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Abstract

We present an image-based VIirtual Try-On Network

(VITON) without using 3D information in any form, which

seamlessly transfers a desired clothing item onto the cor-

responding region of a person using a coarse-to-fine strat-

egy. Conditioned upon a new clothing-agnostic yet descrip-

tive person representation, our framework first generates a

coarse synthesized image with the target clothing item over-

laid on that same person in the same pose. We further

enhance the initial blurry clothing area with a refinement

network. The network is trained to learn how much detail

to utilize from the target clothing item, and where to apply

to the person in order to synthesize a photo-realistic image

in which the target item deforms naturally with clear vi-

sual patterns. Experiments on our newly collected Zalando

dataset demonstrate its promise in the image-based virtual

try-on task over state-of-the-art generative models.1

1. Introduction

Recent years have witnessed the increasing demands of

online shopping for fashion items. Online apparel and ac-

cessories sales in US are expected to reach 123 billion in

2022 from 72 billion in 2016 [1]. Despite the convenience

online fashion shopping provides, consumers are concerned

about how a particular fashion item in a product image

would look on them when buying apparel online. Thus, al-

lowing consumers to virtually try on clothes will not only

enhance their shopping experience, transforming the way

people shop for clothes, but also save cost for retailers. Mo-

tivated by this, various virtual fitting rooms/mirrors have

been developed by different companies such as TriMirror,

Fits Me, etc. However, the key enabling factor behind them

is the use of 3D measurements of body shape, either cap-

tured directly by depth cameras [40] or inferred from a 2D

image using training data [4, 45]. While these 3D model-

ing techniques enable realistic clothing simulations on the

1Dataset and code are available at https://github.com/

xthan/VITON

Figure 1: Virtual try-on results generated by our

method. Each row shows a person virtually trying on dif-

ferent clothing items. Our model naturally renders the items

onto a person while retaining her pose and preserving de-

tailed characteristics of the target clothing items.

person, the high costs of installing hardwares and collecting

3D annotated data inhibit their large-scale deployment.

We present an image-based virtual try-on approach, re-

lying merely on plain RGB images without leveraging any

3D information. Our goal is to synthesize a photo-realistic

new image by overlaying a product image seamlessly onto

the corresponding region of a clothed person (as shown in

Figure 1). The synthetic image is expected to be perceptu-

ally convincing, meeting the following desiderata: (1) body

parts and pose of the person are the same as in the original

image; (2) the clothing item in the product image deforms

naturally, conditioned on the pose and body shape of the

person; (3) detailed visual patterns of the desired product

are clearly visible, which include not only low-level features

like color and texture but also complicated graphics like em-

broidery, logo, etc. The non-rigid nature of clothes, which

are frequently subject to deformations and occlusions, poses

a significant challenge to satisfying these requirements si-

multaneously, especially without 3D information.
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Conditional Generative Adversarial Networks (GANs),

which have demonstrated impressive results on image gen-

eration [37, 26], image-to-image translation [20] and edit-

ing tasks [49], seem to be a natural approach for addressing

this problem. In particular, they minimize an adversarial

loss so that samples generated from a generator are indistin-

guishable from real ones as determined by a discriminator,

conditioned on an input signal [37, 33, 20, 32]. However,

they can only transform information like object classes and

attributes roughly, but are unable to generate graphic de-

tails and accommodate geometric changes [50]. This limits

their ability in tasks like virtual try-on, where visual details

and realistic deformations of the target clothing item are re-

quired in generated samples.

To address these limitations, we propose a virtual try-on

network (VITON), a coarse-to-fine framework that seam-

lessly transfers a target clothing item in a product image to

the corresponding region of a clothed person in a 2D image.

Figure 2 gives an overview of VITON. In particular, we first

introduce a clothing-agnostic representation consisting of a

comprehensive set of features to describe different charac-

teristics of a person. Conditioned on this representation, we

employ a multi-task encoder-decoder network to generate a

coarse synthetic clothed person in the same pose wearing

the target clothing item, and a corresponding clothing re-

gion mask. The mask is then used as a guidance to warp

the target clothing item to account for deformations. Fur-

thermore, we utilize a refinement network which is trained

to learn how to composite the warped clothing item to the

coarse image so that the desired item is transfered with nat-

ural deformations and detailed visual patterns. To validate

our approach, we conduct a user study on our newly col-

lected dataset and the results demonstrate that VITON gen-

erates more realistic and appealing virtual try-on results out-

performing state-of-the-art methods.

2. Related Work

Fashion analysis. Extensive studies have been conducted

on fashion analysis due to its huge profit potentials. Most

existing methods focus on clothing parsing [44, 28], cloth-

ing recognition by attributes [31], matching clothing seen

on the street to online products [30, 14], fashion recommen-

dation [19], visual compatibility learning [43, 16], and fash-

ion trend prediction [2]. Compared to these lines of work,

we focus on virtual try-on with only 2D images as input.

Our task is also more challenging compared to recent work

on interactive search that simply modifies attributes (e.g.,

color and textures) of a clothing item [25, 48, 15], since vir-

tual try-on requires preserving the details of a target cloth-

ing image as much as possible, including exactly the same

style, embroidery, logo, text, etc.

Image synthesis. GANs [12] are one of most popu-

lar deep generative models for image synthesis, and have

demonstrated promising results in tasks like image gener-

ation [8, 36] and image editing [49, 34]. To incorporate

desired properties in generated samples, researchers also

utilize different signals, in the form of class labels [33],

text [37], attributes [41], etc., as priors to condition the im-

age generation process. There are a few recent studies in-

vestigating the problem of image-to-image translation us-

ing conditional GANs [20], which transform a given input

image to another one with a different representation. For

example, producing an RGB image from its corresponding

edge map, semantic label map, etc., or vice versa. Recently,

Chen and Kolton [6] trained a CNN using a regression loss

as an alternative to GANs for this task without adversarial

training. These methods are able to produce photo-realistic

images, but have limited success when geometric changes

occur [50]. Instead, we propose a refinement network that

pays attention to clothing regions and deals with clothing

deformations for virtual try-on.

In the context of image synthesis for fashion applica-

tions, Yoo et al. [46] generated a clothed person conditioned

on a product image and vice versa regardless of the per-

son’s pose. Lassner et al. [26] described a generative model

of people in clothing, but it is not clear how to control the

fashion items in the generated results. A more related work

is FashionGAN [51], which replaced a fashion item on a

person with a new one specified by text descriptions. In

contrast, we are interested in the precise replacement of the

clothing item in a reference image with a target item, and

address this problem with a novel coarse-to-fine framework.

Virtual try-on. There is a large body of work on virtual

try-on, mostly conducted in computer graphics. Guan et al.

proposed DRAPE [13] to simulate 2D clothing designs on

3D bodies in different shapes and poses. Hilsmann and P.

Eisert [18] retextured the garment dynamically based on a

motion model for real-time visualization in a virtual mir-

ror environment. Sekine et al. [40] introduced a virtual fit-

ting system that adjusts 2D clothing images to users through

inferring their body shapes with depth images. Recently,

Pons-Moll et al. [35] utilized a multi-part 3D model of

clothed bodies for clothing capture and retargeting. Yang

et al. [45] recovered a 3D mesh of the garment from a sin-

gle view 2D image, which is further re-targeted to other hu-

man bodies. In contrast to relying on 3D measurements to

perform precise clothes simulation, in our work, we focus

on synthesizing a perceptually correct photo-realistic image

directly from 2D images, which is more computationally

efficient. In computer vision, limited work has explored

the task of virtual try-on. Recently, Jetchev and Bergmann

[21] proposed a conditional analogy GAN to swap fashion

articles. However, during testing, they require the prod-

uct images of both the target item and the original item on

the person, which makes it infeasible in practical scenar-
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Figure 2: An overview of VITON. VITON consists of two

stages: (a) an encoder-decoder generator stage (Sec 3.2),

and (b) a refinement stage (Sec 3.3).

ios. Moreover, without injecting any person representation

or explicitly considering deformations, it fails to generate

photo-realistic virtual try-on results.

3. VITON

The goal of VITON is, given a reference image I with

a clothed person and a target clothing item c, to synthesize

a new image Î , where c is transferred naturally onto the

corresponding region of the same person whose body parts

and pose information are preserved. Key to a high-quality

synthesis is to learn a proper transformation from product

images to clothes on the body. A straightforward approach

is to leverage training data of a person with fixed pose wear-

ing different clothes and the corresponding product images,

which, however, is usually difficult to acquire.

In a practical virtual try-on scenario, only a reference im-

age and a desired product image are available at test time.

Therefore, we adopt the same setting for training, where a

reference image I with a person wearing c and the product

image of c are given as inputs (we will use c to refer to the

product image of c in the following paper). Now the prob-

lem becomes given the product image c and the person’s in-

formation, how to learn a generator that not only produces

I during training, but more importantly is able to generalize

at test time – synthesizing a perceptually convincing image

with an arbitrary desired clothing item.

To this end, we first introduce a clothing-agnostic per-

son representation (Sec 3.1). We then synthesize the refer-

ence image with an encoder-decoder architecture (Sec 3.2),

conditioned on the person representation as well as the tar-

get clothing image. The resulting coarse result is further

Face and hairBody shapePose mapReference Image

Concat

(256× 192× 22)

Person 

Representation

p

Figure 3: A clothing-agnostic person representation.

Given a reference image I , we extract the pose, body shape

and face and hair regions of the person, and use this infor-

mation as part of input to our generator.

improved to account for detailed visual patterns and defor-

mations with a refinement network (Sec 3.3). The overall

framework is illustrated in Figure 2.

3.1. Person Representation

A main technical challenge of a virtual try-on synthesis

is to deform the target clothing image to fit the pose of a

person. To this end, we introduce a clothing-agnostic per-

son representation, which contains a set of features (Figure

3), including pose, body parts, face and hair, as a prior to

constrain the synthesis process.

Pose heatmap. Variations in human poses lead to differ-

ent deformations of clothing, and hence we explicitly model

pose information with a state-of-the-art pose estimator [5].

The computed pose of a person is represented as coordinates

of 18 keypoints. To leverage their spatial layout, each key-

point is further transformed to a heatmap, with an 11 × 11
neighborhood around the keypoint filled in with ones and

zeros elsewhere. The heatmaps from all keypoints are fur-

ther stacked into an 18-channel pose heatmap.

Human body representation. The appearance of clothing

highly depends on body shapes, and thus how to transfer

the target fashion item depends on the location of differ-

ent body parts (e.g., arms or torso) and the body shape. A

state-of-the-art human parser [11] is thus used to compute

a human segmentation map, where different regions repre-

sent different parts of human body like arms, legs, etc. We

further convert the segmentation map to a 1-channel binary

mask, where ones indicate human body (except for face and

hair) and zeros elsewhere. This binary mask derived di-

rectly from I is downsampled to a lower resolution (16×12
as shown in Figure 3) to avoid the artifacts when the body

shape and target clothing conflict as in [51].

Face and hair segment. To maintain the identity of the per-

son, we incorporate physical attributes like face, skin color,

hair style, etc. We use the human parser [11] to extract the

RGB channels of face and hair regions of the person to in-

ject identity information when generating new images.

Finally, we resize these three feature maps to the same

resolution and then concatenate them to form a clothing-
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agnostic person representation p such that p ∈ Rm×n×k,

where m = 256 and n = 192 denote the height and width

of the feature map, and k = 18+ 1+ 3 = 22 represents the

number of channels. The representation contains abundant

information about the person upon which convolutions are

performed to model their relations. Note that our represen-

tation is more detailed than previous work [32, 51].

3.2. Multitask EncoderDecoder Generator

Given the clothing-agnostic person representation p and

the target clothing image c, we propose to synthesize the

reference image I through reconstruction such that a nat-

ural transfer from c to the corresponding region of p can

be learned. In particular, we utilize a multi-task encoder-

decoder framework that generates a clothed person image

along with a clothing mask of the person as well. In addi-

tion to guiding the network to focus on the clothing region,

the predicted clothing mask will be further utilized to refine

the generated result, as will be discussed in Sec 3.3. The

encoder-decoder is a general type of U-net architecture [38]

with skip connections to directly share information between

layers through bypassing connections.

Formally, let GC denote the function approximated by

the encoder-decoder generator. It takes the concatenated

c and p as its input and generates a 4-channel output

(I ′,M) = GC(c, p), where the first 3 channels represent

a synthesized image I ′ and the last channel M represents a

segmentation mask of the clothing region as shown at the

top of Figure 2. We wish to learn a generator such that I ′

is close to the reference image I and M is close to M0 (M0

is the pseudo ground truth clothing mask predicted by the

human parser on I). A simple way to achieve this is to train

the network with an L1 loss, which generates decent results

when the target is a binary mask like M0. However, when

the desired output is a colored image, L1 loss tends to pro-

duce blurry images [20]. Following [22, 27, 7], we utilize

a perceptual loss that models the distance between the cor-

responding feature maps of the synthesized image and the

ground truth image, computed by a visual perception net-

work. The loss function of the encoder-decoder can now be

written as the sum of a perceptual loss and an L1 loss:

LGC
=

5∑

i=0

λi||φi(I
′)− φi(I)||1 + ||M −M0||1, (1)

where φi(y) in the first term is the feature map of image y

of the i-th layer in the visual perception network φ, which

is a VGG19 [42] network pre-trained on ImageNet. For

layers i > 1, we utilize ‘conv1 2’, ‘conv2 2’, ‘conv3 2’,

‘conv4 2’, ‘conv5 2’ of the VGG model while for layer 0,

we directly use RGB pixel values. The hyperparameter λi

controls the contribution of the i-th layer to the total loss.

The perceptual loss forces the synthesized image to match

Shape Context
TPS Warp

TPS
Transformation

Clothing Mask

Target Clothing Warped Clothing c′

Figure 4: Warping a clothing image. Given the target

clothing image and a clothing mask predicted in the first

stage, we use shape context matching to estimate the TPS

transformation and generate a warped clothing image.

RGB values of the ground truth image and their activations

at different layers in a visual perception model as well, al-

lowing the synthesis network to learn realistic patterns. The

second term in Eqn. 1 is a regression loss that encourages

the predicted clothing mask M to be the same as M0.

By minimizing Eqn. 1, the encoder-decoder learns how

to transfer the target clothing conditioned on the person rep-

resentation. While the synthetic clothed person conforms to

the pose, body parts and identity in the original image (as

illustrated in the third column of Figure 5), details of the tar-

get item such as text, logo, etc. are missing. This might be

attributed to the limited ability to control the process of syn-

thesis in current state-of-the-art generators. They are typi-

cally optimized to synthesize images that look similar glob-

ally to the ground truth images without knowing where and

how to generate details. To address this issue, VITON uses

a refinement network together with the predicted clothing

mask M to improve the coarse result I ′.

3.3. Refinement Network

The refinement network GR in VITON is trained to ren-

der the coarse blurry region leveraging realistic details from

a deformed target item.

Warped clothing item. We borrow information directly

from the target clothing image c to fill in the details in the

generated region of the coarse sample. However, directly

pasting the product image is not suitable as clothes deform

conditioned on the person pose and body shape. Therefore,

we warp the clothing item by estimating a thin plate spline

(TPS) transformation with shape context matching [3], as il-

lustrated in Figure 4. More specifically, we extract the fore-

ground mask of c and compute shape context TPS warps [3]

between this mask and the clothing mask M of the person,

estimated with Eqn. 1. These computed TPS parameters are

further applied to transform the target clothing image c into

a warped version c′. As a result, the warped clothing image
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Reference Image Target Clothing Coarse Result Clothing Mask Warped Clothing Composition Mask Refined Result

Figure 5: Output of different steps in our method. Coarse

sythetic results generated by the encoder-decoder are fur-

ther improved by learning a composition mask to account

for details and deformations.

conforms to pose and body shape information of the person

and fully preserves the details of the target item. The idea

is similar to recent 2D/3D texture warping methods for face

synthesis [52, 17], where 2D facial keypoints and 3D pose

estimation are utilized for warping. In contrast, we rely on

the shape context-based warping due to the lack of accu-

rate annotations for clothing items. Note that a potential

alternative to estimating TPS with shape context matching

is to learn TPS parameters through a Siamese network as

in [23]. However, this is particularly challenging for non-

rigid clothes, and we empirically found that directly using

context shape matching offers better warping results for vir-

tual try-on.

Learn to composite. The composition of the warped cloth-

ing item c′ onto the coarse synthesized image I ′ is expected

to combine c′ seamlessly with the clothing region and han-

dle occlusion properly in cases where arms or hair are in

front of the body. Therefore, we learn how to compos-

ite with a refinement network. As shown at the bottom

of Figure 2, we first concatenate c′ and the coarse output

I ′ as the input of our refinement network GR. The refine-

ment network then generates a 1-channel composition mask

α ∈ (0, 1)m×n, indicating how much information is utilized

from each of the two sources, i.e., the warped clothing item

c′ and the coarse image I ′. The final virtual try-on output

of VITON Î is a composition of c′ and I ′:

Î = α⊙ c′ + (1− α)⊙ I ′, (2)

where ⊙ represents element-wise matrix multiplication. To

learn the optimal composition mask, we minimize the dis-

crepancy between the generated result Î and the reference

image I with a similar perceptual loss Lperc as Eqn. 1:

Lperc(Î , I) =

5∑

i=3

λi||φi(Î)− φi(I)||1, (3)

where φ denotes the visual perception network VGG19.

Here we only use ‘conv3 2’, ‘conv4 2’, ‘conv5 2’ for cal-

culating this loss. Since lower layers of a visual perception

network care more about the detailed pixel-level informa-

tion of an image instead of its content [10], small displace-

ments between I and Î (usually caused by imperfect warp-

ing) will lead to a large mismatch between the feature maps

of lower layers (‘conv1’ and ‘conv2’), which, however, is

acceptable in a virtual try-on setting. Hence, by only us-

ing higher layers, we encourage the model to ignore the ef-

fects of imperfect warping, and hence it is able to select the

warped target clothing image and preserve more details.

We further regularize the generated composition mask

output by GR with an L1 norm and a total-variation (TV)

norm. The full objective function for the refinement net-

work then becomes:

LGR
= Lperc(Î , I)− λwarp||α||1 + λTV ||∇α||1, (4)

where λwarp and λTV denote the weights for the L1 norm

and the TV norm, respectively. Minimizing the negative

L1 term encourages our model to utilize more information

from the warped clothing image and render more details.

The total-variation regularizer ||∇α||1 penalizes the gradi-

ents of the generated composition mask α to make it spa-

tially smooth, so that the transition from the warped region

to the coarse result looks more natural.

Figure 5 visualizes the results generated at different steps

from our method. Given the target clothing item and the

representation of a person, the encoder-decoder produces

a coarse result with pose, body shape and face of the per-

son preserved, while details like graphics and textures on

the target clothing item are missing. Based on the clothing

mask, our refinement stage warps the target clothing im-

age and predicts a composition mask to determine which

regions should be replaced in the coarse synthesized im-

age. Consequentially, important details (material in the 1st

example, text in 2nd example, and patterns in the 3rd exam-

ple) “copied” from the target clothing image are “pasted” to

the corresponding clothing region of the person.

4. Experiments

4.1. Zalando Dataset

The dataset used in [21] is a good choice for conduct-

ing experiments for virtual try-on, but it is not publicly

available. We therefore collected our own dataset, Zalando,

from the same website (www.zalando.de) as [21]. We first

crawled around 19,000 frontal-view woman and top2 cloth-

ing image pairs and then removed noisy images with no

2Note that we focus on tops since they are representative in attire with

diverse visual graphics and significant deformations. Our method is gen-

eral and can also be trained for pants, skirts, outerwears, etc.
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parsing results, yielding 16,253 pairs. The remaining im-

ages are further split into a training set and a testing set

with 14,221 and 2,032 pairs respectively. Note that dur-

ing testing, the person should wear a different clothing item

than the target one as in real-world scenarios, so we ran-

domly shuffled the clothing product images in these 2,032

test pairs for evaluation.

4.2. Implementation Details

Training setup. Following recent work using encoder-

decoder structures [21, 36], we use the Adam [24] optimizer

with β1 = 0.5, β2 = 0.999, and a fixed learning rate of

0.0002. We train the encoder-decoder generator for 15K

steps and the refinement network for 6K steps both with a

batch size of 16. The resolution of the synthetic samples is

256× 192.

Encoder-decoder generator. Our network for the coarse

stage contains 6 convolutional layers for encoding and de-

coding, respectively. All encoding layers consist of 4 × 4
spatial filters with a stride of 2, and their numbers of filters

are 64, 128, 256, 512, 512, 512, respectively. For decoding,

similar 4 × 4 spatial filters are adopted with a stride of 1/2

for all layers, whose number of channels are 512, 512, 256,

128, 64, 4. The choice of activation functions and batch

normalizations are the same as in [20]. Skip connections

[38] are added between encoder and decoder to improve the

performance. λi in Eqn. 1 is chosen to scale the loss of each

term properly [6].

Refinement network. The network is a four-layer fully

convolutional model. Each of the first three layers has

3 × 3 × 64 filters followed by Leaky ReLUs and the last

layer outputs the composition mask with 1 × 1 spatial fil-

ters followed by a sigmoid activation function to scale the

output to (0, 1). λi in Eqn. 4 is the same as in Eqn. 1,

λwarp = 0.1 and λTV = 5e− 6.

Runtime. The runtime of each component in VITON: Hu-

man Parsing (159ms), Pose estimation (220ms), Encoder-

Decoder (27ms), TPS (180ms), Refinement (20ms). Results

other than TPS are obtained on a K40 GPU. We expect fur-

ther speed up of TPS when implemented in GPU.

4.3. Compared Approaches

To validate the effectiveness of our framework, we com-

pare with the following alternative methods.

GANs with Person Representation (PRGAN) [32, 51].

Existing methods that leverage GANs conditioned on either

poses [32] or body shape information [51] are not directly

comparable since they are not designed for the virtual try-

on task. To achieve fair comparisons, we enrich the input of

[51, 32] to be the same as our model (a 22-channel repre-

sentation, p + target clothing image c) and adopt their GAN

structure to synthesize the reference image.

Conditional Analogy GAN (CAGAN) [21]. CAGAN for-

mulates the virtual try-on task as an image analogy prob-

lem - it treats the original item and the target clothing item

together as a condition when training a Cycle-GAN [50].

However, at test time, it also requires the product image of

the original clothing in the reference image, which makes it

infeasible in practical scenarios. But we compare with this

approach for completeness. Note that for fairness, we mod-

ify their encoder-decoder generator to have the same struc-

ture as ours, so that it can also generate 256 × 192 images.

Other implementation details are the same as in [21].

Cascaded Refinement Network (CRN) [6]. CRN lever-

ages a cascade of refinement modules, and each module

takes the output from its previous module and a down-

sampled version of the input to generate a high-resolution

synthesized image. Without adversarial training, CRN re-

gresses to a target image using a CNN network. To compare

with CRN, we feed the same input of our generator to CRN

and output a 256× 192 synthesized image.

Encoder-decoder generator. We only use the network of

our first stage to generate the target virtual try-on effect,

without the TPS warping and the refinement network.

Non-parametric warped synthesis. Without using the

coarse output of our encoder-decoder generator, we esti-

mate the TPS transformation using shape context matching

and paste the warped garment on the reference image. A

similar baseline is also presented in [51].

The first three state-of-the-art approaches are directly

compared with our encoder-decoder generator without ex-

plicitly modeling deformations with warping, while the

last Non-parametric warped synthesis method is adopted

to demonstrate the importance of learning a composition

based on the coarse results.

4.4. Qualitative Results

Figure 6 presents a visual comparison of different meth-

ods. CRN and encoder-decoder create blurry and coarse re-

sults without knowing where and how to render the details

of target clothing items. Methods with adversarial training

produce shaper edges, but also cause undesirable artifacts.

Our Non-parametric baseline directly pastes the warped tar-

get image to the person regardless of the inconsistencies be-

tween the original and target clothing items, which results

in unnatural images. In contrast to these methods, VITON

accurately and seamlessly generates detailed virtual try-on

results, confirming the effectiveness of our framework.

However, there are some artifacts around the neckline in

the last row, which results from the fact that our model can-

not determine which regions near the neck should be visible

(e.g., the neck tag should be hided in the final result, see

supplementary material for more discussions). In addition,

pants, without providing any product images of them, are
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Reference Image Target Clothing PRGAN [32,51] CAGAN [21] CRN [6] Encoder-Decoder Non-parametric VITON (ours)

Figure 6: Qualitative comparisons of different methods. Our method effectively renders the target clothing on to a person.

Our MethodReference Image Target Clothing Without Body Shape

Our MethodReference Image Target Clothing Without Pose

Figure 7: Effect of removing pose and body shape from

the person representation. For each method, we show its

coarse result and predicted clothing mask output by the cor-

responding encoder-decoder generator.

also generated by our model. This indicates that our model

implicitly learns the co-occurrence between different fash-

ion items. VITON is also able to keep the original pants if

the pants regions are handled in the similar way as face and

hair (i.e., extract pants regions and take them as the input to

the encoder). More results and analysis are present in the

supplementary material.

Person representation analysis. To investigate the effec-

tiveness of pose and body shape in the person representa-

tion, we remove them from the representation individually

Figure 8: Failure cases of our method.

and compare with our full representation. Sampled coarse

results are illustrated in Figure 7. We can see that for a

person with a complicated pose, using body shape infor-

mation alone is not sufficient to handle occlusion and pose

ambiguity. Body shape information is also critical to ad-

just the target item to the right size. This confirms the pro-

posed clothing-agnostic representation is indeed more com-

prehensive and effective than prior work.

Failure cases. Figure 8 demonstrates two failure cases of

our method due to rarely-seen poses (example on the left)

or a huge mismatch in the current and target clothing shapes

(right arm in the right example).

In the wild results. In addition to experimenting with con-

strained images, we also utilize in the wild images from the

COCO dataset [29], by cropping human body regions and

running our method on them. Sample results are shown in

Figure 9, which suggests our method has potentials in ap-
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Figure 9: In the wild results. Our method is applied to

images on COCO.

Method IS Human

PRGAN [32, 51] 2.688 ± 0.098 27.3%

CAGAN [21] 2.981 ± 0.087 21.8%

CRN [6] 2.449 ± 0.070 69.1%

Encoder-Decoder 2.455 ± 0.110 58.4%

Non-parametric 3.373 ± 0.142 46.4%

VITON (Ours) 2.514 ± 0.130 77.2%

Real Data 3.312 ± 0.098 -

Table 1: Quantitative evaluation on Zalando dataset.

plications like generating people in clothing [26].

4.5. Quantitative Results

We also compare VITON with alternative methods quan-

titatively based on Inception Score [39] and a user study.

Inception Score. Inception Score (IS) [39] is usually used

to quantitatively evaluate the synthesis quality of image

generation models [32, 33, 47]. Models producing visu-

ally diverse and semantically meaningful images will have

higher Inception Scores, and this metric correlates well with

human evaluations on image datasets like CIFAR10.

Perceptual user study. Although Inception Score can be

used as an indicator of the image synthesis quality, it cannot

reflect whether the details of the target clothing are naturally

transferred or the pose and body of the clothed person are

preserved in the synthesized image. Thus, simialr to [6, 9],

we conducted a user study on the Amazon Mechanical Turk

(AMT) platform. On each trial, a worker is given a person

image, a target clothing image and two virtual try-on results

generated by two different methods (both in 256×192). The

worker is then asked to choose the one that is more realistic

and accurate in a virtual try-on situation. Each AMT job

contains 5 such trials with a time limit of 200 seconds. The

percentage of trials in which one method is rated better than

other methods is adopted as the Human evaluation metric

following [6] (chance is 50%).

Quantitative comparisons are summarized in Table 1.

Note that the human score evaluates whether the virtual try-

on results, synthetic images with a person wearing the target

item, are realistic. However, we don’t have such ground-

truth images - the same person in the same pose wearing

the target item (IS measures the characteristics of a set, so

we use all reference images in the test set to estimate the IS

of real data).

According to this table, we make the following obser-

vations: (a) Automatic measures like Inception Score are

not suitable for evaluating tasks like virtual try-on. The

reasons are two-fold. First, these measures tend to reward

sharper image content generated by adversarial training or

direct image pasting, since they have higher activation val-

ues of neurons in Inception model than those of smooth im-

ages. This even leads to a higher IS of the Non-parametric

baseline over real images. Moreover, they are not aware

of the task and cannot measure the desired properties of

a virtual try-on system. For example, CRN has the low-

est IS, but ranked the 2nd place in the user study. Sim-

ilar phenomena are also observed in [27, 6]; (b) Person

representation guided methods (PRGAN, CRN, Encoder-

Decoder, VITON) are preferred by humans. CAGAN and

Non-parametric directly take the original person image as

inputs, so they cannot deal with cases when there are in-

consistencies between the original and target clothing item,

e.g., rendering a short-sleeve T-shirt on a person wearing a

long-sleeve shirt; (c) By compositing the coarse result with

a warped clothing image, VITON performs better than each

individual component. VITON also obtains a higher human

evaluation score than state-of-the-art generative models and

outputs more photo-realistic virtual try-on effects.

To better understand the noise of the study, we follow

[6, 32] to perform time-limited (0.25s) real or fake test on

AMT, which shows 17.18% generated images are rated as

real, and 11.46% real images are rated as generated.

5. Conclusion

We presented a virtual try-on network (VITON), which

is able to transfer a clothing item in a product image to a per-

son relying only on RGB images. A coarse sample is first

generated with a multi-task encoder-decoder conditioned

on a detailed clothing-agnostic person representation. The

coarse results are further enhanced with a refinement net-

work that learns the optimal composition. We conducted

experiments on a newly collected dataset, and promising re-

sults are achieved both quantitatively and qualitatively. This

indicates that our 2D image-based synthesis pipeline can be

used as an alternative to expensive 3D based methods.
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