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Vitamin D, infections and immunity
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ABSTRACT

Vitamin D (VD) is a steroid prohormone that regulates the body's calcium and phosphate lev-
els in bone mineralization. It is also well described as a fat-soluble vitamin playing an important
role in immunomodulation, regulation of cytokines, and cell proliferation. Thus, VD is a pow-
erful hormone with pleiotropic effects, which acts to maintain optimal health. Recent studies
demonstrate that VD deficiency is associated with the development of autoimmune disorders.
Vitamin D generates many extraskeletal effects due to the vitamin D receptor (VDR) which
is present in most tissues throughout the body. This paper reviews the recent data on the role
of vitamin D in the genesis of various immunological disorders. The possible role of vitamin
D in infections is implied from its impact on the innate and adaptive immune responses.
A significant effect is the suppression of inflammatory processes. It inhibits immune reactions
in general, but it enhances the transcription of "endogenous antibiotics" such as cathelici-
din and defensins. VD inhibits the genesis of both Th1 — and Th2-cell mediated diseases.
Th1 — dependent autoimmune diseases (e.g., multiple sclerosis, Type 1 diabetes, Crohn's
disease, rheumatoid arthritis and so on) are also inhibited by VD due to inhibition of antigen
presentation, reduced polarization of ThO cells to Th1 cells and reduced production of cyto-
kines from the latter cells. VD seems to also be a useful adjunct in the prevention of allograft
rejection. Cardiac and coagulopathic features of COVID-19 disease deserve attention as they
may be related to vitamin D. There are also intriguing potential links to vitamin D as a factor
in the cytokine storm that consist some of the most serious consequences of SARS-CoV-2
infection, such as the acute respiratory distress syndrome. Finally, the current clinical data
strongly associate vitamin D with SARS-CoV-2 infection, however a putative clinical link that
at this time must still be considered hypothetical.

STRESZCZENIE

» witamina D

 uktad immunologiczny
» zakazenia

» autoagresja

Witamina D (VD) to steroidowy prohormon, uczestniczacy w regulacji homeostazy wapnio-
wo-fosforanowej, kluczowy dla mineralizacji kosci. W ostatnich latach wykazano takze szereg
pozakostnych dziatan witaminy D, m.in. wazng role w immunomodulac;ji, regulacji produkcji
cytokin i proliferacji i réznicowaniu sie komérek uktadu odpornosciowego. Niedobér VD jest
zwigzany z podatnoscig na zakazenia wirusowe i bakteryjne a takze zwiekszonym ryzykiem
rozwoju choréb autoimmunologicznych. W niniejszej pracy dokonano przeglagdu danych na te-
mat roli witaminy D w genezie réznych zaburzen immunologicznych. Mozliwa rola witaminy D
w zwalczaniu zakazen wynika z jej modyfikujgcego wptywu na bierng i czynng odpowiedzi
immunologiczne. Istotnym dziataniem witaminy D jest hamowanie procesow zapalnych, ale
jednoczesnie zwieksza transkrypcje "endogennych antybiotykow", takich jak katelicydyna
i defensyny. VD zmniejsza prezentacje antygenow przez komorki dendrytyczne, hamuje
polaryzacje komorek ThO do komdrek Th1 lub -2 i ogranicza produkcje cytokin prozapalnych,
zwtaszcza INFy, a jednoczesnie utatwia tworzenie sie Treg, co w efekcie ogranicza i umoz-
liwia wygasniecie reakcji immunologiczne;j. Istniejg dane wskazujgce ze VD moze tagodzi¢
objawy choréb autoimmunologicznych zaleznych od Th1 (np. stwardnienie rozsiane, cukrzyca
typu 1, choroba Lesniowskiego-Crohna, reumatoidalne zapalenie stawéw itp.) w modelach
zwierzecych i u ludzi. VD wydaje sie by¢ rowniez uzytecznym uzupetnieniem w zapobieganiu
odrzuceniu przeszczepu. Na uwage zastugujg sercowo-naczyniowe i zakrzepowe elementy
choroby SARS-CoV-2, ktére mogg byc¢ tgczone z gorszym zaopatrzeniem w witamine D.
Istniejg réwniez dane wskazujgce na role niedoboru witaminy D w patogenezie "burzy cy-
tokinowej", jedng z najpowazniejszych konsekwencji zakazenia COVID-19. Nalezy jednak
podkresli¢, ze pomimo coraz liczniejszych danych klinicznych silnie tgczacych witamine D
z ryzykiem i przebiegiem infekcji SARS-CoV-2, to muszg one byc¢ traktowane z ostroznoscia,
a domniemany zwigzek powinien by¢ nadal uwazany za hipotetyczny.
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Introduction

A significant segment of the population has vitamin D (VD)
hypovitaminosis, which frequently does not induce visible
clinical manifestations. VD hypovitaminosis may be the con-
sequence of lack of sunshine, inadequate diet, low levels
of high-density cholesterol, as well as obesity. However,
many people have a genetic disposition to VD hypovita-
minosis, which may be a more important factor than expo-
sure to sunshine and/or dietary intake of vitamin Ds (1-4).
In the multicenter study by Wang et al. (including ~30,000
subjects), single nucleotide polymorphisms in four genes
has been found to be associated with relative VD hypo-
vitaminosis (1). Similar data have been obtained by other
groups examining other different ethnic populations (2-4).

Over the last few decades, it came to light that vita-
min D (VD), besides its well-known functions in bone ho-
meostasis, plays a basic role in the regulation of immune
functions (5, 6). It inhibits carcinogenesis and enhances
production of endogenous antimicrobial "antibiotics" (7).
This review deals only with a narrow segment of extra-bone
effects of VD, notably with its physiological role in regulation
of immune functions.

Modulation of Immune Functions in General

The immune effects of VD (calcitriol and vitamin D receptor
VDR) in the healthy organism are highly complex. 1a-hydrox-
ylase can be found not only in the kidney but also in the im-
mune system, primarily in the lymphocytes, monocytes,
dendritic cells (DCs) and elsewhere, even in the bronchial
wall (8). Moreover, the VDR, which has also been detected
in immunological cells, suggests that vitamin D can directly
regulate some processes related to immunity.

Activated human T and B cells and also the endothelial
cells lining the upper and lower respiratory tract also express
CYP27B1 and can transform inactive metabolite 25(OH)D
into active 1,25(0OH):D (calcitriol). In general, the epithelia
are the first responders to invading pathogens sounding
the alarm, via their own innate immune system, to activate
dendritic cells and macrophages and to recruit neutrophils
and T cells to the site of infection. In the setting of vita-
min D deficiency, immune responses would be impaired
because less 25-OH D would be available for synthesis
of 1,25(0H):D, leading to impairment of innate immune
function (9). This localized, intracrine, mechanism is now
considered a cornerstone of the interaction between vi-
tamin D and the immune system. It is quite distinct from
the endocrine actions of vitamin D concerned with regulat-
ing mineral homeostasis. While parathormone enhances
the expression of 1a-hydroxylase in the kidney, the activity
1a-hydroxylase of in the immune system is mostly regulated
by certain immune inputs including IFN-y and Toll-like re-
ceptors, which recognize molecular patterns on the surface
of certain microbes, primarily lipopolysaccharides, lipopro-
teins and other components of mostly Gram-negative bacte-
ria (10-13). In monocytes, the expression of 1a-hydroxylase
requires the simultaneous activation of JAK-STAT, NF-«xB
and p38-MAPK pathways. For activation of 1a-hydroxylase,
generally at least two stimuli are needed; most commonly
IFN-y + lipopolysaccharides or Janus kinase-signal trans-
ducer-activator or MAPK or NF-kB or something else. In fact,
induction of 1a-hydroxylase is preceded by enhanced lib-
eration of IL-1 and TNF-q, that is, cytokines responsible
for the early phase of inflammation. Therefore, enhanced

production of calcitriol may be considered a late eventin in-
flammation, a kind of negative feedback loop, which helps
to terminate the inflammatory cascade (11).

Vitamin D and infections

The possible role of vitamin D in infectious diseases is im-
plied by its impact on the innate and adaptive immune re-
sponses. The innate immune response can be defined,
generally, as nonspecific, although it proves to be the first
line of defense against infective agents and initiates an-
tigen presentation (14, 15). The crucial points for the in-
nate immune response are the Toll-like receptors (TLRs),
being a subgroup of various intracellular innate Pathogen
Recognition Receptors (PRRs), which is present in macro-
phages, polymorphonuclear cells, monocytes, and epithelial
cells. TLRs recognize molecules related to the pathogen:
the lipopolysaccharides of bacteria or viral proteins and
nucleic acids. Such activated TLRs release cytokines which
induce reactive oxygen species and antimicrobial peptides
(AMPs), cathelicidins, and defensins (16-20). VDR suppress-
es the expression of Toll-like receptor proteins 2 and 4, and
downregulates the Toll-like receptors in the monocytes (21).
One of the features of the antibacterial innate response
is the destruction of the pathogens by autophagy (22). This
process is especially important for the antibacterial response
induced by vitamin D against Mycobacterium tuberculosis
infection. VD enhances the transcription of certain "endoge-
nous antibiotics" (7). More precisely, VDR directly facilitates
the expression of the camp and defB2 genes hence the tran-
scription of antimicrobial peptides cathelicidin and various
B-defensins (23-33). Both have antimicrobial effects against
various Gram-positive and -negative bacteria, as well as
against fungi and certain viruses. Cathelicidin is effective
even against antibiotic resistant Pseudomonas aerugino-
sa (7) and Mycobacterium tuberculosis (32, 33). The ability
of macrophages to produce cathelicidin correlated well with
the serum 25-OH D concentration (34, 35). Although the an-
timicrobial function of cathelicidin is crucial, this protein has
a number of other functions including the induction of a vari-
ety of proinflammatory cytokines, stimulation of the chemo-
taxis of neutrophils, monocytes, macrophages, and T cells
into the site of infection, and promotion of the clearance
of respiratory pathogens by inducing apoptosis and au-
tophagy of infected epithelial cells (18, 36). The induction
of cathelicidin by 1,25(OH)2D is observed only in high-
er primates, and it appears, that the ability of vitamin D
to promote cathelicidin synthesis is a recent evolutionary
development (37). B-defensin 2, such as cathelicidin, con-
tributes to host defense by stimulating the expression of an-
tiviral cytokines and chemokines involved in the recruitment
of monocytes/macrophages, natural killer cells, neutrophils,
T cells (38). In turn, a-defensins present in vitro efficacy
against HIV-1 viruses (27). There are no data indicating that
these "endogenous antibiotics" get into the systemic circu-
lation. Therefore, cathelicidin and the various defensins are
considered locally acting "natural antibiotics", which protect
the mucosal surface of the respiratory and gastrointestinal
tracts and the skin (25).

Importantly, vitamin D may have broader antimicro-
bial actions, including the generation of nitric oxide and
superoxide (39, 40). In addition to enhancing monocyte/
macrophage antimicrobial functions, vitamin D promotes
the killing of pneumococcus by stimulating neutrophils via
a range of mechanisms that included upregulation of Toll-like
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receptor 2, NOD2, and cathelicidin together with enhanced
antimicrobial human neutrophil peptide (HNP1-3) produc-
tion (41). Even beyond monocytes, macrophages, and
neutrophils, which collectively illustrate the importance
of vitamin D in supporting a range of innate antibacterial
responses, vitamin D can promote antimicrobial function
outside the immune system. For example, within the gas-
trointestinal tract, vitamin D promotes the expression of gap
junction proteins that maintain barrier integrity thereby pre-
venting tissue ingress by bacteria from the gut microbi-
ome (42). Similar barrier integrity effects of vitamin D have
also been observed for the epithelial cells of the lung (43),
along with stimulation of antimicrobial proteins by lung ep-
ithelial cells (44, 45).

Upon viral infection, pathogen-associated molecular pat-
terns (PAMPs) can also be recognized by other (PRRs),
such as retinoic-acid-inducible gene-I (RIG-I)-like receptors
and nucleotide binding-oligomerisation domain (NOD)-like
receptors (NLRs). In myeloid and epithelial cells, the in-
tracellular receptor NOD2 is induced by 1,25(OH):D via
two VDREs in the NOD2 gene. The addition of lysosomal
breakdown products of bacterial peptidoglycan to calcitri-
ol-induced NOD2 enhanced NF-«kB signalling and AMP such
as beta defensin 2 expression (46, 47).

VDR inhibits antigen presentation by dendritic cells
(DCs). DCs are derived mostly from hemopoietic bone
marrow progenitor cells (48). These progenitor cells ini-
tially transform into immature DCs. Immature DC cells ma-
ture upon phagocytosing, ingesting pathogenic microbes
(primarily by oxidative burst) then transforming them into
"presentable" MHC class Il antigens, they express costim-
ulatory factors such as CD40, CD80 and CD86 and they
are already able to migrate into the lymph nodes where
they "hand over" the MHC-II complex to T cells. The expres-
sion of these cell surface costimulatory factors are inhibited
by VD (48). Other DC cells, however, become "tolerogenic”,
which means losing their ability to phagocytose microbes
and to present the MHC-II antigens to Th1 or Th2 cells.
VD facilitates formation of tolerogenic DC cells most prob-
ably by inhibition of transcription of proteins needed for their
phagocytotic and antigen-presenting activities (21, 48-56).
In addition to the inhibition of dendritic cell differentiation,
that is, reduced expression of MHC complex and costimu-
latory molecules (48, 57), VD also reduces the total num-
ber of DCs most probably by facilitating their spontaneous
apoptosis (58).

Vitamin D, immune system and autoimmunity

VD inhibits the polarization of naive TO cells to T1 and
to a lesser extent T2 cells, it shifts the balance of Th1/Th2
T cells toward the latter ones, and upregulates Treg cells,
the T cells population known to inhibit both Th1 and Th2
cells . ThO cells primed by DCs may differentiate into one
of the three mutually exclusive directions. They will ma-
ture into either (1) IFN-y, TNF-q, IL-1a, IL-1a, IL-2, IL-12
or IL-15-producing cytotoxic Th1 cells responsible not only
for the killing of foreign microbes but in many cases also
for autoimmune diseases (59, 60), or (2) IL-4, IL-5, IL-6,
IL-13-producing Th2 cells, which enhance antibody produc-
tion in B cells and induce immunoglobulin class switching
in B-lymphocytes but also mediate atopic diseases under clin-
ical conditions (59-61), or (3) into mainly IL-10 and TGF-(3 se-
creting "central" Treg cells (CD4* CD25* Tregs eventually also
expressing Foxp3) (62, 63). They are also called "tolerogenic"

since they suppress the immune functions in general, includ-
ing the proliferation of the other two subclasses of Th cells
(Th1 and -2) in G1 phase, inhibit IL-2 production, lymphocyte
proliferation in general and the delivery of costimulatory sig-
nals (48, 49, 53, 64, 65). They are also dubbed "profession-
al" suppressor cells (66). Treg cells constitutively express
CTLA-4, which is indispensable for their functional integrity
(21, 62, 63). Treg cells have different subtypes and of them
the Treg1 cells have really strong immunosuppressant action,
that is, they prevent autoimmune diseases and graft rejec-
tion (563). Th1 and -2 cells mutually antagonize each other's
function and clonal expansion, whereas Treg cells inhibit
both of the other subgroups (59-61, 66). VD inhibits the po-
larization of ThO cells to Th1 or -2 cells but facilitates
the formation of Tregs (64, 66). Thus, VD leads the reduced
production of of inflammatory cytokines as IFN-y, IL-17 and
IL-21 (61, 67-69). In addition, VD enhances the development
of Th2 cells and the production of their characteristic cyto-
kines as IL-4, IL-5 and IL-10, which partly suppresses Th1
function and production of the most important Th1 cytokine
IFN-y (69). The Treg cells, being the "professional” immu-
nosuppressor cells of the body, maintain the self-tolerance
(also called peripheral self-tolerance), that is, they protect
the organism from autoimmune reactions, among others
by inhibiting IL-2 production (50), which is the first step lead-
ing to the differentiation of T cells (70).

Evidently, the ratio of differentiation of naive TO cells
to Th1 or Treg cells has tremendous clinical signifi-
cance (71-75) since, the Th1 induce autoimmune disease,
while the Treg cells exert their tolerogenic action by re-
ducing the production of IL-2. As for the regulatory, it is
important that the "immunomodulant" (76) VDR favors
the differentiation to "tolerogenic" Tregs, more precisely
to CD4* CD25" Fox3* cells producing mainly IL-10, TGF-B
but less NF-xB and AP-1 than other T cells (66, 77).

A further important effect of VD is the inhibiton of tran-
scription of IL-2 and -12 (78, 79). Reduced transcription
of IL-2 (78, 80) seems to be one of the main mechanisms
of VD-elicited immunosuppression since transformation
of naive CD4" cells to ThO cells is the first step of prolifera-
tion of lymphocytes. However, probably the most important
effect of VD is the inhibition of IFN-y.

Natural killer T (NKT) cells represent another crucial
mechanism of innate immunity and they are important sup-
pressors of autoimmune diseases. VDR is needed for devel-
opment or maturation of NKTs, which protect the organism
from autoimmune diseases (81, 82).

VD ameliorates the disease symptoms of autoimmunity
in animal models and in human patients. The importance
of VD in physiological protection against autoimmune disor-
ders is proven among others by the finding of Bouillon et al.
that VDR-null mice show increased sensitivity to experimental
interventions inducing autoimmune diseases (83). In animal
experiments, VD showed preventative or therapeutic action,
in experimental models of autoimmune diseases such as
Type 1 (insulin-responsive) diabetes mellitus (55, 83), multi-
ple sclerosis (84-88), inflammatory bowel disease (89, 90),
in experimental models of contact and atopic dermatitis (91).
In rheumatoid arthritis, enhanced expression of IL-17 and -22
was observed in human patients (92). Finally, VD induced
Treg cells have also been found to inhibit the allograft rejec-
tion. The protective action of VD (or its analogs) was due
to arrest of Th1 cell infiltration, induction of tolerogenic DCs
with simultaneous multiplication of Treg cells, enhanced
transcription of TGF- even that of IL-4, and diminution
of the pathologically increased ratio of Th1/2 cells (93-99).
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Vitamin D and COVID-19

SARS-CoV-2, the virus causing the COVID-19 pandem-
ic had already infected over 15 million people and had
caused over 400 000 deaths worldwide (100) and probably,
these numbers will grow greatly in the months to come. The
search for risk factors predisposing to adverse outcomes
of this disease has focused upon age, obesity, diabetes, hy-
pertension, ethnicity, and other factors (101-106). Recently,
vitamin D inadequacy has emerged as another potential
risk factor (107-109). Although studies of vitamin D and
innate immune activity have focused primarily on antibac-
terial mechanisms, vitamin D can also promote antiviral
immunity, which is of great importance in any discussion
for its role in COVID-19 infection. This involves a number
of mechanisms that overlap with antibacterial responses,
such as the induction of cathelicidin and defensins, which
can block viral entry into cells as well as suppress viral
replication (110, 111). Another property of vitamin D rel-
evant both to antibacterial and antiviral mechanisms are
promoting autophagy (112, 113). Autophagy is an essential
mechanism by which cells deal with viruses. Autophagic
encapsulation of viral particles packages them for lyso-
somal degradation and subsequent antigen-presentation
and adaptive antiviral immune responses (114). Induction
of autophagy is a key cellular response to vitamin D, with
both 25-OH D and 1,25(OH):D enhancing expression
of the autophagy marker LC3 (36, 41). Thus, autophagy
may be sensitive to changes in serum 25-OH D levels.
The specific mechanisms by which vitamin D promotes
autophagy involves downregulating the mTOR pathway,
which inhibits autophagy (116), and by promoting Beclin 1
and PI3KC3, key enzyme drivers of autophagy (117).
Upregulation of intracellular Ca and NO by vitamin D also
stimulates PI3KC3 activity to promote autophagy (118).
Vitamin D-induced autophagy decreases HIV-1 infection
(119, 120), influenza A (121), rotavirus (122), and hepati-
tisC (123). In considering the effects of vitamin D on auto-
phagy, it i s important to recognize that these actions are
closely linked to apoptosis, which may aid viral replication.
Therefore vitamin D may play a crucial role in maintaining
appropriate balance between autophagy and apoptosis
to maximize antiviral responses to infection (124).

One of the devastating pathophysiological aspects
of SARS-CoV-2 infection is the so-called pulmonary cyto-
kine storm, a major cause of morbidity and mortality. The
cytokine storm results from dysregulation of the innate
immune system with an outpouring of proinflammatory
cytokines and chemokines, leading to abnormal activation
of the adaptive immune pathway. The serious damage
caused by coronaviruses such as SARS-COV-2 is due
to their infection of both the upper and lower airways,
with rapid virus replication and massive inflammatory
cell infiltration, producing a huge increase in proinflam-
matory cytokines and chemokines leading to acute re-
spiratory distress syndrome (125). The initial infection
of the airway epithelium leads to rapid viral replication
(126, 127), complicated by a virus-induced delayed in-
crease in class 1 interferon (IFNa/B) expression in den-
dritic cells. that would normally block viral replication
and enhance viral clearance by CD8 T cells (128). The
delayed expression of class 1 interferon subsequently
increases recruitment of proinflammatory cells. Infected
airway epithelial cells secrete a number of proinflammato-
ry cytokines/chemokines that further deregulate the innate
immune response, and attract the influx of inflammatory

cells including neutrophils, monocytes and macrophages,
while sensitizing T cells to apoptosis (129). The conse-
quences include a breakdown in the microvascular and
alveolar epithelial barrier, resulting in vascular leakage
and alveolar edema. The T cell response required for viral
clearance is blunted (130), and their role in dampening
the cytokine storm is reduced.

A potential role for vitamin D in modulating these patho-
physiological aspects of the cytokine storm is noteworthy.
Airway epithelia constitutively express both CYP27B1,
1,25(0OH)zD, and the vitamin D receptor. Furthermore,
pulmonary alveolar macrophages are induced to express
both CYP27B1 and the vitamin D receptor by pathogens
such as viruses and cytokines released from infected cells.
Activation of innate immunity leading to increased local
1,25(0OH)2D production has been shown to enhance viral
neutralization and clearance while modulating the subse-
quent proinflammatory response. Whether this sequence
of events will be the case for SARS-CoV-2 remains to be
seen.

COVID-19 has been associated with cardiovascular
sequelae, including myocardial injury, type 1 myocardial
infarction, acute coronary syndromes, acute cor pulmonale,
cardiomyopathy, arrhythmias, thrombotic complications,
and cardiogenic shock (131-133). While no direct causal
evidence for a role of vitamin D deficiency in SARS-CoV-2
— related heart disease has been shown, extrapolation
of evidence from prior animal and human studies permits
speculation of several possible mechanisms. The various
risk factors for cardiovascular disease in COVID-19 dis-
ease, which are linked to vitamin D deficiency, include hy-
pertension (134), diabetes (135), obesity (136) and chronic
kidney disease (137). Vitamin D deficiency may predispose
to hypertension by upregulation of the RAAS, and increas-
ing vascular resistance and vasoconstriction (138-140).
Itis possible that this is further exacerbated by SARS-CoV-2
infection, in which viral binding with cellular entry receptor
ACE2 |eads to dysregulation of the RAAS in favour of angio-
tensin-2 (141-142). Activation of the vitamin D receptor also
modulates myocardial contractility, likely by regulating calci-
um flux (144). Several meta-analyses of prospective clinical
studies have consistently shown that low 25-OH D serum
concentrations indicate an increased risk of overall cardio-
vascular events and cardiovascular mortality (145-150).
Patients with COVID-19 are also at risk for a number
of thrombotic complications (151), which may be due
to a number of direct and indirect effects of SARS-CoV-2
infection. Several reports have suggested elevated rates
of both arterial and venous thrombotic events in patients
with COVID-19 (152-156). Moreover, a significant coagu-
lopathy is related to poor prognosis in COVID-19 patients
(151, 154). While the mechanisms which lead to these
events have yet to be fully elucidated, it is possible that
vitamin D levels may be a contributing risk factor. A limited
number of clinical reports, antedating the COVID-19 era
suggest a link between the vitamin D deficiency and incident
thrombotic events, including deep venous thrombosis and
cerebrovascular events (157-159). This may be especially
true in patients who are critically ill, and require intensive
care, among whom low 25-OH D levels have been reported
in up to 80% in the pre-COVID-19 era (160-161).

Given the relationship between vitamin D and the RAAS,
inflammatory and hemostatic pathways, all of which have
been implicated in the development of cardiovascular
complications from SARS-CoV-2 infection, further stud-
ies evaluating the role of vitamin D in COVID-19-related
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cardiovascular and thrombotic events may prove critical
to gaining insights into both mechanism and therapeutics.

The link between vitamin D and viral infections arose
from the observation of the seasonality of vitamin D with
lower levels in the winter and concomitant increases in in-
fluenza. Conversely, in summer, serum levels of 25-OH D
increase and influenza virtually disappears, except during
pandemics. Even in pandemics, most deaths occur during
cold months (162). Lower 25-OH D concentrations are
associated with a higher risk for infections, especially
from the respiratory tract (163). In a retrospective study
of 14 108 individuals from the National Health and Nutrition
Examination Survey, serum 25-OH D levels <30 ng/mL
were associated with 58% higher odds of acute respiratory
infections (164-167).

Vitamin D to COVID-19 infection — clinical data

In a first, small study (n=20) of hospitalized COVID-19
patients, vitamin D insufficiency (defined as levels
of 25-OH D <30 ng/mL) was present in 75% of the over-
all cohort and in 85% of those who required ICU care
(n=13) (168). Additionally, an analysis of COVID-19 sever-
ity based on survey vitamin D status in Europe suggested
that countries with highest rate of vitamin D deficiency are
associated with highest rates of infection and death (169).
More recently, llie et al. observed a significant negative
correlation between historical mean 25-OH D concentrations
per European country with COVID-19 mortality and num-
ber of cases (170). Very recently, Gennari et al. reported
lower levels of 25-OH D levels among patients hospitalized
with COVID-19 in ltaly (171). It is intriguing, that Italy and
Spain, which have been heavily affected by COVID-19, are
among the European Countries with the highest prevalence
of hypovitaminosis D (165). In a sampling of 700 ltalian
women, 60-80 years old, 25-OH D levels were reported to be
lower than 12 ng/mL in 76% (172). Moreover, prevalence
of hypovitaminosis D was reported in up to 32% of healthy
postmenopausal women in winter and more than 80% in in-
stitutionalized individuals (155). In the vast majority of hos-
pitalized elderly Italian subjects, hypovitaminosis D was
present with more than half showing severe vitamin D defi-
ciency. Lack of vitamin D also correlated with inflammatory
parameters (174). Also a preliminary study from the United
States has found a strong correlation of vitamin D deficiency
with mortality and other aspects of poorer outcome (175).
Marik et al. observed a higher fatality rate for COVID-19 for
Northern (>40°N latitude) vs Southern states (6.0% vs 3.5%,
P <0.001) in the US (176). In the aggregate, these data
suggest a potential deleterious effect of vitamin D deficiency
on risk and outcome in COVID-19 disease.

The available clinical data, in brief, are still very pre-
liminary with regard to vitamin D status and COVID-19
disease. Many reports are retrospective, and only associa-
tive. Caution is therefore necessary in interpreting the data.
Nevertheless, recent publications consistently show a higher
prevalence of vitamin D deficiency in patients presenting
with severe forms of COVID-19 (177). In addition, puta-
tive mechanisms underlying vitamin D’s role in immunity
and non-skeletal actions, would provide support for the hy-
pothesis advanced that vitamin D deficiency is a risk factor
for the disease and/or its adverse outcome. An increasing
number of clinical trials are being registered to investigate
the effect of vitamin D supplementation or 25-OH D levels
on various COVID-19 outcomes (178).

Conclusion

For along time, VD was regarded as an essential factor
only in generation (in infancy) and maintenance (primari-
ly in postmenopausal women) of bone mineralization but
hardly anything more. However, during the last 10-15 years,
many new studies have been published on the extraskeletal
effects of VD. One of the best recognized is the production
of certain endogenous antimicrobial agents such as catheli-
cidin and defensins, which provide protection against a wide
range of infectious diseases, such as tuberculosis, leprosy
and common influenza. Moreover, VD has been shown to be
involved in the prevention of certain pathological immune
reactions leading to various autoimmune disorders (Type 1
diabetes, colitis, multiple sclerosis, rheumatoid arthritis and
graft rejection) and asthma (and other atopic diseases), and
even in COPD, which is not regarded as an autoimmune
disease. Thus VD, or more precisely VD hypovitamino-
sis, has tremendous impact on public health. It has to be
taken into consideration, that according to epidemiological
studies. Majority of the population suffers from VD hypovi-
taminosis, but for lack of clinical symptoms and lack of in-
terest by doctors the most of these cases are overlooked.
One may ask: why worry about the lack of VD exposure
if it does not cause any clinical complaints? Especially now,
in the era of COVID-19 pandemic, the answer is obvious.
The undiagnosed, "hidden" VD hypovitaminosis is involved
in the pathogenesis in the above reviewed immunological
disorders and even in infectious diseases, however a puta-
tive clinical link that between VD and SARS-CoV-2 infection
at this time must still be considered hypothetical.

It can be hoped that the public health significance of un-
diagnosed VD hypovitaminosis will be finally recognized
first by the medical community then by society in general.
Hopefully more and more people understand that VD de-
ficiency is a risk factor of many diseases affecting broad
segments of society. In an ideal scenario, complaint-free
people will be regularly screened not only for hypertension,
diabetes and various types of cancer but also for VD hypovi-
taminosis. Epidemiologists might provide more data on that
which factors of living conditions and eating habits contribute
to VD hypovitaminosis, which has already reached epidemic
proportions.
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