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Abstract

Vitamin K is a cofactor for the function of the enzyme γ-glutamyl carboxylase, necessary for the activation of multiple vita-

min K dependent-proteins. Vitamin K dependent-proteins (VKDPs) have important roles in bone health, vascular health, 

metabolism, reproduction as well as in cancer progression. Vitamin K deficiency is common in different conditions, including 

kidney disease, and it may influence the activity of VKDPs. This review discusses vitamin K status in human health and the 

physiologic and pathologic roles of VKDPs, beyond the established effects in skeletal and cardiovascular health.
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Introduction

The vitamin K family is comprised of a group of fat-soluble 

molecules that share the 2-methyl-1,4-naphthoquinone (3-) 

groups. Vitamin K exists in 3 main forms, K1 and K2 which 

are the natural form, and K3 or menadione which is the syn-

thetic form of the vitamin [1]. Vitamin K1, also known as 

phylloquinone, is found in vegetables, while vitamin K2, 

also known as menaquinone, is found in fermented food or 

produced by the intestinal microbiota. Vitamin K1 can be 

converted into vitamin K2. Two mechanisms of action of 

vitamin K have been described to date. It is an essential 

cofactor for the function of the enzyme γ-glutamyl carboxy-

lase, and it acts as a ligand of the steroid and xenobiotic 

receptor (SXR) and pregnane X receptor (PXR, murine 

ortholog) [2].

Vitamin K-dependent proteins (VKDPs) play important 

roles in human physiology and can be an important link 

between the bone and the vasculature. This link becomes 

particularly important in patients with chronic kidney dis-

ease (CKD) who have a high prevalence of both mineral 

bone disorders (MBD) and vascular calcification (VC) [3] 

and whose primary cause of death is cardiovascular dis-

ease. Osteocalcin (OCN) is a VKDP known to be involved 

in bone mineralization, while Matrix GLA protein (MGP) 

is a known VC inhibitor whose deficiency is associated with 

increased risk for VC in CKD. New VKDPs have been dis-

covered, and they have been found to play important roles 

in various cancers and their therapies.

While many questions have been answered, many more 

remain regarding the roles of the VKDPs in bone and vascu-

lar physiology. This review will discuss the roles of VKDPs 

and vitamin K in different pathologies.
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Vitamin K dependent protein (VKDPs)

Vitamin K is an essential cofactor required for the activa-

tion of the gamma glutamyl carboxylase which converts 

glutamic acid to γ-glutamic acid residues. There are sev-

eral vitamin K dependent proteins (VKDPs) [4]. These 

include the coagulation factors proteins C, S, M, Z, factors 

VII, IX, X and prothrombin. VKDPs also include Bone 

Gla Protein (BGP, or osteocalcin), Matrix Gla Protein 

(MGP), Gas6 (Growth Arrest-Specific 6 Protein), GRP 

(Gla Rich Protein) and Periostin. VKDPs play established 

roles in coagulation, in bone health and in cardiovascular 

health.

Bone Gla protein (BGP): beyond skeletal health

Bone Gla protein or osteocalcin is the most abundant protein 

in bone. It is mainly secreted by osteoblasts, with a smaller 

amount secreted by chondrocytes [5]. BGP undergoes three 

carboxylation events to be transformed from the undercar-

boxylated form into the fully functional form. These carbox-

ylation events require vitamin K as a cofactor [6]. Several 

mechanisms describing the BGPs role in bone physiology 

have been proposed, including the inhibition of bone miner-

alization [7], the regulation of the rate of mineral maturation 

[8], and the formation of a complex between bone matrix 

and collagen in order to increase bone toughness [9]. How-

ever, none of these mechanisms are fully proven.

More recently, the relationship between BGP and glucose 

metabolism has been elucidated. In this role, BGP is thought 

to be released into the circulation and to exert an action 

similar to a hormonal effect [10]. This shed light into the 

peripheral functions of BGP and led to increased interest in 

this protein, therefore uncovering a wide range of functions.

The role of BGP in glucose metabolism and insulin 

signaling was first discovered by Lee et al. [11] whose 

experiments showed that BGP knockout mice develop glu-

cose intolerance, insulin resistance, and increased adipose 

tissue. The circulating form of BGP exerting the metabolic 

effects is mostly the undercarboxylated form (ucBGP). By 

binding to the receptor Gprc6a, in animals ucBGP acts 

on the pancreatic beta cells [10]. The influence of BGP 

on insulin sensitivity may be mediated via its effect on 

adiponectin, independent of insulin secretion [11]. Human 

studies have not shown this metabolic effect, however. 

When Basu et al. administered insulin to seven diabetic 

and seven non-diabetic patients and assessed the associa-

tion with bone turnover markers, the change in the insulin 

levels did not influence BGP and ucBGP levels [12]. In 

humans, BGP also acts on Leydig cells thereby affecting 

the reproductive function of males [13].

Beyond the metabolic functions, BGP is involved in 

vascular calcification (VC) modulation through its effect 

on adiponectin [11]. Adiponectin inhibits osteoblastic 

differentiation of vascular smooth muscle cells, therefore 

protecting against VC [14]. In apolipoprotein E-deficient 

mice, daily injections of BGP for 12 weeks resulted in 

endothelium protection from atherosclerosis, but whether 

this was also mediated by the concomitant improvement in 

glucose metabolism is unknown [15]. Similarly, diabetic 

rats given daily injections of BGP had an improvement in 

arterial stiffness as assessed by pulse wave velocity [16].

The role of BGP in modulating and possibly prevent-

ing VC was confirmed in humans. BGP may exert this 

effect through its interaction with adiponectin, as seen by 

Bacchetta et al. when they found a significant association 

between BGP and adiponectin in CKD patients [17].

In human cardiovascular tissues, BGP was found in 

higher concentrations in calcified aorta and valves as com-

pared to non-calcified tissue [18]. Fusaro et al. found lower 

BGP levels in patients with aortic and iliac calcifications 

as compared to patients without calcifications [19]. In men 

aged 51–85 years old in the MINOS study, higher total BGP 

levels were associated with slower progression of abdominal 

aortic calcification after a 10 year follow up [20].

In contrast to the above findings, in the Study of Osteo-

porotic Fractures (SOF) which enrolled 363 elderly women, 

total BGP levels were not associated with abdominal aortic 

calcification [21].

Moreover, in a meta-analysis of 46 clinical studies eval-

uating the relationship between BGP and VC, no definite 

associations could be found between the different forms 

of BGP (ucBGP, cBGP and total BGP) and VC. However, 

sound physiological conclusions cannot be drawn based on 

these findings. In fact, 44% of the included studies did not 

adjust for confounding variables and the BGP forms were 

measured using different assays in the different studies [22]. 

Moreover, BGP displays a circadian rhythm with levels fall-

ing in the morning and reaching the peak in the evening [23]. 

Therefore, the timing of blood draws may impact the results 

of the studies. It is also important to note that BGP is cleared 

by the kidneys [24]. Therefore any decline in renal function 

results in an elevation in BGP levels [24]. This is particu-

larly notable when the glomerular filtration rate drops below 

20 mL/min [24]. Additionally, based on the aforementioned 

studies, gender appears to be a confounding factor with the 

effects of BGP being differential between males and females. 

Vitamin K levels are obvious confounders. Moreover, meno-

pausal status, adipose tissue, diabetic status are all expected 

to be confounders as well [25]. If we want studies that more 

accurately unravel the effect of BGP on the vasculature, 

we should standardize our BGP serum measurements and 

understand more carefully the confounders that should be 

accounted for.
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Matrix Gla protein (MGP): beyond cardiovascular 
health

Matrix Gla protein is a 14 kDa vitamin K-dependent protein 

which after carboxylation can have up to 5 gamma-carbox-

yglutamic acid residues [26]. In addition to gamma-carbox-

ylation, MGP requires post-translational serine phospho-

rylation. Phosphorylation occurs at 3 serine residues via the 

enzyme casein kinase [26, 27]. Phosphorylation regulates 

the protein secretion into the extracellular environment [26]. 

Based on the degree of carboxylation and phosphorylation, 

multiple forms of MGP can be found in the circulation and 

the extracellular matrix (Fig. 1). MGP is released from vas-

cular smooth muscle cells and chondrocytes [28]. It was 

the first calcification inhibitor to be characterized [28]. The 

exact mechanism through which MGP inhibits VC is not 

completely understood. However, the carboxylated active 

form of MGP is believed (1) to bind to calcification crystals 

in blood vessels forming vesicles and apoptotic bodies, (2) to 

directly prevent calcium phosphate precipitation, and (3) to 

prevent the trans-differentiation of vascular smooth muscles 

cells into an osteogenic phenotype [26, 29].

The different forms of MGP can be used as a biomarker 

of vitamin K deficiency [30]. Vitamin K deficiency in CKD 

leads to a decrease in the levels of the phosphorylated-

carboxylated MGP (p-cMGP) and a rise in the levels of 

dephosphorylated undercarboxylated MGP (dp-ucMGP) 

[31]. Plasma dp-ucMGP levels increase as CKD advances 

with the highest levels found in CKD stage 5 [31]. Plasma 

dp-ucMGP is positively associated with VC and might be 

utilized as an early marker for vascular calcification in CKD 

patients [30, 31].

Beyond the well-established effects of MGP in VC [32] 

studies also suggest that it has a role in skeletal health. 

Mice deficient in MGP develop diffuse VC as well as 

inappropriate calcification of the growth plate [28]. 

Fig. 1  Different forms of matrix Gla protein (MGP)
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Mice overexpressing Mgp in osteoblasts have a decrease 

in bone mineralization particularly in the tooth dentin 

and cementum. Thus, MGP affects bone mineralization 

[33]. MGP interacts with both osteoblasts and osteoclasts. 

Phosphate regulates MGP expression in osteoblast cul-

tures via the ERK1/2-Fra-1 pathway [34]. Via Src/Rac1 

signaling, MGP modulates osteoclastogenesis; MGP 

depletion favors while MGP excess inhibits osteoclast 

differentiation [35].

In clinical studies, homozygosity of the MGP 

rs1800802 minor allele, but not total serum MGP lev-

els was  associated  with 0.56 times lower prevalence 

of hand osteoarthritis compared with having ≥ 1 major 

allele at this locus (95% CI 0.32–0.99, p < 0.05), suggest-

ing a role for MGP in osteoarthritis [36]. Among 145 par-

ticipants in the European Vertebral Osteoporosis Study, 

men with the homozygous MGP-7AA polymorphism had 

significantly more femoral bone loss as compared to those 

with genotypes -7GG and -7GA [37]. Those homozygous 

for MGP 83Ala-Ala had significantly more femoral neck 

loss as well as a greater tendency to vertebral fractures 

as compared to those with the genotypes 83Thr-Thr and 

83Thr-Ala. A decrease in BMD was observed only in 

MGP-7AA and MGP 83Ala-Ala genotypes. These associ-

ations were not found in the 151 women who participated 

in the study possibly because 94% of the women were 

post-menopausal and had independent post-menopausal 

bone loss that could have confounded the effect of the 

MGP polymorphisms.

The effect of MGP on fractures and bone density was 

similarly seen following kidney transplantation. Evenep-

oel et al. evaluated vitamin K deficiency as measured by 

dp-ucMGP levels in 468 de novo kidney transplant recipi-

ents. The patients with the highest tertile of dp-ucMGP 

levels had lower bone mineral density and had higher 

incident fractures independently of common fracture 

determinants (HR 2.21; 95% CI 1.00–4.91; p < 0.05) [38].

Studies evaluating the relationship between renal 

clearance and MGP levels are rare. In 842 outpatients 

with stable cardiovascular disease and a mean GFR of 

76 ± 23 mL/min, each 10 mL/min lower GFR was associ-

ated with a 79 nM lower ucMGP serum level (p < 0.001), 

and a 0.1 mg/L higher cystatin-C was associated with a 

39 nM lower ucMGP serum levels (p < 0.001) in multi-

variate adjusted models [39]. However, when Rennenberg 

et al. looked at this association, they found no significant 

correlations between total MGP levels in renal arterial 

and venous blood and renal clearance of 90 patients with 

hypertension [40]. It is important to note however that 

none of the patients in this cohort had a GFR < 26 mL/

min [40]. A relationship between MGP levels and renal 

clearance at a GFR < 26 mL/min is therefore still possible.

Vitamin K as ligand of nuclear receptors

Vitamin K can act as ligand of the nuclear steroid and 

xenobiotic receptor (SXR) and its murine ortholog, preg-

nane X receptor (PXR) [41]. SXR/PXR is present in dif-

ferent tissues, including osteoblastic cell lines [42, 43]. 

The presence of SXR/PXR in osteoblastic tissue is impor-

tant as it could be the pathway through which vitamin K 

improves bone health [44].

Transcriptome analysis has revealed a number of bone-

related genes which are involved in the vitamin K-SXR 

pathway. These include tsukushi and matrilin-2, which 

are involved in collagen and extracellular matrix assembly 

[45, 46]. In sarcoma cells, vitamin K up-regulates osteo-

blastic bone markers [43]. SXR/PXR knockout mice have 

increased bone resorption and decreased bone formation 

[47].

SXR is additionally involved in bone metabolism via 

its effect on vitamin D metabolism. In this role, SXR 

activation can have two effects. SXR activation by some 

drugs can lead to CYP3A4 expression (exerting 24- and 

25-hydroxylase activity) and resultant vitamin D metabo-

lism and deficiency. SXR activation can also lead to inhi-

bition of CYP24A1 (24-hydroxylase activity) in the kidney 

therefore increasing 1,25(OH)D levels [48]. These data 

suggest that SXR/PXR is another pathway through which 

vitamin K is involved in bone homeostasis.

Vitamin K in chronic kidney disease (CKD)

The western diet does not provide enough vitamin K to 

activate VKDPs in all tissues [49]. This deficiency is more 

pronounced in adults over the age of 40. Patients with 

CKD have even greater rates of vitamin K deficiency as 

compared to the general population. The number of CKD 

patients who have vitamin K deficiency reaches 70–90% 

of that population [50–52] (Table 1). Poor oral intake of 

vitamin K is the main cause of deficiency [50, 53]. When 

compared to healthy individuals, the vitamin K intake of 

HD patients is particularly low on days of dialysis and the 

weekend [54]. The use of phosphorus binders in the dialy-

sis population contributes to vitamin K deficiency as well 

[55]. Being lipophilic, vitamin K should not be removed 

via dialysis. However, studies to validate this hypothesis 

are needed, because serum levels of 25(OH)-vitamin D, 

another lipophilic molecule, decreased in patients who 

were switched from conventional hemodialysis to online 

hemodiafiltration [56].

There are known implications of vitamin K deficiency 

in population-based studies and in kidney disease patients 
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[57, 58]. In the Rotterdam study of 7983 men and women 

over the age of 55, intake of menaquinone protected 

against incident coronary heart disease (RR of highest 

tertile of menaquinone intake as compared to lowest ter-

tile = 0.59, p = 0.007), and against coronary heart disease 

related mortality (RR of highest tertile of menaquinone 

intake as compared to lowest tertile = 0.43, p = 0.005). 

Additionally, the odds ratio of severe aortic calcification 

was significantly lower in the patients with the highest 

intake of menaquinone intake as compared to those with 

lowest intake (OR 0.48, p < 0.001) [59]. In the VIKI study, 

a cohort of 387 dialysis patients, 35.4% of patients had 

menaquinone-7 deficiency, 23.5% of patients had vitamin 

K1 deficiency and 14.5% of patients had menquinone-4 

deficiency [57]. Patients with menaquinone-4 deficiency 

had significantly higher aortic calcification (10.6% versus 

1.3%, p = 0.01). Menaquinone-7 deficiency was associated 

with significantly higher iliac calcifications (41% versus 

28.2%, p = 0.009) [57].

There is no gold-standard for the measurement of vitamin 

K levels and there is a lack in standardization. Instead, func-

tional deficiency of vitamin K is used as a surrogate of vita-

min K status in individuals. Vitamin K deficiency in CKD 

leads to a decrease in the levels of active MGP, a rise in the 

levels of dp-ucMGP, as well as a rise in the levels of ucBGP 

[37]. Plasma dp-ucMGP levels increase as CKD advances 

with highest levels being in CKD stage 5 [38]. A dp-ucMGP 

level of > 500 pmol/L, ucBGP > 4.5 ng/mL [59] or protein 

induced by vitamin K absence-II (PIVKA-II) > 2 nM/L are 

indicative of vitamin K deficiency [30, 60].

In 53 dialysis patients, vitamin K2 supplementation 

resulted in a dose dependent decrease in functional vitamin 

K deficiency. After a 6-week supplementation regimen, dp-

ucMGP levels were reduced 77% and 93% in the groups 

receiving daily oral administration of 135 μg and 360 μg of 

K2, respectively [61]. In 200 HD patients receiving vitamin 

K2 at dose of 360, 720 or 1080 µg thrice weekly for 8 weeks, 

dp-uc-MGP levels decreased by 17%, 33% and 46% respec-

tively [62]. Several studies show the same pattern (Table 2).

Although kidney transplantation is associated with an 

improvement in vitamin K levels [55], a deficiency in vita-

min K was still found in up to 91% of kidney transplant 

patients. This deficiency may persist as long as 188 months 

post transplantation [38, 63]. Moreover, in at least one study, 

vitamin K deficiency in kidney transplant patients was asso-

ciated with an almost 3 times increase in all-cause mortality 

[63].

How current therapy of MBD in CKD influences 
vitamin K levels and VKDPs

While MBD derangements contribute to renal osteodystro-

phy and to VC in CKD [64], treatments of MBD have not 

been sufficiently successful at reversing VC, improving car-

diovascular events or decreasing mortality. We hypothesize 

that this might be partly explained by the negative impact of 

Table 1  Vitamin K and VKDP levels in kidney disease

Author, year Number of 

participants

Kidney disease stage Vitamin K form 

measured

% of patients with 

vitamin K defi-

ciency

VKDP measured % of patients 

with measured 

VKDP

Kolheimer, 1997 [105] 68 ESKD-HD Phylloquinone 33

Pilkey, 2007 [106] 142 ESKD Phylloquinone 29 ucBGP 93

Holden, 2008 [52] 21 ESKD- PD Phylloquinone 24 ucBGP 60

Holden, 2010 [107] 172 CKD 3-5 Phylloquinone 6 ucBGP

PIVKAII

60

97

Schurgers, 2010 [108] 107 CK2-5 and ESKD-HD dp-ucMGP 50

Schlieper, 2011 [109] 188 ESKD-HD PIVKA-II

dp-ucMGP

63

100

Cranenburg, 2012 [54] 40 ESKD-HD Phylloquinone

Menaquinone

45

100

PIVKAII

dp-ucMGP

82.5

100

Westenfeld, 2012 [61] 53 ESKD-HD Menaquinone 100 PIVKAII

dp-ucMGP

92.5

100

Fusaro, 2012 [57] 387 ESKD-HD Phylloquinone

Menaquinone-4

Menaquinone-7

23.5

14.5

35.4

ucBGP 100

Boxma, 2012 [110] 60 Post-Transplantation dp-ucMGP 80

Caluwe 2013 [62] 165 ESKD-HD dp-ucMGP 100

Delanaye, 2014 [111] 160 ESKD-HD dp-ucMGP 100

Keyzer, 2015 [63] 518 Post-Transplantation dp-ucMGP 91

Aoun, 2017 [112] 50 ESKD-HD dp-ucMGP 100
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some of the MBD treatments on vitamin K levels. One such 

treatment is sevelamer. Sevelamer is thought to bind fat-

soluble vitamins [65, 66]. Since vitamin K is a fat-soluble 

vitamin, Jansz et al. assessed the impact of sevelamer on 

vitamin K in patients who received a kidney transplantation. 

They found that sevelamer is associated with higher dpu-

cMGP levels reflecting vitamin K deficiency [55]. This find-

ing points to the possible need of giving vitamin K supple-

ments to patients treated with sevelamer, but this approach 

should first be substantiated by a specific study.

However, some MBD treatments are associated with 

improvements in VKDPs. In an analysis of the VIKI study 

[57], the use of calcimimetics and vitamin D analogs was 

associated with higher levels of BGP. Calcimimetic use was 

also associated with higher levels of total MGP [19]. There-

fore, this data suggests that calcimimetics and vitamin D 

analogs can help preserve or improve the activity of VKDPs.

VKDPs beyond bone and vascular health

Growth arrest‑specific protein 6 (Gas6)

Gas6 is a  gamma-carboxyglutamic acid (Gla) domain-

containing protein, member of the VKDPs family, which 

is present in several different tissues (e.g. vascular endothe-

lium, kidney, heart, and the bone marrow). It is a ligand 

for the TAM (Tyro3-Axl-Mer) receptor family [67] and is 

thought to be involved in the stimulation of cell proliferation, 

migration and apoptosis [68, 69].

Gas6 and protein S are two homologous secreted proteins 

depending on vitamin K for a wide range of their biologi-

cal functions. A discrete subset of these functions is medi-

ated through their binding to and activation of the receptor 

tyrosine kinases Axl, Sky and Mer; in particular, the vita-

min K-dependent protein Gas6 activates receptor tyrosine 

kinases of the Axl family [69].

A hallmark of the Gas6-Axl system is the unique abil-

ity of both Gas6 and protein S to tether their non recep-

tor-binding regions to the negatively charged membranes 

of apoptotic cells. A relevant amount of evidence suggests 

that the Gas6-Axl system is able to regulate cell survival, 

proliferation, migration, adhesion and phagocytosis. Conse-

quently, an altered expression, or a compromised activity of 

its components have been detected in a variety of diseases, 

including different cancer types. Moreover, Axl overactiva-

tion can equally occur without ligand binding, which has 

implications for tumorigenesis. [70].

Upregulation of Gas6 has been described in different 

malignancies [71], and an increased expression of either 

Table 2  Effect of Vitamin K supplementation on dephosphorylated-undercarboxylated MGP levels in ESKD

Author, year Study design Number of 

participants

Kidney 

disease 

stage

Intervention Outcomes measured Results

Schlieper, 2011 [109] Prospective 17 ESKD Vitamin K2 at 135 μg/day 

for 6 weeks

dp-ucMGP level Vitamin K2 supplementa-

tion resulted in a 27% 

reduction in dp-ucMGP 

levels. p = 0.0027

Westenfeld, 2012 [61] Prospective 53 ESKD Vitamin K2 at 45, 135, or 

360 μg/day for 6 weeks

dp-ucMGP level Vitamin K2 supplementa-

tion resulted in a dose-

dependent decrease in 

the levels of dp-uc-MGP 

by 17.9%, 36.7%, and 

61.1% in the 45-, 135-, 

and 360-μg groups, 

respectively, compared 

with baseline values. 

p < 0.005

Caluwe, 2014 [62] Prospective 200 ESKD Vitamin K2 at 60, 720 or 

1080 µg thrice weekly for 

8 weeks

dp-uc-MGP level Vitamin K2 resulted in a 

dose-dependent decrease 

in the levels of dp-uc-

MGP by 17%, 33% and 

46% in the 360-, 720- 

and 1080-µg groups, 

respectively, compared 

to baseline values. 

p < 0.001

Aoun, 2017 [112] Prospective 50 ESKD 360 μg of vitamin K2 

(menaquinone-7) for 

4 weeks

dp-uc-MGP level Vitamin K2 reduced 

dp-ucMGP by 86%. 

p < 0.05
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Gas6 or TAM receptor proved to be predictive of poor prog-

nosis [72]. A number of animal studies highlighted the role 

of Gas6 in the processes of carcinogenesis [71–73], while 

clinical studies are rarer, but ultimately show consistent find-

ings. Ovarian cancer samples from 90 patients had signifi-

cantly higher expression of Gas6 and Axl as compared to 

normal ovarian tissue [73], RNA PCR from 42 glioblastoma 

frozen sections demonstrated that Gas6 and Axl are overex-

pressed both in the tumoral, as well as in the surrounding 

vascular, tissue [74]. Furthermore, glioblastoma patients 

whose tumors expressed higher Gas6 and Axl levels had 

significantly higher risk of tumor relapse as well as shorter 

time to relapse [74]. A similar observation has been reported 

in osteosarcoma; indeed, in 62 osteosarcoma patients, Axl 

was highly expressed in 43.5% of the cases, characterized 

by a significantly higher rate of recurrence, lung metastases, 

as well as a lower survival [75]. Gas6-Axl is also important 

as mechanisms of resistance to anticancer therapy; indeed, 

resistance to tyrosine kinase inhibitors in non-small cell can-

cer and renal cell carcinoma (RCC) was found to be driven 

by Axl [76].

As far as RCC, the Axl protein proved to be highly 

expressed in clear cell RCC cells deficient in functional 

von Hippel–Lindau (VHL) protein, a tumor suppressor 

gene often inactivated in ccRCC. VHL reconstituted cells 

expressed decreased levels of Axl protein, but not Axl 

mRNA, suggesting that VHL may regulate Axl expres-

sion.  Furthermore, Gas6-mediated activation of Axl in 

ccRCC cells resulted in Axl phosphorylation, receptor 

down-regulation, decreased cell-viability, as well as migra-

tory capacity, whilst no effects of the Gas6/Axl system could 

be detected on invasion. Moreover, in ccRCC tumor tissues, 

Axl was phosphorylated and Gas6 gamma-carboxylated, 

suggesting these molecules to be active in vivo. [77].

All the above has practical therapeutic implications, as 

targeting the Gas6-Axl pathway through the multikinase 

inhibitor cabozantinib proved to be an active treatment 

option for metastatic RCC patients progressing on standard 

antiangiogenic therapy [78].

Periostin

Periostin is another member of the VKDP family. Similar 

to other VKDPs, the carboxylation of periostin is dependent 

on vitamin K. However, it is unknown how the carboxyla-

tion status of periostin influences its functions in different 

tissues. Periostin is an extracellular matrix protein that binds 

integrins playing a role in cellular adhesion and migration 

[79]. It plays a role in collagen assembly in several tissues 

and is upregulated when tissues are subjected to stress 

[79–81]. Following cardiac injury, periostin is expressed 

in cardiac myofibroblasts and vascular smooth muscle cells 

contributing to a profibrotic phenotype [81–83]. Similar to 

other VKDPs, periostin has also been found in many can-

cers [84–86]. Periostin induces tumor angiogenesis [84, 85] 

and lymphangiogenesis [85], and its association with can-

cer confers a worse prognosis to patients [85]. The role of 

periostin in breast cancer has been described. Periostin is 

expressed in invasive ductal carcinoma cells [87]. Its expres-

sion increases with the cancer grade, suggesting that peri-

ostin may play a role in cancer progression [88]. Periostin 

can also serve as marker of breast cancer metastasis. Human 

breast cancer exosomes contain periostin. Further, periostin 

enriched exosomes were found in patients with lymph node 

metastasis as compared to those with localized disease [89]. 

Finally, periostin may have a role in breast cancer prognos-

tication. In 259 breast cancer patients who underwent sur-

gical and radiation therapy, local recurrence-free survival, 

distant metastasis-free survival and overall survival were 

significantly lower in the patients whose tumors expressed 

periostin as compared to those whose tumors were negative 

for periostin [90].

Gla‑rich protein (GRP)

Gla-rich protein is one of the newest members of the VKDP 

family. Its name derives from the large amount of Gla resi-

dues, which comprise 22% of its composition [91], and 

which make it the VKDP with the highest concentration of 

Gla residues. Since its discovery, GRP has been found to 

have a role as an anti-inflammatory protein [92]. In vivo, 

it prevents osteoarthritis progression [93]. It additionally 

plays a role in mineralization. In both animal models and 

in humans, GRP has been found to colocalize with mineral 

deposits at sites of calcification [94]. Further work demon-

strates that similar to MGP, GRP in its carboxylated but not 

in its undercarboxylated form is a calcification inhibitor [95]. 

Although GRP role in cancer is less established as compared 

to other VKDPs, there is growing interest surrounding this 

protein. The undercarboxylated form as compared to the car-

boxylated form of GRP is found in more abundance in skin 

and breast cancer cells, particularly in microcalcifications 

associated with these tumors [96]. Therefore, GRP may be 

involved in cancer-related calcifications and as such may 

prove to be a therapeutic target for some types of cancer.

Vitamin K in cancer

Several VKDPs are involved in tumorigenesis [71, 84, 85] 

(Table 3). Vitamin K2 administration in vivo inhibits the 

cellular proliferation of several cancers [96, 97]. This led to a 

number of studies investigating the role of vitamin K intake 

and supplementation in preventing cancer development, pro-

gression and recurrence. In the European Prospective Inves-

tigation into Cancer and Nutrition-Heidelberg cohort study 



 Journal of Nephrology

1 3

which included 24,340 cancer-free participants followed 

up for 10 years, there was a significant inverse association 

between vitamin K2 intake and cancer mortality, but not 

cancer incidence [98]. Similarly, in the Prevención con Dieta 

Mediterránea study, which enrolled 7216 participants fol-

lowed up for a median of 4.8 years, subjects who increased 

their dietary intake of both vitamin K1 and K2 had decreased 

cancer incidence [99].

The undercarboxylated form of prothrombin (PIVKAII), 

a VKDP, is upregulated in hepatocellular carcinoma (HCC) 

[100]. Vitamin K2 supplementation in patients who under-

went curative hepatectomy or radiofrequency ablation for 

HCC suppressed HCC recurrence, though this effect did not 

reach statistical significance in any of these studies [101, 

102]. In contrast, 45 mg per day of vitamin K2 supplementa-

tion resulted in significantly lower risk of HCC development 

in 21 women who had viral cirrhosis as compared to 19 

women with viral cirrhosis who did not receive supplemen-

tation [103]. This suggests that vitamin K2 may play a role 

in preventing the development of HCC in high risk patients. 

Overall, the association and the relationship of vitamin K 

with cancer is still uncertain and under investigation. Further 

studies are needed to define this role of vitamin K.

Conclusion

Substantial research has made it clear that VKDPs or Vita-

min-K related pathways can be used in the future to diag-

nose, treat and prognosticate a number of health conditions. 

There are still more vitamin K-related roles to be uncovered 

and which will further our understanding of the physiologi-

cal and pathological importance of vitamin K status. It will 

also prove important to recognize the differential actions 

of vitamin K1 and vitamin K2, and to develop standard-

ized techniques that can directly measure vitamin K levels 

instead of our current reliance on functional vitamin K sta-

tus as measured by VKDPs levels [104]. This will allow to 

develop trials that can evaluate selective and optimal vitamin 

K supplementation strategies in order to further understand 

their effect on clinical outcomes.
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