In this paper, we focus on the former class, as we treat the problem from a
MOD perspective.

In the rest of this section, we present a palette of distance functions each of which
is tailored to support similarity search by giving emphasis on one of the previous
mentioned parameters. Before we define the spatiotemporal similarity between
trajectories (Section 3.2), we tackle the problem of measuring the spatial similarity
of two moving objects (Section 3.1) as a pre-required step.

3.1 (Time-relaxed) spatial similarity

Intuitively, two moving objects are considered spatially similar when they move close
(i.e., their routes approximate each other) at the same place, irrespective of time.
As such, we propose a novel distance operator, called Locality In-between Polylines

(LIP), which defines a distance function upon the (projected on the Cartesian plane)
routes of the trajectories. The idea is to calculate the area of the shape formed by the
two 2D polylines that correspond to the routes of the two trajectories. An example is
illustrated in Fig. 4 where the five shaded areas are the ones that contribute in LIP.

Graphically, the area between two polylines is the one traversed by the one
polyline when it appropriately moves, shrinks and/or extents itself towards the other
polyline so as to perfectly match each other.

Furthermore, in order to employ the area between two polylines as an intuitive
measure of their distance we need to account the cases where such a measure is
meaningful. Dividing two polylines into appropriate sub-polylines where the area
in-between may serve for calculating their distance is critical in our methodology,
therefore it is presented first (Section 3.1.1), second, we discuss specific cases
(Section 3.1.2) and, third, we propose the actual procedure for calculating the LIP
distance measure (Section 3.1.3).

3.1.1 Detecting ‘good’ vs. ‘bad’ pairs of segments

Considering the area formed between two polylines as a representative measure of
their distance (i.e., dissimilarity) does not always make sense. Definitely, it does so
when the two polylines follow, on the average, a stable trend (e.g. like the polylines
S and Q, illustrated in Fig. 4) with no dramatic rotations, or if they are rotating, at

Fig. 4 Illustration of locality
in-between polylines (LIP)
distance between the routes of
two trajectories, S and Q

I6

Q4

Y

X

S4Q1

S1

S5

Q5

I1

I2

I5

Area4

I4

I3

S = ∪ Si

(xs,S,ys,S)

(xs,Q,ys,Q)

S2

S3

Q = ∪ Qi

Q2

Q3

J Intell Inf Syst

least they do so by turning similarly during their motion (see the respective S and
Q in Fig. 5e). However, there exist other cases where using the area to measure
dissimilarity is misleading; for example, let us consider the special cases illustrated in
Fig. 5a and b, where the polylines consist of two single segments each. In Fig. 5b,
where the segments are heading to the same direction, the area of the vertically
stripped polygon is representative of their distance. The same stands for the two out
of the three cases depicted in Fig. 5a (see the three triangles formed when connecting
Si Se segment with the ending point of Q1 Q2, Q1 Q3, Q1 Q4, respectively). In other

Y

X

Q4

(a)

Q1
Si

Se

Q2

Q3 Y

X

Qe

(b)

Qi

Si

Se

Ty

Tx

Y

ϕ

θ

θ

X

Qe

(c)

Qi

Si

Se

Y

X

Qe

(d)

Qi Si Se

QeQi SiSe
d

Qi SiQe Se

Y

X

S

Q

Si

Qi

Síe

Qíe

(e)

Se

Qe

Síi

Sí

Qí
Qíi

Y

X

S2

Q2

Q3

Q1

S1

S3

(f)

Fig. 5 a–f Special cases for LIP distance

J Intell Inf Syst

words, in the cases where the angle ϕ between the two segments is less than 90◦, the
area of the triangle formed by the two segments is a meaningful measure (intuitively,
for segments of a certain length the area is proportional to the angle).

However, if ϕ exceeds 90◦ (e.g. see triangle Si Se Q4 in Fig. 5a) the area of the
triangle decreases down to zero (in other words, in this case the area is inversely
proportional to the angle); several ‘bad’ cases of this type are also illustrated in
Fig. 5d. Recall, however, that in the latter case there exists a counterpart ϕ′ =
180◦ – ϕ < 90◦, resulting in regions with equal area when simply connecting their
ending points (e.g. the area of triangle SiSe Q4 is equal to the one of triangle SiSe Q2

in Fig. 5a), while the segments of the second case should intuitively have smaller
distance.

In the general case, where the polylines consist of two or more segments, a proce-
dure is required that would traverse these segments trying to calculate a meaningful
in-between area by taking into account the relative direction of the two polylines. For
example, in Fig. 5f, polyline S rotates clockwise while Q rotates counter clockwise.
Connecting their ending points would result in a set of regions (i.e., the vertically
stripped regions), the area of which is a rather meaningless distance measure (or
even indefinite, in extreme cases). Intuitively, the traversal algorithm should identify
this abnormal case and split the two trajectories (at point S2 and Q2, respectively)
into two sub-trajectories, which pair-wise formulate the simple polygons S1S2 Q2

and S2S3 Q3 Q2 that can act as rational indicators of their distance. In this way, the
horizontally stripped region is also taken into account. The above discussion makes
clear that the key issue that results in abnormal cases is the fact that connecting the

ending points the resulting regions are self-intersected (i.e., non-simple polygons). The
same situation might happen not only when the polylines turn in different directions
but also when they turn similarly as in the case of Q′ and S′ depicted in Fig. 5e.

Technically speaking, in order to calculate a meaningful area between two polylines,
they should be segmented into a sequence of sub-polylines, for each pair of which there

is an appropriate way to measure the area in any of the above mentioned cases. This
segmentation should be performed during traversing of the segments of the polylines
as soon as a goodness criterion is violated. The basic property that this criterion
should satisfy is that the regions formed by the pair of sub-polylines (interconnecting
their starting and ending points, if necessary) must be simple polygons. However,
as already depicted, this is a necessary but not sufficient condition. The notion of
direction should be involved to assure that trajectories do not fall in the counter
intuitive cases previously described, and when these are identified follow a different
tactic to measure the in-between area. Below, we formalize such a goodness criterion,
called LIP criterion.

Initially, in order to take into account the direction of two trajectories we define
the local directional distance DIR between two segments of Q and S characterized
by the angle ϕ they form.

Definition 2 (local directional distance between two segments) The local directional
distance DIR(Qq,Ss) between two segments Qq and Ss, Qq ∈ Q and Ss ∈ S, forming
an angle ϕ ∈ [0◦, 180◦] is defined as follows:

DI R
(

Qq, Ss

)

=
1 − cos (ϕ)

2
(1)

J Intell Inf Syst

with its value ranging from 0 (total similarity, in case ϕ = 0◦) to 1 (total dissimilarity,
in case ϕ = 180◦).

Let us now formally define the so-called LIP criterion that, in the discussion that
will follow, will classify a pair of segments as either good or bad with respect to
whether this pair satisfies this criterion or not.

Definition 3 (LIP criterion for classifying two segments as either good or bad) Given
the routes (polylines) Q and S of two trajectories, and the pair (Qq, Ss) of segments
Qq ∈ Q, Ss ∈ S, which are the subsequent of two already certified sub-polylines Q′

j

and S′
j (|Q′

j| ≥ 0, |S′
j| ≥ 0); two polylines are considered certified if their segments

have already passed the LIP criterion successfully. The pair (Qq, Ss) satisfies the LIP

criterion w.r.t. to Q′
j and S′

j and is marked as good if:

(a) (local directional property) the local direction between the two segments forms
an angle 0◦<ϕ<90◦, i.e., 0<DIR(Qq,Ss) <0.5, and

(b) (local simplicity property) if Q′
j and S′

j are not empty (i.e., |Q′
j| > 0, |S′

j| >

0), the segment QSqs = [(Qq.xe, Qq.ye), (Ss.xe, Ss.ye)]), which is the segment
that connects the ending points of the under examination segments Qq and Ss,
crosses neither Q′

j∪ Qq nor S′
j∪Ss;

To exemplify the above definition, let us consider the two polylines Q and S

depicted in Fig. 6. In order to apply the LIP criterion for the first segments Q1 and
S1 we only need to consider the first part of the definition (Q′

j and S′
j are empty

since no segment of Q and S has been checked yet). The result of the examination
is positive since it holds that 0 < DI R(Q1,S1) < 0.5, so Q1 and S1 are considered
certified sub-polylines for the subsequent segments. Assuming an iterative procedure
(which will be described in detail in Section 3.1.3), we come to a point that we
have marked pairs (Si, Qi), 1 ≤ i ≤ 3, as pairs of good segments. For instance,
note that 0 < DI R(Q3,S3) < 0.5 and QS33 crosses neither polyline {Q1,Q2,Q3} nor
{S1,S2,S3}. At this point the procedure identifies (S4, Q4) as a pair of bad segments,
since both conditions of LIP criterion fail (i.e., DIR(Q4,S4) < 0.5 and QS44 crosses
{S1,S2, S3, S4} at S3; however, note that only the first condition needs to be tested).

Having defined the LIP criterion which classifies pairs of segments as either good

or bad, we define a simple yet effective criterion that segments the routes (polylines)
Q and S of two trajectories into two respective sequences of sub-polylines whose

Fig. 6 Examples of ‘good’ and
‘bad’ segments Y

X

Q 2

Q 3

Q 4

Q 5

S1
S2

S3

S4

Q 6

S5

Q 1

Good

Bad

S6

J Intell Inf Syst

one-by-one combination forms a sequence of pairs of sub-polylines, each one satisfy-
ing this criterion. The idea is that during traversing polylines Q and S we may identify
the so-called bad segments that violate the local directional and local simplicity prop-
erties (defined above) of the under-construction regions, as they exhibit diverging
rotation in contrast to their coupling trajectory. As soon as we detect these segments,
we segment the trajectories at the initial points of the bad segments. Then, we
calculate the LIP for the already investigated portions of the polylines that for sure
satisfy our conditions. Afterward, we deal with the bad segments and we continue
recursively in a similar manner with the remaining portions of the initial polylines.
(Note here that concurrently traversing the two polylines does not necessarily involve
a one-by-one comparison between the segments of Q and the respective segments of
S. Instead, a segment from the one side could be compared with an already examined
segment from the other side, and this happens in order for the algorithm to process
similar lengths, thus allowing us to handle datasets collected with different sampling
rates or trajectories resulted from motions of different speeds (though same sampling
rates). This procedure will be presented in detail in Section 3.1.3).

Definition 4 (trajectory segmentation according to LIP criterion) Given the routes
(polylines) Q and S of two trajectories consisting of |Q| and |S| segments, respec-
tively, we define their segmentation that does not violate the LIP criterion, as the
one that results in two corresponding sequences Q′ and S′ of z sub-trajectories,
Q′ =

〈

Q′
1, Q′

2, . . . , Q′
z

〉

and S′ =
〈

S′
1, S′

2, . . . , S′
z

〉

, so that:

(a) The union of the sub-trajectories Q′
j ∈ Q′, S′

j ∈ S′, j = 1, . . . , z, forms the initial

trajectories Q and S, i.e.,
z
⋃

j=1

Q′
j = Q,

z
⋃

j=1

S′
j = S;

(b) Each sub-trajectory Q′
j ∈ Q′, S′

j ∈ S′, j = 1, . . . , z, which consists of a subset of

consecutive segments Qq,j, Ss,j

(

q = 1, . . . ,

∣

∣

∣Q′
j

∣

∣

∣ and s = 1, . . . ,

∣

∣

∣S′
j

∣

∣

∣

)

of Q and

S, respectively, is a non self-intersecting sub-trajectory, except only at the end-
ing and starting points of consecutive segments, i.e. for Q′

j, ∀q′, q = 1, ..., |Q′
j| if

q′ 	= q + 1 then Qq, j

⋂

Qq′, j = ∅ else Qq, j

⋂

Qq′, j =
(

xs,Qq′ , j
, ys,Qq′ , j

)

. Similarly

for S′
j. Obviously

∣

∣

∣
Q′

j

∣

∣

∣

⋃

q=1

Qq, j = Q′
j and

∣

∣

∣
S′

j

∣

∣

∣

⋃

s=1

Ss, j = S′
j;

(c) The z ≥ 1 pairs of sub-trajectories pairj =
(

Q′
j, S′

j

)

, j = 1, . . . z, corresponding

to z−1 splitting points, occur at the so-called bad segments, namely, those
segments that violate the LIP criterion as it was defined in Definition 3, i.e.,
Q∣

∣

∣
Q′

j

∣

∣

∣
, j

and S∣

∣

∣
S′

j

∣

∣

∣
, j

, j = 1, . . . , z − 1.

(d) If the length of the route of Q is larger than the length of S (i.e. rQ > rS), then
the final segment of S (i.e. S|S|) is used as the coupling sub-trajectory in the
LIP criterion evaluation, against the remaining sub-trajectory of Q. This implies

that there are ξ ≤ z pairs that are formed as follows: pairj =
(

Q′
j, S|S|

)

, j =

z − ξ + 1, . . . , z. Similarly, if rQ < rS.

Note that, at the present point, the above definition illustrates in a formal way
the properties of the final pairwise segmentation of two trajectories. The detailed

J Intell Inf Syst

description and the algorithmic steps taking into advantage of the above definition
are presented in the following two subsections.

3.1.2 Calculating LIP distance

Combining Definitions 3 and 4 allows us to calculate the distance between the
routes of two trajectories by computing the area between pairs of sub-polylines

pairj =
(

Q′
j, S′

j

)

, j = 1, . . . , z, which either satisfy the LIP criterion (i.e., good case;

in this case, Q′
j, S′

j are two polylines, each consisting of one or more segments) or not
(i.e., bad case; in this case, Q′

j, S′
j are two single segments). Each case is handled

differently. Subsequently, we present our approach for calculating the area for a
good pair j, suppressing for the moment the way we use the LIP criterion in a generic
algorithm.

First, we should note that in the above discussion (Definitions 3 and 4) there is
no assumption whether a segment of sub-polyline Q′

j intersects/crosses a segment of
sub-polyline S′

j in a pairj or not; there is only a requirement that each of Q′
j, S′

j is not
self-intersecting. Furthermore, any two segments belonging to Q′

j andS′
j, respectively,

will fall in one of the following three cases: a) they are disjoint (having no intersection
points), b) they are not disjoint and not collinear (presenting only one intersection
point), and c) they are collinear and they overlap (in this case, there are at most two
intersection points, namely the starting and ending points of their common part; if
their common part is a single point then this is their unique intersection point).

Given the above, for the ‘good’ case in which the LIP criterion is satisfied between

pairj =
(

Q′
j, S′

j

)

, and in order to work with closed polygons, we add two additional

segments connecting the starting and ending points of the sub-polylines (see dashed
segments in Fig. 4). Obviously, these segments do not cross any of Q′

j, S′
j due to the

LIP criterion. Considering that these additional segments are extensions of one of
the sub-polylines (hereafter and without loss of generality, let us assume that these
segments are extensions of S′

j), then regarding the first of these segments, its initial
point is now considered to be the initial point of both polylines, while regarding
the second segment, its ending point coincides with the last point of the other sub-
polyline (i.e. Q′

j). Obviously, the above discussed points imply that Q′
j andS′

j have at
least two intersection points.

In the general case, Q′
j andS′

j may intersect in n ≥ 2 intersection points I1, I2, . . . , In

(with I1 andIn being the above-mentioned intersection points), and the LIP criterion

guarantees the formulation of a simple polygon between two consecutive intersection
points. As such, in the general case there is a need to calculate the area of a series of
n−1 simple polygons. Given the above, below we formally define the LIP distance
measure for the case of two sub-trajectories that satisfy the LIP criterion.

Definition 5 (LIP distance—‘good’ pair) The Locality In-between Polylines distance
for a pair pairj = (Q′

j, S′
j) of sub-polylines that (a) satisfy the LIP criterion, and

(b) present n ≥ 2 intersection points I1, I2, . . . In, where I1 andIn are artificially
introduced after interconnecting at their initial and final points, is defined as follows:

LI Pgood

(

Q′
j, S′

j

)

=
∑

∀ polygoni∈�

LI Pi (2)

J Intell Inf Syst

where LIPi for a simple polygoni is defined as:

LI Pi = Areai · wi (3)

with Areai denoting the area of polygoni belonging to the set � of simple polygons,
and wi being the contributions (weights) of each polygon area in the overall distance.
The set � is defined as:

� = {poly(Ik, ipoints(Q′
j, Ik, Ik+1), Ik+1, ipoints(S′

j, Ik+1, Ik), Ik)

|∀k = 1, .., n − 1} (4)

where poly() is a polygon constructor that takes as input a set of points and constructs
a closed polygon, and ipoints() is a function that returns the intermediate sampled
points of a trajectory (i.e., first argument) between two points (i.e., second and third
arguments) in the sequence implied by them. Regarding the Areai of each polygoni,
it is calculated as usual.

Finally, if rQk,k+1 and rSk,k+1 are the lengths of the routes traversed by Q′
j andS′

j,
respectively, between two intersection points Ik and Ik+1, i.e., the portions of Q and
S that participate in the construction of polygoni, and if rQ and rS are the lengths of
the whole routes of Q and S, respectively, the contribution wi ∈ [0..1] of polygoni in
LIP(Q′

j, S′
j) is:

wi =
rQk,k+1 + rSk,k+1

rQ + rS
(5)

As already mentioned, intuitively the area between two polylines is the one
traversed by the one polyline towards the other polyline in a way so as to perfectly
match. When the LIP criterion is not satisfied, following the approach of good

pairs would lead to an area that is not a meaningful distance between the two
sub-polylines. For the ‘bad’ case, where pairj = (Q′

j, S′
j) does not satisfy the LIP

criterion (recall that, in this case, the two sub-polylines consist of a single segment
each), we follow a two-step approach. In the first step, we translate each segment
towards the other as to have common starting points, while at the second step we
take into advantage the obtuse angle formed between the two segments by using
their monotonically increasing directional distance (1).

Regarding the first step, such a translation shifts the segment by a different
constant at each dimension. Figure 5b illustrates the translation of Qi Qe towards
SiSe by translating it by a vector
Tx +
Ty in order to match the starting point of Qi Qe

to that of SiSe. This initial step comes with a cost, which, in terms of area, is equal to
the traversed region during translation of the segment, and which is proportional to
the lengths of the segments and the length of vector
Tx +
Ty. Formally:

Definition 6 (traversed area) The traversed area that is required in order to make
the segments of a bad pairj = (Q′

j, S′
j), to have common starting points is the area of

the maximum region traversed by either translating Q′
j towards S′

j or S′
j towardsQ′

j.
This area corresponds to the area of the parallelogram which is created by translating
the segment along vector
Tx +
Ty, which connects the beginning of Q′

j (S′
j) with

the initial point of S′
j i.e.

(

S1, j.xi, S1, j.yi

)

(Q′
j i.e.

(

Q1, j.xi, Q1, j.yi

)

, respectively). The

area of the parallelogram equals
∣

∣

∣

Tx +
Ty

∣

∣

∣
· rQ′

j
· sin (θ), where

∣

∣

∣

Tx +
Ty

∣

∣

∣
and rQ′

j
are

J Intell Inf Syst

the lengths of the translation vector and the translated segment Q′
j, while θ is the

angle between them (see Fig. 5c). In the degenerated case that θ = 0◦ (or 180◦),
where the area of the region traversed is zero, we set the translated area to be equal

to dT =
(∣

∣

∣

Tx +
Ty

∣

∣

∣
+

∣

∣

∣
rQ′

j
− rS′

j

∣

∣

∣

)

· d that is the length of the translation vector plus

the absolute difference of the lengths of the segments, multiplied by some minimal
distance d, which corresponds to the vertical distance of the segments as if they were
not colinear (assuming e.g. an angle θ a bit bigger (less) than 0◦ (180◦, respectively;
see Fig. 5d). The above are formalized as follows:

translate
(

Q′
j, S′

j

)

= max
{

T A
(

Q′
j,

(

S1, j.xi, S1, j.yi

)

)

,

T A
(

S′
j,

(

Q1, j.xi, Q1, j.yi

)

)}

(6)

where

T A
(

Q′
j,

(

S1, j.xi, S1, j.yi

)

)

=

{
∣

∣

∣

Tx +
Ty

∣

∣

∣ · rQ′
j
· sin (θ) , if 0◦ < θ̂ < 180◦

dT , if θ̂ = 0◦ or θ̂ = 180◦
(7)

Regarding the second step, the idea is to use the DIR distance between the two
segments so as to overcome the unintuitive case of Fig. 5a. The following definition
presents the way we handle a bad pair of segments:

Definition 7 (LIP distance—‘bad’ pair) The Locality In-between Polylines distance
for a pair of segments pairj = (Q′

j, S′
j) that does not satisfy the LIP criterion is:

LI Pbad

(

Q′
j, S′

j

)

=
(

translate
(

Q′
j, S′

j

)

+ rQ′
j · rS′

j · DI R
(

Q′
j, S′

j
)

)

· w (8)

where rQ′
j
and rS′

j
are the lengths of Q′

j andS′
j, respectively, and w is defined similarly

as wi of Definition 5.

w =
rQ′

j
+ rS′

j

rQ + rS
(9)

Recalling Fig. 5, we can argue that the above definitions cover all special cases
illustrated there. In particular, the three different cases of Fig. 5a are treated uni-
formly (note that translation area is zero). When the angle ϕ = 90◦, DI R

(

Q′
j, S′

j
)

=
0.5 corresponding to the area of the orthogonal triangle, while when ϕ > 90◦,
DI R

(

Q′
j, S′

j
)

> 0.5 intuitively results in an even bigger area. In this case the value of
LIP is up to rQ′

j · rS′
j , which is the case when ϕ = 180◦. Figure 5c depicts the traversed

area that is the maximum between the vertical and the horizontal stripped regions.
Figure 5d illustrates three special cases, i.e., objects move towards the same direction,
as well as the same versus opposite destinations. Note that in these cases LIP acts
similarly to Euclidean distance as it depends on the length of the translation vector
and the absolute difference of the lengths of the segments. Finally, the case where ϕ =
0◦ is handled as a bad case. More specifically, if the two segments are moving parallel
in space (θ 	= 0◦) LIPbad counts only the translation area (as the DIR distance is zero
in this case), which is the same as following the approach of a good pair of segments.
On the other hand, if the two segments are moving along the same line (θ = 0◦),

LIPbad is dT , which implies an area analogous to
∣

∣

∣

Tx +
Ty

∣

∣

∣
+

∣

∣

∣
rQ′

j
− rS′

j

∣

∣

∣
(i.e. zero for

J Intell Inf Syst

identical segments—equi-length segments that start together and move on the same
line—and non-zero for non identical segments).

The procedure for computing LIP distance between a pair of polylines Q′ and S′ is
illustrated in Fig. 7. In summary, the procedure for computing LIP for a pair j (below,
subscript j is suppressed for clarity) depends on whether Q′ and S′ satisfy the LIP

criterion (lines 3–17) or not (lines 1–2). In the former case, the algorithm initially
finds possible intersection points between the two sub-trajectories (line 4) and then
iteratively detects the above discussed simple polygons, whereas each polygon is
constructed as a list of points. This list is separated into two sets. The first set consists
of points that reside on Q′ (solid line in Fig. 4), while the second set consists of points
that reside on S′ (dashed line). The algorithm follows forwardly the solid line, adding
points from Q′ to the current polygon, and when finding an intersection point, follows
backwardly the dashed line, adding points from S′ to the polygon until the previous
intersection point is visited. Intersection points Ik between Q′ and S′ are computed
and stored once in a priority queue PQ, where priority implies an ordering of Ik in
time axis. Together with the priority queue, a positioning array (PA) is maintained
keeping the line segments of both Q′ and S′ where upon the intersection points
reside. LIPgram is a list maintaining information for each polygon.

Regarding the complexity of LIP Algorithm, we note the following: Assuming
N = |Q′| + |S′| line segments and K intersection points, finding intersection points
Ik between Q′ and S′ (line 4) corresponds to the red-blue intersection problem
(Chan 1994), which can be solved in O(NlogN + K) time using O(N + K) space
(Chazelle and Edelsbrunner 2002). PQ stores K elements (equals to the number

Algorithm LIP(Q’, S’, case)
Input: Q’ and S’ are polylines that either satisfy the LIP criterion or not; the

latter is signalled by the case flag

Output: The area between polylines Q’ and S’

01. IF case == ‘bad’ THEN

02. RETURN (Q',S') badLIP // See Eq. 8

03. ELSE // case == ‘good’
// Find intersection/crossing points Ik

04. PQ=IntersectPoints(Q’,S’,PA)
// Form polygons between consecutive Ik

05. FOR k = 1 to |PQ| - 1
06. polygon = Ø
07. start = pos(PA, Q’, PQ(k))
08. end = pos(PA, Q’, PQ(k+1))
09. T1 = ipoints(Q’,start,end)
10. start = pos(PA, S’, PQ(k+1))
11. end = pos(PA, S’, PQ(k))
12. T2 = ipoints(S’,start,end)
13. polygon =poly(PQ(k),T1,PQ(k+1),T2,PQ(k))

14. update(LIPgram,polygon,k,k+1,
1kk,Qr ,

1kk,Sr)

15. NEXT
16. RETURN sum(LIPgram) // See Eq. 2
17. END IF

Fig. 7 LIP algorithm

J Intell Inf Syst

of the intersection points) and for each one, two positions are pointed out in PA.
So O(K) space is required for maintaining the two structures. Since the number
of polygons defined over the K intersection points is K, O(K) time is required to
calculate the areas of polygons. In total, LIP(Q′,S′) computation is O(NlogN) time
and O(N) space complexity, assuming that K and N are of the same order.

3.1.3 Generalized LIP distance

The LIP algorithm described so far works with pairs of trajectories that either satisfy
the LIP criterion or not. The way that this criterion is utilized as to provide a
generic algorithm that makes LIP operator universal was suppressed in the previous
discussion. The idea for such an algorithm is to traverse the trajectories applying
the LIP criterion and when a segmentation point is identified, compute the area
for the already investigated sub-polylines, and recursively continue with the rest of
the polylines. To this line, algorithm GenLIP, illustrated in Fig. 8, searches for bad

segments and acts as a driver for the invocation of the LIP distance operator. In other
words, the aim of this algorithm is to calculate the summation of LIP between all pairj

resulted by the above segmentation.

Fig. 8 GenLIP algorithm

J Intell Inf Syst

Definition 8 (generalized LIP distance) The Generalized LIP (GenLIP) distance
between Q and S, given their segmentation due to the LIP criterion into z pairs

of sub-trajectories pairj =
(

Q′
j, S′

j

)

, j = 1, . . . , z, is defined as follows:

GenLI P(Q, S) =

z
∑

j=1

LI P(Q′
j, S′

j) (10)

where LIP(Q′
j, S′

j) is the LIP distance between two polylines Q′
j and S′

j as imple-
mented by Algorithm LIP.

The procedure for computing GenLIP(Q, S) distance between two trajectories Q

and S is illustrated in Fig. 8. More specifically, the algorithm starts by performing
the necessary initializations (lines 1–3). Then, it traverses the segments of Q and S

until the last segment of both Q and S is reached (line 4). At each step, it applies
the LIP criterion (function Bad, line 5), and in case the examined segments fulfil the
LIP criterion conditions, they are marked as good, and they are appended to two
polylines Q′ and S′, representing the certified portions of Q and S, respectively.
As already mentioned, polylines Q and S are not traversed segment by segment
but according to a dynamic approach implemented by function next (line 20). In
detail, next takes as input the certified polylines Q′ and S′ and the current indices
q and s, and appropriately increases q and/or s by one (the possibly incremented
values of which are the output of the function), having as criterion whether the
following two inequalities hold: rQ′∪Qq+1

≥ rS′ and rS′∪Ss+1
≥ rQ′ . In other words, if

extending Q′ by Qq+1
(

S′ by Ss+1
)

results in a polyline with length larger than S′ (Q′,
respectively), then q (s, respectively) is increased (by one) while s (q, respectively)
is not. Obviously, the above inequalities may concurrently be true, having as a result
the increment of both q and s by one. In case that the examined segments fail to
satisfy the LIP criterion (line 7), a chance is given to the next p ≥ 0 pairs of segments
to “correct” this, perhaps local, irregularity by checking whether one of them fulfils
the LIP criterion. If p > 0 and this look-ahead test succeeds to find at least one good

pair of segments, then all pairs up to that point (either bad or good) are marked
as good and appended to Q′ and S′, and the procedure continues in the same way
(lines 8–14). Otherwise (i.e., if the look-ahead test fails) the procedure ignores the
previous processing by removing p segments from Q′ and S′ (lines 15–18), invokes
the LIP operator for the bad segments as well as for Q′ and S′ (lines 22–23), and
recursively calls GenLIP for the rest of the initial polylines (lines 24–26).

We should note that the purpose of the parameter p is only to prevent the
multitudinous segmentation of the trajectories due to jerky movements that fail the
criterion but only temporarily. This would result in huge LIPgram lists with small
LIPgrami. In this way, we minimize the storage cost while we allow bigger and
more meaningful local similarity indicators (i.e., LIPgrami), acquainting that the
calculated area may be affected. To present the effect of p through an example,
let us recall Fig. 6 that illustrates the routes of two trajectories Q and S for which
the GenLIP procedure marks (Si, Qi), 1 ≤ i ≤ 3, as pairs of good segments and
subsequently identifies (S4, Q4) as a pair of bad segments. If no look-ahead test is
performed (i.e., p = 0) then the LIP distance function will be initially applied for
the bad pair (S4, Q4), then for the good pair Q′ = {Q1, Q2, Q3} and S′ = {S1, S2, S3}
(i.e., measuring the area of polygon {Q1, Q2, Q3, S3, S2, S1, Q1}) and, then, it will

J Intell Inf Syst

recursively continue for (Si, Qi), i ≥ 5. On the other hand, if a look-ahead test
is enabled (e.g. p = 2) then the bad pair (S4, Q4) will be temporarily “ignored”
expecting that the irregularity will be “corrected” in one of the subsequent p = 2

pairs. Indeed, although (S5, Q5) still appears to be a bad pair, (S6, Q6) turns out to
be good, and it is Q′ = {Q1, Q2, Q3, Q4, Q5, Q6} and S′ = {S1, S2, S3, S4, S5, S6} that
will be given as input to LIP Algorithm (Fig. 7).

It is easily implied that GenLIP is a distance operator that may be intuitively
utilized by a user (e.g. posing a query of the form “find similar trajectories that
passed a few building blocks (say, less than 10 km2) away from my route”). A
powerful feature of the LIP operator is that it does not only provide a global
measure for the similarity of two trajectories; furthermore it quantifies the distance
among portions of the trajectories. These portions are not statically predefined.
For example, the implicit output of the LIP operator is a distance list of the
form LI Pgram = {LI Pgram1, . . . , LI Pgrami, LI Pgrami+1, . . . , LI Pgramn}, where
LI Pgrami = (Ik, Ik+1, LI Pi), is a triplet that implies the distance LIPi between
points Ik and Ik+1. It is a trivial task therefore to perform queries upon the resulted
LIPgram so that to find parts of trajectories that diverge or converge and, as such, to
cluster subsets of the above trajectories.

Regarding the time complexity of GenLIP algorithm, it is O(z · (N log N+
p · N′)), where z is the depth of the recursion, O(NlogN) is the cost of LIP function
as discussed earlier, p is the number of the look-ahead tests multiplied by N′ which
is the maximum number of segments to be examined in order for GenLIP to decide
whether the under examination pair of segments is either ‘good’ or ‘bad’. In the one
extreme case, N′ = N, but in this case z = 1 and as p << N the O(p·N) cost is O(N).
Similarly, in the other extreme case, z is order of N (all pairs of segments are marked
as ‘bad’ – but in this case the cost of LIP function (line 22) is negligible) whereas
p << N. Overall, we can safely argue that GenLIP Algorithm is O(NlogN) time
complexity.

3.2 (Time-aware) spatiotemporal similarity

So far, the GenLIP distance operator does not take temporal information into
consideration since it compares the projections of moving objects to the Cartesian
plane. However it is designed so as the temporal dimension can be embodied
to GenLIP in a uniform way. In this section, we extend GenLIP by proposing a
novel distance operator, called Generalized SpatioTemporal LIP (GenSTLIP), which
measures the spatio-temporal similarity between two trajectories. Intuitively, two
moving objects are considered similar in both space and time when they move close
at a concurrent mode. This type of similarity is formalized as follows:

Definition 9 (generalized spatio-temporal LIP distance) The GenSTLIP distance
between two trajectories Q and S, given a segmentation of their routes according

to the LIP criterion into z pairs of sub-trajectories pairj =
(

Q′
j, S′

j

)

, j = 1, . . . , z, is

defined as follows:

GenST LI P (Q, S) =

z
∑

j=1

ST LI P
(

Q′
j, S′

j, kt, δ
)

(11)

J Intell Inf Syst

where:

ST LI P
(

Q′
j, S′

j, kt, δ
)

=

⎧

⎨

⎩

∑

∀ polygoni∈�

ST LI Pi, i f pair(Q′
j, S′

j) = ‘good’

LI Pbad · (1 + kt · T LI Pi (δ)) , i f pair(Q′
j, S′

j) = ‘bad’

(12)
� is defined as in Definition 5 and STLIPi for polygoni ∈ � is defined as:

ST LI Pi = LI Pi · (1 + kt · T LI Pi (δ)) (13)

where kt ≥ 0.

In other words, GenSTLIP is defined to be the summation of all STLIP defined
per pairj, where in its turn a STLIP for a good pairj is the summation of all STLIPi

defined per polygoni, that is a multiple of LIPi (by a factor greater than 1), implying
the temporal distance of the corresponding LIPi. Temporal LIP (TLIPi) is a measure
in the range [0, 1] modeling the local temporal distance, and participates to the
STLIPi measure by a penalty factor kt which represents user’s assigned importance
to the time-factor. STLIP is defined similarly in case of a bad pairj.

In order to define the local temporal distance TLIPi and associate it with the
corresponding LIPi, we need to find the timepoints when Q′ and S′ cross each other.
Let Qt_Ik be the timepoint when Q′ passes from intersection point Ik and Qt_Ik+1 be
the timepoint when Q′ reaches the next intersection point Ik+1. Respectively, St_Ik

and St_Ik+1 are the corresponding timepoints for S′. These pairs of timepoints define
the periods that each point needs to traverse its route from one intersection to the
other. Let Qpk =

[

Qt_Ik, Qt_Ik+1) and Spk =
[

St_Ik, St_Ik+1) be these periods. We
define the temporal distance T LI Pi (δ) ∈ [0, 1]as follows:

T LI Pi (δ) =

∥

∥

∥

∥

1 − 2 ·
MDIi (δ)

lQk,k+1 + lSk,k+1

∥

∥

∥

∥

(14)

where lQk,k+1 and lSk,k+1 , are the lifespans of the Q′
j andS′

j, respectively, between two
intersection points Ik and Ik+1, (namely, the duration dur of Qpk, Spk), and the
maximum duration intersection MDIi(δ) is defined as:

MDIi (δ) = max
{

dur (Qpk ∩ Spk) ,

dur
(

Qpk ∩
[

St_Ik, St_Ik+1 + δ)
)

,

dur
(

Qpk ∩
[

St_Ik − δ, St_Ik+1)
)}

(15)

That is, MDI is the maximum duration of the temporal period (representing the
lifespan of a particular section of the motion) of the intersection between Qpk and one
of the following three alternatives: a) temporal period Spk, b) Spk stretched towards
future by a temporal interval δ, c) Spk stretched to the past by δ. To this end, MDI has
been incorporated in order to support almost concurrent movements. This happens
by introducing parameter δ, a time window (tolerance in the past as well as in the
future) in which two trajectories, though not moving concurrently, are considered
temporally close. Finally, recall that even for trajectories do not really cross each
other, there are the two artificial intersection points I1 and In that cover the whole
lifespans of the trajectories.

J Intell Inf Syst

In terms of implementation, the algorithm that computes GenSTLIP is very
similar to that of GenLIP, except of two simple modifications.

First, Q and S are restricted at their common lifespan, as it is meaningless to
search for spatiotemporal similarity in periods that there is not mutual movement.
To exemplify this, the following three lines of pseudocode may be added before line
1 of GenLIP algorithm:

...

00.1 p = Sp ∩ Qp // Find period of mutual movement

00.2 Q = Q.at_period(p) // Restricts Q at period p

00.3 S = S.at_period(p) // Restricts S at period p

...

Second, the computation of the temporal periods Qpk and Spk and the respective
lifespans lQk,k+1 and lSk,k+1 , of Q′ and S′ is trivial for a bad case (i.e., line 2 of LIP
algorithm is changed by direct application of the second branch of (12)), while for
a good case it is performed concurrently with the computation of the intersection
points Ik and Ik+1, and are also stored at the positioning array PA (line 4). This
implies that the function pos (e.g. line 7) does not only return the position (i.e., the
(x,y) coordinates) of the intersection point PQ(k), but also the corresponding time
instance. Finally, LIPgram is updated (line 14) accordingly to maintain MDI, lQk,k+1

and lSk,k+1 , which are used at the cumulative step (line 16) as delineated by (11–13).
Considering time complexity, the cost of calculating GenSTLIP is O(NlogN) since

GenLIP is the dominant factor in the procedure.

3.3 Discussion about metric properties

In this section, we study the metric properties of the proposed distance functions.
As we prove in the following theorems, the GenLIP distance (and its associated
functions, GenSTLIP, etc.), fail to be metrics due to the triangular inequality
criterion.

Theorem 1 The distance measure GenLIP on a dataset D of trajectories satisf ies the

non-negativity, the symmetry, the identity of indiscemibles metric conditions, but not

the triangle inequality.

Proof sketch The non-negativity condition (i.e. GenLIP(x,y) ≥ 0 for all x, y in D) is
self-evident that it stands as all measurements are areas of regions. The symmetry

condition (i.e. GenLIP(x,y) = GenLIP(y,x)) as well as the identity of indiscemibles

(i.e. GenLIP(x,y) = 0 if and only if x = y) are trivial to prove. Note that the only two
issues that could spoil symmetry is the translation of the segments in the bad case,
and the weighting of the polygon areas. For the first, we count the maximum area
of the two possible translations, while for the second we multiply by a factor (see
(5), (9)) that takes into account the sum of the lengths of the involved trajectories.
Regarding identity of indiscemibles, x = y implies GenLIP(x,y) = 0 as there are only
bad pairs of identical segments that all of them result in zero areas. Reversely, if
GenLIP(x,y) = 0 then if it was x 	= y then there would exist at least one segment
differentiating the two trajectories. But in this case, this segment would result in a

J Intell Inf Syst

non-zero area either due to translation or difference on the lengths of the segments
in case of a bad pair (recall dT even for the special case that the segment lies on
the same line with the translation vector), or due to the formation of a region, the
area of which is intuitively the measure of change so as for the trajectory including
this segment to be equal to the other trajectory. Regarding the triangle inequality

condition (i.e., GenLIP (x, y) ≤ GenLIP (x, z) + GenLIP (z, y) for all x, y, z in D) we
show that it does not hold via an anti-paradigm. Consider the case where x, y, z are
single segments, x, y are collinear with same starting point, and the length of y is twice
the length of x, and z is parallel to the other two and its length is equal to the length of
x, while their perpendicular distance is equal to its length). In this case, GenLIP(x,y)
is considered to be a bad case, and is respective to dT =

∣

∣rx − ry

∣

∣ · d = rx · d since

the translation vector
∣

∣

∣

Tx +
Ty

∣

∣

∣
is zero. However, it is obvious that for a small d the

GenLIP(y,z) is larger than GenLIP(x,z) + GenLIP(x,y), as ry > rx = rz. ⊓⊔

Being non-metric implies that GenLIP is non-indexable by traditional distance-
based indexing methods, but it does not mean that GenLIP is not a “good” distance
function. Being metric would speed up MST type of queries by pruning the search
space with the proper use of the triangle inequality metric property. On the other
hand, there are robust distance functions that have been proposed in the literature
(e.g. in the domain of image retrieval, such as the Hausdorff distance (Huttenlocher
et al. 1993) and the Dynamic Partial Function (DPF) (Goh et al. 2002), but also
in the trajectory retrieval field, such as EDR (Chen et al. 2005), LCSS (Vlachos
et al. 2002b) and DTW (Berndt and Clifford 1996)) that do not follow triangle
inequality. Furthermore, an interesting line of research that is left for future work, is
to appropriately adapt the proposed distance functions, so as to obey weaker versions
of the triangle inequality metric condition (i.e. near triangle inequality Chen et al.
2005), which would still allow us to use distance-based indexing methods.

Regarding the time-aware variant of GenLIP (i.e. GenSTLIP) we need first to
study the properties of the local temporal distance TLIP.

Theorem 2 The distance measure TLIP between two periods is a metric for δ = 0,

while GenSTLIP on a dataset D of trajectories satisf ies the non-negativity, the sym-

metry, the identity of indiscemibles metric conditions, but not the triangle inequality.

Proof sketch It is trivial to prove that TLIP satisfies the first three conditions for δ =
0, while regarding the triangle inequality it is also satisfied as MDI is the intersection
of two L1 intervals and TLIP is a monotonous increasing composite function on
MDI. Similarly with Theorem 1, one can easily prove the first three properties of
GenSTLIP. However, althouth TLIP is a metric, GenSTLIP is not a metric as it does
not obey the triangle inequality due to that GenLIP also does not hold this condition.

⊓⊔

3.4 A real-world example

In order to provide a better insight of the distance operators presented above, we
utilize as a running example the routes Q (green line) and S (red line) of two
trajectories from the ‘trucks’ dataset (discussed in Section 1), illustrated in Fig. 9.
The two trucks travel from one depot (point A, lower right in the figure) to the other

J Intell Inf Syst

Fig. 9 A running example for the calculation of the distance operators

depot (point F, upper left in the figure). For simplicity and ease of exposition of the
calculations we include only a few points (see the yellow pins with the white labels)
per each route. The usefulness of the points (i.e. pins) having the same color with the
routes will be discussed in Section 4.4. Clearly, the routes of the two trucks appear
to have three (including the common start and end) intersection points, thus forming
two polygons, E1, E2 (first E1, orange polygon and second E2, yellow polygon). In
this case the GenLIP distance is identical with LIP as the LIP criterion is always
satisfied during traversing Q and S.

Table 1 summarizes all necessary calculations of the different operators that can
be applied over the two trajectories illustrated in Fig. 9. Let us assume that both
trucks depart at 8:00 a.m. and arrive at their destinations at 8:30 a.m.. Furthermore,
truck Q passes from intermediate point (i.e., ipoints) C at 8:15 a.m., while truck S

Table 1 Calculating
LIP–TLIP–STLIP distance
functions over real movement
data

E1 E2

∑

rQk,k+1 6.54 4.63 11.17 km
rSk,k+1 4.33 5.37 9.7 km
LIPi 2.64 2.07 4.71 km2

TLIPi(δ), δ = 0 0.19 0.14
STLIPi kt = 0.5 2.89 2.21 5.1 km2

kt = 1 3.14 2.36 5.5 km2

TLIPi(δ), δ = 0.05 0.05 0.14
STLIPi kt = 1 2.77 2.36 5.12 km2

J Intell Inf Syst

passes from C at 8:10 a.m.. The second and the third row in the table show the
distances (in kilometers) between two consecutive intersection points while the rows
below show LIPi, calculated (in square kilometers) according to (2), (3), (4) and (5),
TLIPi(δ), calculated for δ = 0 or δ = 3 min, according to (14) and (15), and STLIPi,
calculated for kt = 0.5 or kt = 1, according to (11) and (13).

As expected, STLIP ≥ LIP, which is a direct implication of (13), while STLIP

increases with kt. It is also evident that setting δ to a value greater than zero may
result to smaller TLIPi, further reducing STLIPi. From a different perspective, the
calculated LIPi (4,71 km2) can be viewed as a percentage of the maximum LIP that
could have been calculated for the two trajectories if they were straight lines starting
from a common point and directing to opposite directions (i.e., ϕ = 180◦, which
makes an area of 11,17 × 9,7 km2). Under this perspective, the actual LIPi results
in a (normalized in unit space) dissimilarity value of 0.0435 between Q and S.

4 Trajectory similarity search—variations

Expanding our framework, in this section we describe three variations of the
previously proposed operators; these variations taking into consideration the rate
of change (i.e., speed, acceleration) and directional (i.e., turn) characteristics of the
trajectories.

4.1 Speed-pattern based similarity

Two interesting scenarios, which find realistic applications, are the following (we
discuss speed-oriented scenarios but one could easily think of their acceleration-
oriented counterparts):

• 1st scenario: The analyst is not interested in time dimension; what she cares about
Q and S is their speed v at different segments seg in their route. In this case, the
problem is to find the similarity between Q =

{(

segQ,1, vQ,1
)

, . . .
(

segQ,n, vQ,n
)}

and S =
{(

segS,1, vS,1
)

, . . .
(

segS,n, vS,n
)}

.
• 2nd scenario: The analyst is not interested in space dimension; what she cares

about Q and S is their speed v at different time periods per. The problem here
is to find the similarity between Q =

{(

perQ,1, vQ,1
)

, . . .
(

perQ,n, vQ,n
)}

and S =
{(

perS,1, vS,1
)

, . . .
(

perS,n, vS,n
)}

.

The above scenarios can be thought of as special cases of time-series similarity
search, and several well-known methods to perform such tasks can be found in the
literature. Another common assumption in those works is that the points are moving
with constant speed, which is the case of synthetic motions. On the other hand, we
aim to search for similarities of objects moving with fluctuated speed or acceleration
and may be randomly sampled, which is the realistic case.

In order to support the first variation, we introduce a new distance operator,
called Genaralized Speed-Pattern STLIP (GenSPSTLIP), to measure dissimilarity
between trajectories with respect to the speed pattern they follow, relaxing either
space or time features. To define GenSPSTLIP we follow a similar approach as with
GenSTLIP:

J Intell Inf Syst

Definition 10 (generalized speed-pattern STLIP) Given a segmentation of two tra-
jectories Q and S, due to the LIP criterion, into z pairs of sub-trajectories pairj =
(

Q′
j, S′

j

)

, j = 1, . . . , z, the GenSPSTLIP distance between Q and S is defined as

follows:

GenSPST LI P (Q, S) =

z
∑

j=1

SPST LI P
(

Q′
j, S′

j, kt, kSP, δ
)

(16)

where the relative distance for each sub-trajectory is defined as:

SPST LI P
(

Q′
j, S′

j, kt, ksp, δ
)

=

⎧

⎪

⎨

⎪

⎩

∑

∀ polygoni∈�

SPST LI Pi, i f pair
(

Q′
j, S′

j

)

= ‘good’

LI Pbad · (1 + kt · T LI Pi (δ)) ·
(

1 + ksp · SPLI Pi

)

, i f pair
(

Q′
j, S′

j

)

= ‘bad’

(17)

� is defined as in Definition 5 and SPST LI Pi for polygoni ∈ � is defined as:

SPST LI Pi = LI Pi · (1 + kt · T LI Pi) ·
(

1 + ksp · SPLI Pi

)

(18)

where ksp ≥ 0 is a penalty factor playing the same role as kt does in the definition of
STLIPi.

The local Speed-Pattern distance (SPLIP) is defined as:

SPLI Pi =

∥

∥

∥

rQk,k+1

lQk,k+1
−

rSk,k+1

lSk,k+1

∥

∥

∥

SPmax

(19)

where rQk,k+1 (rSk,k+1) is the length of the route traversed by Q (S, respectively)
between intersection points Ik and Ik+1, while lQk,k+1 (lSk,k+1) is the duration of the
lifespan of Q (S, respectively) restricted at their movement from Ik to Ik+1.

In other words, we adopt the traditional definition of speed as the ratio of the
distance traveled over the required travel time. Moreover, in order for STLIPi to be
normalized in [0..1], we divide the absolute difference of local speeds by SPmax, which
is an application-driven upper bound for speed (e.g. for cars, 50 m/sec or 180 km/h;
for boats, 50 mi/h). Also, note that if we omit the (1 + kt · T LI Pi) factor in (18), the
operator becomes time-relaxed as it estimates the distance among trajectories taking
into consideration the spatial and speed parameters, irrelevantly to their lifespans.

The algorithm that computes GenSPSTLIP is identical to that for GenSTLIP with
the only amendment to take place at the aggregation step (line 16) as delineated
by (18–19). Regarding its complexity, it is clear that, like GenSTLIP, GenSPSTLIP
presents O(NlogN) time complexity.

4.2 Acceleration-pattern based similarity

In a similar way, we define Generalized Acceleration-Pattern STLIP (GenACSTLIP)
to measure dissimilarity between trajectories with respect to the acceleration pattern
they follow, relaxing either space or time features. Formally:

J Intell Inf Syst

Definition 11 (generalized acceleration-pattern STLIP) Given a segmentation of
two trajectories Q and S, due to the LIP criterion, into z pairs of sub-trajectories

pairj =
(

Q′
j, S′

j

)

, j = 1, . . . , z, the GenACSTLIP distance between Q and S is

defined as follows:

GenACST LI P (Q, S) =

z
∑

j=1

ACST LI P
(

Q′
j, S′

j, kt, kac, δ
)

(20)

where the relative distance for each sub-trajectory is defined as:

ACST LI P
(

Q′
j, S′

j, kt, kac, δ
)

=

⎧

⎪

⎨

⎪

⎩

∑

∀ polygoni∈�

ACST LI Pi, i f pair
(

Q′
j, S′

j

)

= ‘good’

LI Pbad · (1 + kt · T LI Pi (δ)) · (1 + kac · ACLI Pi) , i f pair
(

Q′
j, S′

j

)

= ‘bad’

(21)

� is defined as in Definition 5 and ACST LI Pi for polygoni ∈ � is defined as:

ACST LI Pi = LI Pi · (1 + kt · T LI Pi) · (1 + kac · ACLI Pi) (22)

where kac ≥ 0 is a penalty factor.
The local Acceleration-Pattern distance (ACLIPi) is given by the following

equation:

ACLI Pi =

∥

∥

∥

∥

∥

rQk,k+1
lQk,k+1

−
rQk−1,k
lQk−1,k

lQk,k+1
−

rSk,k+1
lSk,k+1

−
rSk−1,k
lSk−1,k

lSk,k+1

∥

∥

∥

∥

∥

2 · ACmax

(23)

where the lengths of routes and the durations of lifespans are as described in
Section 4.1.

In other words, we adopt the traditional definition of acceleration as the ratio of
the change of speed over time. Moreover, in order for ACLIPi to be normalized in
[0..1], we divide the absolute difference of local accelerations by 2 × ACmax, which is
an application-driven upper bound for acceleration (e.g. for cars, 7 m/s2 or in other
words 0–100 km/h in 4 s).

Again, the algorithm for GenACSTLIP only requires the computation of ACLIPi

of (23) at the aggregation step of GenSTLIP. As all measures are already calculated
and stored in LIPgram, it is clear that, like GenSTLIP, GenACSTLIP presents
O(NlogN) time complexity.

4.3 Directional similarity

A third variation supports similarity of the form: “Find similar trajectories according
to their heading”. Based on such kind of similarity we could further cluster trajecto-
ries that move e.g. initially NW (during period A in place B) and then NE (during
period C in place D).

J Intell Inf Syst

Definition 12 (directional distance) The Directional Distance (DDIST) between two
trajectories Q and S is defined as follows:

DDIST (Q, S) =
∑

∀φi

DDISTφi
(24)

where

DDISTφi
= DI R

(

Qφi
, Sφi

)

· wφi
(25)

is the local directional distance DIR between two equi-length segments Qφi
and Sφi

,
which are the parts of Q and S, respectively, that ϕ̂i ∈ [0◦, 180◦] is the angle between
them; multiplied by a weight wφi

that corresponds to the percentage of Q and S

trajectories that participate in the distance. So, given that rQφi
and rSφi

(rQφi
= rSφi

),
are the lengths of Qφi

and Sφi
, wφi

is defined as:

wφi
=

rQφi
+ rSφi

rQ + rS

(26)

Figure 10 depicts that the angle ϕi formed between two segments of Q and S

change to ϕi + 1 whenever either Q or S changes direction. This means that a change
occurs at the ending points of each segment of Q and S.

The procedure for computing DDIST starts traversing the coordinates’ list of both
Q and S projected polylines until it examines all the segments of both of them. Two
indexes control the access to the points’ lists. Only one of the two indexes is advanced
at each step depending on which polyline changes its direction. At each step, the
angle formed between the segments Qφi

and Sφi
starting from the points already

reached, and ending either to a point residing at the longer of the two segments and
at a distance (from the starting point) equal to the length of the shorter segment
(end point of the bold portion of Sφ1

in Fig. 10), or the end point of the shorter under
investigation segments (end point of Qφ1

).
The algorithm presented in Fig. 11 simply traverses the polylines and depending

on the length of the segments decides which segment to clip. It calculates the local
distance and continues with the remaining polylines. Similarly to GenLIP, when one
of the two trajectories (i.e. S) comes to its final segment (i.e. its length is smaller), the
latter (i.e. S|s|) is used as the coupling segment, until the other trajectory also reaches
its final segment.

Fig. 10 Directional distance
on projected trajectories

Y

X

S

Q1

1
Q 2

Q

2

3
Q

3
4

5
6

4
Q

5
Q

6
Q

1
S

2
S

3
S

4
S 5

S 6
S

J Intell Inf Syst

Fig. 11 DDIST algorithm

DDIST is time-relaxed in the sense that it does not consider the temporal infor-
mation of trajectories. In the following, we study the time-aware case of directional
similarity.

Definition 13 (temporal directional distance) The Temporal Directional Distance

(TDDIST) between two trajectories Q and S is defined as follows:

T DDIST (Q, S) =

max

{

∑

∀ Qi

DDISTφi

(

Qi, SQi

)

,
∑

∀ Si

DDISTφi

(

Si, QSi

)

}

#i
(27)

where DDISTφi

(

Qi, SQi

)

is the DDIST between Qi, i.e., the projection of each
3DLS of Q in the Cartesian plane, and SQi

, i.e., the corresponding projection of S

sub-motion restricted at the period that Q needs to traverse Qi.

In other words, DDISTφi

(

Qi, SQi

)

is an indicator of how similarly S follows the
direction of Qi. The overall TDDIST is defined as the average DDIST introduced
by each pair (Qi,SQi). To implement this function we simply restrict the lifespans
of Q and S inside the temporal period where there is concurrent development.
Subsequently, for each segment Qi we project the S restricted to the time period
of Qi motion and invoke the DDIST operator for the two sections of Q and S
trajectories.

J Intell Inf Syst

Considering time complexity, in order to calculate directional distance (either
DDIST or TDDIST), a single pass over the segments of the two trajectories is
required; hence the cost of either DDIST or TDDIST is O(max(|Q|,|S|)).

Similar to Section 3.3, we can easily prove that GenSPSTLIP and GenACSTLIP
have the same properties as GenLIP has, regardless of the fact that their building
components (i.e. SPLIP and ACLIP, respectively) are metrics. Likewise, DDIST
and TDDIST distance functions supporting directional similarity between trajec-
tories, both share the same properties as GenLIP. The key points to prove the
properties are: (a) the local directional distance DIR between two segments, upon
which they base, is a symmetrical, increasing monotonous, positive function; (b) the
weighting function is symmetrical. Finally, for the triangle inequality consider the
antiparadigm of Theorem 1 with segments, x, y having an angle ϕ with segment y,
instead of being parallel. It is straightforward to see that DDIST(y,z) is larger than
DDIST(x,z)+DDIST (x,y).

4.4 A real-world example (cont’d)

Continuing the example presented in Section 3.3, we provide all necessary calcula-
tions for computing the dissimilarity between the two trajectories on the distance
function variations proposed in this section. In particular, the values presented in
Table 2 were calculated according to (16–19) for speed dissimilarity, (20–23) for
acceleration dissimilarity.

As expected, SPSTLIP ≥ STLIP and ACSTLIP ≥ STLIP which is a direct
implication of (18) and (22), respectively. It is also observed that the differences
between SPSTLIP and STLIP are negligible in this specific example, while this is not
the case for the differences between ACSTLIP and STLIP, which are significant. Of
course, these observations are due to the velocity and acceleration dynamics of the
two moving objects under examination.

Similarly, in the following table we demonstrate the calculations for directional
dissimilarity (i.e. DDIST) according to (24–26). Calculations for the TDDIST variant
are omitted as they base on successive invocations of DDIST. Recall that according
to the DDIST algorithm there is need to clip segments so as to be equi-length when
the DDIST of each pair is calculated. The points where the clipping is performed
are depicted in Fig. 9, while the resulting clipped segments are presented in the
fourth row of Table 3. As observed, the DIR calculations of each pair of segments
present normalized, smooth and intuitive (w.r.t. to their visual illustration in Fig. 9)
representation of the segment-by-segment directional distance between the two

Table 2 Calculating
SPLIP–SPSTLIP,
ACLIP–ACSTLIP distance
functions over real movement
data

E1 E2

∑

SPLIPi

(SPmax = 120 km/h) 0.01 0.02
SPSTLIPi

(kt = 1, ksp = 1, δ = 0) 3.16 2.40 5.56
ACLIPi

(ACmax = 50 km/h2) 0.45 0.03
ACSTLIPi

(kt = 1, kac = 1, δ = 0) 4.56 2.42 6.98

J Intell Inf Syst

Table 3 Calculating DDIST distance function

Pairs of AB–AC AC–BC CD–BC CD–CE CE–DF EF–DF
∑

segments

Angles ϕi 64.26◦ 36.13◦ 65.47◦ 38.52◦ 20.42◦ 48.27◦

DIR 0.28 0.10 0.29 0.11 0.03 0.17
Equi-length AB–AA′ A′C–BB′ B′C–CC′ C′D–CC′′ C′′E–DD′ D′F–EE′ E′F–D′F

pairs
Weight wϕi 0.247 0.168 0.212 0.049 0.249 0.004 0.142
DDISTϕi 0.070 0.016 0.062 0.005 0.008 0.001 0.024 0.186

trajectories, while the corresponding DDIST appropriately adjusts the previous
results according to the weight of each pair.

5 A case study over a real movement dataset

In this section we describe a knowledge discovery methodology for analyzing move-
ment data. First we present some architectural aspects that will allow us to figure out
the overall proposed methodology. More specifically, Fig. 12 presents the software
components utilized in order to perform the appropriate tasks as well as the possible
data flows between the components.

In particular, there is a Data Repository consisting of a Moving Object Database
(MOD) that stores raw trajectory data and a database that stores process related
data (spatial objects, such as points / areas of interest, etc.). There is also a Data

Mining Toolkit consisting of different data mining techniques. In this work we
utilize clustering techniques that can be applied on raw trajectory data. These
techniques are enriched with the palette of similarity functions proposed in this paper
(Similarity Toolkit) in order to perform clustering tasks with different semantics. The
produced clusters are visualized using the Visualization Toolkit. The Map Repository

Fig. 12 Architecture of the
KD framework for the analysis
of movement data

J Intell Inf Syst

stores maps that are used for visualization purposes while intermediate geographical
objects may be stored back to the Data Repository.

5.1 A typical procedure for movement analysis

The proposed procedure consists of seven steps:

Step 1: CS ← Discover common sources in D;
Step 2: CD ← Discover common destinations in D
Step 3: IF CS 	= ∅ THEN CL ← Link sources CS to destinations CD

ELSE IF CD 	= ∅ THEN CL ⇓ Link destinations CD to sources CS
Step 4: TZ ← Find traffic zones in CL
Step 5: TR ← Discover typical routes in TZ
Step 6: AR ← Discover alternative routes in TZ
Step 7: TD ← Investigate temporal and dynamic characteristics for TZ and/or

TR+AR

Note that this procedure is by no means suggested as a universal and exhaustive
method for analysing movement data. The main purpose for designing the procedure
has been to define appropriate ways of applying our distance functions in real data
analyses. Still, the procedure corresponds to a number of common tasks in movement
analysis since it deals with the basic features of trajectories: origin and destination,
spatial extent, route, position in time, and temporal dynamics (variation of position,
direction, speed, etc.). In particular, the procedure can support the analysis tasks of
a city traffic manager introduced in the motivation section (Section 2).

The procedure has been tested on several use cases with the data about the
movement of a single individual during a long time period, of courier vehicles,
of school buses, and of trucks transporting concrete. It proved to be useful in all
these cases, which are characterized by relatively large numbers of repeated trips
from/to the same places along the same or similar paths. However, we anticipate that
the procedure may not give useful results in cases of less regular character of the
movement.

The procedure is based on the use of the proposed distance functions: GenLIP
(defined in Section 3.1), GenSTLIP (defined in Section 3.2), GenSPSTLIP (defined
in Section 4.1), GenACSTLIP (defined in Section 4.2), DDIST and TDDIST
(defined in Section 4.3) as well as three primitive yet useful distance functions:
“common starts”, which computes the distance in space between the starting points
of two trajectories, “common ends”, which computes the distance in space between
the ending points of two trajectories, and “common starts and ends”, which returns
the average of the distances between the starting points and between the ending
points of two trajectories.

In detail, at Step 1 we aim to detect whether the trajectories originate from a small
number of places (common sources). The methodology followed is clustering using
the similarity function “common starts” with an appropriate distance threshold (it
should be close to the expected size of a place) and finding out whether the sources
have their clear-cut “influence areas” with little overlap between them.

At Step 2 we aim to detect whether the trajectories go to a small number of places
(common destinations). Again, the methodology followed is clustering using the
similarity function “common ends” with an appropriate distance threshold (it should

J Intell Inf Syst

be close to the expected size of a place) and finding out whether the destinations
have their clear-cut “catchment areas” (i.e., areas where all trips are directed toward
these destinations) with little overlap between them.

At Step 3 we aim to link sources with destinations. The methodology is as follows
(two alternatives): Select the clusters of trajectories defined in Step 1 (Step 2) one by
one and apply the analysis described in Step 2 (Step 1) separately to the trajectories
of each cluster. This is a case of progressive clustering, i.e., refinement of clusters
once obtained through further clustering. In case of detecting typical destinations
(sources), compare the sets of destinations (sources) associated with each source
(destination).

The procedure continues with the Step 4, where we aim to find out whether the
trajectories can be divided into subsets covering different geographic areas (further
called “traffic zones”). The methodology is clustering with the use of the distance
function GenLIP, which estimates the distances between trajectories according to
their geographical positions and extents. Each traffic zone is then analysed in more
detail. Thus, Steps 1 and 2 are applied to find out whether there are typical sources
and/or destinations of the trips; see also Step 7.

At Step 5 we aim to discover typical routes of movement. The proposed methodol-
ogy is clustering with the use of the distance function DDIST estimating the distances
according to the directions of the movement.

At Step 6 we search for alternative routes between linked pairs of source and
destination discovered at Step 3. The proposed methodology is applying DDIST to
the trajectory clusters according to the closeness of their starts and ends, according
to the idea of progressive clustering.

At Step 7, the temporal variants of the distance functions (STLIP, TDDIST,
SPSTLIP, ACSTLIP) are progressively applied to the earlier detected clusters
(traffic zones, typical routes, alternative routes) in order to investigate the temporal
and dynamic characteristics (temporal intervals of movement, speed distribution,
intermediate stops, acceleration patterns, etc.) of the trajectories and find out
whether they are nearly uniform within a cluster or significantly vary and whether
the variation depends on time (e.g. time of the day or day of the week) or space.
Note that Step 7 does not necessarily come at the end of the procedure but may also
be performed after Step 4 and Step 5 (in application to the clusters discovered at
these steps).

Note that the suggested sequence of steps minimizes the analysis time at the cost
of applying simple and computationally inexpensive distance functions to the whole
set of trajectories at earlier steps while the following steps apply sophisticated and
therefore computationally more demanding functions to earlier obtained subsets.

The steps of the suggested procedure can be matched to the questions of the traffic
manager stated in Section 2 in the following way. Question a (frequent origins and
destinations) can be answered in Steps 1 and 2 and question b (connections between
origins and destinations) in Step 3. Question c (coverage areas of different providers)
can be answered in Step 1 and question d (traffic zones) in Step 4. Questions e and f

(typical and alternative routes) are answered in Steps 5 and 6. Finally, Step 7 is meant
to answer questions d (movement characteristics in the traffic zones), f (relation of
the alternative routes to time), and e (speed and acceleration patterns).

Note that in real analyses, it is obvious that some steps may be omitted, depending
on the properties of the data and goals of analysis.

J Intell Inf Syst

5.2 Demonstrating the usage of the proposed distance functions

As a proof-of-concept for the procedure described above, in the following we demon-
strate its application in a real world case study using the ‘trucks’ dataset illustrated
in Fig. 1 and trying to find answers to the questions of the traffic manager. We
realized the architecture depicted in Fig. 12 by implementing the distance functions
as SQL operators into Hermes MOD engine (Pelekis and Theodoridis 2006; Pelekis
et al. 2006, 2008, 2011). For clustering trajectories we used the OPTICS (Ankerst
et al. 1999) algorithm, while for the visualization we appropriately extended the
functionality of the Visual Analytics Toolkit (Andrienko et al. 2007).

To find the origins and destinations of the trips (question a), the analyst groups the
trajectories by spatial closeness of their starts and ends using the distance function
“common starts and ends” (defined in Section 5). The results of the clustering show
the analyst that a great majority of the trips are round trips from two places; these
trips have been grouped into two clusters with 429 and 232 trajectories, respectively
(see Fig. 2). Moreover, most of the trajectories in the remaining clusters either start
or end in one of these places. This means that these two places play a special role as
truck stations or depots. They will be henceforth referred to as depot 1 and depot 2.
It is not likely that depot 1 and depot 2 belong to different companies as there are
trips between them. These findings provide also an answer to question b about the
connections between the sources and destinations.

Next, the analyst is interested how the trips originating from depot 1 and depot 2
are distributed over the territory and whether each depot has its “area of influence”
where it dominates (question c). The analyst applies clustering according to the
positions of the trip starts (by choosing the distance function “common starts”). In
the result, the tool produces a cluster of 308 trips originating from depot 1, a cluster
of 558 trips originating from depot 2, and a number of much smaller clusters. On a
map display, the analyst sees that depot 1 mainly serves the northern and western
parts of the territory while depot 2 mainly serves the southern and eastern parts, but
the “areas of influence” overlap.

Now, the analyst wants to investigate the traffic zones and the routes of the trucks
from each of the depots (questions d and e). She would like to detect frequently
occurring routes but also see how many trips were unique. The analysis is done
separately for each depot. Figure 13 presents the results of the application of GenLIP
method (with the distance threshold set to 6800) to the subset of the trajectories
originating from depot 2. The figure contains screenshots with all clusters obtained
(top) and schematic representations of the major clusters, which consist of 38 (red),
37 (blue), 35 (green), and 12 (pink) trajectories. The widths of the arrows indicate
the frequencies of the occurrences of the track segments. The results show the major
traffic zones.

Similarly, Fig. 14 presents the results of the application of DDIST method (with
the distance threshold set to 0.15) to the same subset of the trajectories for discov-
ering the typical routes. For DDIST, the largest clusters, which are represented in a
schematic form at the bottom of Fig. 14, include 62 (violet), 57 (orange), 26 (pink),
16 (light blue), 13 (red), and 12 (brown) trajectories.

Figures 13 and 14 illustrate the difference between the approaches: GenLIP
groups the trajectories according to the areas where the major movements occurred
whereas DDIST groups the trajectories according to the major directions of the

J Intell Inf Syst

Fig. 13 Clusters produced with the use of GenLIP

movement. Hence, an analyst can use GenLIP in order to see the different areas
attended by the trucks and use DDIST to get an idea about the main directions of
the trips.

In order to investigate the temporal and dynamic characteristics of the truck
movement in different traffic zones and/or on different routes, the analyst applies
the versions of the distance functions taking into account the temporal characteristics
of the trajectories. In particular, the functions GenSTLIP and TDDIST are used
to refine the results of clustering by GenLIP and DDIST, respectively. Thus, the
attempts to refine the clusters presented in Fig. 13 through further clustering with the
use of GenSTLIP result in finding in each cluster a subset of trajectories with close
temporal characteristics. The sizes of the subsets vary depending on the distance
threshold specified for the clustering tool. For example, Fig. 15 portrays a subset
of trajectories from cluster 2. The trajectories are shown in a 3-dimensional view,
known as space-time cube, where the vertical dimension represents the time. The
temporal axis is directed upwards. The time references in the trajectories have been
shifted to synchronize the starting moments of the trajectories.

Fig. 14 Clusters produced with the use of DDIST

J Intell Inf Syst

Fig. 15 A cluster of similar
trajectories according to
GenSTLIP

For selected clusters produced with DDIST, further clustering with the use of
TDDIST gives in some cases more than one sub-cluster. For example, Fig. 16
presents the outcomes of sub-clustering of the largest cluster (violet) shown in Fig. 14.
Four sub-clusters have been detected; their trajectories are coloured in blue, yellow,
red, and green, respectively.

Clearly, the blue lines are longer than the others; apparently, the dynamic char-
acteristics of the corresponding trajectories differ from the rest mainly because of
the difference in the routes and trip destinations. However, one of the green lines
has the same length as the blue lines, which means that not only the length played a
role. The shape of the green line significantly deviates from those of the blue lines
in the lower part of the space-time cube, which means different dynamics in the
initial period of the movement. Note that a gentle slope of a line indicates movement
with a high speed while a steep slope means slow movement; vertical line segments
correspond to absence of movement. Thus, the shape of the green line indicates
a delay at the beginning (vertical line), which was followed by movement with a
higher speed than in the trajectories represented by the blue lines. By the speed
pattern after the initial delay this trajectory is similar to the other trajectories of the
“green” group. The trajectories represented by the red lines are characterized by

Fig. 16 Four sub-clusters of
the violet cluster shown in
Fig. 14 have been obtained by
means of clustering with the
use of TDDIST

J Intell Inf Syst

high speeds at the beginning of the movement followed by slowing down. This is
similar to the blue lines, but there the speeds in the middle of the trips are yet lower
than in the “red” cluster. The yellow lines represent the trips where the speeds were
high all the time except for some initial delays in the place of the trip start. These
observations are actually confirmed by clustering the trajectories of this subset by
using the GenSPSTLIP operator.

The detailed example we provided demonstrates that (1) the distance functions we
have defined and implemented are effective for analysing real data, and (2) several
different distance functions are required for a comprehensive analysis. The reason is
that trajectories are complex spatio-temporal objects with heterogeneous properties,
which cannot be handled uniformly. Using different distance functions for different
properties of trajectories allows the analyst to gradually build a comprehensive
understanding of all relevant relationships between them.

5.3 A deeper look at local similarities

An interesting property of LIPgrams is that they allow us to define and study local
similarities. This is very useful in real world cases in which discovering the similarity
among full trajectories could be meaningless. However, discovering the similarity
in particular spatial regions and/or temporal periods in an unsupervised way could
be really important, as it identifies a similarity pattern between two trajectories. Of
course, as the number of LIPgrams increases, their storage cost becomes higher,
while some of them may carry little information, whereas some other may exhibit
a repetitive pattern. As already discussed, in order to tackle this issue we have
introduced the p parameter. In addition, we may aggregate LIPgrams having as
goal not to spoil the distance pattern introduced. For doing so we may apply any
well known binning method, which can be easily incorporated in the algorithms of
the operators. For instance, we can merge LIPgrami with LIPgrami+1 to produce
a new one LI Pgramnew = (ipi, ipi+2, AVG (LI Pi, LI Pi+1) , by concatenating the
areas and setting the new distance to be the average distance of their parents. This
merging may occur if the combined locality does not correspond over a certain
fraction f of the lengths of Q and S, and the absolute difference of the individual
distances is less than a matching threshold e (i.e., |LI Pi − LI Pi+1| < e).

We demonstrate the usage of the above discussion using the ‘trucks’ dataset.
Instead of trying to compare trajectories in their full extent we try to study local
similarities applying a similar strategy as the one described earlier. We apply the
GenSPSTLIP operator by binning on local spatial regions of a regular grid produced
over the metropolitan area of Athens. Figure 17 presents the produced grid, where
each cell is visualized as a 3-dimensional cube, whose height corresponds to the
number of pairs of trajectories that exhibit similar successive GenSPSTLIPgrams

during the movement of the trajectories inside the cell. The height is normalized in
the range from 1 km to 10 km with respect to sea level, so as for the upper side of
each cell to be visible. In other words, the height of each cell is analogous to the
number of pairs that present a stable speed pattern inside the cell, irrespectively of
the absolute value of the GenSPSTLIPgrams.

Obviously, low height cells mean either low frequency of concurrent movements
in the corresponding area, or high diversity in the speed patterns. Such diversity
could be useful for an analyst as an indication that either the road network or the

J Intell Inf Syst

Fig. 17 Exploiting LIPgrams

street lights allow such a driving behavior. Examination of sudden changes between
adjacent cells may further be an issue that deserves further investigation by a traffic
engineers.

6 Performance study

In this section, we present a performance evaluation of our proposal. The goal is
twofold; on the one hand we evaluate the scalability of the proposed algorithms,
while on the other hand, we assess the quality of the distance operators taking
advantage of ground truth provided by synthetic datasets.

6.1 Experimental settings

We have used a synthetic movement dataset generated by Brinkhoff’s Generator
(Brinkhoff 2002). In particular, we used Oldenburg road network (Brinkhoff 2011)
in order to generate the dataset. The network consists of 6,106 nodes and 7,036
edges (density D = 0.00038). In Table 4 we list the details of the dataset used in
our experiments; a screenshot of the dataset appears in Fig. 18a.

We further produced five variants of the above synthetic dataset, where each new
dataset is a compressed version of the original. More specifically, the trajectories of
the synthetic dataset were compressed using the TD–TR state-of-the-art trajectory

Table 4 Synthetic dataset
generated on Oldenburg road
network

of Trajectories 100
of 3DLS 163 . . . 166
Trajectory length (m) 2516 ... 41312 (avg. 7427)
Trajectory speed (m/s) 1.0 ... 16.9 (avg. 3.1)

J Intell Inf Syst

Fig. 18 a Synthetic dataset S0

generated on Oldenburg’s
road network, b the route of a
trajectory (black polyline) and
its compressed counterpart
(red polyline)

(a) (b)

compression algorithm (Meratnia and de By 2004). The TD–TR algorithm is based
on the well-known Douglas-Peckeur line simplification algorithm (Douglas and
Peucker 1973), which follows a divide-and-conquer approach to keep only the most
important points of a polyline, i.e., the ones that lie far from the line that would result
if these points were removed. TD–TR extends this algorithm by further taking the
parameter of time into account. In particular, it replaces the Euclidean distance used
in Douglas-Peckeur by a time-aware one, called Synchronous Euclidean Distance
(SED). We applied the TD–TR compression technique with parameter values of
pT D−T R in the set {0.05%, 0.1%, 0.2%, 1%, 5%} of the length of each trajectory. As
such, five datasets of 100 trajectories each were constructed (denoted as S0.05, S0.1,
S0.2, S1, S5, while by S0 we denote the original dataset). We should note that even
for small TD–TR parameter values the effect of the compression is significant. For
instance, for pT D−T R = 0.1% the compressed trajectory has less than half 3DLS in
comparison with the original trajectory, while for pT D−T R = 5% the corresponding
dataset has almost 5% of the initial number of 3DLS. In other words, increasing
pT D−T R parameter produces compressed trajectories with much fewer sampled
points, while the general sketch of the trajectory remains unaffected (see Fig. 18b).
The purpose for constructing these compressed versions of the synthetic dataset is
that it allows us to consider as a cluster each trajectory from S0 together with all of
its compressed counterparts. The nice property of such clusters, which to the best of
our knowledge is not available in real datasets, is that they contain trajectories with
exactly the same lifespans, while concurrently having similar routes (the higher the
compression degree, the lower the route similaity) and directional patterns, while at
the same time appearing different sampling rates and lengths.

Note that compressing trajectories produces clusters with the above mentioned
properties, but also has the effect of shortening the length of the routes as compres-
sion vanishes all the topical detailed movements. To experiment also with trajectories
of roughly the same length but with different directional patterns we have produced
five more datasets by adding different percentages of noise at every point of the S5

dataset, after having normalized it (we denote this dataset as N0). Normalization is
recommended so that the distance between two trajectories is invariant to spatial
scaling (Chen et al. 2005). We chose S5 since this is the dataset that includes
trajectories having the most abstract sketch. The noise was added using xnoise = x +
randn ∗ rangeValues and ynoise = y + randn ∗ rangeValues formulas, where randn

produces a random number chosen from a normal distribution with mean 0 and

J Intell Inf Syst

variance (0.001, 0.002, 0.05, 0.1, 0.2), and rangeValues is the range of values on X

and Y axis, respectively. Obviously, the idea of these datasets (denoted as N0.001,
N0.002, N0.05, N0.1, N0.2) is to produce ‘shaken’ variants of the initial dataset.

The experiments were run on a PC with Intel Pentium at 3.4 GHz, 2 GB RAM
and 100 GB hard disk. All datasets can be downloaded from: http://infolab.cs.
unipi.gr/pubs/jiis2011/.

6.2 Experimenting with GenLIP processing time

Our experimental study starts with results on the cost of computing the GenLIP
distance function as it is the one that prescribes the computational cost of the
proposed operators. We utilize the S0 dataset and for each route, we compute the
GenLIP distance with each route of the other (hence we measure the total time
to perform 100 × 100 calculations). The experiment is performed five times, for
different values of p = 0, 2, 4, 6, 8; recall that p is a look-ahead parameter of GenLip
algorithm (see Fig. 8). This set of experiments is repeated five times, using the S0.05,
S0.1, S0.2, S1, S5 datasets, respectively. Figure 19 illustrates the average processing
time between a pair of routes.

As can be observed from the experimental results, the running times follow a
curve that proves the complexity analysis of the GenLIP distance function. Ob-
viously, increasing the pTD−TR parameter (i.e., increasing the sampling rate) we
get significantly lower processing time and this is rational as the number of 3DLS
is decreasing. We also notice that enlarging the values of p has no effect on the
performance of the GenLIP operator that remains stable (i.e., differs only a few
seconds for 10,000 experiments). This implies that checking the LIP criterion comes
almost with no cost.

6.3 Experimenting with GenLIP quality

Turning to the quality of GenLIP, we experiment on its effectiveness when used for
classification tasks. We classified routes according to their GenLIP distance following
a methodology initially introduced by Keogh and Kasetty (2002). In this technique,
each route is assigned a class label. Then the leave-one-out prediction mechanism is
applied to each route in turn. That is, the class label of the chosen route is predicted to
be the class label of its nearest neighbor, based on the given distance. If the prediction

Fig. 19 Average processing
times for GenLIP function

http://infolab.cs.unipi.gr/pubs/jiis2011/
http://infolab.cs.unipi.gr/pubs/jiis2011/

J Intell Inf Syst

is correct, then it is a hit; otherwise, it is a miss. The classif ication success is defined
as the ratio of the number of hits to the total number of routes. We applied the leave-

one-out prediction mechanism based on the GenLIP distance operator for each one
of the 100 routes of S0 dataset, against each of the five compressed variants (i.e.,
S0.05, S0.1, S0.2, S1, S5), succesively. These five experiments are performed five times
each, for different values of p = 0, 2, 4, 6, 8. Note that in each experiment, every
trajectory of S0 is assigned a different class label, and we count a hit when compared
to all trajectories of the compressed variant (e.g. S0.05) the nearest trajectory is the
counterpart compressed. So, by increasing the pT D−T R parameter we harden the
classification problem. Obviously, this one-hundred-class classification problem is a
hard problem, and the increase of the compression rationally results in few misses
when strictly counting hits only if the 1-NN has the same label. Relaxing this, we may
consider as a hit if the compressed counterpart is one of the k-NN. Applying this
procedure for k = 1, 2, . . . , 10 and p = 0, we get the results illustrated in Fig. 20.

The main conclusion that can be drawn from this chart is that the GenLIP
distance operator turns out to be robust since it presents up to 90% accuracy for
low compression rates. The accuracy lowers as the compression increases (which is
a straightforward behavior) but even for very high compression it remains at high
levels with the reported accuracy being even absolutely correct for small values of k.
The same conclusions are present in the charts when varying the number of p (they
are omitted as they are almost identical to the above one). This is because parameter
p is a simple way to produce bigger and more intuitive LIPgrams, or in other words,
a mean to overlook jerky movements (or noise).

6.4 Experiments on spatiotemporal similarity

Although starting from different baselines, it is only GenSTLIP among the proposed
operators that can be compared with related work. The main conclusion from the
study of Ding et al. (2008) is that it is not straightforward to come up with an

Fig. 20 GenLIP leave-one-out
classification success against
compression pTD−TR and k

1
2

3
4

5
6

7
8

9

10

C
0
0
5 C

0
1 C
0
2 C

1 C
5

0

10

20

30

40

50

60

70

80

90

100

s
u

c
c
e
s
s

k

Compression

J Intell Inf Syst

absolute winner similarity measure, while the results vary among different datasets
and depend on the experimental setting. For instance, in (Chen et al. 2005) the
authors’ experiments show that EDR clearly outperform LCSS (Vlachos et al. 2002b)
and DTW (Berndt and Clifford 1996). However, in Ding et al. (2008) the authors
show that EDR is only slightly better than DTW. We would like to note that the
purpose of this section is not to exhaustively compare GenSTLIP with all other
proposals. As exemplified in Ding et al. (2008) this would require a comprehensive
setting with many datasets and by carefully designing experiments in a way that they
will reveal the advantages as well as the disadvantages of each similarity measure
against various types of mobility data (e.g. animals, cars, ships, cyclists, walkers
etc.). We consider that the main contribution of the current approach relies on the
integration of various types of novel distance operators under a flexible framework,
and a systematic comparison of all proposals against mobility data, although very
interesting is beyond the scope of the current work. As such, here we demonstrate
the applicability of GenSTLIP by comparing it with EDR (Chen et al. 2005), which
seems to have even slight better behavior than others, and we leave as future work
the design of a more analytical benchmark.

More specifically, following (Chen et al. 2005) and in order to get the best cluster-
ing results we normalized the dataset. For a fair benchmark, we also improved EDR
by interleaving samples in the compressed trajectory with linear interpolation at the
timestamps the checked dataset trajectory was sampled. Although not important in
the experiment setting, we run GenSTLIP giving penalty kt = 1, while we set the
temporal interval δ to 10 s. Note that, as parameter δ is similar to the parameter ε of
EDR and LCSS, a general guideline for setting parameter δ is to be a quarter of the
maximum standard deviation of trajectories for which the best clustering results are
reported (Chen et al. 2005).

We conducted experiments using the synthetic dataset S0 consisting of 100 tra-
jectories, which was randomly split to 10 tens and, for each ten, the experiment
introduced in (Vlachos et al. 2002b) and (Chen et al. 2005) was performed. More
specifically, for each ten we formed 10 datasets of 10 clusters each, one for each
trajectory, where one dataset is different from the other only in the number of
trajectories per cluster. For example, clusters of the first dataset (i.e., pTD−TR =
0.05%) consist of the original trajectory and the corresponding compressed with
the lowest pTD−TR value (i.e., pTD−TR = 0.05%). Clusters of the second dataset
consist of the original trajectory and the two corresponding compressed with the
two lowest pTD−TR values, and so on. For each dataset, we got all possible pairs of
clusters (i.e., 45 cluster pairs) and we partitioned them into two clusters applying an
agglomerative hierarchical clustering algorithm with the complete linkage criterion
found in (CLUTO 2011). We sketched the dendrogram of each clustered result to
evaluate whether it correctly partitions the trajectories.

Fig. 21 Examples of correct
(left) and erroneous (right)
clusterings

J Intell Inf Syst

Fig. 22 Accuracy against
clusters with more dissimilar
trajectories

0,0

0,2

0,4

0,6

0,8

1,0

0.05% 0.1% 0.2% 1 5%

TD-TR parameter
A

c
c
u

ra
c
y

GenSTLIP

EDR

Figure 21 depicts a correct (left) and an erroneous (right) clustering for the second
dataset. A dendrogram is considered erroneous if there is even one node in the
hierarchy, except the root, that joins items belonging to different classes (i.e., the
right dendrogram is characterized as erroneous due to node 9 that joins nodes from
different classes).

The average (from the 10 tens, i.e. from 45 × 10 = 450 experiments) results of the
experiments are illustrated in Fig. 22. Obviously, STLIP outperforms EDR. Actually,
STLIP correctly partitions the dataset into two clusters even we add trajectories
that were compressed with high values of pTD−TR of their length. A straightforward
conclusion that can be made by observing the dendrograms produced by EDR is
that they are able to correctly identify the NN of the query trajectory (i.e., the case
of node 6 in the right dendrogram of Fig. 21); or even to temporarily/initially identify
the correct cluster at the lower levels of the dendrogram (i.e., the case of node 8
in the right dendrogram of Fig. 21); however, at the end it fails in detecting similar
trajectories of almost the same length which have been sampled differently. This is
because it attempts to match the sampled positions one by one, which is not the usual
case in real world case studies.

Normalization does not affect the outcome of this experimentation. We repeated
the experiment with dataset N0 and the results turned out to be the same (therefore,
they are omitted).

Fig. 23 Demonstrating
TDDIST and DDIST

0

0,2

0,4

0,6

0,8

1

N0.001 N0.002 N0.05 N0.1 N0.2

noise

A
c

c
u

ra
c
y

DDIST

TDDIST

J Intell Inf Syst

6.5 Experiments on directional similarity

The purpose of this section is to evaluate the operators focusing on the directional
similarity between trajectories, namely the TDDIST and the time-relaxed version
DDIST. We perform the same experiment as in the case of the previous subsection.
Intuitively, compressed versions of a trajectory follow similar direction patterns, and,
as such, they form a cluster that, both TDDIST and DDIST will be able to identify
against a corresponding set of compressed versions of another trajectory.

The results of the experiments having as base the S0 dataset are 100% success
for pTD−TR = 0.05% and 0% for all other compression values. The reason of this
result is clearly due to the fact that compression significantly reduces the length of
the trajectories, while DDIST and TDDIST are scale variant. The results having as
base the N0 dataset, depicted in Fig. 23, confirm our intuition, also illustrating the
efficiency of the operators. As trajectories in the Ni datasets share the same lifespans,
it is rational that DDIST and TDDIST present more or less the same behaviour.

7 Related work

Most of related work in trajectory similarity search is inspired by the time series
analysis domain, based on mapping a trajectory into a vector in a feature space
and using an Lp-norm distance function. The advantage of this approach is that
it allows the similarity between the trajectory vectors in the time domain to be
approximately equal to the similarity between the two points in the feature domain.
The first proposal following this paradigm was by Agrawal et al. (1993) who adopt
the Discrete Fourier Transformation (DFT) to be the feature extraction technique
since DFT preserves the Euclidean distance and, furthermore, only the first few
frequencies are important. Rafiei and Mendelzon (2002) use Fourier descriptors
to represent shapes boundaries, compute a fingerprint for each shape, and build a
multidimensional index (R-tree) on fingerprints. The distance between two shapes is
approximated by the distance of the corresponding fingerprints; this distance is not
affected by variations in location, size, rotation and starting point. Although robust
in the timeseries domain, these approaches do not take into account the distinctive
properties of MOD.

Although Euclidean measures are easy to compute, they do not allow for different
baselines or different scales. The main drawback of these methods is that their
performance degrades in the presence of noise and outliers since all elements
should be matched. To address the disadvantages of the Lp-norm, Goldin and
Kanellakis (1995) use normalization transformations and compute the similarity
between normalized sequences. Although this method solves some problems like
the different baselines, it is still sensitive to phase shifts in time and does not
allow for acceleration along the time axis. (Lee et al. 2000) compute the distance
between two multidimensional sequences by finding the distance between minimum
bounding rectangles. Although this speeds up calculations, it leads to coarse distance
approximation. Two approaches, which also use Euclidean distances, include the
lower bound techniques (Cai and Ng 2004) and the shape-based similarity query
(Yanagisawa et al. 2003). Both approaches can be applied only on trajectories
with same lengths. In the literature there are proposals for generalizing a dis-

J Intell Inf Syst

tance function to non-uniform sized points (Tiakas et al. 2009). The lack of such
a methodology makes these approaches not directly applicable to a real-world
MOD.

Another approach is based on the Dynamic Time Warping (DTW) technique that
allows stretching in time in order to get a better distance (Berndt and Clifford 1996).
DTW has been adopted in order to measure distances between two trajectories
that have been represented as path and speed curves (Little and Gu 2001) or
as sequences of angle and arc-length pairs (Vlachos et al. 2002a). Sakurai et al.
(2005) present the fast search method for Dynamic Time Warping, utilizing a new
lower bounding distance measure that approximates the time warping distance. (Fu
et al. 2008) combine DTW and uniform scaling to achieve meaningful results in
domains where natural variability of human actions must be taken into account.
Lin and Su (2005) introduce the “One Way Distance” (OWD) function, which is
shown to outperform DTW regarding precision and performance. In general, DTW
suffers from shortcomings such as sensitivity to different baselines and scales of the
sequences that can be reduced by first normalizing the sequences.

Another approach uses the Longest Common Sub Sequence (LCSS) similarity
measure (Bollobas et al. 2001). The basic idea is to match some sequences by allowing
some elements to be unmatched. The advantage of the LCSS method is that it
allows outliers, different scaling functions, and variable sampling rates. Vlachos et al.
(2002b) use the LCSS model to define similarity measures for trajectories. The LCSS
model is extended by considering a set of translations and finding the translation that
yields the optimal solution to the LCSS problem.

In order to overcome the inefficiency of the previously described methods in the
presence of noise or obstacles, Chen et al. (2005) proposed a new distance function
called Edit Distance on Real sequences (EDR), based on the Edit Distance (ED)
widely used in bio-informatics and speech recognition to measure the similarity
between two strings. Their experimental evaluation shows that the proposed distance
function is more robust than Euclidean distance, DTW and ERP (Chen and Ng
2004) and more accurate than LCSS, especially when dealing with trajectories having
Gaussian noise.

As already mentioned, the previous works focus on the movement shape of the
trajectories, considering them as 2D or 3D time series data. In other words, only
the sequence of the sampled positions is taken into account, while the temporal
dimension is ignored. Obviously, leaving the absolute temporal information out
of the definition of the distance functions, omits crucial semantics regarding the
temporal distribution of relationships between trajectories. This is a key distinctive
characteristic of our approach w.r.t. above cited works.

In (Frentzos et al. 2007) the authors proposed a similarity metric (and an approxi-
mation method to reduce its calculation cost) in order to support similarity search
by utilizing R-tree-based trajectory indexing structures. Furthermore, assuming
constant speed during individual segments of trajectories, Trajcevski et al. (2007)
proposed an optimal and an approximate matching algorithm between trajectories,
both under translations and rotations, where the approximate algorithm guarantees
a bounded error with respect to the optimal one. The idea behind the approach is to
balance the lack of temporal-awareness of the Hausdorff distance with the generality
of the Frechet distance. These works in comparison to our approach propose only a

J Intell Inf Syst

spatiotemporal distance function, while we focus on all interesting features of the
trajectories (i.e. locality, temporality, directionality, rate of change) and propose
different similarity functions to especially handle each property. This allows us to
formulate a flexible framework for the comparison of trajectories based on the above
properties, which may be used in diverse application scenarios, enhanced by visual
analytics functionality. Moreover, the design of the proposed distance functions,
allow us to compare trajectories locally and as such to expose their local relationships.
This is in contrast to all previous approaches that only define global functions for the
whole lifespan of the trajectories.

Another work that follows a similar tactic with our approach, as it takes into
account inherent motion parameters, is the work of Lee et al. (2007) that defines
a distance function on directed segments, based on their perpendicular, parallel and
angle distance, which is used in a variant of the DBSCAN clustering algorithm aiming
at the discovery of sub-trajectories clusters. The shortcomings of this work are that
temporal information is not taken into account, while this approach is only applicable
to simple linear sub-trajectories (i.e. segments) and not to whole trajectories. As such,
our work may be considered as a generalization of this work to whole trajectories that
further utilizes the temporal dynamics of complex movement data.

Recently, Ding et al. (2008) provided a comprehensive validation of most of the
above discussed similarity measures by conducting an extensive set of experiments on
38 time series data from various application domains. The results of the experiments
of this insightful work validated some of the existing achievements, while in some
cases the study suggests that certain claims in the literature may be unduly optimistic.
The datasets used in this study are not movement data (i.e. GPS recordings) and omit
the time stamps at which the recordings occur, assuming that the sampling rates of the
time series are the same. Furthermore, in this way absolute time semantics are left out
of the evaluation benchmark. We believe that the reproduction of the same kind of
experiments on many different real mobility datasets is an extremely interesting work
that would provide insightful knowledge to the mobility data mining community
(Giannotti and Pedreschi 2008; Giannotti et al. 2007; Nanni and Pedreschi 2006;
Pelekis et al. 2009).

In the visual analytics domain, the most common approach to dealing with large
collections of movement data is aggregation. A survey of the aggregation methods
used for movement data is done in (Andrienko and Andrienko 2010). Another
approach is based on filtering, i.e. visualization is applied to a data subset selected
according to a user-specified query. Researchers pursuing this approach focus mainly
on advancing query and search techniques (Kwan and Lee 2004; Yu 2006). Laube et
al. (2005) combine visualization with data mining techniques searching for specific
kinds of patterns in movement data. Combination of visualization and clustering is
also a frequently used approach in visual analytics; however, clustering is typically
applied to relational data (i.e. tables) rather than spatio-temporal data. The visual an-
alytics framework for movement data proposed in (Andrienko et al. 2007) combines
visualization with database processing and clustering techniques. The framework
essentially relies upon the use of clustering with diverse similarity measures, which
is consistent with the work reported in this paper. More sophisticated distance
functions are introduced in this paper, which can be used for more comprehensive
analysis of movement data, as illustrated in Section 6.

J Intell Inf Syst

8 Conclusions and future work

In this paper, we proposed novel distance operators, to address different versions of
the so-called trajectory similarity search problem that may straightforwardly support
knowledge discovery in MOD. In particular, we proposed measures for spatiotempo-

ral and (temporally-relaxed) spatial similarity, as well as useful derivations, including
speed-pattern based, acceleration-pattern based and directional similarity

To the best of our knowledge, this is the first work that decomposes the problem
into different types of similarity queries based on various motion parameters of the
trajectories. The synthesis of the operators under a unified trajectory management,
knowledge discovery and visual analytics framework provides functionality so far
unmatched in the literature. The efficiency and robustness of the operators have been
proved experimentally by performing clustering and classification tasks to both real
and synthetic trajectory datasets.

From a trajectory data management and mining perspective, the experiments
proved the intuition that using various distance functions which take into account
the motion parameters of the trajectories and their local properties provides added
value when querying and analyzing complex datasets. From the visual analytics point
of view, the analysis with real data showed the importance of interactive visual
interfaces giving the user a high flexibility in applying diverse similarity measures
for trajectories. Trajectories are complex spatio-temporal objects with multiple het-
erogeneous characteristics, which cannot be comprehended all at once. The analyst
needs to consider these objects from several complementary perspectives, which are
enabled by an array of distance functions dealing with different aspects and traits of
trajectories. This approach can be generalized to other kinds of complex objects, e.g.,
graphs, images, etc. (of course, a different set of distance functions would be needed
for a different kind of objects).

Clear future work objectives arise from this work. As already discussed, being
non-metric implies that GenLIP and its variations are non-indexable by traditional
distance-based indexing methods; therefore, we plan to investigate whether and how
the proposed distance functions could be made to obey near triangle inequality
(Chen et al. 2005), which would allow us to devise appropriate indexing structures in
order to improve the overall performance of the operators. Independently from the
above, we intend to design a large-scale benchmark of as many as possible proposed
similarity functions against various real mobility datasets. Additionally, we will study
thoroughly the quality of LIPgrams and utilize these similarity meta-data patterns
so as to perform other mining tasks, like finding most frequent motion patterns. A
different perspective is to extend our techniques in order to address the problem of
similarity search for trajectories restricted in spatial networks (Tiakas et al. 2009).
Finally, another interesting problem for future work is how to relate the results of
several independent runs of clustering with different distance functions and how to
visualize the relationships in order to help the user to compose a comprehensive
view of a set of trajectories from several partial views resulting from each individ-
ual run.

Acknowledgements Research partially supported by the FP7 ICT/FET Project MODAP (Mobil-
ity, Data Mining, and Privacy) and the ESF/COST Action IC0903 MOVE (Knowledge Discovery
from Moving Objects), both funded by the European Union. More information about these activities
is available at www.modap.org and www.move-cost.info, respectively.

http://www.modap.org
http://www.move-cost.info

J Intell Inf Syst

References

Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient similarity search in sequence databases. In
Proceedings of fourth internationall conference foundations of data organization and algorithms.

Andrienko, G., & Andrienko, N. (2010). A general framework for using aggregation in visual
exploration of movement data. The Cartographic Journal, 47(1), 22–40.

Andrienko, G., Andrienko, N., & Wrobel, S. (2007). Visual analytics tools for analysis of movement
data. ACM SIGKDD Explorations, 9(2), 38–46.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander J. (1999). OPTICS: Ordering points to identify
the clustering structure. In Proceedings of the 1999 ACM SIGMOD international conference on
management of data.

Berndt, J., & Clifford, J. (1996). Finding patterns in time series: A dynamic programming approach.
In Advances in knowledge discovery and data mining. Menlo Park: AAAI/MIT Press.

Bollobas, B., Das, G., Gunopulos, D., & Mannila, H. (2001). Time-series similarity problems and
well-separated geometric sets. Nordic Journal of Computing, 8, 409–423.

Brinkhoff, T. (2002). A Framework for generating network-based moving objects. Geoinformatica,
6(2), 153–180.

Brinkhoff, T. (2011). Network-based generator of moving objects. IAPG, Jade University
Oldenburg, Germany. http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/. Ac-
cessed 1 Feb 2011.

Cai, Y., & Ng, R. (2004). Indexing spatio-temporal trajectories with Chebyshev polynomials. In
Proceedings of the ACM SIGMOD international conference on management of data.

Chan, K. P., & Fu, A. W.-C. (1999). Efficient time series matching by Wavelets. In Proceedings of
international conference on data engineering.

Chan, T. M. (1994). A simple trapezoid sweep algorithm for reporting red/blue segment intersections.
In Proceedings of Canadian conference on computational geometry.

Chazelle, B., & Edelsbrunner, H. (2002). An optimal algorithm for intersecting line segments in the
plane. Journal of the ACM, 39(1), 1–54.

Chen, L., & Ng, R. (2004). On the marriage of edit distance and Lp norms. International Journal on
Very Large Data Bases, 11, 28–46.

Chen, L., Tamer Özsu, M., & Oria, V. (2005). Robust and fast similarity search for moving object
trajectories. In Proceedings of the ACM SIGMOD international conference on management of
data.

CLUTO (2011). Karypis Lab, University of Minnesota, USA. http://glaros.dtc.umn.edu/gkhome/
views/cluto/. Accessed 1 Feb 2011.

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E. (2008). Querying and mining
of time series data: Experimental comparison of representations and distance measures. In
International conference on very large data bases.

Douglas, D., & Peucker, T. (1973). Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. The Canadian Cartographer, 10(2), 112–122.

Frentzos, E., Gratsias, K., & Theodoridis, Y. (2007). Indexed-based most similar trajectory search.
In Proceedings of international conference on data engineering.

Fu, A. W.-C., Keogh, E., Lau, L. Y. H., Ratanamahatana, C. A., Wong, R. C.-W. (2008). Scaling and
time warping in time series querying. The VLDB Journal, 17, 899–921.

Giannotti, F., Nanni, M., Pinelli, F., & Pedreschi, D. (2007). Trajectory pattern mining. In Proceed-
ings of conference of knowledge discovery and data mining.

Giannotti, F., & Pedreschi, D. (2008). Mobility, data mining and privacy, geographic knowledge
discovery. New York: Springer.

Goh, K. S., Li, B., & Chang, T. (Eds.) (2002). Dyndex: A dynamic and non-metric space indexer.
Proceedings of International Conference of SIGMM.

Goldin, Q., & Kanellakis, C. (1995). On similarity queries for time-series data: Constraint
specification and implementation. Lecture Notes in Computer Science, 976, 137–153.

Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. A. (1993). Comparing images using the
hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–
863.

Keim, D. A. (2005). Scaling visual analytics to very large data sets. Presentation at visual analytics
workshop. Available from http://infovis.uni-konstanz.de/events/VisAnalyticsWs05/index.php.
Accessed 1 Feb 2011.

Keogh, E., & Kasetty, S. (2002). On the need for time series data mining benchmarks: A survey and
empirical demonstration. In Proceedings of conference of knowledge discovery and data mining.

http://www.fh-oow.de/institute/iapg/personen/brinkhof/f/generator/
http://glaros.dtc.umn.edu/gkhome/views/cluto/
http://glaros.dtc.umn.edu/gkhome/views/cluto/
http://infovis.uni-konstanz.de/events/VisAnalyticsWs05/index.php

J Intell Inf Syst

Korn, F., Jagadish, H., & Faloutsos, C. (1997). Efficiently supporting ad hoc queries in large datasets
of time sequences. In Proceedings of the ACM SIGMOD international conference on manage-
ment of data.

Kwan, M.-P., & Lee, J. (2004). Geovisualization of human activity patterns using 3-D GIS: A time-
geographic approach. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social
science. New York: Oxford University Press.

Laube, P., Imfeld, S., & Weibel, R. (2005). Discovering relative motion patterns in groups of
moving point objects. International Journal of Geographical Information Science, 19(6), 639–
668.

Lee, J.-G., Han, J., & Whang, K.-Y. (2007). Trajectory clustering: A partition-and-group framework.
In Proceedings of the ACM SIGMOD international conference on management of data.

Lee, S.-L., Chun, S.-J., Kim, D.-H., Lee, J.-H., & Chung, C.-W. (2000). Similarity search for multidi-
mensional data sequences. In Proceedings of international conference on data engineering.

Lin, B., & Su, J. (2005). Shapes based trajectory queries for moving objects. In Proceedings of the
ACM annual international workshop on geographic information.

Little, J. L., & Gu, Z. (2001). Video retrieval by spatial and temporal structure of trajectories.
Proceedings of SPIE, 4315, 545–552.

Marketos, G., Frentzos, E., Ntoutsi, I., Pelekis, N., Raffaeta, A., & Theodoridis, Y. (2008). Building
real-world trajectory warehouses. In Proceedings of the seventh ACM international workshop on
data engineering for wireless and mobile access.

Meratnia, N., & de By, R. A. (2004). Spatiotemporal compression techniques for moving point
objects. In Proceedings of the international conference on extending data base technology.

Nanni, M., & Pedreschi, D. (2006). Time-focused clustering of trajectories of moving objects. Journal
of Intelligent Information Systems, 27(3), 267–289.

Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y. (2008). HERMES: Aggregative LBS
via a trajectory DB engine. In Proceedings of the ACM SIGMOD international conference on
management of data.

Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y. (2011). HERMES: A trajectory DB en-
gine for mobility-centric applications. International Journal of Knowledge-based Organizations,
in press.

Pelekis, N., Kopanakis, I., Kotsifakos, E., Frentzos, E., & Theodoridis, Y. (2009). Clustering trajec-
tories of moving objects in an uncertain world. In Proceedings of international conference on data
mining.

Pelekis, N., Kopanakis, I., Ntoutsi, I., Marketos, G., Andrienko, G., & Theodoridis, Y. (2007). Simi-
larity search in trajectory databases. In Proceedings of the international symposium on temporal
representation and reasoning.

Pelekis, N., & Theodoridis, Y. (2006). Boosting location-based services with a moving object data-
base engine. In Proceedings of the international workshop on data engineering for wireless and
mobile access.

Pelekis, N., Theodoridis, Y., Vosinakis, S., & Panayiotopoulos, T. (2006). Hermes—A framework
for location-based data management. In Proceedings of international conference on extending
database technology.

R-tree Portal (2011). InfoLab, University of Piraeus, Greece. http://www.rtreeportal.org. Accessed 1
Feb 2011.

Rafiei, D., & Mendelzon, A. O. (2002). Efficient retrieval of similar shapes. The VLDB Journal,
11(1), 17–27.

Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., & Andrienko, G. (2008).
Visually–driven analysis of movement data by progressive clustering. Information Visualization,
7(3/4), 225–239.

Sakurai, Y., Yoshikawa, M., & Faloutsos, C. (2005). FTW: Fast similarity search under the time
warping distance. In Proceedings of the twenty-fourth acm sigmod-sigact-sigart symposium on
principles of database systems.

Thomas, J. J., & Cook, K. A. (Eds.) (2005). Illuminating the path. The research and development
agenda for visual analytics. Washington, DC: IEEE Computer Society.

Tiakas, E., Papadopoulos, A. N., Nanopoulos, A., Manolopoulos, Y., Stojanovic, D., & Djordjevic-
Kajan, S. (2009). Searching for similar trajectories in spatial networks. Journal of Systems and
Software, 82(5), 772–788.

Trajcevski, G., Ding, H., Scheuermann, P., Tamassia, R., & Vaccaro, D. (2007). Dynamics-aware
similarity of moving objects trajectories. In Proceedings of ACM international conference on
geographic information systems.

http://www.rtreeportal.org

J Intell Inf Syst

Vlachos, M., Gunopulos, D., & Das, G. (2002a). Rotation invariant distance measures for trajecto-
ries. In Proceedings of conference of knowledge discovery and data mining.

Vlachos, M., Kollios, G., & Gunopulos, D. (2002b). Discovering similar multidimensional trajecto-
ries. In Proceedings of international conference on data engineering.

Yanagisawa, Y., Akahani, J., & Satoh, T. (2003). Shape-based similarity query for trajectory of
mobile objects. In Proceedings of the international conference on mobile data management.

Yi, B.-K., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of similar time sequences under
time warping. In Proceedings of international conference on data engineering.

Yu, H. (2006). Spatial-temporal GIS design for exploring interactions of human activities. Cartogra-
phy and Geographic Information Science, 33(1), 3–19.

	Visually exploring movement data via similarity-based analysis
	Abstract
	Introduction
	Motivation
	Trajectory similarity search
	(Time-relaxed) spatial similarity
	Detecting `good' vs. `bad' pairs of segments
	Calculating LIP distance
	Generalized LIP distance

	(Time-aware) spatiotemporal similarity
	Discussion about metric properties
	A real-world example

	Trajectory similarity search---variations
	Speed-pattern based similarity
	Acceleration-pattern based similarity
	Directional similarity
	A real-world example (cont'd)

	A case study over a real movement dataset
	A typical procedure for movement analysis
	Demonstrating the usage of the proposed distance functions
	A deeper look at local similarities

	Performance study
	Experimental settings
	Experimenting with GenLIP processing time
	Experimenting with GenLIP quality
	Experiments on spatiotemporal similarity
	Experiments on directional similarity

	Related work
	Conclusions and future work
	References

