
Paper Vlasov Launcher

Diagrammatic Design

Using the RT Method
Andrzej Francik, Grzegorz Jaworski, Maciej Nowak, and Kacper Nowak

Faculty of Electronics, Wrocław University of Technology, Poland

https://doi.org/10.26636/jtit.2021.150321

Abstract—In this paper, a simple and fast method relied upon

for designing a Vlasov launcher with a helical cut is proposed.

The method is based on graphic interpretation of analytical

relationships that link wave parameters (EM field mode) to

the launcher’s geometrical dimensions. Using the ray tracing

method, a simplified graphic analysis may be carried out. The

results obtained are not significantly different from those of

rigorous full-wave analyzes. The family of normalized curves

that is created in the process greatly facilitates the stage of

optimizing the geometrical parameters of the Vlasov launcher.

Keywords—gyrotron output, ray tracing, Vlasov launcher.

1. Introduction

Over the past decade, interest in the gyrotron technology

has increased significantly due to its potential applications

in many fields, such as plasma heating, material processing,

radar and communications systems, and medical research.

One of the most promising fields is that of fusion energy-

based power generation. A mode converter is a key com-

ponent enabling efficient RF propagation in a high power

gyrotron. In recent years, several designs of a quasi-optical

mode converter have been presented [1]–[4]. The quasi-

optical mode converter with a Vlasov launcher is still in-

corporated in modern gyrotron designs.

Bian et al. presented a broadband quasi-optical mode con-

verter that could function at three segment-continuous fre-

quencies in three different waveguide modes [5]. Gao et al.

described the design and fabrication of a frequency-agile

gyrotron used for frequency-chirped MAS DNP [6]. Alaria

et al. described the design of a helical cut, smooth-wall

Vlasov launcher for converting the TE22,6 mode to a Gaus-

sian mode, used in a 120 GHz, 1 MW gyrotron [7]. Zhang

et al. described a study on a gyrotron with a quasi-optical

mode converter for terahertz imaging [8].

The Vlasov launcher still appears to be attractive for design-

ing conventional high-power gyrotrons operating in the high

terahertz range. At this frequency range, the complicated

structure of a Denisov launcher makes precise design and

manufacturing processes increasingly difficult. A properly

optimized internal converter based on a Vlasov launcher is

compatible with the gyrotron’s electro-optical system and

may generate a clear Gaussian beam with an efficiency of

more than 80% in an extraordinarily broadband range [1].

A further correction with the use of mirrors allows to obtain

the efficiency of up to 90% [9].

For the design of a Vlasov launcher, approaches based

on the geometric optics theory and specialized software,

such as electric field integral equation code (SURF3D

LOT/SURF-3D) are frequently used [10]. Full-wave elec-

tromagnetic simulation software, such as CST, is used as

well [7], [8]. This article presents an analysis of propa-

gation of electromagnetic waves in the gyrotron’s internal

components. The results of such an analysis serve as a ba-

sis for developing an effective launcher design procedure.

The theoretical foundations of the ray tracing (RT) method

are relied upon in the analysis in a manner that is presented

exhaustively in [11]. The RT method is very good for de-

signing key elements of a gyrotron, such as the waveguide

(forming the input section of the launcher), the launcher,

and the mirror system. It relies on much simpler mathemat-

ical formulas to describe the propagation of electromagnetic

waves – especially when compared with methods based on

Maxwell’s field equations. The proposed design procedure

was also verified, with good results, by comparing it with

calculations based on data published in the literature of the

subject.

The analysis of propagation of electromagnetic waves in

the launcher, being the gyrotron’s internal component, is

presented and serves as a basis for developing an effective

launcher design procedure. A Vlasov antenna [12], de-

signed using the oversized circular waveguide technique, is

commonly used as a launcher in microwave gyrotron sys-

tems.

2. Design Procedure

The procedure uses a graphic representation of the known

analytical relationships describing RT power transmission

in a launcher system and allows the designer to make opti-

mal decisions during the design process.
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Fig. 1. Structure of the gyrotron’s microwave output, with the

Vlasov launcher highlighted in yellow. Blue arcs determine the

spent electron trajectory, ac – cavity radius.

An example of a typical internal structure of a gyrotron

microwave system is shown in Fig. 1. The location of the

launcher within the structure is highlighted in yellow. It is

usually the gyrotron cavity that is the first designed part

of an internal gyrotron microwave system. It is character-

ized by a resonant frequency that is equal to the desired

gyro frequency in which the electron beam interacts with

the cavity’s resonant microwave field. This interaction re-

sults in the transfer of electron beam energy into the mi-

crowave field, with its energy reaching significant power

levels (measured in megawatts). In the process of cav-

ity design, its geometrical structure is selected, as is the

microwave field mode and the dimensions that are calcu-

lated taking into account the power levels generated. After

designing the cavity, the microwave field mode and the

geometrical parameters of the cavity may be determined.

These quantities usually serve as input data required to de-

sign the next element of the structure, namely the launcher.

The field types, determined in such a way, are usually high-

order T Emn modes with m and n indexes whose values are

much larger than 1. This, and the ability to work at high mi-

Fig. 2. Circular waveguide launcher having an Lc-length helical

cut: a) ray presentation of the wave in the launcher, b) structural

sketch.

crowave power levels are the reasons behind using oversized

microwave systems in situations in which the conditions al-

low to rely on the RT method. The launcher appearance

and the ray presentation of the wave in the launcher are

shown in Fig. 2.

In Fig. 2, most of the geometrical parameters of ray trans-

mission (RT) are marked:

• a – waveguide radius,

• ψ – Brillouin angle,

• Lc – helical cut length (the smallest possible length

of the launcher L),

• Lb – axial displacement (towards the waveguide axis)

of two consecutive reflection points of the ray from

the surface of the waveguide,

• Rc – caustic radius,

• θ – azimuth angle (angle 2θ is a central angle deter-

mined on the S plane, perpendicular to the waveguide

axis and containing one ray reflection point, defining

the length of arc 2θa, where the chord is the projec-

tion of the ray on the S plane. The azimuth angle is

clearly visible in Fig. 3, showing ray propagation of

the wave beam in a circular waveguide.

Fig. 3. Wave beam in a circular waveguide illustrated with the

use of geometrical optics principle: a) side view, b) top view.

Another reflection point from the surface of the waveguide

is located on the helix of the inclination angle τ , created on

the waveguide’s surface. The inclination angle τ , being an-

other geometrical parameter of RT transmission, is visible

on the unfolded surface of the launcher’s waveguide, on the

plane shown in Fig. 4. The straight lines, with their slopes

measured in relation to the z axis, equal τ and represent

the helix in the plane figure, while B0-B4 parallelograms

shown are the Brillouin zones. Figure 4 offers an expla-

nation to the strategy of selecting the cutting edges. The

simplest helical cut of a circular waveguide is a straight

section BD. If such a cut was to be made, the entire field
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radiated from the Brillouin zone B1 would have encoun-

tered an obstacle. This would be a part of the waveguide

wall designated as the Brillouin zone B2. This means that

the field would obviously not be radiated into the free space.

Therefore, this obstacle is removed by making a cut along

the border between zones B3 and B4 and along the entire

section of C’–C.

Fig. 4. The surface of a cylindrical waveguide launcher unfolded

on a plane. The cutting edges of the launcher are represented

using bold lines.

The RT representation shown above is satisfactorily accu-

rate, ensuring the results of the analysis are not signif-

icantly different from the results of a rigorous full-wave

analysis, when the ratio between the waveguide diameter

(D = 2a) and the wavelength in free space λ0 is greater

than 10 [13], [14]. The field radiated from the Brillouin

zone, marked in Fig. 4 as B3, may be considered as a set of

rays running parallel, in the axial direction, and diverging

spherically in the transverse direction. These rays, prop-

agating – for instance – towards the focal toroidal mirror,

are shown in Fig. 5 on the so-called Vlasov converter used

in gyrotrons to convert launcher radiation into a Gaussian

beam [15].

Fig. 5. Geometry of the Vlasov converter consisting of a circular

waveguide launcher with helical cut and a double-curved reflector

(toroid). τ is the helix inclination angle and 2θ is the radiation

expansion angle transverse to the waveguide axis.

Angle 2θ marked in Fig. 5 is νexp and is a radiation expan-

sion angle that is transverse to the waveguide axis. Expan-

sion angle νexp is another important geometric parameter

in RT transmission analysis. Mathematical dependencies

describing the parameters introduced above have been for-

mulated, inter alia, in [11]. They are based on the assump-

tion that transmission in the launcher with the microwave

structure considered here is expressed in the cylindrical

coordinate system shown in Fig. 6.

Fig. 6. The cylindrical coordinate system associated with the

Vlasov launcher in such a way that cylinder axis is the axis of

circular waveguide of launcher.

For the launcher and the T Emn mode under consideration,

the u(r,φ ,z) field propagating in a cylindrical waveguide,

which is the input section of the launcher, may be ex-

pressed, using the cylindrical coordinate system, in the fol-

lowing manner:

u(r,φ ,z) = A0Jm(krr)e±jmφ e±jkzz , (1)

which:

kr =
χmn

a
, (2)

J′(χmn
′) = 0 , (3)

kz =

√

k0
2 − kr

2 , (4)

where:

• A0 – constant field amplitude,

• z and r – longitudinal and radial coordinate,

• φ – azimuth angle,

• Jm and J′m m-th order Bessel function and its deriva-

tive,

• χmn and χmn
′ n-th zero of m-th order Bessel function

and its derivative,

• kr and kz – radial and longitudinal wave number,

• k0 – wave number in free space.
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The geometrical parameters of the RT method for the con-

sidered launcher are described in the following analytical

expressions:

cos ψ =
~N~ez

|~N||~ez|
=

kz
√

kr
2 + kz

2
=

kz

k0

,sin ψ =
kr

k0

, (5)

where (for TE field):

kr = χmn
′

a
, (6)

k0 = 2π
λ0

, (7)

cos θ =
~N~ez

|~N||~ez|
= m

χmn
′ , (8)

Rc = acos θ , (9)

LB = 2asin θ cot ψ , (10)

τ = arctan
θ tan ψ
sin θ , (11)

L = 2πacot τ , (12)

νexp = 2θ . (13)

Equations (6)–(13) allow one to design a launcher for the

input data obtained from the gyrotron cavity design and

from other gyrotron system requirements, such as:

• the volume of the vacuum space inside the gyrotron,

that the launcher must fit in,

• trajectory of the spent electrons’ motion with no

launcher elements present,

• the so-called modal purity that needs to be suffi-

ciently large, as it determines the share of Gaus-

sian components in the wave beam propagated in the

launcher.

In addition to those listed above, numerous additional re-

quirements may be formulated as well, e.g. shock resis-

tance, acceptable thermal expansion values, etc. A rela-

tively easy assessment of the impact that the listed require-

ments exert on the geometrical parameters of the launcher

is possible by transforming Eqs. (6)–(13) in such a way

that the field mode parameters (n, m, χmn
′) appear in the

equations and the Brillouin angle ψ is an independent vari-

able. After applying relatively simple transformations, de-

sign Eqs. (6)–(13) take the following form:

d = D
λ0

=
χmn

′

π
sin ψ = χmn

′

π sin ψ , (14)

cos θ = m
χmn

′ , (15)

sin θ =

√

1−
(

m
χmn

′

)2

, (16)

Rc = a · cos θ = a m
χmn

′ , (17)

Lb = 2a · sin θ cot ψ = 2a

√

1−
(

m
χmn

′

)2

cot ψ , (18)

τ = arctan
tan ψ
sin θ

θ

, (19)

L = 2πa · cot τ = 2πa · sin θ
θ cot ψ . (20)

From Eqs. (18)–(20), one can eliminate waveguide radius

a by entering normalized quantities of caustic radius rc,

axial shift Lb, and length of the launcher L:

rc = Rc

a
= m

χmn
′ , (21)

lb = Lb

D
=

√

1−
(

m
χmn

′

)2

cot ψ , (22)

l = L
πD

= sin θ
θ cot ψ =

√

1−
(

m

χmn
′

)2

arccos
m

χmn
′

cot ψ . (23)

In Eq. (23), length L of the launcher was normalized to

circumference πD of the waveguide constituting the input

section of the launcher. The analytical form of Eq. (23)

can be simplified by entering the sincθ function:

sincθ =
sin θ

θ
. (24)

The sincθ function, for relatively small values of the an-

gle θ characterizing the high-order T Emn fields, takes val-

ues slightly lower than one, as shown in Eq. (23), so it af-

fects the launcher length to a relatively small extent. There-

fore, it may be treated as a correction factor for the launcher

length normalized to the πD circumference. The correcting

factor of the launcher is expressed as:

lk =
l

sincθ
= cot ψ . (25)

Equations (14), (21), (22), and (25) allow for tracking the

impact that the Brillouin angle ψ and field type (m, χmn
′)

exert on normalized geometrical parameters of the launcher,

such as waveguide diameter d, caustic radius rc, axial shift

lb, and launcher length lk.

In Appendices A and B, direct dependencies between the

launcher length and the waveguide circumference are de-

rived.

3. Launcher Design Supporting Graphs

Based on the analytical formulas provided in Section 2,

specific the graphs and curves have been drawn to facilitate

the design of the launcher.

3.1. Diagrams Presenting Dependence of Waveguide

Diameter and Launcher Length on the Brillouin

Angle

In this paper, graphs of the functions showing the relation-

ship between d(ψ) and lk(ψ) have been prepared. These

graphs, just like analytical formulas, allow to trace the im-

pact of the Brillouin angle (ψ) and field type (m,χmn
′)

on the launcher’s geometrical parameters d and lk. This

graphical presentation is, however, much more convenient

to follow than analysis of Eqs. (14) and (25). The man-

ner in which diagrams d(ψ) and lk(ψ) are used in the

launcher design process is presented below. Figure 7 shows
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the parametric graph of function d(ψ) for many realistically

selected parameter values p = χmn
′

π . This graph clearly vi-

sualizes the impact of the field mode and of the Brillouin

angle value on the normalized waveguide diameter d.

Fig. 7. Relationship between normalized waveguide diameter d

and the Brillouin angle ψ .

The graph contains the following information:

• analytical formula describing function d(ψ), d(ψ)≡
D
λ0

= p
sin ψ , where p = χmn

′

π = parameter,

• arbitrary limit of applicability of the RT method to

the description of ray propagation in the launcher

(dmin = 10). For, d > 10, errors in the analytical

description of wave propagation taking place in the

launcher have a satisfactorily low level of 1%. The

error rate decreases with an increase in d [11],

• limits of the middle range of the Brillouin angle

variation ∆(ψ) set arbitrarily at: ψmin = 30
◦ and

ψmax = 60
◦. The Brillouin angle values adopted in

projects are usually within that range,

• straight line marking the middle of the range ∆(ψ) :

ψc = 45
◦,

• values of parameter p for all curves of function d(ψ),

• trend indicator determining the direction of the shift

in characteristic d(ψ) with the increase of in param-

eter p (with the increase of the field mode order),

• parts of the d(ψ) characteristics below the marked

limit of applicability of the RT method (dashed line)

cannot be used in this range because errors in the

analytical description of wave propagation in the

launcher are too large.

Variable ψ is independent and its range covers all potential

values of angle ψ ∈ [0,90
◦], while the range of the depen-

dent variable d is arbitrarily set to d ∈ [0,26]. The range of

variation of parameter p (p ∈ [1,12]) was adopted arbitrar-

ily, based on a review of the value of the Bessel function

derivative zeroes χmn
′ for various field modes [16].

The lk(ψ) function graph, shown in Fig. 8, presents the

impact of the ψ angle value on the launcher length lk.

Figure 8 contains the following information:

• analytical formula describing the lk(ψ) function

lk(ψ) ≡ L
πDsincθ = cot ψ ,

• limits of the middle range of the Brillouin angle

variation ∆(ψ), set arbitrarily at: ψmin = 30
◦ and

ψmax = 60
◦,

• straight line marking the middle of the range

∆(ψ) : ψc = 45
◦,

• ranges of Brillouin angle ψ in which launcher short-

ening or elongation occurs in relation to its length at

ψ = 45
◦.

Fig. 8. Relationship between normalized launcher length lk and

the Brillouin angle ψ .

Similarly to Fig. 7, independent variable ψ covers all po-

tential values of angle ψ ∈ [0,90
◦], while the range of the

dependent variable lk is arbitrarily set to lk ∈ [0,26]. There

is a relatively small difference between d and lk values

for a given angle ψ . This makes it possible to apply the

same ordinate axis for both of these quantities when plot-

ting functions d(ψ) and lk(ψ) in one common coordinate

system (Fig. 9). Additionally, this method of presentation

facilitates observation of the impact that field mode and

the Brillouin angle ψ have on the launcher’s geometrical

parameters d and lk.

Fig. 9. Relationship between normalized launcher length lk,

normalized and corrected waveguide diameter d, and the value of

Brillouin angle ψ .
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3.2. Relationship Between sinc (θ) Function and Field

Mode Parameters

Equation (24) was transformed into Eq. (26) using Eqs. (15)

and (16), and was then used to create the chart shown in

Fig. 10.

Fig. 10. Relationship between function y = sincθ and the field

mode, represented by x = m

χmn

′ .

y = sincθ =
sin θ

θ
=

√

1−
(

m
χmn

′

)2

arccos
m

χmn
′

. (26)

The graph shown in Fig. 10 is a supplement to the graphs

shown in Fig. 9. It shows the values of function sincθ ,

referred to as field parameters, allowing the designer to

quickly evaluate the function value for the adopted field

mode. Knowledge of the function value allows to correct

launcher length lk, previously determined graphically in

Fig. 9. The length corrected in accordance with Eq. (25) is

equal to l = lk · sincθ .

The range of variable x = m
χmn

′ variation was determined

after calculating its values for parameters m and χmn
′ given

in the paper [16]. The results of these calculations are

presented in Table 1.

The review of values m/χmn
′ from Table 1 was relied upon

to adopt the range of variable x ∈ [0.1,0.9]. The range of

the dependent variable y was adopted as y ∈ [0.6,1], based

on calculations of values for a given x. The two extreme

points have been marked on the sincθ graph. They were

described by field mode symbols corresponding to these

values.

4. Graph-assisted Launcher Design

Method

4.1. Design Strategies

As mentioned earlier, the operating frequency, the T E field

mode, and the geometrical parameters of a gyrotron cavity

are usually basic input data for the launcher design process.

With waveguide radius a known, and with the knowledge

of λ0 and m,n, indexes of T Emn mode are sufficient to cal-

culate all other parameters. Unfortunately, as one can see

in Fig. 1, radius a differs from the gyrotron cavity radius ac,

(a > ac). This requires that the cavity and the launcher be

connected by a tapering transition section known as a “ta-

per”. As a result, there is some freedom in the selection of

the waveguide radius in the launcher design. This allows for

the creation of various design strategies that depend on ad-

ditional requirements applicable to the launcher. One of the

additional requirements consists in determining the proper

ratio between the waveguide diameter and the wavelength,

ensuring sufficiently high mode purity of the output Gaus-

sian beam. The next requirement may consist, for instance,

in determining the right length of the launcher selected, so

that it does not appear on the trajectory of electrons moving

to the collector (the so-called spent electrons).

4.2. Launcher Design for Given Field Mode Indexes

Initial input data:

• field mode: TE95,

• frequency, (wavelength): f0, (λ0).

Design steps:

Step 1. Selection of the d(ψ) characteristics with parame-

ter p closest to the setpoint.

For the assumed field mode T E95 as χmn
′ = χ95

′ = 25.8913,

parameter p is calculated as p = χmn
′

π = 8.24145676. Within

the range of characteristics d(ψ) (waveguide diameter), we

look for characteristics in which parameter p is closest to

the calculated value of 8.24145676. This characteristic is

Table 1

Values of variable x = m
χmn

′ for selected field modes TEmn

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11

n = 1 3.832 1.841 3.054 4.201 5.317 6.415 7.501 8.578 9.647 10.71 11.77 12.83

m/χmn
′ 0 0.543 0.655 0.714 0.752 0.779 0.800 0.816 0.829 0.840 0.850 0.857

n = 2 7.016 5.330 6.706 8.015 9.282 10.52 11.73 12.93 14.11 15.29 16.45 17.60

m/χmn
′ 0 0.188 0.298 0.374 0.431 0.475 0.511 0.541 0.567 0.588 0.608 0.625

n = 3 10.17 8.536 9.969 11.35 12.68 13.99 15.27 16.53 17.77 19.00 20.22 21.43

m/χmn
′ 0 0.117 0.200 0.264 0.315 0.357 0.393 0.423 0.450 0.474 0.494 0.513
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marked in the graph (Fig. 11) in magenta, with p = 8.

At this design stage, it is possible to move the operating

point P freely along the selected characteristic within the

permitted range above the limit of applicability of the RT

method. One may see that when point P is moved upwards,

waveguide diameter (d ≡ D/λ0) increases.

Fig. 11. Highlighted area shows the d(ψ) characteristic with the

p parameter closest to the calculated value.

Step 2. Determining the operating point on the selected

d(ψ) curve.

As mentioned previously, the additional requirement con-

sists in the need to determine the proper ratio between

waveguide diameter and wavelength D/λ0 for high Gaus-

sian mode purity of the output beam. In this example, the

D/λ0 value is determined by the selection of the Brillouin

angle value ψ = 45
◦, as shown in Fig. 12. The value read

is D/λ0 = 11.33. If this value is greater than the D/λ0 of

the gyrotron cavity, it will be necessary to apply the taper

transition between the cavity and the launcher.

Fig. 12. Illustration of operating point P selection based on

characteristic d(ψ).

Step 3. Determining the operating point on lk(ψ) curve.

This curve illustrates the relationship between normalized

launcher length lk and the Brillouin angle ψ . The operating

point, designated as P1, is positioned at the intersection

between the vertical line ψ = 45
◦ and the characteristic

lk(ψ), as shown in Fig. 13.

Fig. 13. Relationship between normalized launcher length lk,

normalized and corrected waveguide diameter d, and the value of

Brillouin angle ψ .

Based on Eq. (25), the normalized value of corrected

launcher length lk(ψ) is equal to 1 (the ordinate of point P1

for ψ = 45
◦). Therefore, in order to determine normalized

length l of the launcher equal to Eq. (23), the ratio L/(πD)
and the value of the sincθ function should be calculated

for the assumed field mode.

Step 4. Calculation and graphic visualization of the sincθ
function value.

According to Eq. (8) and field parameters given in step 1:

θ = arccos
m

χmn
′
= arccos

9

25.8913
= 1.21 [rad] ,

therefore: sincθ = 0.771.

To show the value of the sinc θ function, the plot of the

function’s value depending on the field mode, as presented

in Fig. 10, will be used. In this plot, the value of the

function calculated above is the ordinate of point P, as

shown in Fig. 14.

Fig. 14. Visualization of the value of the y = sincθ function for

the selected field mode, represented by x = m

χmn

′ .

Step 5. Calculation of the ratio between launcher length L

and waveguide circumference πD.

This ratio is the standard length of the launcher l = L
πD

,

as introduced in Eq. (23). Based on Eq. (25) lk = l
sincθ ,
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hence, l = lk sincθ . The normalized, corrected launcher

length lk was determined in step 3 and is equal to 1, while

sincθ , determined in step 4, is 0.771. So, l = lksincθ =
0.771.

Step 6. Calculation of waveguide diameter D for the as-

sumed wavelength λ0.

The value of D
λ0

was determined in step 2 as the ordinate

of point P. Hence, D = ypλ0 = 11.33λ0. For example:

• for λ0 = 3 cm ( f0 = 10 GHz):

D = 11.33 ·3 = 33.99 cm,

• for λ0 = 1.875 cm ( f0 = 16 GHz):

D = 11.33 ·1.875 = 21.24 cm.

Step 7. Calculation of launcher length L for the assumed

wavelength λ0.

The normalized launcher length l = L
πD

has been calcu-

lated in step 5. Hence, L = π
D

, where, based on step 6:

D = yP ·λ0. So L = π lD = π lyP ·λ0. After substitution into

this equation where according to step 5, l = 0.771, and step

2 and 6, yP = 11.33, L = π ·0.771 ·11.33 ·λ0 = 27.45 ·λ0 is

obtained. For example:

• for λ0 = 1.875 cm, f0 = 16 GHz:

L= 27.45 ·1.875 = 51.47 cm.

The results obtained in steps 6–7 conclude the main part of

the design procedure and make it possible, as shown above,

to conveniently and simply calculate the main parameters of

the launcher: its length and waveguide diameter for a given

operating frequency. These results can, therefore, be used

to design launcher models operating at other frequencies

and in other field modes.

Other launcher parameters, such as: Rc, LB, τ , and νexp,

can be calculated using analytical formulas (9)–(13).

4.3. Launcher Design Method for Assumed Field TE

Mode and Standard Circular Waveguide Diameter

The task presented here can be treated as an extension of the

previous task and aims to use a standard circular waveguide

in the launcher in order to reduce the costs of implementing

the launcher model operating at a different (usually lower)

frequency. The following initial input data is used:

• field mode: T E95,

• frequency: f0
∼= 16 GHz,

• waveguide diameter: D ∼= 21.15 cm, (determined in

step 6 of the previous example),

• normalized waveguide diameter:

dp = D
λ0

= 11.33 cm, (determined in step 2).

Design steps:

Step 1. Selection of the standard circular waveguide.

From the table of standard circular waveguide sizes, a C10

waveguide with a diameter of D = 21.514 cm and a nominal

working band of 0.039–1.29 GHz has been selected [17].

Its diameter is as close as possible to value D assumed in

the initial input data.

Step 2. Calculation of wavelength λ0 and operating fre-

quency f0.

The normalized waveguide diameter assumed in initial in-

put data is equal to D
λ0

= 11.33. Hence: λ0 = D
11.33

=

1.90 cm and f0 = 15.80 GHz.

Step 3. Calculation of launcher length.

Similarly to step 7 of the previous example, L = 27.45 ·λ0 =
52.13 cm.

Step 4. Calculation of caustic radius Rc.

The calculation will be performed for a standard waveguide

with a diameter of D = 21.514 cm selected in step 1 and

the value m
χmn

′ = 0.3476 calculated in step 4 of the previous

task.

The calculation is performed for a standard circular waveg-

uide selected in step 1 with a diameter of D = 21.514 cm

and by taking the values calculated in step 4: m
χmn

′ = 0.3476.

Rc = a · cos θ = D
2
· m

χmn
′ = 21.514

2
·0.3476 = 3.74 cm.

Step 5. Calculation of distance LB (traveled by the ray in

the axial direction between two successive reflections from

the waveguide wall).

The calculation will be performed for a standard circu-

lar waveguide selected in step 1 with the diameter of

D = 21.514 cm. We then take the values calculated

in step 4, m
χmn

′ = 0.3476, for which θ = arccos
m

χmn
′ =

arccos
9

25.8913
= 1.21 [rad]. Hence, sin θ = sin 1.21 = 0.94,

and from Eq. (19), Lb = Dsin θ cot ψ = 21.514 · 0.94 ·
cot45

◦ = 20.17 cm.

Step 6. Calculation of helix inclination angle τ .

For ψ = 45
◦ and sincθ = 0.771:

τ = arctan
tan ψ
sincθ = 0.91 [rad]= 52.35

◦.

As expected, the helix inclination angle τ is slightly larger

than the Brillouin angle ψ .

5. Conclusions

This paper presents an effective method for designing

a Vlasov launcher that is a part of the gyrotron’s microwave

power transmission system. The method uses a graphical

representation of known analytical relationships describing

RT power transmission in such a system. An image of the

design space makes it much easier for an engineer to take

optimal decisions in the design process. In particular, for

a given EM field mode (m,χmn
′), the engineer can effi-

ciently, easily and quickly determine the optimal launcher

duty points: point P (Fig. 13), Brillouin angle ψ , diameter

d of the launcher, and point P1 specifying length lk of the

launcher. They can also assess the impact of the operating

points’ displacement on the launcher’s geometrical param-

eters and determine the allowed displacement ranges. The

method was presented based on the example of a Vlasov

launcher with a helical cut, but its assumptions may be used

for all other launcher geometries. At the final stage of the

design process, the described method allows to calculate

the launcher geometry taking into account the wavelength.
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This is an additional advantage of the method concerned,

resulting from the normalization of dimensions d and lk

depending on the wavelength.

The relatively large degree of design freedom offered by

this method may greatly facilitate the design of the launcher,

with additional requirements, such as those related to the

limited installation space inside the gyrotron taken into con-

sideration. Examples with detailed steps are presented,

describing the design procedure relying on the method

concerned. The data used in these examples, i.e. field

mode (TE95) and wavelength (λ0 = 3 and 1.875 cm), were

adopted arbitrarily. It was also shown how to use the pre-

sented graphs in order to easily implement a standard-size

circular waveguide into the launcher design. The geometri-

cal parameters of the launcher determined in the examples

for the assumed values of λ0 can be immediately recal-

culated for other values of λ0, e.g. for typical terahertz

wavelengths at which gyrotrons usually operate.

The correctness of the design procedures developed in this

paper was verified by comparing the results of the Vlasov

launcher design procedures described in previously pub-

lished works with the results obtained, for the same input

data, after implementing the design procedures this paper is

concerned with. Such comparisons were made for projects

presented in [7] and [15], containing also experimental

verification of the radiators developed and confirming the

usefulness of the design procedures devised.

Appendix A

Direct relationship between

launcher length and waveguide

circumference

Equations (27) and (28) describe the relationships between

waveguide diameter and launcher length on the one hand,

and the Brillouin angle on the other. It is possible to dis-

place variable ψ from the system of these equations. In

this way, we obtain a direct relationship between these two

quantities without mediating the Brillouin angle ψ .

d =
D

λ0

=
χmn

′

π

sin ψ
=

χmn
′

π sin ψ
, (27)

l =
L

πD
=

sin θ

θ
cot ψ = sincθ cot ψ , (28)

where:

d2

p2
− l2

(sincθ)2
= 1 , (29)

or

l = sincθ ·

√

(

d

p

)2

−1 . (30)

Equation (30), after renormalization of d and L, takes the

form of:

L = sincθ ·

√

√

√

√

(

D
λ0

p

)2

−1 ·πD . (31)

This relationship shows that for L > 0, the condition

D/λ0 > p must be met. The smallest zero value of the

derivative of the Bessel function is χmn
′ = 1.8412 [16].

Thus, it follows that the lowest value of parameter p = χmn
′

π
is equal to pmin = 0.58607216 and, consequently, that the

smallest value of D/λ0 should be greater than 0.58607216.

This is a milder condition than that which determines the

use of the RT method (requiring that D/λ0 > 10). This

condition is always met when designing the launcher using

the RT method.

Appendix B

Direct relationship between

launcher length and waveguide

diameter for ψ = 45
◦

From the Eq. (27) for ψ = 45
◦ we get:

d45

p
=

2√
2

, (32)

but from Eq. (30):

l45 = sincθ ·

√

(

d45

p

)2

−1 = sincθ , (33)

which can also be seen from the Eq. (28):

l = sincθ cot ψ .

Because, cot 45
◦ = 1, so l45 = sincθ . Therefore,

d45 =
D45

λ0

=

√
2

π
· χmn

′ , (34)

and

l45 =
L45

πD45

= sincθ . (35)

Hence, after renormalization:

D45 =

√
2

π
· χmn

′ ·λ0 , (36)

and

L45 =
√

2 · χmn
′ · sincθ ·λ0 . (37)
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