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Abstract

Drone captured images have overwhelming characteris-

tics including dramatic scale variance, complicated back-

ground filled with distractors, and flexible viewpoints,

which pose enormous challenges for general object detec-

tors based on common convolutional networks. Recently,

the design of vision backbone architectures that use self-

attention is an exciting topic. In this work, an improved

backbone MHSA-Darknet is designed to retain sufficient

global context information and extract more differentiated

features for object detection via multi-head self-attention.

Regarding the path-aggregation neck, we present a sim-

ple yet highly effective weighted bi-directional feature pyra-

mid network (BiFPN) for effectively cross-scale feature fu-

sion. In addition, other techniques including time-test aug-

mentation (TTA) and wighted boxes fusion (WBF) help to

achieve better accuracy and robustness. Our experiments

demonstrate that ViT-YOLO significantly outperforms the

state-of-the-art detectors and achieve one of the top re-

sults in VisDrone-DET 2021 challenge (39.41 mAP for test-

challenge data set and 41 mAP for the test-dev data set).

1. Introduction

The goal of object detection is to predict a set of bound-

ing boxes and category labels for each object of interest.

Recently, with the advent of Unmanned Aerial Vehicles

(UAV), drones equipped with cameras have been fast de-

ploys to a wide range of applications, which include agri-

culture, aerial photography, fast delivery, surveillance, etc.

Hence, automatic and effective object detection plays an im-

portant role in scene parsing on UAV platforms.

However, as shown in Figure 1, drone captured images

have overwhelming characteristic including dramatic scale

variance, complicated background filled with distractors,

and flexible viewpoints, which pose enormous challenges

for general object detectors based on common convolutional

networks.

Convolutional neural network (CNN) have achieved

great breakthrough in various kinds of fields in computer

vision [8]. Generally, modern detectors employ pure con-

volution network to extract features. Classical image clas-

sification networks (e.g.,VGG [29], ResNet [10] are used

as the backbones for state-of-the-art detectors Faster RCNN

[27] and RetinaNet [17], etc.) As for YOLO series detectors

[24], they apply a newfangled residual network the Darknet

which is much more efficient for performing feature extrac-

tion.

Nowadays, transformers [32] have become the dominant

model in natural language processing owning to their abil-

ity to learn complex dependencies between input sequences

via self-attention. We also observe that the recently intro-

duced vision transformers [6] achieve competitive results

on benchmark classification tasks by treating an image as a

sequence of patches. For drone captured images with large-

scale and complex scene, to improve the semantic discrim-

inability and alleviate category confusion, collecting and as-

sociating scene information from a large neighborhood can

be useful in learning relationships across objects. But for

convolutional networks, the locality of the convolution op-

eration limits its capacity for capturing global context in-

formation. In contrast, transformers are capable of globally

focusing on dependencies between image feature patches

and retain sufficient spatial information for object detection

via multi-head self-attention.

In addition, to handle the problem of viewpoint changing

in aerial images, the object detector should have enhanced

domain adaptation capability and dynamic receptive fields.

The study in the literature [22] has indicated that vision

transformers are much more highly robust to severe occlu-

sions, perturbations and domain shifts, compared to CNNs.

Therefore, an intuitive way for enhancing the detection per-

formance is to embed the transformer layer into the purely

convolutional backbone to bring more context information

and learn more distinguishable feature representations.

On the other hand, objects from the drone captured im-

ages vary a lot in sizes while the feature map from a single

layer of the convolutional neural network has limited capac-

ity of representation, so it is crucial to effectively represent
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Figure 1. The challenges in the UAV vision.

and process multi-scale features. A classical method is to

combine low-level and high-level features through a sum-

mation or concatenation operation, but simply summing up

or concatenating without distinction may cause feature mis-

match and performance degradation. Our key insight is to

introduce learnable weights to learn the importance of dif-

ferent input features, while repeatedly applying top-down

and bottom-up multi-scale feature fusion.

In this paper, we mainly follow the one-stage detector de-

sign and propose a hybrid detector called ViT-YOLO. The

framework integrates the CSP-Darknet [1] and multi-head

self-attention [32] for feature extraction. In addition, the ar-

chitecture interfaces with BiFPN [31] for effectively com-

bining the features at different scales. Subsequently, the

YOLOv3 coupled head [26] is employed for final bounding

boxes classification and regression tasks. Furthermore, We

implement effective strategies including Test-Time Aug-

mentation (TTA) and Weighted Boxes Fusion (WBF) [30]

to improve detection performance. Our experiment demon-

strates that the improved network architecture significantly

outperforms the existing state-of-the-art detectors on the

VisDrone2019 test-challenge dataset with mAP 39.41.

In summary, the main contributions of this paper are:

• We introduce a multi-head self-attention block in the

original backbone CSP-Darknet to bring more con-

text information and learn more distinguishable feature

representations.

• We present a simple yet highly effective weighted bi-

directional feature pyramid network (BiFPN) for ef-

fectively cross-scale feature fusion.

• We implement effective strategies including Test-Time

Augmentation (TTA) and Weighted Boxes Fusion

(WBF) to achieve competitive performance on Vis-

Drone2019 benchmark dataset.

2. Related work

General object detection: With the development of

deep learning [14], various object detection algorithms have

been proposed. Existing object detectors are mostly cate-

gorized by whether they have a region-of-interest proposal

step (two-stage [27, 7, 9, 3]) or not (one-stage [25, 24, 17,

28]). Recently, following the one-stage detector design,

YOLO series [24, 25, 1, 26] have attracted substantial at-

tention due to their efficiency and simplicity. They extract

the most advanced detection technologies available at the

time (e.g., the SPP module [11] for YOLOv3 [26], Mish

activation [21] for YOLOv4 [1]) and optimize the imple-

mentation for best practice. Hence, we selected YOLOv4

as our baseline model.

Vision Transformer: Nowadays, The Transformer [32]

model has become the preferred solution for a wide range of

natural language processing (NLP) tasks, showing impres-

sive progress in machine translation [15], question answer-

ing [5], text classification [23], document summarization

[33], and more. Part of this success comes from the Trans-

former’s ability to learn complex dependencies between in-

put sequences via self-attention. The Vision Transformer

(ViT) [6] demonstrated for the first time that a transformer

architecture can be directly applied to images as well, by

treating an image as a sequence of patches, which performs

comparably to state-of-the-art convolutional networks on

image recognition tasks. DETR [4] is notable in that it is the

first approach to successfully utilize transformers for the ob-

ject detection task. Specifically, DETR added a transformer

encoder and decoder on top of a standard CNN model (e.g.,

ResNet-50/101), and uses a set-matching loss function.

Muti-scale feature fusion: One of the main difficulties

in object detection is to effectively represent and process

multi-scale features. Earlier detectors often directly per-

form predictions based on the pyramidal feature hierarchy

extracted from backbone networks [2, 28, 20]. As one of the

pioneering works, feature pyramid network (FPN) [16] pro-

poses a top-down pathway to combine multi-scale features.

Following this idea, PANet [19] adds an extra bottom-up

path aggregation network on top of FPN. The recent detec-

tor EfficientDet [31] propose BiFPN to introduce learnable

weights to learn the importance of different input features.
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Figure 2. The whole network structure. An input image will be input to the backbone (a) MHSA-Darknet, which integrates transformer

layer into CSP Darknet, where the MHSA-Dark block and the CSPDark block are described in Figure 3.The feature maps further refine

with (b) BiFPN, which aggregates features from different backbone levels for different detector levels. Finally, (c) YOLO detection head

is employed to predict boxes at 5 different scales.

3. Proposed Method

The proposed network architecture is a hybrid model

ViT-YOLO that uses both convolution and self-attention,

which is mainly based on the YOLOv4-P7 [1]. The struc-

ture of ViT-YOLO is presented in Figure 2, which is divided

into 3 parts. For the first part, we use MHSA-Darknet as

the backbone which integrates multi-head self-attention into

original CSP-Darknet to extract more differentiated fea-

tures. The details of MHSA-Darknet is described in Section

3.1. The second processing component BiFPN in substi-

tution for PANet aims to aggregate features from different

backbone levels for different detector levels, which is dis-

cussed in Section 3.2. For the third part, the general YOLO

detection heads are employed for predicting boxes at 5 dif-

ferent scales.

Furthermore, other effective techniques are adopted to

achieve better accuracy and robustness, including Test-

Time Augmentation (TTA) and Weighted Boxes Fusion

(WBF). TTA is an application of data augmentation to the

test dataset. And WBF utilizes confidence scores of all pro-

posed bounding boxes to construct the averaged boxes so

that it works better when used for model fusion.

3.1. MHSA-Darknet

For drone captured images with large scale and complex

scene, to improve the semantic discriminability and allevi-

ate category confusion, collecting and associating scene in-

formation from a large neighborhood can be useful in learn-

ing relationships across objects. But for convolutional net-

works, the locality of the convolution operation limits its

capacity for capturing global context information.In con-

trast, transformers are capable of globally focusing on de-

pendencies between image feature patches and retain suf-

ficient spatial information for object detection via multi-

head self-attention. On the other hand, viewpoint variation

is one of the biggest challenges in images captured from

drones, which requests that the detector should have an en-

hanced domain adaptation capability and dynamic recep-

tive fields. The study in the literature [22] has indicated

that vision transformers are much more highly robust to
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Stage output CSP Darknet MHSA Darknet

P0 /2
3× 3, 32

3× 3, 64, stride = 2
3× 3, 32

3× 3, 64, stride = 2

P1 /4

1× 1, 32


1× 1, 16
3× 3, 32

�

× 1

1× 1, 32

1× 1, 32

1× 1, 32


1× 1, 16
3× 3, 32

�

× n

1× 1, 32

1× 1, 32

concat, 64
3× 3, 128, stride = 2

concat, 64
3× 3, 128, stride = 2

P2 /8

1× 1, 64


1× 1, 32
3× 3, 64

�

× 3

1× 1, 64

1× 1, 64

1× 1, 64


1× 1, 32
3× 3, 64

�

× 3

1× 1, 64

1× 1, 64

concat, 128
3× 3, 256, stride = 2

concat, 128
3× 3, 256, stride = 2

P3 /16

1× 1, 128


1× 1, 64
3× 3, 128

�

× 15

1× 1, 128

1× 1, 128

1× 1, 128


1× 1, 64
3× 3, 128

�

× 3

1× 1, 128

1× 1, 128

concat, 256
3× 3, 512, stride = 2

concat, 256
3× 3, 512, stride = 2

P4 /32

1× 1, 256


1× 1, 128
3× 3, 256

�

× 15

1× 1, 256

1× 1, 256

1× 1, 256


1× 1, 128
3× 3, 256

�

× 15

1× 1, 256

1× 1, 256

concat, 512
3× 3, 1024, stride = 2

concat, 512
3× 3, 1024, stride = 2

P5 /64

1× 1, 512


1× 1, 256
3× 3, 512

�

× 7

1× 1, 512

1× 1, 512

1× 1, 512


1× 1, 256
3× 3, 512

�

× 7

1× 1, 512

1× 1, 512

concat, 1024
3× 3, 1024, stride = 2

concat, 1024
3× 3, 1024, stride = 2

P6 /128

1× 1, 512


1× 1, 256
3× 3, 512

�

× 7

1× 1, 512

1× 1, 512

1× 1, 512


1× 1, 256
3× 3, 512

�

× 7

1× 1, 512

1× 1, 512

concat, 1024
3× 3, 1024, stride = 2

concat, 1024
3× 3, 1024, stride = 2

P7 /128

1× 1, 512


1× 1, 256
3× 3, 512

�

× 7

1× 1, 512

1× 1, 512
1× 1, 512

⇥

MHSA, 512
⇤

×7
1× 1, 512

1× 1, 512

concat, 1024 concat, 1024
Table 1. Architecture of MHSA-Darknet:The only difference from the original CSPDarknet is MHSA-Dark block in substitution for the

CSPDark block in P7 ( Figure 3). For an input resolution of 1024×1024, the MHSA layers of P7 operate on 8×8.

severe occlusions, perturbations and domain shifts, com-

pared to CNNs. In order to improve the transferability of

the learned features and meanwhile to capture long-distance

context information, we propose the MHSA-Darknet back-

bone to extract features for the detector. MHSA-Darknet

by design is simple: embed the Multi-Head Self-attention

(MHSA) layers into the top CSPDark block to implement

global (all2all) self-attention over a 2D feature map. The

MHSA-Darknet architecture is described in Table 1 and the

MHSA layer is presented in Figure 4. A CSP-Darknet in
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YOLOv4-P7 typically has 7 stages (or block groups) com-

monly referred to as [P1, P2, P3, P4, P5, P6, P7] with

strides [2, 4, 8, 16, 32, 64, 128] relative to the input image,

respectively. Stacks [P1, P2, P3, P4, P5, P6, P7] con-

sist of multiple CSPDark blocks with Cross Stage Partial

(CSP) connections. (i.e. CSP-Darknet in YOLOv4-P7 has

[1, 3, 15, 15, 7, 7, 7] CSPDark blocks).

Notably, when the network is relatively shallow and the

feature map is relatively larger, the transformer layer is used

prematurely to enforce regression boundaries which can

lose some meaningful context information. Hence, in the

MHSA-Darknet, the transformer layer is only applied on

the P7, rather than P3,P4,P5, and P6. Besides, consid-

ering that self-attention when performed globally across n
entities requires O(n2d) memory and computation[32], we

believe that the simplest setting that adheres to the above

factors would be to incorporate self-attention at the lowest

resolution feature maps in the backbone, ie, the CSPDark

blocks in the P7 stack. The P7 stack in the Darknet back-

bone typically uses 7 CSP bottleneck blocks with one spa-

tial 1 × 1 convolution and one spatial 3 × 3 convolution in

each. Replacing them with MHSA layers forms the basis of

the MHSA-Darknet architecture.

Figure 3. Left: A CSPDark Block Right: A MHSA-Dark Block.

The only difference is in P7 where the Multi-Head Self-attention

(MHSA) with n layers replace n CSP Bottlenecks, each of which

consist of one 3 × 3 spatial convolution and one 1 × 1 spatial

convolution. The structure of self-attention layer is described in

Figure 4.

To handle 2D images, we flatten the spatial dimensions

of the 2D feature map x ∈ R
H×W×d into a sequence

xp ∈ R
(H∗W )×d,where (H,W ) is the resolution of the

original feature map, d is the number of channels, and

H ∗ W serves as the effective input sequence length for

the transformer layer. In order to make the attention oper-

ation position aware, Transformer based architectures typi-

cally make use of a position encoding[32]. We use standard

learnable 1D position embeddings with a linear layer to re-

tain positional information. The MHSA layer is presented

in Figure 4.

Figure 4. Multi-Head Self-Attention (MHSA) layer used in the

MHSA-Dark block. While we use 4 heads, we do not show them

on the figure for simplicity. A standard learnable 1D position em-

beddings with a linear layer are employed to retain positional in-

formation.The attention logits are qkT where q, k represent query,

key.
L

and
N

represent element wise sum and matrix multiplica-

tion respectively, while 1× 1 represents a pointwise convolution.

3.2. BiFPN

Objects from the drone captured images vary a lot in

sizes while the feature map from a single layer of the con-

volutional neural network has limited capacity of represen-

tation, so its crucial to effectively represent and process

multi-scale features. Conventional top-down FPN [16] is

inherently limited by the one-way information flow. To ad-

dress this issue, PANet [19] adds an extra bottom-up path

aggregation network, as shown in Figure 5(a). Cross-scale

connections are further studied in [13, 12, 34]. In this work,

the simple yet highly effective weighted bidirectional fea-

ture pyramid network (BiFPN), as shown in Figure 5(b),

implements two optimizations for cross-scale connections.

First, BiFPN adds an extra edge from original input to out-

put node if they are at the same level, in order to fuse more

features without adding much cost.

Second, while combining low-level and high-level fea-

tures, BiFPN introduces learnable weights to learn the im-

portance of different input features instead of simply sum-

ming up or concatenating, which may cause feature mis-

match and performance degradation. Formally, given a list

of multi-scale features ~P in = (P in
l1
, P in

l2
, ...), where P in

li

presents the feature at level li. The list of intermediate fea-

ture on the pathway is represented as ~P td = (P td
l1
, P td

l2
, ...).

Our goal is to find a transformation f that can effectively

aggregate different features and output a list of new fea-

tures: ~P out = f(~P in). Figure 5(a) shows the conven-
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Figure 5. Feature network design (a) PANet adds an additional

bottom-up pathway on top of FPN. (b) BiFPN implements two

optimizations for cross-scale connections.

tional top-down and bottom-up PANet [19]. It takes level

3 − 7 input features ~P in = (P in
3 , ..., P in

7 ), where P in
i rep-

resents a feature level with resolution of 1/2i of input im-

ages. For instance, if input resolution is 1024 × 1024, then

P in
3 represents feature level 3(1024/23 = 128) with reso-

lution 128× 128, while P in
7 represents feature level 7 with

resolution 8×8. The conventional PANet aggregates multi-

scale features in a simple summing manner, as layer 6 for

example:

P td
6 = Conv(P in

6 +Resize(P td
7 ))

P out
6 = Conv(P td

6 +Resize(P out
5 ))

(1)

where, Resize is usually a upsampling or downsampling

opration for resolution matching, and Conv is usually a

convolutional operation for feature processing.

While the BiFPN integrates both the bidirectional crosss-

cale connections and the fast normalized fusion with learn-

able weights. As a concrete example, here we describe the

two fused features at level 6 for BiFPN shown in Figure

2(b):

P
td

6 = Conv

✓

w1 · P
in

6 + w2 ·Resize(P in

7 )

w1 + w2 + ε

◆

P
out

6 = Conv

 

w
0

1 ·P
in

6 +w
0

2 ·Resize(P td

6 )+w
0

3 ·Resize(P out

5 )

w1 + w2 + w3 + ε

!

(2)

where, P td
6 is the intermediate feature at level 6 on the

top-down pathway, and P out
6 is the output feature at level 6

on the bottom-up pathway.All other features are constructed

in a similar manner. Notably, the difference from the orig-

inal BiFPN proposed in EfficientDet [31] is that SPP addi-

tional module is employed in the path-aggregation neck to

enhance the intermediate feature and that Cross Stage Par-

tial (CSP) connections are used in place of simple convolu-

tion for feature processing.

4. Experiments

4.1. Datasets

VisDrone2019-Det benchmark dataset [35] consists of

10209 static images captured by drone platforms in un-

constrained challenging scenes, including 6741 images in

the training subset, 548 in the validation subset, 1610 in

the test-dev subset, and 1580 in the test-challenge subset.

Drone captured images have overwhelming characteristic

including dramatic scale variance, complicated background

filled with distractors, and flexible viewpoints. Images are

manually labeled with bounding boxes and ten predefined

classes (i.e., pedestrian, person, car, van, bus, truck, motor,

bicycle, awning-tricycle, and tricycle). All models in this

paper are trained on training set and evaluated on the test-

dev set.

4.2. Evaluations Metrics

Similar to the evaluation protocol in MS COCO bench-

mark [18], we adopt metrics including AP , AP50, AP75,

AR1, AR10, AR100 and AR500 to evaluate detectors by

penalizing missing detections and false alarms. Specifi-

cally, AP is the average of all 10 intersection over union

(IoU) thresholds in the range [0.50 : 0.95] with uniform

step size 0.05 of all categories, which is used as the primary

metric for ranking.

4.3. Implementation Details

In VisDrone-DET2021 challenge, we choose MHSA-

Darknet backbone, BiFPN path-aggregation neck, and

YOLOv3 (anchor based) head as the architecture of ViT-

YOLO. Our model uses SGD as optimizer, with a weight

decay of 0.0005 and momentum of 0.937 as default. In the

initial training of the model, we first perform 3 epoch warm-

up training. During the warm-up process, the momentum

of the optimizer SGD is set to 0.8, and one-dimensional

linear interpolation is used to update the learning rate of

each iteration. After warm-up training, the cosine anneal-

ing function is used to attenuate the learning rate, where the

initial learning rate is 0.02, and the minimum learning rate

is 0.2*0.01. Finally, we train the model for 300 epochs.

4.4. Experimental Results

Table 2 shows our results evaluated on the VisDrone2019

test-dev dataset. Among those state-of-the-art methods, all

YOLO family algorithms hold obviously outstanding per-

formance. As a modified version of the superior model

YOLOv4-P7, our proposed architecture shown in Figure 2

achieves competitive performance with mAP 38.5 without

TTA and multi-model fusion, which is even 3.07 higher than

the baseline YOLOv4-P7.
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Method AP AP50 AP75 AR1 AR10 AR100 AR500

CornerNet 23.43 41.18 25.02 0.45 4.24 33.05 34.23

Light-RCNN 22.08 39.56 23.24 0.32 3.64 31.19 32.06

FPN 22.06 39.57 22.50 0.29 3.50 30.64 31.61

Cascade R-CNN 21.80 37.84 22.56 0.28 3.55 29.15 30.09

DetNet 20.07 37.54 21.26 0.26 2.84 29.06 30.45

RefineDet 19.89 37.27 20.18 0.24 2.76 28.82 29.41

RetinaNet 18.94 31.67 20.25 0.14 0.68 7.31 27.59

YOLOv5x6 32.19 55.33 33.06 2.24 13.31 41.74 46.45

YOLOv4-P7 35.43 58.94 36.43 2.35 14.66 44.28 49.61

ours 38.5 (+3.07) 63.15 40.48 2.33 14.93 48.04 55.47

Table 2. The Comparisons between the results of baseline methods and ViT-YOLO on VisDrone2019 test-dev dataset

Method pedestrian person bicycle car van trunk tricycle awning-tricycle bus motor

YOLOv4-P7 (Baseline) 24.19 13.72 15.68 56.73 37.66 44.87 22.78 19.74 53.74 24.98

+MHSA-Darknet 26.12 15.08 16.79 58.15 39.35 46.41 25.23 22.88 55.22 27.44

+BiFPN 26.86 16.01 17.22 58.74 41.11 47.63 26.98 24.21 56.69 28.12

+TTA 27.34 16.56 17.96 58.99 42.39 48.78 27.09 24.74 57.97 28.39

+Multi-model Fusion 28.43 17.18 18.64 60.93 44.07 51.54 28.87 26.32 59.63 29.95

Table 3. The Comparison between the results of ten categories after subsequent operations on VisDrone2019 test-dev dataset.

Method AP AP50 AP75

YOLOv4-P7 (Baseline) 35.43 58.94 36.43

+ MHSA-Darknet 37.56 (+2.1) 61.46 38.34

+ BiFPN 38.5 (+1.3) 63.15 40.48

+ TTA 39.32 (+0.8) 64.19 42.1

+ Multi-model Fusion 41 (+1.7) 65.89 43.14

Table 4. The Albation study on the test-dev set.

4.5. Ablation Experiments

In this section, we perform a thorough ablation study

on the VisDrone2019 test-dev subset to analyze our algo-

rithm, which is shown in Table 4. On the basis of the base-

line model YOLOv4-P7, we propose MHSA-Darknet as the

backbone which embed multi-head self-attention into orig-

inal CSP-Darknet, and adopt the simple yet highly effective

weighted BiFPN path-aggregation neck in place of PANet.

Other tricks including Test Time Augmentation (TTA) and

Weighted Boxes Fusion (WBF) also helps to improve the

detection performance. Table 4 shows the comparison be-

tween the results of ten categories.

4.5.1 MHSA-Darknet

The evaluation of the proposed MHSA-Darknet is shown

in Table 4 and Table 3. After integrating multi-head self-

attention into the original CSP-Darknet, the total mAP of

results is significantly boosted from 35.43 To 37.56. And

we see that there is a significant AP boost, particularly for

small objects: 24.19 to 26.12 overall for pedestrians , 13.72

to 15.08 overall for persons, 22.78 to 25.23 overall for tri-

cycle 24.98 to 27.44 overall for motors. These results sug-

gest that self-attention has a big effect in detecting small

objects which is considered to be an important and hard

problem for deploying object systems in the real world. For

CNN-based deep networks, the high-level feature maps are

of fairly low spatial resolution, so that lack of the unbroken

information to localize the large objects accurately or recog-

nize the small objects. While small objects always show the

co-occurrences of certain classes in images, which to some

extent explains the reason why the transformer-based model

which focuses on global context information is helpful for

accurately detecting small objects.

On the other hand, from the comparison between predic-

tion results from the original baseline and our transformer-

based model in Figure 6, we observe that our transformer-

based model successfully recognize the people on motors

while the baseline model wrongly classify them into pedes-

trians. It suggests that the improved backbone MHSA-

Darknet is capable of extracting more differentiated fea-

tures for object detection via multi-head self-attention and

demonstrates a stronger semantic discriminability to allevi-

ate category confusion.
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Figure 6. Visualized detection results of YOLOv4-P7 and

YOLOv4-P7(+MHSA) on an arbitrary image from Visdrone

dataset. While not very different, YOLOv4-P7(+MHSA) is able

to create precise localizations as well as detect small objects bet-

ter. A notable example is exactly recognizing the people on the

motor, instead of wrongly classifying them into pedestrians.

4.5.2 Test-Time Augmentation

In VisDrone-DET2021 challenge, we use Test-time aug-

mentation (TTA) to improve the performance of our

method, which is an application of data augmentation to

the test dataset. Specifically, we create multiple augmented

copies of each image in the test set, having the model make

a prediction for each, then returning an ensemble of those

predictions. Copies of samples in the test dataset are created

with some image manipulation techniques performed, such

as zooms, flips, shifts, and more. As shown in Table 3, after

TTA operation, the performance of every class improved to

a large extent.

4.5.3 Multi-model Fusion

Single detection models only select the boxes and can

not produce averaged localization of predictions combined

from various models effectively. Ensembles of models are

widely used in applications that do not require real-time in-

ference. Combining predictions from different models gen-

eralizes better and usually yields more accurate results com-

pared to a single model.

In VisDrone-DET2021 challenge, we adopt an effective

method for combining predictions of object detection mod-

els: Weighted Boxes Fusion (WBF). WBF utilizes confi-

dence scores of all proposed bounding boxes to construct

the averaged boxes so that it works better when used for

the models’ ensemble. We used several models trained on

visdrone dataset, including the YOLOv5 models, YOLOv4

models and our ViT-YOLO model to predict boxes. Then,

we use the ensemble method WBF to obtain the final predic-

tions. In Table 4, the combined predictions for the test-dev

data set yields superior performance with mAP 41.

5. Conclusion

Drone captured images have overwhelming characteris-

tics including dramatic scale variance, complicated back-

ground filled with distractors, and flexible viewpoints,

which pose enormous challenges for general object detec-

tors based on common convolutional networks. In this

work, the improved backbone MHSA-Darknet dramanti-

cally enhances the detection performance, especially for

small objects, and meanwhile exhibits a stronger seman-

tic discriminability to alleviate category confusion. The

ViT encoder’s ability to globally attend to the entire im-

age is a possible explanation for this enhancement. Re-

garding the path-aggregation neck, we adopt the BiFPN to

integrate both the bidirectional cross-scale connections and

perform the fast normalized fusion with learnable weights,

which help the model to achieve a more competitive perfor-

mance. Furthermore, other techniques including time-test

augmentation and multi-model fusion also improve the ac-

curacy and robustness. Based on them, our algorithm sig-

nificantly outperforms the existing state-of-the-art detectors

on the VisDrone test-challenge dataset with mAP 39.41 in

the ICCV VisDrone2021 Object Detection Challenge.
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