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Abstract: Despite its rigid structure, the bone is a dynamic organ, and is highly regulated by endocrine
factors. One of the major bone regulatory hormones is vitamin D. Its renal metabolite 1α,25-OH2D3
has both direct and indirect effects on the maintenance of bone structure in health and disease.
In this review, we describe the underlying processes that are directed by bone-forming cells, the
osteoblasts. During the bone formation process, osteoblasts undergo different stages which play a
central role in the signaling pathways that are activated via the vitamin D receptor. Vitamin D is
involved in directing the osteoblasts towards proliferation or apoptosis, regulates their differentiation
to bone matrix producing cells, and controls the subsequent mineralization of the bone matrix. The
stage of differentiation/mineralization in osteoblasts is important for the vitamin D effect on gene
transcription and the cellular response, and many genes are uniquely regulated either before or
during mineralization. Moreover, osteoblasts contain the complete machinery to metabolize active
1α,25-OH2D3 to ensure a direct local effect. The enzyme 1α-hydroxylase (CYP27B1) that synthesizes
the active 1α,25-OH2D3 metabolite is functional in osteoblasts, as well as the enzyme 24-hydroxylase
(CYP24A1) that degrades 1α,25-OH2D3. This shows that in the past 100 years of vitamin D research,
1α,25-OH2D3 has evolved from an endocrine regulator into an autocrine/paracrine regulator of
osteoblasts and bone formation.

Keywords: vitamin D metabolism; vitamin D receptor; bone; osteoblasts; differentiation and
mineralization

1. Introduction

The skeleton plays a fundamental role in the human body by providing structural
support and allowing movement. Moreover, it has a protective role for vital internal
organs and stem cells, is a source for mineral and growth factors, and is the center of
regulatory pathways. Bone is highly dynamic and undergoes continuous remodeling
throughout life; it can repair itself. To illustrate this, damaged or (micro)fractured areas
are removed by osteoclastic bone resorption, which is followed by new bone formation
by osteoblasts (bone remodeling). Bone formation is characterized by secretion of an
extracellular proteinaceous matrix, which is subsequently mineralized. Bone remodeling
is tightly controlled by an interplay of local, bone and bone marrow-derived factors (e.g.,
cytokines, growth factors, chemokines) and endocrine factors. One of these endocrine
factors is the seco-steroid 1α,25-dihydroxyvitamin D3 (1α,25-OH2D3). 1α,25-OH2D3 can
affect bone in a direct as well as an indirect manner [1–3]. The indirect effect occurs via
control of calcium reabsorption in the kidney and absorption in the intestine, as well as
via control of parathyroid hormone production. Although rickets and osteomalacia were
prevented in vitamin D receptor (VDR) knockout mice fed with a rescue diet that contained
high levels of calcium and phosphorus, not all bone changes were rescued, indicating the
importance of a direct role for 1α,25-OH2D3 in bone metabolism [4–6]. The presence of
VDRs in cells of the osteoblast lineage [7,8] enables direct effects of 1α,25-OH2D3 on bone
metabolism. VDR expression in osteoblasts can be regulated by 1α,25-OH2D3 itself, as well
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as by other factors including parathyroid hormone, glucocorticoids, transforming growth
factor-β, and epidermal growth factor [9–13]. Transgenic mice specifically overexpressing
the VDR in osteoblasts have increased trabecular bone volume and increased bone strength,
supporting an anabolic effect of 1α,25-OH2D3 [14]. This observation was confirmed in
a study using mice with a different genetic background [15]. Interestingly, a study with
global VDR knockout mice [5] knockout mice reported a similar phenotype, with increased
trabecular thickness and increased osteoid volume and osteoblast numbers, suggesting an
inhibitory effect of 1α,25-OH2D3 on bone formation. This was supported by data from an
osteoblast-specific VDR knockout mouse study [16]. In this latter study, the bone effect
appeared to be via reduced bone resorption. The effects on bone may be related to overall
levels of calcium intake [17], but whether this explains the apparent opposite effects in
murine studies remains to be established. Nevertheless, these observations support a
direct effect of 1α,25-OH2D3 on bone metabolism via osteoblasts. There is less consensus
on VDR expression in osteoclasts. Genomic deletion of the VDR in osteoclasts did not
impact the positive effect of a 1α,25-OH2D3 analog (eldecalcitol) on bone mass [7]. This
is supported by Verlinden et al., who reported that VDRs in osteoclast precursors are not
essential to maintain bone homeostasis [18]. It was concluded that 1α,25-OH2D3 regulates
osteoclasts indirectly via cells of the osteoblast lineage. In the current review, we will focus
on 1α,25-OH2D3 in osteoblast function and bone metabolism.

2. Literature Search Strategy

We built on our pre-existing literature database and expanded this with a new search
from 2016 until October 2022. With the support of the Erasmus MC Medical Library
Literature Search Service, the search strategy was developed and executed. Supplemental
Figure S1 shows in detail the search strings used. In this way, we obtained a list of
2713 publications on vitamin D. From this dataset, we excluded 2583 clinical and (genetic)
epidemiological association studies and focused on 128 bone-related molecular and cellular
studies. Two publications appeared to be retracted after the search was performed.

3. Osteoblasts

Osteoblasts originate from mesenchymal stromal cells via a tightly controlled differ-
entiation process. The eventual fate of osteoblasts is three-fold, either to become lining
cells that cover the bone surface, or to become embedded in the extracellular matrix as
osteocytes, or to die via apoptosis.

3.1. Proliferation and Apoptosis

The data on 1α,25-OH2D3 effects on osteoblast proliferation are variable. Inhibi-
tion [19–27], as well as stimulation [20,28] or no effect [29,30] on the proliferation of os-
teoblasts of mouse, rat, and human origins have been reported. Effects on cell viability [31]
and apoptosis [32,33] have also been documented. Although different directions in effect
have been observed, these data demonstrate direct effects of 1α,25-OH2D3 on osteoblast
proliferation and survival. The direction of effect may depend on the timing of treatment,
dosage, origin, and environment of the osteoblasts [27,34–36].

3.2. Differentiation

Immature mesenchymal stromal cells differentiate into osteoblasts that produce extra-
cellular matrix proteins, enzymes, and matrix vesicles involved in the mineralization of
the extracellular matrix produced (Figure 1). It has been demonstrated that 1α,25-OH2D3
impacts all of these processes [3,37,38]. 1α,25-OH2D3 stimulation of differentiation has been
shown in all in vitro studies using human osteoblasts, human mesenchymal stem cells, and
osteogenic-induced pluripotent stem cells [30,39–46]. Most studies with rat osteoblasts re-
semble these studies using human osteoblasts and show increased differentiation [29,47,48].
Studies with mouse osteoblasts are more diverse. These studies show inhibition [49,50],
as well as stimulation of osteoblast differentiation by 1α,25-OH2D3 [51]. The definitive
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explanation for the discrepancies in 1α,25-OH2D3 effects between, on the one hand, mouse
osteoblast cultures, and on the other hand, between mouse and human/rat osteoblast cul-
tures, is absent; however, several explanations can be put forward. The source of osteoblasts
may play a role. Different sites of the skeleton differ in origin and bone formation, such as
enchondral (long bones) and intramembranous (calvaria) sites. 1α,25-OH2D3 did not affect
osteoblasts from cortical bone, and inhibited differentiation of calvaria-derived cells [52,53].
Furthermore, within one skeletal element, differences in osteoblast regulation are observed.
A recent study reported differences between periosteal- and bone-marrow-derived os-
teoblasts in cortical bone [54]. Whether this fully explains the diverse effects observed is
not clear, but it shows the importance of origin for the eventual activity and regulation.
This may also relate to stage of osteoblast differentiation, donor age, culture conditions,
etc., which have been shown to relate to 1α,25-OH2D3 action [17,47,55,56]. Furthermore,
differences may be species-intrinsic, and may have a genomic explanation. 1α,25-OH2D3
increases RUNX2 and BGLAP (osteocalcin) gene expressions in human osteoblasts, while
in murine osteoblasts, 1α,25-OH2D3 treatment inhibits the gene expressions of RUNX2 and
BGLAP [43,57–61].

A picture that emerges from all in vitro osteoblast data is that the osteoblast (mi-
cro)environment is a determinant of the eventual outcome of 1α,25-OH2D3 action. The
extracellular milieu (growth factors, cytokines, matrix proteins, ions (calcium/phosphate),
and other signaling molecules) and the intracellular milieu (e.g., the insulin-like growth
factor binding protein-6) are important for the eventual effect of 1α,25-OH2D3 [62,63]. For
example, interactions with transforming growth factor-β, insulin-like growth factor, bone
morphogenetic proteins, and interferon have been demonstrated [64–69]. Consequently,
the absence or presence of these, but potentially other factors as well, can modulate 1α,25-
OH2D3 action and determine the eventual response. An example of interaction with other
intracellular regulatory pathways is Wnt signaling. Wnt signaling plays an important role
in osteoblast differentiation and bone formation. An interplay between 1α,25-OH2D3 and
Wnt signaling has been described [70–74].

Osteoblast differentiation, bone matrix production, and mineralization, as part of
bone formation, are high energy-demanding processes [75–77]. Regulation of energy
metabolism impacts osteoblast differentiation and bone formation [78–80]. Vitamin D and
energy metabolism have been discussed in relation to obesity and metabolic syndrome [81]
and to cancer [82–84], but data on vitamin D and energy metabolism in the context of
osteoblast differentiation remain limited. Forkhead Box O (FoxO) transcription factors
are regulated by 1α,25-OH2D3 in murine MC3T3 osteoblasts. FoxO3a is upregulated,
FoxO1 is downregulated, and FoxO4 is unchanged after 1α,25-OH2D3 treatment. si-RNA
knockdown of the FoxOs did not change 1α,25-OH2D3 inhibition of proliferation [85].
Unfortunately, the effect on differentiation was not reported. Changes in FoxO expression
were coupled to increase in reactive oxygen species accumulation, which may be linked
to cellular metabolism and bone formation [75,80,86]. Glucose, insulin, and 1α,25-OH2D3
regulation of osteoblast proliferation, alkaline phosphatase activity, and production of
(uncarboxylated) osteocalcin have been studied in isolated rat osteoblasts, but unfortunately,
no coupling to mineralization was made [87]. Nevertheless, these data, together with those
on interactions between vitamin D and PPARγ signaling in osteoblast differentiation [88],
support that control of energy metabolism can be a vitamin D target in bone formation and
mineralization.

3.3. Mineralization

Mineralization can be divided into two phases. In the first phase, formation of hy-
droxyapatite (HA) crystals takes place in nano-sized extracellular matrix vesicles produced
by osteoblasts. In the second phase, HA is propagated outside these vesicles, with a re-
sulting buildup of mineral in the extracellular matrix [89,90]. Calcium and phosphate
concentrations increase inside matrix vesicles via involvement of specific proteins, and
when the solubility product of calcium and phosphate is exceeded, mineral deposits are
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formed inside the extracellular vesicles and the second phase of mineralization starts with
the release of the preformed HA crystals [90,91]. Proteomic analyses of extracellular ma-
trix vesicles revealed many proteins with a potential role in mineralization [92,93]. Gene
profiling studies also identified novel regulators of osteoblast matrix mineralization [94].

Mineralization is controlled by a balanced action of promoters and inhibitors. Alkaline
phosphatase and bone sialoprotein are important promoters [95,96]. Alkaline phosphatase
increases the phosphate concentration in matrix vesicles by hydrolyzing inorganic py-
rophosphate. Pyrophosphate is an inhibitor of mineralization; consequently, alkaline
phosphatase also decreases the level of this inhibitor. Pyrophosphatase phosphodiesterase
1 (NPP1, encoded by the gene ENPP1) and ankylosis protein (ANK) are involved in in-
hibiting mineralization. NPP1 generates pyrophosphate, and the transmembrane protein
ANK allows pyrophosphate to pass through the plasma membrane to the extracellular
matrix; thus, HA formation is inhibited in the extracellular vesicles [97,98]. 1α,25-OH2D3
stimulates mineralization via direct action on osteoblasts [68,88,99]. 1α,25-OH2D3 can
influence the mineralization process via gene expression and matrix vesicle production.
Gene expression profiling studies demonstrated that the 1α,25-OH2D3 effect is not likely
primarily due to changes in the expression of extracellular matrix genes, and thereby to
changes in composition of the extracellular matrix [99]. Studies on the expression and
production of procollagen type I by human osteoblasts showed stimulation [100,101] as
well as no effect [101–104], or inhibition [105].

Figure 1. Alizarin red staining of osteoblast culture exemplifying the pre-mineralization and mineral-
ization phases. Red staining shows mineralization. Details on cell culture and Alizarin red staining
procedures can be found in Woeckel et al. [99]. Adapted with permission from Eijken, M., Koedam,
M., van Driel, M., Buurman, C.J., Pols, H.A.P., van Leeuwen J.P.T.M. The essential role of glucocorti-
coids for proper human osteoblast differentiation and matrix mineralization. Mol Cell Endocrinol
2006, 248(1–2):87–93. https://doi.org/10.1016/j.mce.2005.11.034. 2006, J.P.T.M. van Leeuwen.

It is postulated that vitamin D may enhance mineralization by stimulating both
NPP1, generating pyrophosphate, and alkaline phosphatase, generating phosphate from
pyrophosphate [106]. This involves acceleration of the production of alkaline phosphatase-
positive matrix vesicles, leading to enhanced formation and deposition of HA crystals,
and eventually mineralization. This direct effect of vitamin D occurred in the period
prior to the onset of mineralization, and also involved accelerated extracellular matrix
maturation [99]. Interestingly, treatment with vitamin D after initiation of mineralization
did not affect mineralization. This supports the above-described osteoblast differentiation
stage dependency of the 1α,25-OH2D3 effect. A study by Yajima et al. described the
significance of 1α,25-OH2D3 for osteocytic perilacunar mineralization [107].

1α,25-OH2D3 also directly stimulates the production of inhibitors of mineralization.
VDR-dependent 1α,25-OH2D3 expression of ENPP1 and ANK in murine osteoblasts led
to an increase in the mineralization inhibitor pyrophosphate [108]. 1α,25-OH2D3 also

https://doi.org/10.1016/j.mce.2005.11.034
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stimulates activin A expression in human osteoblasts. Treatment with the activin A blocker
follistatin enhanced vitamin-D-induced mineralization of human osteoblasts [109]. 1α,25-
OH2D3 also increases the expression of osteopontin, which is shown to inhibit mineral-
ization. These observations may provide a fine-tuning mechanism to prevent excessive
mineralization of bone. 1α,25-OH2D3 induction of carboxylated osteocalcin may be in line
with this. 1α,25-OH2D3-stimulated mineralization is enhanced by blocking osteocalcin
carboxylation by warfarin [109]. The interaction of 1α,25-OH2D3 with other factors, as
described above, also holds for mineralization, for example, the interaction with DKK1, the
inhibitor of Wnt signaling [74].

The counterbalance of bone formation and mineralization by osteoblasts is bone
resorption by osteoclasts. In the healthy skeleton, these processes are in balance, securing
healthy and strong bones. The osteoblasts/osteocytes are the major regulators of osteoclast
formation and action via production of the stimulating factor RANKL, and the RANKL
inhibitor, osteoprotegerin (OPG). 1α,25-OH2D3 influences the RANKL/OPG ratio, and
thereby also impacts bone resorption [110–113]. 1α,25-OH2D3 is involved at both the bone
formation and the bone resorption sides of the balance, and is an important player in
maintaining healthy bones via direct effects on bone, in addition to indirect effects via
calcium and phosphate homeostasis [114].

3.4. Gene Expression

The basis of all cellular effects of 1α,25-OH2D3 involves VDR-mediated transcriptional
regulation. The VDR is a member of the nuclear receptor family. Upon binding to 1α,25-
OH2D3, the VDR heterodimerizes with the retinoic X receptor (RXR), and binds as a dimer
to the vitamin D response element (VDRE) in the DNA to regulate gene expression [115].
Over the years, many studies have unraveled the molecular fundamentals of 1α,25-OH2D3
transcriptional regulation. Examples and information can be found in these publications
and references therein [116–118]. In a previous publication, we discussed 1α,25-OH2D3
and gene transcription in osteoblasts [38]. This will not be repeated or discussed in detail
in this review.

A factor that may determine the transcriptional effect of 1α,25-OH2D3 effect is not only
the basal level of gene expression [51,119], but also the stage of osteoblast differentiation [99].
Studies with rat osteoblasts in the early 1990s showed already that effects of 1α,25-OH2D3
on osteoblasts may depend on the osteoblast differentiation phase [119]. An example is the
1α,25-OH2D3 stimulation of phosphaturic hormone fibroblast growth factor 23 (FGF23) only
in late-stage differentiation osteoblasts and osteocytes [120,121]. FGF23 is a hormone that
acts in the kidney to enhance phosphate excretion, and suppresses 1α,25-OH2D3 synthesis
by inhibiting 1α-hydroxylase (CYP27B1), forming an important loop in the regulation of
mineralization [122,123]. Vitamin D signaling in osteocytes [124] is further supported by
the 1α,25-OH2D3 regulation of PHEX (phosphate-regulating neutral endopeptidase, X
linked), which suppresses FGF23 transcription [125].

The various osteoblast differentiation stages actually reflect different functional stages
of the osteoblast, e.g., proliferation, extracellular matrix production, mineralizing and
mechanosensing. It is important to keep in mind the osteoblast differentiation stage
when studying 1α,25-OH2D3 effects, as this may be an important determinant of the
eventual effect (e.g., stimulation or inhibition) on gene transcription and subsequent cellular
responses and bone formation. The relationship between the osteoblast differentiation
stage and 1α,25-OH2D3 gene expression control was shown by Woeckel et al. [99]. 1α,25-
OH2D3 changed the expression of different sets of genes in the phase before the onset of
mineralization, and during the mineralization. For this review, we performed a reanalysis of
this gene profiling study [99] with the 2022 updated annotation. Comparison of transcripts
regulated (i.e., two-fold up or down) in the phase before and after the start of mineralization
(Figure 1) demonstrated that only 2.5% (18 out of the 721 regulated transcripts) were
regulated in both phases (Table 1). The gene symbols of the transcripts regulated in both
phases are shown in Table 2. To focus in more detail on phase-specific gene expression, we
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next selected the transcripts that were uniquely regulated in either the pre-mineralization
or in the mineralization phase [99]. In this regard, the transcripts should be at least
two-fold up- or downregulated in one phase (either pre-mineralization or mineralization
phase), and not regulated (fold change on average between 0.8 and 1.2) in the other phase
(either the mineralization or pre-mineralization phase). Table 3 shows the number of
transcripts uniquely regulated in either of these phases, and Table 4 reports the gene
symbols belonging to these transcripts. This binary comparison of pre-mineralization and
mineralization phases is not absolute and does not mean that further zooming in on specific
phases of osteoblast differentiation will not reveal other sets of vitamin-D-regulated genes.
However, it does support the notion that vitamin D gene regulation during osteoblast
differentiation and mineralization displays temporal dynamics, and it does show that for
proper interpretation of vitamin D effects, knowledge on the differentiation and functional
stage of cells and tissues is important. This knowledge can explain the apparent differences
in 1α,25-OH2D3 effects that have been reported.

Table 1. Number of transcripts on average that are 2-fold up- or downregulated in the pre-
mineralization or mineralization phase of human osteoblasts *.

Condition # of Genes UP # of Genes DOWN

Pre-mineralization phase 155 164
Mineralization phase 166 236

In both phases 10 8
* Experimental procedures and culture conditions of human osteoblasts (SV-HFO) are described in Woeckel
et al. [99]. Two-fold change is based on the average expression at the timepoints in the pre-mineralization or
mineralization period.

Table 2. Gene symbols of transcripts that are 2-fold upregulated or downregulated in both the
pre-mineralization and mineralization phases of human osteoblasts (i.e., 10 and 8 in both phases in
Table 1) *.

Upregulated Downregulated

ABCC3 AGAP10
CYP24A1 CCL20
MAGEE1 DDIT3
RARRES2 GRK4
RICH2 LOC727869
SLC25A45 NFE2L2
SULT1C2 ODF1
THBD TSC22D2
TMEM180
TOX3

* Experimental procedures and culture conditions of human osteoblasts (SV-HFO) are described in Woeckel
et al. [99]. Two-fold change is based on the average expression at the timepoints in the pre-mineralization or
mineralization period.

Table 3. Number of transcripts uniquely 2-fold up- or downregulated in either the pre-mineralization
or in the mineralization phase of human osteoblasts *.

Condition # of Genes UP # of Genes DOWN

Pre-mineralization phase 65 66

Mineralization phase 77 100
* Experimental procedures and culture conditions of human osteoblasts (SV-HFO) are described in Woeckel
et al. [99]. The 2-fold and 0.8–1.2-fold change is based on the average expression at the timepoints in the
pre-mineralization or mineralization period.
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Table 4. Overview of transcript gene names that are uniquely 2-fold up- or downregulated in either
the pre-mineralization or mineralization phase of human osteoblasts *.

Pre-Mineralization Phase Mineralization Phase

Upregulated Downregulated Upregulated Downregulated

AQR RAB9BP1 ADAM22 RARA ABCD4 MYH11 AASDH MOSPD1

ARHGEF7 RLTPR ADORA1 RBM AKAP13 NFIX ABCD3 MRPS23

ATAT1 SARDH ATF7IP2 RIMKLB ANKRD11 ORC5L ABT1 MS4A1

ATG16L1 SHISA8 BAGE SLC19A1 APIP PCDHB3 ACTR3C MTUS2

ATP1A4 SLC38A11 BRS3 SLC26A7 ARHGDIB PDLIM5 ANUBL1 NCRNA00188

BCL11A SZT2 BRWD1 SLC3A1 ASH1L PDZRN4 AP5S1 NDRG2

BMF TEX9 BST2 SNRPN ATM PGAP1 B4GALNT2 NDUFB7

BMP15 TMEM120B C1orf68 TBK1 BNC2 PLEKHG2 C11orf65 NRAP

C15orf48 TMEM33 CACNA1A TFAP4 BPTF PPP4R4 C14orf156 NUDT14

C2orf27A UBE2G2 CCDC144C THPO BRD4 PRPF18 C14orf2 OGFR

C3orf20 UBXN10 CSF2RA TMPRSS15 CAP1 PTGES C17orf104 PANK2

C8orf34 UNC13C CTNS TRIB3 CCDC67 PTGS1 C4orf36 PAPPA

CCDC124 ZC3H12A-DT DEFB132 TRMT2A CCDC76 RAB3IP CCL5 PAX8

COL24A1 ZNF668 EDA TTBK2 CD14 RASAL2 CCT2 PIP5K1A

CTU2 ZNF703 ERCC6L2 ZNF396 CLCN4 RG9MTD2 CNOT2 PLCH1

DCTN2 FAM219A ZNF93 CROCCL1 SERTAD4 COX7C PMCH

DOCK6 FCGR2C DCLK3 SMARCA4 CSRP2BP PML

DST FLJ10213 DPP4 SRGAP1 DAZL POLE4

DUSP28 FSD1L EGFR SRRM2 DBI POLR2K

EPG5 GAS2 EP300 SULF1 DCUN1D1 PTPRA

EYA2 GLIPR1 FAM102A TBC1D13 DNAH1 RHEB

GABRB3 GPR155 FAM186A TBL1X DUSP16 RPAIN

GNRHR HM13 FAM20C UGGT2 EEF1D RPL13

HCRTR2 ICA1 FGF7 VCAN EGFL8 RPL14

HIST1H4C KLHL36 FLJ11292 ZNF397 EHD1 RPL34

HSPB7 KLK7 FLJ13773 ZNF462 ELP6 RPS11

IL1RN LEKR1 FOXP2 ZSWIM1 ESPNL SEMA6D

KCNJ15 LELP1 GABRA5 EXOG SHLD1

LOC100131283 LIN28B H2AFY EXOSC2 SLC10A7

LOC148987 LOC100286895 HMCN1 FABP4 SLC9A5

LOC149351 LOC100287114 HOXA6 FAM126A SNAP23

LOC285205 LOC283854 HSPA12A FAM27A SNCAIP

LOC645591 LOC285692 IL17C FAXC SNTG1

LOC728903 LOC390595 INTS4 FUT7 STEEP1

LOC780529 LOC440944 KCNAB1 GOSR1 STK32A

LRRC46 MAN1A2 KCNG3 GPR39 STMN3

LYZL6 MAPRE3 KRTAP3-3 GSN SUPT16H

MGC42157 MGC12916 LOC100127980 HCG4P6 TAL1

MRS2 MRPL19 LOC100128640 IRGQ TBC1D8

NCOR2 MSR1 LOC100131993 KCNIP3 TEN1

NOX4 MYO10 LOC283682 KY TLK1

NTRK2 NR2E3 LOC285500 LOC100133109 TWF1
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Table 4. Cont.

Pre-Mineralization Phase Mineralization Phase

Upregulated Downregulated Upregulated Downregulated

OR1J4 NUP210L LOC388210 LOC100287911 TXNIP

PDE1A OTX2 LOC441461 LOC100289246 UHRF1BP1L

PENK PCLO MAGEB18 LOC338862 UQCRB

PGM2L1 PKP2 MARK2 LOC643749 UQCRQ

PHC3 PLXNA2 MEGF10 LPAR5 VMA21

POU2F1 POU2F2 MGAT5B MATR3 WFDC21P

PRRG2 PRLR MLXIP MMP16 XAF1

PTCD3 RAD54L2 MS4A6A MMP17 ZNF880

* Experimental procedures and culture conditions of human osteoblasts (SV-HFO) are described in Woeckel et al. [99].

4. Vitamin D Metabolism

Metabolism, synthesis of the active form of 1α,25-OH2D3 as well as its inactivation, has
been an important research topic since the identification of vitamin D. This has contributed
to the understanding of the initiation and termination actions of vitamin D and its endocrine
function. Figure 2 shows the classical vitamin D metabolism pathway. Serum levels of
1α,25-OH2D3 are determined by the activity of the renal enzyme 1α-hydroxylase (CYP27B1).
24-Hydroxylase (CYP24A1) is the first step of a 1α,25-OH2D3 inactivation cascade present
in all target tissues. In the next sections, we discuss CYP27B1 and CYP24A1 in osteoblasts.

Figure 2. Schematic representation of classic vitamin D metabolism and signaling pathway. Either
from sunlight or food, vitamin D is converted via enzymatic reactions in the liver and kidney into its
active metabolite, 1α,25-OH2D3, which binds to the VDR. Gene activation follows after binding of
the vitamin D/receptor complex to vitamin D response elements (VDREs) in target genes.

4.1. CYP27B1

In the late 1970s and early 1980s, reports were already coming out that in tissues
other than the kidney, 1α,25-OH2D3 can be synthesized. Cells isolated from chicken cal-
varia [126] and human osteosarcoma cells, as well as bone cells isolated from an ileac crest
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biopsy [127], can produce 1α,25-OH2D3.. Its functional significance in human osteoblasts
was shown by the fact that inhibition of 1α-hydroxylase activity by ketoconazole blocked
the 25(OH)D3 induction of CYP24A1 and osteocalcin expression [30]. This was supported
by studies on siRNA silencing in human osteoblasts [19,46]. Additional evidence came
from a study showing the importance of CYP27B1 for proliferation and osteogenic differ-
entiation of human mesenchymal stromal cells (MSCs) [128,129]. MSCs of older donors
had reduced CYP27B1 expression and resistance to 25(OH)D3 regulation of osteoblast
differentiation [130]. Broader tissue distribution of extra renal CYP27B1 expression beyond
bone was recently summarized by Bikle et al. [131].

However, renal synthesis is still considered the major contributor to circulating 1α,25-
OH2D3 levels. Only in diseases such as sarcoidosis extra is renal synthesis sufficient to con-
tribute to circulating levels. The presence of 1α,25-OH2D3 synthesis within bone provides a
means to explain the associations of bone phenotypes and other parameters with circulating
25(OH)D3 and not with 1α,25-OH2D3, as discussed by Anderson and colleagues [132,133].
Pharmacokinetic differences between locally produced 1α,25-OH2D3 from 25(OH)D3 and
added 1α,25-OH2D3 have been suggested from a cell culture study [134]. Further stud-
ies, in particular, in vivo studies, are needed for full appreciation of the impact of an
autocrine/paracrine role of 1α,25-OH2D3.

Observations that the vitamin-D-binding protein receptors cubulin and megalin, as
well as the vitamin D3 25-hydroxylase genes CYP2R1 and CYP3A4, are also expressed in
human osteoblasts, supports an autocrine/paracrine role [19,30,131].

Renal CYP27B1 is tightly controlled by factors such as parathyroid hormone (PTH)
and fibroblast growth factor-23 (FGF23), which are involved in calcium and phosphate
homeostasis. Extrarenal CYP27B1 expression is differently regulated, and probably in-
volves other factors and tissue specificity [135]. For example, PTH and ambient calcium
do not regulate CYP27B1 in human osteoblasts [30], while 1α,25-OH2D3 reduces CYP27B1
expression in human MSCs similar as in the kidney [136]. Several growth factors and
cytokines can regulate CYP27B1 expression. IGF-I increases CYP27B1 expression in human
MSCs [136]. Interleukin-1 stimulates while interferon-β reduces CYP27B1 expression in
human osteoblasts [30,69]. The earlier described impact of the osteoblast differentiation
stage on 1α,25-OH2D3 action can also be translated to expression of CYP27B1. CYP27B1 ex-
pression is increased by 25(OH)D3 in human MSCs [136], but not in mature osteoblasts [30].

4.2. CYP24A1

The first step in the degradation cascade of 1α,25-OH2D3 is hydroxylation at the C-24
position by 24-hydroxylase (CYP24A1) [137]. CYP24A1 is expressed in all vitamin D target
cells, and its expression is very rapidly and strongly increased after 1α,25-OH2D3 binding
to VDRs [138–141]. The VDR level is tightly linked to the induction of CYP24A1 expression
and 24-hydroxylase activity and, consequently, degradation of 1α,25-OH2D3. Thus, the
homologous upregulation of VDRs concomitantly induces the inactivation of 1α,25-OH2D3,
and thereby limits its effect [142,143]. Hydroxylation at the C-24 position of 1α,25-OH2D3
or 25(OH)D3 alone does not immediately lead to an inactive vitamin D molecule. Henry
and Norman demonstrated in the 1970s the functional significance of 24,25(OH)2D3 for
normal chicken egg hatchability and calcium and phosphorus homeostasis [144,145]. The
effects of 24,25(OH)2D3 on bone metabolism were shown in human, chicken, rat, and
mouse studies. 24,25(OH)2D3, synergistically with PTH, directly stimulates mineralization,
and 24,25(OH)2D3 decreases the number and size of resorption sites on the bone sur-
face [146,147]. 24,25(OH)2D3 restores and accelerates the bone mineral apposition rate in
vitamin-D-deficient and in parathryoidectomized rats [147]. 24,25(OH)2D3 did not change
bone histomorphometric parameters in ovariectomized rats [148], but 24,25(OH)2D3, and
not 1α,25-OH2D3, increased bone strength [149].

Several studies focused on 24-hydroxylated vitamin D molecules and fracture healing.
24,25(OH)2D3 binds to fracture calluses [150], and improves fracture healing [151–153].
Serum 24,25(OH)2D3 levels were found to correlate with fracture healing in chicken [151],
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but not in a small human study in 1978 [154]. However, a study on pre-dialysis renal insuf-
ficiency patients supported a direct, i.e., PTH-independent, functional role of 24,25(OH)2D3
in human bone. 24,25(OH)2D3, together with 1α,25-(OH)2D3, preserved the osteoblast
perimeter and improved mineralization, while 1α,25-(OH)2D3 alone was ineffective [155].
A direct effect on bone, in particular osteoblasts, is supported by in vitro studies showing
that, similarly to 1α,25-OH2D3, 24,25(OH)2D3 has direct effects on human osteoblast dif-
ferentiation [45]. Knowing that 24-hydroxylation per se does not lead to inactivation of
vitamin D molecules, it is important to understand target tissue/target cell dynamics of the
next steps in the degradation cascade. Control of the velocity of the subsequent steps in the
degradation pathway can be a means to regulate vitamin D action in target tissues/cells.
Together, these data on CYP24A1 and the biological activities of 24,25(OH)2D3 add to the
notion of an auto/paracrine vitamin D regulatory system in bone. This system is most
likely not restricted to bone and may also be present in other tissues.

5. Conclusions

This review revealed that the central role for vitamin D in bone physiology is directed
via osteoblasts and depends on their stage of development. VDRs and the vitamin-D-
metabolizing enzymes CYP27B1 and CYP24A1, known from the vitamin D endocrine
system, are present and functional in osteoblasts. This uncovers a direct local role for
1α,25-OH2D3 vitamin D in osteoblast function, and expands the vitamin D action profile
from endocrine regulation of calcium and phosphate homeostasis to an auto/paracrine reg-
ulatory network in bone. Several target-tissue-derived factors (growth factors, cytokines),
intracellular signaling cascades (Wnt), and functional states of the osteoblast interact with
this auto/paracrine network and determine the eventual response. In this way, vitamin
D controls the proliferation, apoptosis, differentiation, and mineralization of osteoblasts,
as well as their gene profile and interaction with other factors that maintain healthy bone.
Moreover, even local degradation products of vitamin D metabolism (24,25(OH)2D3) have
a beneficial contribution to osteoblast function. Together, these observations underscore the
importance of contextual knowledge (molecular and cellular) in order to fully understand
and appreciate the effects of vitamin D on bone cells.

This warrants research for the next 100 years: future studies may focus on assessing tis-
sue levels of vitamin D metabolites in addition to circulating levels, and study functionality
of the complete metabolic profile of vitamin D.
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