
Received February 20, 2020, accepted February 29, 2020, date of publication March 3, 2020, date of current version March 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978123

Vivid: Augmenting Vision-Based Indoor
Navigation System With Edge Computing

WEI ZHAO1, LIANGJIE XU2, BOZHAO QI 3, JIA HU4, TENG WANG5, AND TROY RUNGE1
1College of Agricultural and Life Sciences, University of Wisconsin–Madison, Madison, WI 53705, USA
2Department of Traffic Engineering, School of Transportation, Wuhan University of Technology, Wuhan 430063, China
3Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI 53705, USA
4College of Transportation Engineering, Tongji University, Shanghai 200092, China
5Texas A&M Transportation Institute, Texas A&M University System, San Antonio, TX 78213, USA

Corresponding author: Liangjie Xu (albert_wang01@163.com)

ABSTRACT Indoor localization and navigation have a great potential of application, especially in large

indoor spaces where people tend to get lost. The indoor localization problem is the fundamental of an indoor

navigation system. Existing research and commercial efforts have leveraged wireless-based approaches to

locate users in indoor environments. However, the predominant wireless-based approaches, such as WiFi

and Bluetooth, are still not satisfactory, either not supporting commodity devices, or being vulnerable to

environmental changes. These issues make them hard to deploy and maintain. In this paper, we present

Vivid, a mobile device-friendly indoor localization and navigation system that leverages visual cues as the

cornerstone of localization. By leveraging the computation power at the extreme internet edges, Vivid to a

large extent overcomes the difficulties brought by resource-intensive image processing tasks. We propose

a grid-based algorithm that transforms the feature map into a grid, with which finding the path between

two positions can be easily obtained. We also leverage deep learning techniques to assist in automatic map

maintenance to adapt to the visual changes and make the system more robust. With edge computing, user

privacy is preserved since the visual data is mainly processed locally and detected dynamic objects are

removed immediately without saving to databases. The evaluation results show that: i) our system easily

outperforms the existing solutions on COTS devices in localization accuracy, yielding decimeter-level error;

ii) our choice of the system architecture is scalable and optimal among the available ones; iii) the automatic

map maintenance mechanism effectively ameliorates the localization robustness of the system.

INDEX TERMS Last mile delivery, loTs-based indoor localization and navigation, edge computing for loTs

sensors.

I. INTRODUCTION

Indoor localization and navigation have been an active

research area in both academia and industry. Traditional

methods, such as maps and instruction signs, are often not

convenient enough. For instance, the map of a shopping

mall might clearly indicate the location of a shop in the

floor plan, but the instruction signs seldom show the spe-

cific way to it. Recent commercial and research efforts offer

various indoor localization and navigation solutions using

different technologies. COIN-GPS [1] addresses the poor

signal strength problem of indoor GPS receivers and could

achieve an error of less than 10 meters. However, it requires

The associate editor coordinating the review of this manuscript and

approving it for publication was Heng Wang .

special hardware support, and cannot be used on commodity

devices. WiFi and Bluetooth are the popular choices used to

solve the indoor localization problem. Recent research has

shown that Bluetooth-based solutions can achieve a median

error of 1.5m [2], while the WiFi-based commodity device-

compatible approaches are reported to have achieved 2m [3].

Although empirically such accuracy is sufficient for indoor

navigation, it has been pointed out that the received signal

strength (RSS) method they use is extremely vulnerable to

the environment with interferences [4], [5]. In addition, these

approaches are not easy to deploy and manage because of

the large amount and complexity of the devices. They do

not provide the orientation information of the device, either.

Thus, other technologies such as the inertial motion sensors

will have to be used as a complement to realize navigation.

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 42909

https://orcid.org/0000-0002-8318-6896
https://orcid.org/0000-0002-4408-9153

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

Over the years, mono-camera tracking techniques can run

on a normal personal computer without GPU acceleration in

real-time and with a reasonable accuracy. For example, ORB-

SLAMclaims itself to have achieved an error as little as 1% of

the map dimension [6]. In addition, the output of the SLAM

(simultaneous localization and mapping) systems already

contains the orientation of the camera, which eliminates the

complexity of sensor fusion. Vision-based SLAM seems to be

a rather promising technique to apply to indoor localization.

However, there are a few challenges needed to be overcome

before we could adapt it to an indoor navigation system.

On one hand, if we run SLAM on the smart devices, their

CPUs are very likely not as powerful as those on personal

computers, hence can hardly provide satisfactory responsive-

ness. The power consumption would be an issue as well. In

addition, a map itself that can easily exceed a few hundred

megabytes in size could be hard for some smartphones to

store. It also takes a long time to download, undermining the

battery life. On the other hand, if we consider running SLAM

on a centralized server, the continuous images captured by

the users’ cameras need be streamed to the server. It is sus-

picious whether the computing power is scalable enough to

accommodate a large number of concurrent users in a large

public indoor space, let alone the limited network bandwidth.

Another challenge of vision-based SLAM systems is how to

handle the dynamic environment changes. The map may be

constructed with no crowd in the space, but people can be all

over the place in deployment. The environment texture can

also change due to reasons like a shop uses a new decoration.

Besides, the lighting condition could also change in a day.

A First Look at Vivid: To solve the above-mentioned prob-

lems, we propose Vivid, a vision-based system that leverages

the edge computing paradigm to provide accurate, mobile-

friendly and privacy-conserved navigation services in indoor

environments. Our system utilizes routers that possess rela-

tively strong computing power as the edge nodes that provide

both the WiFi access points (APs) for the users and the

computing resource for the vision-based localization algo-

rithms. We find this perfectly solves the dilemma that the

user devices are too weak to run image processing tasks while

centralized servers are likely to have difficulty scaling to

support a large number of concurrent users. We use a cloud

server to coordinate the edge nodes. The cloud-edge archi-

tecture brings benefits to the system from two perspectives.

First, image sequences are processed on edges to remove

any sensitive information before uploading to the cloud. Sec-

ond, the cloud server can manage and coordinate different

edge nodes to support inter-node collaboration and facilitate

navigation across multiple edge nodes. With deep learning

techniques, the system is able to overcome the shortcomings

of SLAM and better adapt to environmental changes. To be

specific, the contributions of this paper include:

i) an accurate and scalable vision-based indoor navigating

system consisting of a client app, edge node services, and

a cloud coordinator server;

ii) the grid-map based algorithm that transforms the SLAM

map to a floor plan and projects the SLAM coordinates

and orientations onto the floor plan, which facilitates

route planning;

iii) a deep neural network (DNN)-based mechanism that

enables the system to automatically adapt to environ-

ment lighting and textural changes without the interfer-

ence of dynamic objects;

iv) security of user privacy due to the information collection

and processing offloaded to the network edge and our

deliberate design.

The rest of this paper is organized as follows. section II

describes the design of the system. section III highlights the

algorithms and techniques we propose and leverage in the

system. section IV demonstrates the evaluation results and

analysis. section V discusses the limitation and outlook of our

system. section VI introduces the background and lists some

related work, and section VII concludes the paper.

II. SYSTEM DESIGN

A. MOTIVATION

As is mentioned in the previous sections, Vivid is a vision-

based indoor navigation system. In particular, we use SLAM

as our cornerstone for localization, which, on the one hand,

needs streams of images as the input, and on the other hand,

consumes a large amount of CPU resources. Given these con-

ditions, we deem the traditional client-cloud server paradigm

not suitable for our purpose, since the bandwidth between the

local area network (LAN) and the cloud server could probably

be the bottleneck for the number of clients to scale up. In fact,

as we will see in section IV, even with a centralized server in

the local network, the quality of service (QoS) of the network

could still be insufficient when we increase the number of

concurrent users. Directly running SLAM on mobile devices

is also out of the question. Although mobile devices can run

SLAM, this approach is either barely scalable or unfriendly

to the battery life. Moreover, the users would like to perform

localization with the existing map, which means that the map

has to be downloaded to the device beforehand, which can

take up large storage spaces and can be time-consuming.

We will report the sizes of the map files in section IV.

Edge computing, in this sense, is the most compatible and

adaptive choice that we have. Inspired by ParaDrop [7], [8],

we assume the Wi-Fi routers to possess computing power

equivalent to a personal computer (PC). These routers will

act as the edge nodes that directly handles the data streams

from the devices connected to it. However, each edge node

has its own range of Wi-Fi coverage, multiple edge nodes

are applied to cover large indoor spaces. By supporting this

purpose, we produce another problem, that is to support

navigation across multiple edge nodes. Therefore, we use a

cloud server to manage and coordinate the edge nodes so as

to support inter-node collaboration and provide maintenance

service. At this point, the architectural design of Vivid has

been formed.

42910 VOLUME 8, 2020

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

FIGURE 1. The architecture of Vivid.

B. OVERVIEW

Fig. 1 shows the high-level architecture of Vivid. From

bottom-up, the system consists of three parts: i) mobile

devices; ii) edge nodes; and iii) a cloud server. In this figure,

the space is covered by four edge nodes, each communicates

with the mobile devices connected to it. Note that the actual

space coverage of a specific edge node can be affected by

various factors, such as walls, the interference in the environ-

ment, and the relative signal strength to its neighbors. Above

the edge nodes is a cloud server that oversees the edge nodes.

1) MOBILE DEVICES

The mobile devices run an application that has three major

functionalities: i) connecting to the desired destination and

transmitting the image sequence captured from the camera to

the edge node it is connected to; ii) receiving the responses

from the edge node that contain the directions of next step;

and iii) displaying the directions by an navigation UI on

the screen for the user. This UI at navigation time is shown

in Fig. 2a. No complex computation task is finished by the

application.

2) EDGE NODES

Fig. 2b shows the major modules of the edge node service

application, as well as the procedure of handling a naviga-

tion request. With the edge node initialized (section III-A),

the mobile device sends the destination to Route Planner and

starts streaming image sequence to the edge node. For each

image, it sent to SLAM for the SLAM coordinates of the

camera, and projected onto the grid map (section III-C). The

grid position is used to plan the route. If the destination is

in the range of another edge node, the coordination of the

cloud server is needed (section III-D). Finally, the sequence

of direction given by Route Planner is translated back to the

directions relative to the camera’s orientation.

3) CLOUD SERVER

The cloud server has two major responsibilities: global route

planning and map maintenance, which will be introduced

in detail in section III-D and section III-E respectively. The

FIGURE 2. An overview of Vivid’s indoor navigation.

cloud server should have a GPU since we will perform object

detection on it. The global route planning is performed syn-

chronously on the edge node request, while the map main-

tenance mechanism that needs the GPU is carried out in an

asynchronous manner.

III. STARTING Vivid

A. INITIALIZATION

1) SLAM MAP

Different from the typical use case of SLAM, where local-

ization and mapping happen at the same time, we use pre-

constructed maps to relocalize the camera. The map can

be constructed by the administrator beforehand using more

accurate devices such as the stereo camera, and uploaded to

the edge node. Since we assume that the device’s switch of the

edge node is done by the low-level mechanism and opaque to

the user, the range of themap stored in an edge node should be

larger than the area it is planned to serve, in case that the user

is out of the map range of the node while have not switched

to the next one.

2) GRIDDING INFORMATION

After a SLAM map is constructed, information that helps

align the grid map with the SLAMmap, which includes the x

and y vectors of the grid system under the SLAM coordinates.

These vectors represent the column and row directions and

their cross product should point upwards. They can be triv-

ially obtained by subtracting the SLAM output of two camera

positions. The number of rows and columns of the grid,m and

n, should also be determined.

3) DESTINATIONS

While constructing the map or utilizing relocalization after-

wards, the administrator may record some SLAMcoordinates

VOLUME 8, 2020 42911

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

T with a unique string key s in a pair 〈s, T〉 that describes
the destinations and their places in the SLAM. After the grid

map is established (section III-B), they will be transformed

to 〈s, u〉, where u = (xu, yu) is the corresponding grid

coordinate of T (section III-C). Such pairs will be stored in a

hash table for future lookup.

B. MN-SCALED GRIDDING

The maps of SLAM systems are usually designed for local-

ization and motion tracking only, which means that they

tend to lack the primitives for navigation. A SLAM map

usually contains only the keyframes and points of interest like

features and points with large intensity gradient [6], [9] in the

three-dimensional Euclidean space. If the map is constructed

with a monocular camera, it hardly reflects the real-world

scale. However, real-life navigation needs to store domain

knowledge about the terrain, such as viable ways, barriers

and destinations so as to plan the route. In our particular

case, the navigationmaps on neighbor edge nodes should also

support smooth cross-edge (global) route planning.

With these requirements in mind, we design a grid map.

It is essentially an m × n boolean matrix that spans the

horizontal plane within the indoor space. We let true cells

represent a place where people can appear, and false cells

stand for places at which people cannot arrive.We propose the

mn-Scaled Gridding algorithm that leverages the keyframes

in the SLAM map to fill the matrix. We first make three

assumptions: i) we handle one flat floor at a time only; ii) the

keyframes are approximately at the same height to the floor;

and iii) at least one keyframe is saved for each place where

people can be present. With these assumptions, we perform

surface fitting on the keyframe coordinates, project them onto

the grid, and set the corresponding matrix item to true if there

is at least one keyframe projected to the cell. The procedure

is detailed in Algorithm 1 and demonstrated in Fig. 3 with

monocular ORB-SLAM2 [6]. Note that in this algorithm,

surfaceFitting gives a normal vector of the fitted surface and

normalize normalizes a vector. These are considered as trivial

subprocedures thus not elaborated.

To ensure the globality of the grid map, we take special

care to avoid an anomalous frame, such as a sudden occlu-

sion of the camera lens or a series of blurred frames, from

causing keyframe repeatedly inserted at a single point on the

map. We solved this problem by keeping the indices across

an interval of frames, which can be regarded as a sliding

window moving across all the keyframes. Our algorithm will

decide if the current frame is spawned as a new keyframe

at a new/nearby grid on the map. We developed a keyframe

selection mechanism to remove redundant keyframes in the

process of building the grid map. We developed the following

rules for adding a new keyframe to the grid map.

i) At least 10 frames must have passed from the last global

re-localization.

ii) The cell is false, or more than 10 frames have passed

from last keyframe insertion to a cell on the grid map.

Algorithm 1 mn-Scaled Gridding

Input:

nkf : Number of keyframes

P[1..nkf , 1..3]: Cartesian coordinates of the keyframes

in the SLAM system

x: Vector aligned with the column direction of the grid

map in SLAM coordinates

y: Vector aligned with the row direction of the grid map

in SLAM coordinates

m: Maximum length of space in the column direction in

a unit

n: Maximum length of space in the row direction the

same unit

Output:

G[1..m, 1..n]: Boolean matrix representing the grid map

1: Initialize G[1..m, 1..n]← {false}
2: n← surfaceFitting(nkf ,P)

3: if ns · (x× y) < 0 then

4: ns←−ns
5: end if

6: Rsg←
[

normalize(x) normalize(y) normalize(ns)
]

7: for p in P do

8: p← Rsgp

9: end for

10: xmax , ymax ← max(P[:, 0]), max(P[:, 1])
11: xmin, ymin← min(P[:, 0]), min(P[:, 1])
12: for p in P do

13: xg, yg = m⌊ p[0]−xmin
xmax−xmin ⌋, n⌊

p[1]−ymin
ymax−ymin ⌋

14: G[xg, yg]← true

15: end for

iii) Current frame tracks at least 50 points in this cell.

iv) Current frame tracks less than 90% points than last

inserted frame in that cell.

SLAM has its own redundant keyframe removal algo-

rithms, besides that, we developed the abovementioned rules

to further filter out frames that have similar features. Based on

the outputs, we provide additional information in the app to

alert the user when they are building the map. The user

can view the selected keyframes on the grid map (similar to

Fig. 3), and when there are many frames selected in a single

cell, the app will notify the user. Besides, the user can also

know which cell needs more frames on the map.

After applying this algorithm, we obtain a grid map that

eliminates the complicated data structures for domain con-

cepts, but clearly indicates where people can pass and where

they cannot, which makes it simpler to plan the route.

C. GRID PROJECTION

With the grid map established, the system should also be

able to convert the SLAM coordinates to our grid coordinates

for the route planning purpose. We call this process the grid

projection. As is shown in Fig. 4, we project both the position

42912 VOLUME 8, 2020

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

FIGURE 3. A demonstration of mn-scaled gridding.

FIGURE 4. Orientational projection.

and the orientation to the grid. The positional projection is

carried out in the same way as we project the keyframes

onto the grid plane, described in Line 7-13 of Algorithm 1,

where (xg, yg) is the corresponding cell of the given SLAM

coordinates p.

To better facilitate navigation, the system also has to con-

vert the SLAMorientation into the grid map system. Since we

assume a planar map, we can project the three-dimensional

orientation onto our grid plane. In addition, given that each

cell in our grid map has only 8 neighbors, we can further

simplify the orientation into 8 directions numbered from 0 to

7. As Fig. 4a shows, given the forward vector of the camera

in SLAM coordinates v, the corresponding vector in the grid

map system is vg = Rsgv, where Rsg is obtained in Algo-

rithm 1. vg is then projected onto the grid plane, which gives

v′g. The output direction d is determined according to the

direction of this projection and the schema, which is shown

in Fig. 4b.

D. ROUTE PLANNING

As we have established the grid map, and have been able

to relate the SLAM output with the coordinates in the grid

map, we can leverage it to plan the navigation route. The

goal of route planning is to enable local (within the edge

node) and global (cross-edge) search for the shortest path

based on the relatively independent grid map on each edge

node. To achieve better performance, we mainly leverage

edge computing platforms and only upload processed infor-

mation to the cloud when necessary. Compared to cloud

Algorithm 2 Local Graph Modelling

Input:

M[1..m, 1..n]: Grid map

h, w: Actual height and width of the grid cell

Output:

G(V ,E): Graph representing the graph of the true cells

and their connections

1: Initialize sets V , E← { }
2: for i, j ∈ {1..m} × {1..n} do
3: ifM[i, j] then

4: V .insert(v← (i, j))

5: for each true neighbor (xu, yu)← u of v do

6: if |xu − i| + |yu − j| = 2 then

7: eu,v←
√
h2 + w2

8: else

9: eu,v← (xu 6= x) ? h : w
10: end if

11: E.insert(eu,v)

12: end for

13: end if

14: end for

15: Construct graph G(V ,E)

computing, edge computing provides lower latency, greater

responsiveness, andmore efficient use of network bandwidth.

With edge computing, data can be analyzed at the local

device level, closer to where it is being generated, and only

upload data to the cloud when necessary. With this setup,

less data is transmitted from local devices via a network

to a cloud, thereby reducing network traffic bottlenecks.

Moreover, lower latency can be achieved from two aspects.

First, less data is transmitted to the cloud, so the transmis-

sion time is reduced. Second, data can be analyzed locally,

we don’t need to wait for the results generated from the

cloud. Back to our application scenarios, continuous frames

are pre-processed locally and so not all the raw frame data

need to be uploaded to the cloud. It helps reduce signifi-

cate amount of bandwidth and allows our system to support

more users. Based on our measurements, with the support

of edge compute, the latency for single user case reduced

50 times.

We discuss the local and global scenarios separately.

1) LOCAL ROUTE PLANNING

The grid map that we obtain in section III-B is am×n boolean
matrix with each true cell representing a viable position.

We also know the real-world scale of a cell. We design

Algorithm 2 to transform the problem model into a typi-

cal undirected weighted graph. With this graph, it is trivial

to utilize the well-known Dijkstra or Bellman-Ford algo-

rithm to solve for the shortest path given origin s and

destination t.

VOLUME 8, 2020 42913

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

2) GLOBAL ROUTE PLANNING

We use a similar approach as local route planning, modeling

the problem as a shortest path search problem in a graph.

In order for the cloud server to coordinate the path planning

across all the edge nodes, we make a few reasonable assump-

tions on the information that the cloud server possesses,

which would significantly simplify the problem. After that,

we will illustrate the solution.

Assumption 1: The cloud server has the grid map of every

edge node, which we denote as Ei such that i ∈ {1..N } where
N is the total number of edge nodes. The cell height and width

hi and wi are always provided. A hash table for destinations

Hi is attached with each grid map Ei that stores pairs 〈s,u〉
where s is the name of the destination, and u = (xu, yu) is the

coordinates within that grid map.

Assumption 2: If there exists a way to enter directly from

one grid map to another, then at the egde of both grid maps

exists some special true cells that represent the entrance to

the other map. We call such a special the connection cell,

demonstrated in Fig. 5a, denoted by c
(i)
k , meaning the cell

is the k-th entrance of grid map i to another map. These

cells can be marked after map construction together with the

destinations. We assume that the cloud server has mapping

8c[c
(i)
α , c

(j)
β] → {true, false} that determines whether two

connection cells on node i and j respectively are adjacent.

Assumption 3: With each grid map, the cloud server can

calculate and store beforehand the shortest distance between

each pair of connection cells on that map. The construction

of the graph can be achieved by Algorithm 2. The difference

is that the problem that we are dealing with here is a multi-

source shortest path problem. Therefore, the Floyd-Warshall

algorithm can be applied. Therefore, we assume that for each

grid map i, the cloud server already stores W i[cα, cβ] as the

shortest length from cα to cβ .

Solution: With all the assumptions above, we are able to

model the problem as a graph.We regard each connection cell

as a vertex in the graph. If two cellshave the same grid attribu-

tion, they have an edge with the shortest path length being the

weight. If two vertices are adjacent cells in neighboring grids,

there is also an edge between them. For convenience, we set

the edge weight between two adjacnet cells in neighboring

grids to be the average of the height and width of both cells.

The details of the modelling are described in Algorithm 3.

When global path planning is requested, the origin and the

destination will both be added to the graph as vertices. Their

shortest path lengths to the connection cells of the grid they

belong to will be the edge weight. Fig. 5b shows an exam-

ple of the graph model generated by our algorithm. With

this graph, it is trivial to run the Dijkstra or Bellman-Ford

algortihms to obtain the shortest path from the origin to

the destination. The cloud server sends the connection cell.

From the grid the user should enter a neighbor grid map,

the cloud server sends the connection cell to the edge node

that serves the user. And finally, the local shortest route to

that connection cell will be shown for the user.

FIGURE 5. Remote route planning.

3) DIRECTION TRANSLATION

The output of route planning is a series of discrete directions

in according to the schema of the grid map (section III-C).

They have to be translated to the mobile device’s relative

directions. We define the forward direction of the camera

as 0, and 1-7 are numbered clockwise similar to Fig. 4b.

Let Dg[1..nd] be the planned directions and d be the current

direction, then the direction sequence relative to the camera

Dc[1..nd] is given by:

Dc[i] = Dg[i]− d mod 8, ∀ i ∈ {1..nd } (1)

The mobile device application presents these relative direc-

tions to the user.

E. AUTOMATIC MAP MAINTENANCE

As is mentioned in section I, one of the drawbacks of apply-

ing SLAM is that it could be hard to promptly update the

map according to the visual changes of the environment.

An example would be the change in the shop window of

a clothes shop in a mall, which makes the corresponding

part the features or intensities in the SLAM map useless.

One may argue that since the nature of SLAM is to localize

and construct the map at the same time, it is possible to use

the image sequences uploaded by the mobile devices to fix

the map change. The problems with this approach are: first,

the features of dynamically occuring objects like people can

also be recorded; second, the performance of edge nodes can

be affected by the extra calculation introduced by mapping.

Therefore, we need to distinguish whether a user uploads

frames/video contain dynamic objects – moving objects, and

move this task from edge nodes to the more powerful cloud

server. Since the map maintenance is on the cloud, we can

safely leverage deep learning-based object detection perfor-

mance without worrying about the local practical working

status. We will use the object detector as a black box that

takes in an image and spits whether the image contains objects

belonging to the given set of classes.

Eventually, we design an automatic map maintenance

mechanism as demonstrated in Fig. 6. As the mobile device

streams images to the edge node, if the SLAM localization

is successful, the edge node buffers the most recent images

42914 VOLUME 8, 2020

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

Algorithm 3 Remote Graph Modelling

Input:

C i[1..n
(i)
c], ∀i ∈ {1..N }: Connection cells of each grid

map

hi[1..N], ∀i ∈ {1..N }: Actual cell height of the grid map

wi[1..N], ∀i ∈ {1..N }: Actual cell width of the grid map

8c[c
(i)
α , c

(j)
β]: Whether c

(i)
α and c

(j)
β of grid maps i and j are

adjacent to each other

W i[cα, cβ]: Shortest path length between cα and cβ in

grid map i

Output:

G(V ,E): Graph representing the graph of the connection

cells and the weights between them

1: Initialize sets V , E← { }
2: InitializeW [e] such that e ∈ E
3: for i ∈ {1..N } do
4: for j ∈ {1..n(i)c } do
5: V .insert(C i[j])

6: end for

7: for distinct j, k ∈ {1..n(i)c }2 do
8: e(C i[j],C i[k])← W i[C i[j],C i[k]]

9: E.insert(e(C i[j],C i[k]))

10: end for

11: end for

12: for distinct i, j ∈ {1..N }2 do
13: for α, β ∈ {1..n(i)c } × {1..n(j)c } do
14: if 8c[C i[α],C j[β]] then

15: e(C i[α],C j[β])← h[i]+h[j]+w[i]+w[j]
4

16: E.insert(e(C i[α],C j[β]))

17: end if

18: end for

19: end for

20: Construct graph G(V ,E)

of some time length. When a localization failure occurs,

the edge node keeps collecting images for some time, and

send these images along with the buffered ones to the cloud

server. The cloud server first uses the object detector to

discover the dynamic objects in the image frames. If people

are found in the image, the part of image within the bounding

box is immediately deleted at first for privacy. Although

the images with other dynamic objects can be leveraged to

perform futhur analysis, we abandon them as well, since we

are interested in the environment texture. The image sequence

without dynamic objects is sent to SLAMwithmappingmode

activated. The cloud server has copies of all the SLAM maps

on the edge devices and can directly load them to SLAM

for map maintenance. The SLAM system handles the images

with the normal routine. If the map is successfully updated,

it will be pushed to edge nodes. The Map Manager module

is responsible to load this map to SLAM and update the grid

map with mn-Scaled Gridding (section III-B).

FIGURE 6. Automatic map maintenance.

The map maintenance job is consisting of two parts. First,

when there are some permanent changes of the surrounding

environments, like new decorations, remodel of the indoor

environments, the SLAMmap changes accordingly with new

image data stream, and the grid map will be updated with

the new keyframes generated from SLAM map. We could

use some deep learning techniques to distinguish the changes

automatically, and we left this as future work. Second, when

there are dynamic objects in the video stream, during the pro-

cess of building the map, we applied deep learning algorithms

to detect, locate, and remove the object from the frame. Doing

this can help the system get rid of unwanted noisy pixels.

Automatic maintenance cycles and training samples are

defined with a dynamic window according to the usage of the

computing power and bandwidth. The real-time navigation

for users is always the top priority. So, we set up the trigger

when the usage rate is lower than 30%. And this maintenance

tasks mostly happen at night.

IV. EVALUATION

To evaluate, we implement our system with an off-the-shelf

pull request of ORB-SLAM2 [10] that supports map save

and load [11] by leveraging the Boost Serialization library

[12]. This particular SLAM implementation is chosen only

because of the engineering convenience. Other monocular

SLAM systems should also fit with proper engineering of

adaptation. The specific settings for each part of the evalu-

ation will be detailed in the corresponding section.

A. ACCURACY

Although most SLAM works have their own accuracy claim,

the localization accuracy of our system still needs evaluation,

since we apply the gridding algorithm, whose impact on the

accuracy is non-intuitive. In this experiment, we measure the

localization accuracy in scenarios having different feature

diversities with various grid density. We will discuss the

results in Sec. V.

Setup: Fig. 7a and 7b demonstrate the indoor environment

and the corresponding floor plan of this experiment. We first

establish a SLAMmap of the space, then apply themn-Scaled

Gridding algorithm to generate the grid map. In order for the

edges of the space and the grid to be consistent, the camera

was taken to the space edges where SLAM keyframes are

VOLUME 8, 2020 42915

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

FIGURE 7. The configuration of the accuracy experiment.

recorded. The width and height directions of the grid map are

also strictly calibrated with those of the space. These guaran-

tee that the grid fits the floor plan in size and orientation, thus

the experiment results are precise to our best effort.

The SLAM implementation that we adopt, ORB-

SLAM2 in monocular mode, is claimed to typically have an

indoor accuracy below 1cm [6]. However, since the density

of keyframes is not mentioned, and that the validity of each

position in the grid depends on whether there is at least one

keyframe in it, the grid cell should not be too small, or a

position can be invalid even if the camera passed through

it during map construction due to the lack of keyframes

inside. We therefore carry out preliminary experiments, from

which we empirically decided that 30cm of cell width and

height is absolutely safe for this particular case. Eventually,

as Fig. 7c and 7d have shown, we choose approximately

30cm and 60cm for the width and height of a grid cell.

Note that in our experiment setup, 30cm and 60cm cells

are selected in a similar way. First, existing SLAM systems

could achieve a similar or even smaller map resolution, which

means it is reasonable for us to choose a cell size as small

as 30cm [6], [43]. Besides, we also considered several other

cell sizes, e.g. 15cm, 45cm, 90cm, as comparison groups to

evaluate system performance. Since the common humanwalk

step/stride is ranging from 30cm to 60cm [41], [42], these two

setups should be sufficient to includemost common scenarios

in real world. According to our loss function algorithm,

a larger grid size has a higher possibility to achieve a better

localization performance. In Table 1, the RMSE of 60cm cell

is 0cm, which means when the cell is equal to or greater than

60cm, our system can achieve a 100% localization accuracy

(please refer to later sections for evaluation results). Hence,

the system can achieve a better performance with a 60cm cell

size comparing to 30cm. Moreover, our algorithm is able to

provide good localization accuracy with grid width between

30cm and 60cm, which makes this algorithm practical in real

world application scenarios.

Due to the aspect ratio of the floor plan, the cells are not

perfectly square. We will consider the actual length in the

calculation.

For both settings, we select the same path, which is marked

in both figures. This path is picked because there is a corre-

sponding reference on the floor for the ground truth. We use

TABLE 1. Results of the accuracy experiment.

a Google Pixel 2 smartphone as the guest device and a laptop

PC as the server, which are connected via the Wi-Fi hotspot

of the laptop. The Pixel 2 and the camera used in map con-

struction are calibrated using the OpenCV camera calibration

model [13] with the same parameters. During the experiment,

the smartphone is moved along the path facing the direction

of the next position. At each grid cell, the grid coordinates

computed by the server and the corresponding ground truth

are recorded. The experiment is conducted three times with

each configuration.

Result: Table 1 shows the result of both settings. The

relative frequency of successful localization is the percentage

of the records with a successful localization from the server,

while the relative frequency of accurate localization is the

number of localization records to the number of successful

localization. We define an accurate localization as the system

output of grid coordinates being exactly the same as the

ground truth. The root-mean-square error (RMSE) measures

the derivation of localization in terms of real-world distance

from the ground truth. It is calculated by:

RMSE =

√

∑m
i=1 ((h(xi − x

(g)
i))2 + (w(yi − y(g)i))2)

m
(2)

In this equation, h and w are the actual height and width

respectively of the grid cell, (xi, yi) is the server output of the

row and column coordinates, (x
(g)
i , y

(g)
i) is the corresponding

ground truth, and m is the number of records of successful

localization. The maximal error is the maximal Euclidean

distance between the centers of the localization result and the

ground truth.

From the table, we find that the 30cm group yields 87.5%

successful localization, among which 78.6% is fully accurate,

while this number for the 60cm group is 100%. The RMSE of

the 30cm grid is 17.21cm, while it is 0cm with the 60cm grid.

42916 VOLUME 8, 2020

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

One special discovery is that, the maximal error is 42.8cm

in the 30cm group, which is occurred when the smartphone

was localized at the diagonal neighbor of the ground truth.

We also compare the orientation in the grid plane calculated

by the systemwith the ground truth, and find them completely

the same.

Analysis: We conducted this experiment with two

purposes: to demonstrate the system’s accuracy, and to under-

stand the parameter sensitivity of the n-Scaled Gridding

algorithm.

From the result, we find that the localization success fre-

quency for both groups are close. In fact, whether or not

a localization is successful depends solely on SLAM.

By design of the gridding algorithm, as long as the SLAM

subsystem can output the SLAM map coordinates, there is

always a corresponding grid position. Therefore, the unsuc-

cessful positioning is most likely due to SLAM’s failed local-

ization, which will be discussed later. In terms of successful

positioning, however, shows that with 60cm grid, the output

of the system perfectly matches the ground truth. Even when

the grid is condensed with 30cm cells, the furtherest error

lies in the diagonal neighbor of the ground truth. The error

is probably resulted from the error of both the SLAM local-

ization itself and the inaccurate alignment of the grid map and

the SLAM map. In terms of the direction, we find that under

the 8-direction schema, the results are completely accurate

for both groups. Therefore, despite the error, this experiment

has verified that the system can achieve a positional accuracy

of at least 60cm and a perfect orientaional accuracy with

8 directions.

B. SCALABILITY

We conduct an experiment to compare the scalability of the

proposed edge computing architecture and a typical config-

uration with a centralized server by gradually increasing the

number of users simultaneous requesting service andmeasure

the intervals between successive responses observed by each

user with the centralized server, one and two edge nodes

respectively.

Setup: We have two Intel R© NUCs each with an Intel R©
CoreTM i7-6770HQ CPU, an IEEE 802.11ac 2 × 2 wireless

network interface card (NIC), and a 10/100/1000Mbps eth-

ernet NIC, installed with Ubuntu 18.04 and our edge node

application. The mobile application is installed on a total

of 10 smartphones, consisting of 4 Google Nexus 5, 2 Google

Pixel and 4 Google Pixel 2, all of which running Android 8.0.

The mobile application is configured to stream the images

captured from the main camera at 6 frames per second (fps)

and 640 × 480 resolution to the edge node or server the

device is connected to. Two PCs each with an IEEE 802.11ac

wireless NIC are leveraged to simulate the image streams

generated by different numbers of smartphones when neces-

sary. Only the smartphones collect data. In the double edge

node configuration, both NUCs act as the edge nodes, each

connecting to half of the devices directly via its own Wi-Fi

hotspot, while in the single edge node setting, only one NUC

FIGURE 8. The CDF of the time intervals between responses.

covers the entire space. In the centralized server configura-

tion, the NUC is the centralized server. The smartphones and

PCs are connected to a 802.11ac router, which then connects

to the centralized server via a switch. Each setting of the

experiment is conducted in the same 8m × 5m rectangular

room. The single node and the router is placed at the center,

while the two edge nodes divide the space into 4m×5m halves

and each is placed at the center of its half. Each smartphone

represents a user and records the timestamp of each request

sent to the server and the timestamp of the corresponding

response. The NUC records the CPU usage of the server

process from the top command.

Result: Fig. 8 shows the cumulative frequency of the time

intervals between successive responses from the server and

the edge node(s) with different number of concurrent users.

We also refer to such time intervals as the user waiting

time. They are obtained by subtracting the previous one from

each response’s timestamp. For each number of users tested,

the double node configuration generally yields much smaller

time intervals than the other two settings, the larger number,

the larger advantage. Even the single edge node tests yield

less user waiting time than the centralized setting. As the

number of users is increased from 26 to 36, the centralized

service suffers from a significant deterioration, resulting in

a 14.8% chance for a user to wait for at least 2 seconds

and a 5.0% possibility to wait to 3 seconds or more, while

the numbers of the single edge setting are 8.7% and 1.6%

respectively, and less than 0.5% for the double edge setting.

The average, minimal and maximal CPU usages are shown

in Fig. 9. The 6-user group scores 193.7%, 201.2% and

124.3% for the single, double edge node and central server

repectively. Starting from the 16-user group, where both the

single-edge and the centralized settings reach the highest

266.5% and 263.8%, the more concurrent users, the lower

CPUusage, and the centralized server decreasesmore rapidly.

The CPU usage of the two-node setting, on the other hand,

increases at first and starts decreasing from 26 users.

Analysis: Empirically, the higher user waiting time,

the worse the user experience. The experiment results illus-

trate that as the number of concurrent users increases,

VOLUME 8, 2020 42917

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

the possibility for a user to wait for a certain long period of

time like 3 seconds for the next response is also higher. This

deteriorates more rapidly with the centralized configuration.

The plausible reasons for this are: i) insufficient computing

power; and ii) packet loss in the network. However, by mea-

suring the CPU usage of each experiment, we find that the

CPU usage starts decreasing at some point as the number of

users increases. If the bottleneck were the CPU, then its usage

would have at least maintained at the same level with more

users, instead of showing a corresponding decrease. Thus,

the loss of packets carrying images and request messages is

probably to blame. This reasonably explains both the fact that

the response intervals tend to be longer with more users, and

that the centralized service tends to be worse than the edge

settings. Since each user sends UDP packets at approximately

the same rate, the more concurrent users, the higher chance

for congestion on each link, which can lead to higher per-

centage of requests dropped and fewer responses received,

contributing to higher intervals. The centralized configuration

has an extra hop, the switch, between the user and the Wi-Fi

router, thus the possibility of packet loss is even higher. This

might have contributed to the disadvantage of the centralized

configuration compared to the edge configuration.

Onewould probably argue that a local server is not a typical

configuration nowadays, because many services are deployed

on the cloud platforms like Amazon AWS and Microsoft

Azure. Our experiment, however, has demonstrated that even

in the local network the centralized server does not perform

better than the edge. Since there are more hops between the

cloud platform and the user, most of which in the uncon-

trollable internet, it is safe to speculate that a server on the

cloud cannot yield better results than the local server in our

experiment.

It is obvious from the results that, with two edge nodes,

the user experience deteriorates more gradually, and thus

can accommodate more users given the same responsiveness

standard. This result is based on the assumption that the users

are evenly divided to the two edge nodes. If such a division is

biased, the performance of the two edge node setting can be

somewhat worse. Nevertheless, even with only one edge node

to bear all the workload, which is the worst case, the edge

computing architecture still defeats the centralized server by a

small margin. Therefore, we can safely conclude that the edge

computing paradigm that we adopt has made the systemmore

scalable to high concurrency than the traditional centralized

server architecture.

C. MAP SIZE

In section II, we argue that our the size of the SLAMmap can

be too large for smartphones. During the implementation and

evaluation process, we constructed a few SLAMmaps in dif-

ferent indoor environments. Therefore, we did not specially

conduct an experiment for this. Table 2 lists the information

of these maps, including their sizes. It can be discovered that

the map size is not strictly positively correlated with the space

size. This can be largely affected by the number of features

FIGURE 9. CPU usages in each experiment configuration.

TABLE 2. The sizes of map files.

and keyframes saved in the map, which in turn depend on

both the features available in the environment texture and

the fineness of the construction. However, we have shown

that, with current techniques, the size of the map file can

approach 1GB. This makes it unrealistic to download the map

on-the-fly to the mobile devices because of both the time

cost and that some devices may not have sufficient space

of storage. Although the map size can probably be reduced

with more advanced compression techniques and serializa-

tion techniques, this would be out of the scope of this paper.

With the overly large map size, associated with the previously

evaluated advantage in scalability over the centralized server,

we are confident that the edge computing paradigm is the

optimal choice available.

D. AUTOMATIC MAP MAINTENANCE

In this part of the evaluation, we verify the effectiveness of the

proposed automatic map maintenance functionality. We treat

the system as a blackbox, and test it by walking through

a fixed route multiple times and see whether the failure is

reduced.

Setup:We choose three indoor spaces for this experiment,

whose basic information is listed in Table 3. We use only one

edge node to cover the space. In terms of the object detector,

we leverage the off-the-shelf Tensorflow Object Detection

API [14] and the provided SSD model with ResNet 50 and

FPN feature extractors well-trained using the MSCOCO

dataset. From the output classes we find whether our inter-

ested ones (dynamic objects) exist. To initialize, we construct

a relatively rough map along the route, then we carry the

smartphone, a Google Pixel 2, and walk through the route.

42918 VOLUME 8, 2020

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

TABLE 3. Information of experiment venues.

FIGURE 10. The result of automatic map maintenance.

On localization failure, we skip the current position and con-

tinue where the localization is successful again. After each

round, if there is an update to the map, we wait until the cloud

server pushes the updated map to the edge node.

Result: The experiment outcome is shown in Fig. 10. It can

be found that, despite the fluctuation, the numbers of failed

localization in all three scenarios decrease as the same route is

repeated. The number decreases more rapidly at early times

than later. Eventually the failure stabilizes around a certain

amount.

Analysis: This experiment has verified that our map main-

tenance mechanism is effective in reducing the localization

failures by resulting in a decreasing trend in all scenarios that

we tested. However, there is a limitation with this mechanism.

The fluctuations shown in Fig. 10 might be a result of random

events such as the dynamic objects and the fact that the

smartphone is carried by a human, thus the consistency of

motion cannot be strictly guaranteed. For example, turning

too fast is very likely to lead to ORB-SLAM losing track

of the features. The diminishing margin of the decrease in

failures, on the other hand, can be due to some particular

perspective that has too few features for SLAM to track. The

mitigation to this problem is not in the scope of this paper,

and we leave it to another research.

E. CASE STUDIES: DYNAMIC ENVIRONMENT

One of the most important chanllenge for vision-based local-

ization and navigation system is the dynamic environment.

Based on our observation, the light condition and dynamic

objects affect detection accuracy most. In this section,

we conducted two case studies to evaluate the system

performance under dynamic environment and explore poten-

tial directions to deal with complex environments.

1) SETUP

When dynamic objects exist and light condition varies, there

are unexpected number of unrecognized frames receiving

from mobile sides. To study how these frames affect the

system performance, we designed two cases to mimic the

situation. In Fig. 11, we collected data at the same office envi-

ronment under different light conditions. As shown in Fig. 12,

we tested the system when there are individuals sitting in

chairs, passing by and no individuals at all. With these two

case studies, we diagnose the reasons that lead to failures,

and develop corresponding techniques to improve the overall

system performance.

2) LIGHT CONDITIONS

For the light condition reason, we apply two methods, which

are both aiming to expand image data set and augment the

covered scenarios. First, the server generate extra frames in

possible light condition, get features from these extra frames,

and append these features to the original mapping database.

Second, according to the locations where have large chance to

loose recognition ability, we relatively supplement data set of

specific location in different light conditions when building

the map first time.

3) DYNAMIC OBJECTS

In the traditional SLAM, all features of the frames are ana-

lyzed and saved while building the map. However, sometimes

there are many moving objects in some scenarios, like the

crowed corridors, stairs, and long queues. The non relevant

objects would occupy too much context. This makes the

feature matrix contains too many noise data. As is shown

in Fig. 12(d), only background environment are reserved with

removing people and bags. This makes our system accurate

by avoiding the noise from some useless features, which

are non relevant to localization. Besides, some features of

dynamic objects can be used when building the map as well

as when performing localization, we leave this to future work.

4) ANALYSIS

Vivid is aiming for indoor localization for public areas, like

airport, sport filed, office building and etc.. So we include

around 72 specific kinds of objects, which are appearing com-

monly, as our target detecting objects. We choose DetectNet

[45] as the object detection model since it can deal with

input image of varying sizes and provide reliable accuracies.

We use both basic frame data via creating map process and

increasing frame data from users when navigating as training

data set. We selected 5 different indoor scenarios, includ-

ing airport, university department building, shopping mall,

government building and large hospital. For each scenario,

we keep navigating for 30 minutes. The failures occasionally

happen, ranging from 8 times to 52 times, after initially

mapping. Then the reason of failures are addressed and

However, there may be other reasons, like non relevant

objects occupying too much context or main features being

VOLUME 8, 2020 42919

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

FIGURE 11. Images taken under different light conditions.

covered by dynamic objects. These noise could be conquered

via increasing the scenarios when mapping. We leave this to

future work.

F. PRIVACY

The user privacy is the top priority in the design of our system.

Actually, privacy security is one of the advantages of edge

computing. By design, most of the user-uploaded images are

processed within the edge node. As the buffer (section III-E)

is updated, the outdated images are destroyed. On user dis-

connection, if no map maintenance is needed, all the data

related to the user is deleted. The image sequences for map

maintenance, which account for only a small portion of all

user images, are uploaded to the cloud server anonymously.

The communication safety can be guaranteed by the Trans-

port Layer Security (TLS) techniques. In the cloud server,

no record will be kept as to the objects detected. In particular,

when human is detected in the frame, the content within the

bounding box is immediately removed, as is shown in Fig. 2,

no matter this is need by other modules or not. Although the

potential of the systemmay be compromised due to the loss of

information, we believe this is worthwhile. The content even-

tually saved such as features or intensities saved in SLAM

have no real-world meaning. Certainly, though, in addition to

our consideration, more techniques can be applied and more

research on privacy protection can be carried out in the future.

V. DISCUSSION

A. LIMITATIONS

Although the results reported in section IV are encouraging,

the experiments are preliminary. The scalability evaluation,

for example, compares both the optimal case and the worst

case against the centralized server. Luckily, our architecture

already prevails even with the worst case. However, it must

be pointed out that both cases are not very likely to appear

in real-life scenarios, and more edge nodes will probably

be used. Therefore, the general superiority of Vivid system

needs to be approved with sufficient experiments in real-life

scenarios.

One of the challenges that we have not been able to tackle is

the dynamic objects. These objects, such as people, can block

the camera from the real environment texture, hence make it

harder for SLAM to match the features or intensities. Such

loss of information has posed significant difficulty to solving

this problem, for which there has been no ideal solution so

far. Thus, we admit that with the current SLAM technology,

our systemmay not work well in spaces where the population

is too dense.

B. FUTURE WORK

In section III-B, we assume the floor is flat and design the grid

map to be two-dimensional, which means that there cannot

be significant change in height of the terrain. Although cur-

rently, the multi-floor support can be achieved with a similar

split-splice approach as section III-D, the places where the

elevation changes (3D space chances involved), such as the

escalators, can hardly be supported. Therefore, the advanced

approach of adapting the SLAM map for a complex 3D

environmental navigation purpose is the following research

focus.

Although the discrete directions that we defined in section

III-C has met the need of our navigation system, more refined

solutions can be proposed. For example, if we keep the

three-dimensional continuous camera pose and the pose is

calibrated with the floor plane, then augmented reality (AR)

features can be added. This will enable us to display the direc-

tions according to the scene (such as printing the instruction

arrow along the way) and mark the destination in the UI,

providing a better user experience. This would be a useful,

fancy but feasible feature to add.

VI. RELATED WORK

A. INDOOR LOCALIZATION AND NAVIGATION

The currently popular solutions to the indoor position-

ing problem are mostly based on the wireless technol-

ogy. Among these solutions, ultra wideband (UWB), GPS,

Wi-Fi, Bluetooth and their combinations are the most widely

adopted approaches. UWB is believed to be more accurate

and lower in energy consumption [15], claimed to be able to

42920 VOLUME 8, 2020

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

FIGURE 12. Dynamic objects in an example environment.

achieve an accuracy of 20cm [16] with commercial products

like Ubisense [17]. However, this technique is generally not

available on commodity devices for the public. The GPS

estimation of indoor location is normally poor due to the

poor signal [16]. COIN-GPS uses a large antenna and cloud

computing to solve this problem [1] with a median error

of 9.6m. It is neither accurate nor suitable for smart devices

due to the extra hardware. The WiFi-based solutions, such

as Horus, can achieve 2m accuracy [16], [18], [19], while

Chintalapudi et al. proposes a solution that mitigates the

need for pre-deployment efforts under the same accuracy [3].

LocBLE is a Bluetooth-based approaches, can reach 1.5m [2].

Empirically, an error under 2m is generally not too difficult

for a human brain to correct, but the accumulative error in the

process of navigation could be considerable. Therefore, Vivid

leveraged vision-based localization techniques to achieve a

better accuracy.

The early efforts for human indoor navigation include

Cyberguide [20], eGuide [21] and the Resource-Adaptive

Mobile Navigation System [22]. These systems use remote

controls as infrared beacons, which are too expensive to

scale [23]. Later on, inertial sensors are applied to track the

user motion [24], which needs the user to constantly calibrate

the position, which can be annoying in large spaces. Hile and

Borrielo’s work uses scale-invariant feature transform (SIFT)

to estimate the pose. Despite that it relies on a server for

the heavy calculation, an excessively long processing time

of 10 seconds per image is reported [25]. In recent years,

the fusion of different sensors has become the trend. Fol-

lowMe [26] gathers data from the motion sensors and barom-

eter, to determine the location and direction by comparing

the features of the data with the trace left by a leader. Travi-

Navi [27] combines the Wi-Fi, IMU, and visual recognition

techniques. Both solutions have a median error under 2m,

while they the same drawback since both also rely on the

quality of traces, which is not trivial to control.

B. SLAM

SLAM is a technique that solves the problem of obtaining the

3D structure of the environment and the motion of the sen-

sor [28]. The sensors that can be leveraged include light detec-

tion and ranging (LIDAR) [29], the inertial measurement

unit (IMU), GPS, and cameras [40], [46]. The visual SLAM

(vSLAM) is a branch of SLAM that uses visual informa-

tion only, such as images and depth. vSLAM is actively

researched in computer vision and robotics, with three major

types of input information: monocular, stereo, and RGB-D.

There are two approaches to solving this problem, featured-

based and direct. Feature-based solutions extract the features

from the image input, and estimates the motion of the camera

from the displacement of the features between successive

images, represented by MonoSLAM [30], PTAM [31] and

ORB-SLAM [6]. On the other hand, DTAM [32] and LSD-

SLAM [9] adopt the direct method that does not abstract

from the images, but uses them as a whole. The most recent

proposal ORB-SLAM [6] achieves merely 1% error of the

map dimensions.

However, the current monocular SLAM solutions are

not suitable for running on smart devices for our purpose.

DTAM [32] needs GPU to run in real time, LSD-SLAM [9]

and ORB-SLAM [6] work on computer CPU. There is a

PTAM system proposed for mobile phones, claiming to be

real-time if the map is small [33], but the specific scale is not

mentioned. In our work, we are focusing design an indoor

navigation system that can work in a large space which would

be more than 100m in length and width. Therefore, it is

very likely that the current SLAM systems will be heavy

burdens on both the CPU and the battery of smart devices.

Hence, Vivid is designed to offload computations to the edge

computing platform.

C. EDGE COMPUTING

Edge computing refers to the concept that computation is

performed at the edge of the network [34]. Traditionally, com-

putation tasks are executed on the centralized cloud servers

(although they might be distributed inside). With the boom of

IoT devices, an increasingly large amount of data is produced

and the burden to transport the data and to process the data

is more and more heavy. Having computation jobs accom-

plished at the edge reduces the traffic in the network and

keeps data local, which contributes to lower latency, higher

bandwidth and higher privacy [34], [35]. ParaDrop [7], [8],

for example, is a project that enables Wi-Fi routers to act as

edge nodes, on which run third-party services that talk to the

users directly connected to it. Remote control is also allowed

to manage and coordinate the edge nodes.

Although many investigations into the concept and per-

spective of edge computing has been carried out [34]–[37],

[44], [47], the specific applications that apply this para-

digm are rare, the examples including a mobile edge

computing-based video streaming technique [38] proposed

by Trans et al., and Kumar et al. leveraging edge computing to

VOLUME 8, 2020 42921

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

handle large data sets in smart electric grids [39]. Our work,

benefittingmuch from the edge computing architecture, is yet

another concrete application contributed to this realm.

VII. CONCLUSION

In this paper, we have presented Vivid, a vision-based indoor

navigation system for commodity smart devices. The sys-

tem adopts a cloud-assisted edge computing architecture to

distribute the network throughput and offload the compu-

tation tasks from a centralized cloud server to edge nodes.

We also propose a grid-based discrete map to eliminate the

need for the domain knowledge on the environment, and

a deep learning-based automatic map maintenance mecha-

nism to mitigate human involvement in map updates due to

environmental changes. The evaluation results show that: i)

Vivid’s localization error is at most 60cm, lower than most,

if not all existing works; i) our architecture provides better

scalability compared to centralized service; iii) the automatic

map maintenance is effective in response to unrecognized

environmental context.

REFERENCES

[1] S. Nirjon, J. Liu, G. DeJean, B. Priyantha, Y. Jin, and T. Hart, ‘‘COIN-

GPS: Indoor localization from direct GPS receiving,’’ in Proc. 12th Annu.

Int. Conf. Mobile Syst., Appl., Services, 2014, pp. 301–314.

[2] D. Chen, K. G. Shin, Y. Jiang, and K.-H. Kim, ‘‘Locating and tracking

BLE beacons with smartphones,’’ in Proc. 13th Int. Conf. Emerg. Netw.

Exp. Technol., 2017, pp. 263–275.

[3] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, ‘‘Indoor

localization without the pain,’’ in Proc. 16th Annu. Int. Conf. Mobile

Comput. Netw., 2010, pp. 173–184.

[4] R. Faragher and R. Harle, ‘‘Location fingerprinting with Bluetooth

low energy beacons,’’ IEEE J. Sel. Areas Commun., vol. 33, no. 11,

pp. 2418–2428, May 2015.

[5] C. Yang and H.-R. Shao, ‘‘WiFi-based indoor positioning,’’ IEEE Com-

mun. Mag., vol. 53, no. 3, pp. 150–157, Mar. 2015.

[6] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, ‘‘ORB-SLAM:

A versatile and accurate monocular SLAM system,’’ IEEE Trans. Robot.,

vol. 31, no. 5, pp. 1147–1163, Aug. 2015.

[7] D. Willis, A. Dasgupta, and S. Banerjee, ‘‘ParaDrop: A multi-tenant plat-

form to dynamically install third party services on wireless gateways,’’

in Proc. 9th ACM Workshop Mobility Evolving Internet Archit., 2014,

pp. 43–48.

[8] P. Liu, D. Willis, and S. Banerjee, ‘‘ParaDrop: Enabling lightweight multi-

tenancy at the Network’s extreme edge,’’ in Proc. IEEE/ACM Symp. Edge

Comput. (SEC), Oct. 2016, pp. 1–13.

[9] J. Engel, T. Schops, and D. Cremers, ‘‘LSD-SLAM: Large-scale direct

monocular SLAM,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:

Springer, 2014, pp. 834–849.

[10] R. Mur-Artal and J. D. Tardos, ‘‘ORB-SLAM2: An open-source SLAM

system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,

vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[11] Alkaid-Benetnash. (2018). Map Save Load and Bin Vocabulary. [Online].

Available: https://github.com/raulmur/ORB SLAM2/pull/381

[12] R. Ramey. (2008). Boost Serialization Library. [Online]. Available:

www.boost.org/doc/libs/release/libs/serialization

[13] Open CV. (2018). Camera Calibration. [Online]. Available: https://docs.

opencv.org/3.4/dc/dbb/tutorialpycalibration.html

[14] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,

Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, ‘‘Speed/Accuracy

trade-offs for modern convolutional object detectors,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, vol. 4.

[15] A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami,

M. Al-Ammar, and H. Al-Khalifa, ‘‘Ultra wideband indoor positioning

technologies: Analysis and recent advances,’’ Sensors, vol. 16, no. 5,

p. 707, May 2016.

[16] H. Liu, H. Darabi, P. Banerjee, and J. Liu, ‘‘Survey of wireless indoor

positioning techniques and systems,’’ IEEE Trans. Syst., Man, Cybern.

C, Appl. Rev., vol. 37, no. 6, pp. 1067–1080, Nov. 2007.

[17] T. U. Company. (2018). Ubisense. [Online]. Available: http://www.

ubisense.net/

[18] M. A. Youssef, A. Agrawala, and A. U. Shankar, ‘‘WLAN location deter-

mination via clustering and probability distributions,’’ in Proc. 1st IEEE

Int. Conf. Pervasive Comput. Commun., Mar. 2003, pp. 143–150.

[19] M. Youssef and A. Agrawala, ‘‘Handling samples correlation in the horus

system,’’ in Proc. IEEE INFOCOM, vol. 2, Mar. 2004, pp. 1023–1031.

[20] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and

M. Pinkerton, ‘‘Cyberguide: Amobile context-aware tour guide,’’Wireless

Netw., vol. 3, no. 5, pp. 421–433, 1997.

[21] T. Kirste and J. L. Encarnacao, ‘‘Beyond the desktop: Natural interac-

tion and intelligent assistance for the everyday life,’’ CG Topics, vol. 3,

pp. 16–19, 2000.

[22] J. Baus, A. Kruger, and W. Wahlster, ‘‘A resource-adaptive mobile

navigation system,’’ in Proc. 7th Int. Conf. Intell. Interfaces, 2002,

pp. 15–22.

[23] G. N. Desouza and A. C. Kak, ‘‘Vision for mobile robot navigation: A sur-

vey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp. 237–267,

Feb. 2002.

[24] D. Merico and R. Bisiani, ‘‘Indoor navigation with minimal infrastruc-

ture,’’ in Proc. 4th Workshop Positioning, Navigat. Commun., Mar. 2007,

pp. 141–144.

[25] H. Hile andG. Borriello, ‘‘Information overlay for camera phones in indoor

environments,’’ in Proc. Int. Symp. Location-Context-Awareness. Berlin,

Germany: Springer, 2007, pp. 68–84.

[26] Y. Shu, K. G. Shin, T. He, and J. Chen, ‘‘Last-mile navigation using

smartphones,’’ in Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 2015,

pp. 512–524.

[27] Y. Zheng, G. Shen, L. Li, C. Zhao, M. Li, and F. Zhao, ‘‘Travi-navi: Self-

deployable indoor navigation system,’’ IEEE/ACM Trans. Netw., vol. 25,

no. 5, pp. 2655–2669, Oct. 2017.

[28] T. Taketomi, H. Uchiyama, and S. Ikeda, ‘‘Visual SLAM algorithms:

A survey from 2010 to 2016,’’ IPSJ Trans. Comput. Vis. Appl., vol. 9, no. 1,

p. 16, Jun. 2017.

[29] W. Hess, D. Kohler, H. Rapp, and D. Andor, ‘‘Real-time loop closure

in 2D LIDAR SLAM,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

May 2016, pp. 1271–1278.

[30] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, ‘‘MonoSLAM:

Real-time single camera SLAM,’’ IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 29, no. 6, pp. 1052–1067, Jun. 2007.

[31] G. Klein and D. Murray, ‘‘Parallel tracking and mapping for small AR

workspaces,’’ inProc. 6th IEEEACM Int. Symp.Mixed Augmented Reality,

Nov. 2007, pp. 225–234.

[32] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, ‘‘DTAM: Dense

tracking and mapping in real-time,’’ in Proc. Int. Conf. Comput. Vis.,

Nov. 2011, pp. 2320–2327.

[33] G. Klein and D. Murray, ‘‘Parallel tracking and mapping on a camera

phone,’’ in Proc. 8th IEEE Int. Symp. Mixed Augmented Reality, Oct. 2009,

pp. 83–86.

[34] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and

challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[35] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge

computing—A key technology towards 5G,’’ ETSI white paper, vol. 11,

no. 11, pp. 1–16, 2015.
[36] S. Yi, C. Li, and Q. Li, ‘‘A survey of fog computing: Concepts, applications

and issues,’’ in Proc. Workshop Mobile Big Data, 2015, pp. 37–42.
[37] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, ‘‘Fog computing:

Focusing on mobile users at the edge,’’ 2015, arXiv:1502.01815. [Online].

Available: http://arxiv.org/abs/1502.01815
[38] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, ‘‘Collaborative multi-

bitrate video caching and processing inmobile-edge computing networks,’’

in Proc. 13th Annu. Conf. Wireless Demand Netw. Syst. Services (WONS),

Feb. 2017, pp. 165–172.
[39] N. Kumar, S. Zeadally, and J. J. P. C. Rodrigues, ‘‘Vehicular delay-tolerant

networks for smart grid data management using mobile edge computing,’’

IEEE Commun. Mag., vol. 54, no. 10, pp. 60–66, Oct. 2016.
[40] B. Qi, W. Zhao, X. Wang, S. Li, and T. Runge, ‘‘A low-cost driver and

passenger activity detection system based on deep learning and multiple

sensor fusion,’’ in Proc. 5th Int. Conf. Transp. Inf. Saf. (ICTIS), Jul. 2019,

pp. 170–176.

42922 VOLUME 8, 2020

W. Zhao et al.: Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing

[41] S. E. Crouter, P. L. Schneider, M. Karabulut, and D. R. Bassett, ‘‘Validity of

10 electronic pedometers for measuring steps, distance, and energy cost,’’

Med. Sci. Sports Exerc., vol. 35, no. 8, pp. 1455–1460, Aug. 2003.
[42] D. R. Bassett, B. E. Ainsworth, S. R. Leggett, C. A. Mathien, J. A. Main,

D. C. Hunter, and G. E. Duncan, ‘‘Accuracy of five electronic pedome-

ters for measuring distance walked,’’ Med. Sci. Exerc., vol. 28, no. 8,

pp. 1071–1077, Aug. 1996.
[43] J. Stalbaum and J.-B. Song, ‘‘Keyframe and inlier selection for visual

SLAM,’’ in Proc. 10th Int. Conf. Ubiquitous Robots Ambient Intell.

(URAI), Oct. 2013, pp. 391–396.
[44] B. Qi, P. Liu, T. Ji, W. Zhao, and S. Banerjee, ‘‘DrivAid: Augmenting

driving analytics with multi-modal information,’’ in Proc. IEEE Veh. Netw.

Conf. (VNC), Dec. 2018, pp. 1–8.
[45] J. Barker, S. Sarathy, and T. Andrew. (Jul. 2016). DetectNet: Deep Neural

Network for Object Detection in DIGITS. Nvidia. [Online]. Available:

https://devblogs.nvidia.com/parallelforall/detectnet-deep-neural-network-

object-detection-digits
[46] W. Zhao, J. Yin, X. Wang, J. Hu, B. Qi, and T. Runge, ‘‘Real-time vehicle

motion detection and motion altering for connected vehicle: Algorithm

design and practical applications,’’ Sensors, vol. 19, no. 19, p. 4108,

Sep. 2019.
[47] P. Liu, B. Qi, and S. Banerjee, ‘‘EdgeEye: An edge service framework for

real-time intelligent video analytics,’’ inProc. 1st Int. Workshop Edge Syst.,

Analytics Netw., 2018, pp. 1–6.

WEI ZHAO received the master’s degree in trans-

portation planning and management from Dalian

Maritime University and the Ph.D. degree from

the University of Wisconsin–Madison, Madison,

WI, USA, where he is also pursuing another Ph.D.

degree with the College of Agricultural and Life

Sciences. His research interests include connected

and automated vehicles, computer vision applied

in traffic analysis, and AI farm.

LIANGJIE XU received the B.S. and M.S. degrees

from the Wuhan University of Science and Tech-

nology, in 1989 and 2000, respectively, and the

Ph.D. degree in transportation planning and man-

agement from Southeast University, in 2005. She

works as a Professor with the Department of Traf-

fic Engineering, Wuhan University of Technology.

Her research interests include traffic optimization

and urban traffic information induction control.

BOZHAO QI received the B.S. degree in elec-

trical engineering and computer science from

Case Western Reserve University and the Ph.D.

degree from the Department of Electrical and

Computer Engineering, University of Wisconsin–

Madison. He is a Research Assistant with the

Department of Computer Science, University of

Wisconsin–Madison. He is a member of the

WiNGs Lab, Department of Computer Science,

under the supervision of Prof. S. Banerjee. His

research interests include the fields of mobile computing, mobile health,

context awareness, and ubiquitous computing. He has worked on several

vehicular-related projects during the Ph.D. degree study. The topics of

projects cover sensing vehicle dynamics, transit analytics, human mobilities,

and so on. He is currently working on the driving behavior detection and

evaluation.

JIA HU received the B.S. degree in civil engineer-

ing from Zhejiang University, the master’s degree

in transportation engineering from North Carolina

State University, and the Ph.D. degree from the

University of Virginia. He works as a Hundred Tal-

ent Program Professor with the College of Trans-

portation Engineering, Tongji University. Before

joining Tongji University, he was a Research Asso-

ciate with the Federal Highway Administration,

USA (FHWA). His research interests include con-

nected and automated vehicles, microscopic simulation model applications,

system optimization, and transportation energy efficiency. He is also Chair

of Vehicle Automation and Connectivity Committee of the World Transport

Convention. Furthermore, he is a member of TRB (a division of the National

Academies) Vehicle Highway Automation Committee and the Simulation

Subcommittee of Traffic Signal Systems Committee and a member of the

Advanced Technologies Committee of the ASCE Transportation and Devel-

opment Institute. He is an Associate Editor of the American Society of Civil

Engineers Journal of Transportation Engineering and an Editorial Board

Member of the International Journal of Transportation.

TENG WANG received the B.S. and M.S. degrees

in civil engineering from Iowa State University

and the Ph.D. degree in civil engineering from

the University of Kentucky. He is an Assistant

Research Scientist with the Texas A&M Trans-

portation Institute (TTI), Texas A&M University

System. Prior to joining TTI, he worked as a Post-

doctoral Associate with the University of Ken-

tucky and the Alabama Transportation Institute on

transportation safety and policy related studies. He

is a registered Professional Engineer (PE) in the State of Kentucky (Trans-

portation). His professional and research interests include transportation pol-

icy and legislation, relationship between road features and safety, statistical

assessment of safety issues, applications of geographic information systems

(GIS) to transportation, remote sensing and image analysis using GIS, and

3D infrastructure condition assessment. He serves as a Young Professional

Member of the Transportation Research Board (TRB) Highway/Rail Grade

Crossings Committee (AHB60) and the Co-Chair of New Technologies and

Applications Committee of World Transport Convention (WTC). He also

serves as the paper Reviewer for several civil engineering journals such as

Computer-Aided Civil and Infrastructure Engineering (CACAIE), Trans-

portation Research Part C, and Earthquake Engineering and Engineering

Vibration (EEEV).

TROY RUNGE received the B.S. degree fromUW-

Stevens Point and theM.S. and Ph.D. degrees from

the Institute of Paper Science and Technology,

Georgia Institute of Technology. He is an Assis-

tant Professor in biological systems engineering

in CALS, where he performs research and teaches

in the bioenergy field. He is a Lignocellulose

Chemist by training and has Pulp and Paper Sci-

ence degrees. He spent several years at UW as

the Director of theWisconsin Bioenergy Initiative,

and prior to that, he spent fifteen years working at Kimberly-Clark Corpora-

tion in a variety of research and engineering roles for pulp, tissue, nonwoven,

and hygiene product production. He is currently working in several aspects of

bioenergy and bio-basedmaterials with an emphasis on biomass composition

and separation technologies.

VOLUME 8, 2020 42923

