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ABSTRACT Since the orientation of a very low frequency (VLF: 3–30 kHz) space-borne antenna relative

to the geomagnetic field will change with the satellite orbiting around the earth, precisely computing the

near-field excited by an arbitrarily oriented radiator in the ionosphere is of great importance to the antenna

analysis in realistic VLF space-borne applications. In this paper, we propose a semi-analytical method for

evaluating the near-field of a VLF electric dipole of arbitrary orientation in a magnetized plasma, where

the arbitrarily oriented dipole is modeled as the superposition of dipoles parallel and perpendicular to the

magnetic field. The near-field in this case consists of the contributions of both the ordinary wave (O-wave)

and the extraordinary wave (E-wave). Due to its large attenuation rate, the integral for the O-wave can

be directly estimated through numerical integration, while the integral for the E-wave is evaluated with

the help of speed-up convergence algorithm and the complex variable theory. Computations show that the

O-wave still has comparable amplitudes with the E-wave in the near zone, and the field generated by the

dipole perpendicular to the magnetic field is of dominant effects. Moreover, it is found that there exists

remarkable “aggregation effect” in the radiation pattern of the E-wave, indicating that the propagable mode

in the magnetized plasma propagates mainly along the direction of the magnetic field.

INDEX TERMS Arbitrarily oriented electric dipole, magnetized plasma, near-field, very low frequency

electromagnetic wave

I. INTRODUCTION

A
S important and valuable devices in information trans-

mission systems, antennas have been extensively stud-

ied during the past few decades [1]–[4]. It is known that very

low frequency (VLF: 3–30 kHz) is a feasible frequency band

for submerged communications and navigation. However,

most of the existing VLF transmitting systems were built

on massive ground-based stations, which not only required

enormous investments but also were difficult to repair in short

time once damaged. Fortunately, with the advent of space

age, transmitting electromagnetic signals from near-earth

satellites were envisioned for submerged communications.

But it was only until recent decades, thanks to the rapid

development of space technology, VLF space-borne trans-

mitting and propagation experiments became practical. The

prevalence of VLF space-borne transmission benefits from

the following two aspects. On one hand, since the relative

refractive index of the ionosphere is much larger than that of

the free space in the VLF band [5], the electrical length of a

radiator of same geometric size and its radiation efficiency

can be greatly improved in the ionospheric environment.

On the other hand, because the onboard radiator will orbit

around the earth with the satellite, the propagation distance

between the transceivers is shortened remarkably, allowing

global communications to be covered with lower power.

In the past few decades, many countries especially in-

cluding the U.S. and Russia had been attempting to explore

the feasibility of transmitting VLF electromagnetic waves

from low earth orbit (LEO) satellites and have achieved

some progresses. Currently, antennas for VLF transmissions

can be divided into two categories, i.e. long and thin linear

antennas (such as those used by the National Aeronautics and
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Space Administration (NASA) and the Italian Space Agency

(ASI) [6], [7]) and large loop antennas (such as those used

by Russia [8], [9]). Similar applications within the last two

decades also include NASA’s imager for magnetopause-to-

aurora global exploration (IMAGE) project [10], the young

engineers 2 satellite (YES-2) launched by the European

Space Agency (ESA) [11], and the demonstration and sci-

ence experiment (DSX) mission conducted by the Air Force

Research Laboratory (AFRL) [12]. In the 2017’s proposal

of developing a VLF transmitter for LEO satellites called

the probing of plasmasphere and radiation belts (POPRAD)

by Lichtenberger et al. [13], both linear and loop antenna

configurations were thought to emit very-long waves prop-

agating along the magnetic field lines and sufficient to reach

the other hemisphere. In February 2018, China also put its

Zhangheng-1 satellite into orbit for the purpose of measuring

VLF electromagnetic fields and plasma parameters [14].

For realistic VLF transmit antennas, current distribution

and input impedance are two most critical concerns for

researchers as they determine the radiation efficiency of the

antenna to a large extent. However, the current distribution

and input impedance of an antenna are mainly affected by

the near-zone field it radiates, thus accurately calculating the

near-field generated by VLF sources in the ionospheric envi-

ronment becomes the crucial basis for the study of satellite-

borne antennas. In the history of investigating radiation field

in plasma media, Felsen [15] took the lead in calculation of

the field excited by an electric dipole in infinite homoge-

neous anisotropic media with the well-known “saddle point

method”. Nevertheless, this method is not applicable in the

VLF range since the “saddle point” can not be found in

most cases. Subsequently, some interesting works relating

to the VLF radiation patterns of arbitrarily oriented electric

and magnetic dipoles in a cold magnetoplasma were carried

out by Wang and Bell [16]. In 2003, the theory of dipole

antenna radiation in the VLF band was investigated by James

[17] using the data from rocket experiment “observations

of electric-field distributions in the ionospheric plasma: a

unique strategy C (OEDIPUS-C)”. In 2008, the near-field

characteristics of VLF electric dipole antennas in the mag-

netosphere were systematically examined by the scholar of

Stanford University [18], where closed-form solutions for

the near-field were obtained via numerical techniques. In a

more recent paper by He et al. [19], a semi-analytical method

was proposed for evaluating the near-zone field excited by a

VLF electric dipole parallel to the geomagnetic field in the

ionospheric plasma.

Due to the effects of the earth’s magnetic field, the iono-

sphere will behave remarkable anisotropic properties in the

VLF range. Under anisotropic conditions, there coexist t-

wo types of waves in the ionospheric plasma, namely, the

ordinary wave (O-wave) and the extraordinary wave (E-

wave), where the O-wave is an evanescent wave with larger

attenuation rate, and the E-wave is a propagable mode with

relatively small attenuation. It is known that the problem of

far-field radiated by a VLF dipole in an anisotropic medium

has been well solved and approximate analytical solutions

can be given [20], [21]. Nonetheless, the evaluation of VLF

near-field has long been a difficult issue that not many works

have thoroughly addressed before. This is because in the

VLF range the integrand of the field integral will turn to a

highly oscillatory function when the observation point moves

to the near region (kρ ≪ 1), making accurate estimation of

the near-field a challenging task. Moveover, in a real-world

VLF space-borne transmitting system, the angle between the

radiator and the geomagnetic field is not fixed, but may vary

with the motion of the satellite orbiting around the earth

[22], [23]. It is regrettable to see that the works mentioned

above only tackled the field distribution in isotropic cases or

in the far region, and the effect of geomagnetic inclination

angle on the radiator was seldom taken into consideration.

Despite a feasible method has been proposed to compute the

near-field in our previous work [19], the formulations only

considered the most basic case (i.e. the dipole is aligned with

the magnetic field), and the situation that the radiator may

be at arbitrary orientations to the earth’s magnetic field due

to the movement of the satellite, is still missing. Therefore,

in order to further compute the near-field of an arbitrarily

oriented antenna in the ionosphere and to provide theoretical

support for realistic VLF space-borne transmitting systems,

it is necessary to revisit this issue more comprehensively and

seek possible solutions.

In this paper, by extending our previous work to a more

general case, we will attempt to propose a theoretical method

for evaluating the VLF near-field excited by an arbitrarily

oriented electric dipole in a magnetized plasma. This method

is particularly applicable to cold plasma environments where

the sheath effects and wave-particle interactions are neglect-

ed. The focus of this paper lies on the investigation of the

wave-field structure in the near-zone using both analytical

and numerical techniques, with the aim of improving the

convergence and accuracy of the integration results when

the effect of geomagnetic inclination angle is taken into

account. The rest of the paper is organized as follows: the

analytical formulations of the problem are given in Sec. II

in detail. Based on the proposed method, computations and

discussions for various conditions are provided in Sec. III.

The paper concludes in Sec. IV.

II. FORMULATIONS OF THE PROBLEM

A. VLF FIELD EXCITED BY AN ARBITRARILY

ORIENTED ELECTRIC DIPOLE

Under the effects of the geomagnetic field, the dielectric

permittivity of the ionosphere transforms to a 3× 3 matrix in

the VLF range. Assume the magnetic field is aligned with the

z axis and use a cold plasma treatment, the relative dielectric

tensor of the ionosphere can be expressed as following based

on the classical magnetoionic theory [24], [25]:

ε̃ =





ε1 −iε2 0
iε2 ε1 0
0 0 ε3



 (1)
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where

ε1 = 1− XU

(U2 − Y 2)
, ε2 =

XY

(U2 − Y 2)
, ε3 = 1−X

U
(2)

U = 1 + i
ν

ω
, X =

ω2
p

ω2
, Y =

ωc

ω
(3)

ω2
p =

Ne2

ε0me

, ωc =

∣

∣

∣

∣

eB0

me

∣

∣

∣

∣

(4)

In above formulas, ω, ωp, and ωc are the operating angular

frequency, plasma frequency, and cyclotron frequency, re-

spectively, where B0 denotes the strength of the geomagnetic

field, me, e represent the mass and charge quantity of an

electron, and N , ν identify the electron density and collision

frequency of the ionosphere. Besides, ε0, µ0 are the permit-

tivity and permeability of the free space, respectively. In the

whole text, a time harmonic factor exp(−iωt) is assumed and

applied.
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FIGURE 1: Geometry and notations of an arbitrarily oriented

electric dipole immersed in a magnetized plasma.

The radiator is assumed to be located in the F2 layer of

the ionosphere, where the electron density is relatively stable

[26]. Then the ambient medium of the radiator can be seen

as an infinite homogeneous plasma since the wavelength

is greatly reduced due to the large refractive index of the

ionosphere in the VLF range. The corresponding geometry

and notations are illustrated in Fig. 1, where an electric dipole

of arbitrary orientation relative to the geomagnetic field is

immersed in the magnetized plasma and located at the origin

of the coordinate system. For mathematical simplification,

we let the arbitrarily oriented dipole always be in the x-z
plane by rotating the coordinate axes, and define the dip angle

between the dipole and the geomagnetic field as θb.

With the help of 3-dimensional Fourier transform, the field

radiated by an electric dipole with current moment Idl = 1 in

a magnetized plasma can be expressed with a triple integral

[21]. This integral has the following form in cylindrical

coordinates:

E(ρ, ϕ, z) =
−iωµ0

(2π)3

∫ ∞

−∞

dkz

∫ 2π

0

dϕk

∫ ∞

0

F (kz, λ, ϕk)

B(kz, λ)

× exp {−i [kzz + λρ cos (ϕ− ϕk)]}λdλ
(5)

where kz and λ represent the longitudinal and radial compo-

nents of the wave number, respectively, and ϕk denotes the

azimuth angle of the wave number. We have

B(kz, λ) = k60

[

(

kz
k0

)4

ε3 +

(

λ

k0

)2
(

ε22 − ε21 − ε1ε3
)

+

(

kz
k0

)2 (
λ

k0

)2

(ε1 + ε3)− 2

(

kz
k0

)2

ε1ε3

+ε3
(

ε21 − ε22
)

+

(

λ

k0

)4

ε1

]

(6)

Note that F is a function relating to the orientation of the

dipole. When the dipole is aligned with the z axis, i.e. parallel

to the magnetic field, the components of F z are expressed as

F z
x = kzλ(k

2
z + λ2 − k20ε1) cosϕk−ikzλk

2
0ε2 sinϕk (7)

F z
y = kzλ(k

2
z + λ2 − k20ε1) sinϕk+ikzλk

2
0ε2 cosϕk (8)

F z
z = (k2z + λ2)k2z − k20ε1(2k

2
z + λ2) + k40(ε

2
1 − ε22) (9)

If the dipole is oriented along the x axis, i.e. perpendicular

to the magnetic field, the three components of F x are

F x
x =k20(k

2
0ε1ε3−ε1λ

2−ε3k
2
z)+λ2(k2z+λ2−k20ε3) cos

2ϕk

(10)

F x
y =−ik20ε2(k

2
0ε3+λ2)−λ2(k2z+λ2−k20ε3) sinϕk cosϕk

(11)

F x
z = kzλ(k

2
z + λ2 − k20ε1) cosϕk+ikzλk

2
0ε2 sinϕk (12)

A dipole with arbitrary orientation to the background

magnetic field can be seen as a superposition of the above

two cases. Thus, the components of the corresponding F
arbi

of an arbitrarily oriented electric dipole as a function of θb
can be written by





F arbi
x

F arbi
y

F arbi
z



 =





F z
x

F z
y

F z
z



 cos θb +





F x
x

F x
y

F x
z



 sin θb (13)

By substituting (13) into (5), the integral equations for the

field components of an arbitrarily oriented electric dipole in

a magnetized plasma are obtained.

B. SIMPLIFICATION OF THE INTEGRAL WITH RESPECT

TO ϕK

In order to evaluate the field integral in the near zone precise-

ly, we need to make simplifications to the triple integral. It

is seen that the integrands for each field component contain
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several sinusoid functions of ϕk, thereby the integral with

respect to ϕk will be processed first. We let

p1(kz, λ) = kzλ(k
2
z + λ2 − k20ε1) (14)

p2(kz, λ) = ik20ε2kzλ (15)

p3(kz, λ) = k20(k
2
0ε1ε3 − ε1λ

2 − ε3k
2
z) (16)

p4(kz, λ) = λ2(k2z + λ2 − k20ε3) (17)

p5(λ) = ik20ε2(k
2
0ε3 + λ2) (18)

p6(kz,λ)=(k2z+λ
2)k2z−k20ε1(2k

2
z+λ2)+k40(ε

2
1−ε22) (19)

then the three components of F
arbi can be written in the

following forms after substitution of (7)-(12) into (13). We

have

F arbi
x = [p1(kz, λ) cosϕk − p2(kz, λ) sinϕk] cos θb

+ [p3(kz, λ) + p4(kz, λ) cos
2 ϕk] sin θb (20)

F arbi
y = [p1(kz, λ) sinϕk + p2(kz, λ) cosϕk] cos θb

− [p5(λ) + p4(kz, λ) sinϕk cosϕk] sin θb (21)

F arbi
z = p6(kz, λ) cos θb

+ [p1(kz, λ) cosϕk + p2(kz, λ) sinϕk] sin θb (22)

The integral form of the Bessel function is now borrowed,

which is [27]:

Jn(λρ) =
i−n

2π

∫ 2π

0

exp(iλρ cos θ) exp(inθ)dθ (23)

By letting θ = ϕ−ϕk and making proper transformations,

the following relations can be obtained. We have

∫ 2π

0

exp[−iλρ cos(ϕ− ϕk)]dϕk = 2πJ0(λρ) (24)

∫ 2π

0

exp[−iλρ cos(ϕ− ϕk)] cosϕkdϕk

= −2πiJ1(λρ) cosϕ (25)
∫ 2π

0

exp[−iλρ cos(ϕ− ϕk)] sinϕkdϕk

= −2πiJ1(λρ) sinϕ (26)
∫ 2π

0

exp[−iλρ cos(ϕ− ϕk)] cos
2 ϕkdϕk

= π[J0(λρ)− J2(λρ) cos 2ϕ] (27)
∫ 2π

0

exp[−iλρ cos(ϕ− ϕk)] sinϕk cosϕkdϕk

= −πJ2(λρ) sin 2ϕ (28)

With the help of (24)-(28), all integrals with respect to ϕk

can be expressed using Bessel functions J0, J1, J2. We write
∫ 2π

0

F arbi
x (kz, λ, ϕk) exp[−iλρ cos(ϕ− ϕk)]dϕk

= 2π

{

sin θb[p3(kz, λ) +
1

2
p4(kz, λ)]J0(λρ)

− i cos θb[p1(kz, λ) cosϕ− p2(kz, λ) sinϕ]J1(λρ)

− 1

2
sin θbp4(kz, λ) cos 2ϕJ2(λρ)

}

= 2πSx(kz, λ) (29)

∫ 2π

0

F arbi
y (kz, λ, ϕk) exp[−iλρ cos(ϕ− ϕk)]dϕk

= 2π

{

− sin θbp5(λ)J0(λρ)

− i cos θb[p1(kz, λ) sinϕ+ p2(kz, λ) cosϕ]J1(λρ)

+
1

2
sin θbp4(kz, λ) sin 2ϕJ2(λρ)

}

= 2πSy(kz, λ) (30)

∫ 2π

0

F arbi
z (kz, λ, ϕk) exp[−iλρ cos(ϕ− ϕk)]dϕk

= 2π

{

cos θbp6(kz, λ)J0(λρ)

− i sin θb[p1(kz, λ) cosϕ+ p2(kz, λ) sinϕ]J1(λρ)

}

= 2πSz(kz, λ) (31)

By substituting (29)-(31) into (5), all integrals with respect

to ϕk can be eliminated and the original triple integral for

each field component reduces to a double integral. After

rearrangements, we have

Ej(ρ, ϕ, z)=
−iωµ0

(2π)2

∫ ∞

−∞

exp(−ikzz)dkz

∫ ∞

0

Sj(kz, λ)

B(kz, λ)
λdλ

(32)

where j = x, y, z.

C. SIMPLIFICATION OF THE INTEGRAL WITH RESPECT

TO KZ

Next, we will simplify the integral with respect to kz . First of

all, we need to normalize kz , λ, ρ, z by

k′z = kz/k0, λ′ = λ/k0 (33)

ρ′ = k0ρ, z′ = k0z (34)

where k0 = ω
√
µ0ε0 denotes the wave number in free space.

After the normalization process, the integral expression for

each field component is rewritten as

Ej(ρ
′, ϕ, z′) = − ik20η

(2π)2

∫ ∞

−∞

exp(−ik′zz
′)dk′z

·
∫ ∞

0

S′
j(k

′
z, λ

′)

B′(k′z, λ
′)
λ′dλ′, j = x, y, z.

(35)
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where η =
√

µ0/ε0 denotes the wave impedance in free

space. In addition, the normalized expressions for S′
x, S′

y , S′
z

are

S′
x(k

′
z, λ

′) = sin θb

[

p′3(k
′
z, λ

′) +
1

2
p′4(k

′
z, λ

′)

]

J0(λ
′ρ′)

− i cos θb[p
′
1(k

′
z, λ

′) cosϕ− p′2(k
′
z, λ

′) sinϕ]J1(λ
′ρ′)

− 1

2
sin θbp

′
4(k

′
z, λ

′) cos 2ϕJ2(λ
′ρ′) (36)

S′
y(k

′
z, λ

′) = − sin θbp
′
5(λ

′)J0(λ
′ρ′)

− i cos θb[p
′
1(k

′
z, λ

′) sinϕ+ p′2(k
′
z, λ

′) cosϕ]J1(λ
′ρ′)

+
1

2
sin θbp

′
4(k

′
z, λ

′) sin 2ϕJ2(λ
′ρ′) (37)

S′
z(k

′
z, λ

′) = cos θbp
′
6(k

′
z, λ

′)J0(λ
′ρ′)

− i sin θb[p
′
1(k

′
z, λ

′) cosϕ+ p′2(k
′
z, λ

′) sinϕ]J1(λ
′ρ′)
(38)

where

p′1(k
′
z, λ

′) = k′zλ
′(k′2z + λ′2 − ε1) (39)

p′2(k
′
z, λ

′) = iε2k
′
zλ

′ (40)

p′3(k
′
z, λ

′) = ε1ε3 − ε1λ
′2 − ε3k

′2
z (41)

p′4(k
′
z, λ

′) = λ′2(k′2z + λ′2 − ε3) (42)

p′5(λ
′) = iε2(ε3 + λ′2) (43)

p′6(k
′
z, λ

′) = (k′2z +λ′2)k′2z −ε1(2k
′2
z +λ′2) + ε21 − ε22 (44)

and B′ is given by

B′(k′z, λ
′) = ε3

{

k′4z + k′2z

[

λ′2

(

1 +
ε1
ε3

)

− 2ε1

]

+ λ′4

(

ε1
ε3

)

+ λ′2

(

ε22 − ε21
ε3

− ε1

)

+ ε21 − ε22

}

(45)

It is noted that B′ can also be written in the following form

through factorization. That is

B′(k′z, λ
′) = ε3[k

′2
z − k′21 (λ

′)][k′2z − k′22 (λ
′)] (46)

where

k′21 (λ
′) =

−g(λ′) +
√

g2(λ′)− 4h(λ′)

2
(47)

k′22 (λ
′) =

−g(λ′)−
√

g2(λ′)− 4h(λ′)

2
(48)

and

g(λ′) = λ′2

(

1 +
ε1
ε3

)

− 2ε1 (49)

h(λ′) = λ′4

(

ε1
ε3

)

+ λ′2

(

ε22 − ε21
ε3

− ε1

)

+ ε21 − ε22 (50)

It is clear that there exist four zeros for B′ at ±k′1 and

±k′2, which are also the poles of the integrand in (35). By

using the residue theorem, the integral with respect to k′z can

be expressed with the sum of residues at each pole and the

double integral in (35) is further reduced to the following

single integral:

Ej(ρ
′, ϕ, z′) = ± k20η

4πε3

∫ ∞

0

[

S′
j(k

′
1, λ

′) exp(ik′1|z′|)
k′1(k

′2
1 − k′22 )

−
S′
j(k

′
2, λ

′) exp(ik′2|z′|)
k′2(k

′2
1 − k′22 )

]

λ′dλ′, j = x, y, z.

(51)

where the plus sign in front of the integral stands for z′ < 0,

and the minus sign stands for z′ > 0.

D. EVALUATION OF THE NEAR-FIELD COMPONENT

The integral equation for the field component is now a single

integral as shown in (51) and is suitable for evaluation of

the near-field. Taking Ex component as example, the field

integral can be written as

Ex(ρ
′, ϕ, z′) = ± k20η

4πε3
[Ix1(ρ

′, ϕ, z′)− Ix2(ρ
′, ϕ, z′)]

(52)

where Ix1 and Ix2 represent the integral contributions of the

E-wave and O-wave, respectively. We write

Ix1(ρ
′, ϕ, z′) =

∫ ∞

0

S′
x(k

′
1, λ

′) exp(ik′1|z′|)
k′1 (k

′2
1 − k′22 )

λ′dλ′ (53)

Ix2(ρ
′, ϕ, z′) =

∫ ∞

0

S′
x(k

′
2, λ

′) exp(ik′2|z′|)
k′2 (k

′2
1 − k′22 )

λ′dλ′ (54)

By expanding the expressions of S′
x(k

′
1, λ

′) and S′
x(k

′
2, λ

′)
in above formulas, Ix1 turns to

Ix1(ρ
′, ϕ, z′) = sin θbI

(1)
x1 (ρ

′, z′)− i cos θbI
(2)
x1 (ρ

′, ϕ, z′)

− 1

2
sin θbI

(3)
x1 (ρ

′, ϕ, z′) (55)

where

I
(1)
x1 (ρ

′, z′) =

∫ ∞

0

[

p′3(k
′
1, λ

′) + 1
2p

′
4(k

′
1, λ

′)
]

k′1(k
′2
1 − k′22 )

· exp(ik′1|z′|)J0(λ′ρ′)λ′dλ′ (56)

I
(2)
x1 (ρ

′, ϕ, z′) =

∫ ∞

0

[p′1(k
′
1, λ

′) cosϕ− p′2(k
′
1, λ

′) sinϕ]

k′1(k
′2
1 − k′22 )

· exp(ik′1|z′|)J1(λ′ρ′)λ′dλ′ (57)

I
(3)
x1 (ρ

′, ϕ, z′) =

∫ ∞

0

p′4(k
′
1, λ

′) cos 2ϕ

k′1(k
′2
1 − k′22 )

· exp(ik′1|z′|)J2(λ′ρ′)λ′dλ′ (58)

and Ix2 becomes

Ix2(ρ
′, ϕ, z′) = sin θbI

(1)
x2 (ρ

′, z′)− i cos θbI
(2)
x2 (ρ

′, ϕ, z′)

− 1

2
sin θbI

(3)
x2 (ρ

′, ϕ, z′) (59)
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where

I
(1)
x2 (ρ

′, z′) =

∫ ∞

0

[

p′3(k
′
2, λ

′) + 1
2p

′
4(k

′
2, λ

′)
]

k′2(k
′2
1 − k′22 )

· exp(ik′2|z′|)J0(λ′ρ′)λ′dλ′ (60)

I
(2)
x2 (ρ

′, ϕ, z′) =

∫ ∞

0

[p′1(k
′
2, λ

′) cosϕ− p′2(k
′
2, λ

′) sinϕ]

k′2(k
′2
1 − k′22 )

· exp(ik′2|z′|)J1(λ′ρ′)λ′dλ′ (61)

I
(3)
x2 (ρ

′, ϕ, z′) =

∫ ∞

0

p′4(k
′
2, λ

′) cos 2ϕ

k′2(k
′2
1 − k′22 )

· exp(ik′2|z′|)J2(λ′ρ′)λ′dλ′ (62)
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(3)

FIGURE 2: Real part of the integrand of (a) I
(1)
x2 , (b) I

(2)
x2 , (c)

I
(3)
x2 versus λ′. (f = 10 kHz, z = ρ = 0.1λe, ϕ = 30◦.)

Since the O-wave is an evanescent wave with great attenu-

ation rate, we first discuss the evaluation of the integral Ix2.

The integrands of the three integrals corresponding to the

contribution of the O-wave are depicted in Fig. 2 with f = 10
kHz, z = ρ = 0.1λe (where λe denotes the wavelength of the

E-wave along the magnetic field), and ϕ = 30◦. It is observed

from Fig. 2 that all integrands of Ix2 converge rapidly with λ′

due to the larger imaginary part of k′2 [19]. Thus, I
(1)
x2 , I

(2)
x2 ,

I
(3)
x2 can be directly evaluated through numerical integration

with satisfactory accuracy.

However, due to the small attenuation rate of the E-wave,

the integrands of Ix1 are all oscillating functions when the

observation point is in the near region (as can be seen from

Fig. 3), indicating that the integrals I
(1)
x1 , I

(2)
x1 , I

(3)
x1 are not

suitable for direct evaluation. Here, we will adopt a speed-

up convergence algorithm to pre-process the integrands of

I
(1)
x1 , I

(2)
x1 , and I

(3)
x1 . Let Q(λ′) = g2(λ′) − 4h2(λ′), when

λ′ approaches to a very large number, we have

k′21 − k′22 =
√

Q(λ′) =
√

g2(λ′)− 4h(λ′)

=

√

λ′4

(

1− ε1
ε3

)2

− 4λ′2
ε22
ε3

+ 4ε22

≈ λ′2

(

1− ε1
ε3

)

− 2ε22
ε3 − ε1

=

(

1− ε1
ε3

)

(λ′2 − a2)

(63)

where

a2 =
2ε22ε3

(ε1 − ε3)2
(64)

Substitute (63) into (47), k′21 can be approximated as

k′21 (λ
′) =

−g(λ′) +
√

Q(λ′)

2
≈ −ε1

ε3
(λ′2 − b2) (65)

where

b2 =
ε22ε3

ε1(ε1 − ε3)
+ ε3 (66)

it follows that

k′1(λ
′) ≈

√

−ε1
ε3

√

λ′2 − b2 = k∗1(λ
′) (67)

By utilizing the relations between Bessel functions and

Hankel functions, which are

Jn(λρ) =
1

2

[

H(1)
n (λρ) +H(2)

n (λρ)
]

(68)

H(1)
n (−λρ) = −H(2)

n (λρ) (69)

(56)-(58) can be rewritten in the following forms after intro-

ducing the speed-up convergence algorithm. We have

I
(1)
x1 (ρ

′, z′) =

∫ ∞

0

{

[

p′3(k
′
1, λ

′) + 1
2p

′
4(k

′
1, λ

′)
]

exp(ik′1|z′|)
k′1(k

′2
1 − k′22 )

− f (1)
x (λ′)

}

J0(λ
′ρ′)λ′dλ′

+
1

2

∫ ∞

−∞

f (1)
x (λ′)H

(1)
0 (λ′ρ′)λ′dλ′

= I
(1.1)
x1 +

1

2
I
(1.2)
x1 (70)

I
(2)
x1 (ρ

′, ϕ, z′) =
∫ ∞

0

{

[p′1(k
′
1, λ

′) cosϕ− p′2(k
′
1, λ

′) sinϕ] exp(ik′1|z′|)
k′1(k

′2
1 − k′22 )

− f (2)
x (λ′)

}

J1(λ
′ρ′)λ′dλ′

+
1

2

∫ ∞

−∞

f (2)
x (λ′)H

(1)
1 (λ′ρ′)λ′dλ′

= I
(2.1)
x1 +

1

2
I
(2.2)
x1 (71)
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I
(3)
x1 (ρ

′, ϕ, z′) =

∫ ∞

0

[

p′4(k
′
1, λ

′) cos 2ϕ exp(ik′1|z′|)
k′1(k

′2
1 − k′22 )

− f (3)
x (λ′)

]

J2(λ
′ρ′)λ′dλ′

+
1

2

∫ ∞

−∞

f (3)
x (λ′)H

(1)
2 (λ′ρ′)λ′dλ′

= I
(3.1)
x1 +

1

2
I
(3.2)
x1 (72)

where

f (1)
x (λ′) ≈

[

p′3(k
∗
1 , λ

′) + 1
2p

′
4(k

∗
1 , λ

′)
]

exp(ik∗1 |z′|)
k∗1

√

Q(λ′)
(73)

f (2)
x (λ′) ≈ [p′1(k

∗
1 , λ

′) cosϕ− p′2(k
∗
1 , λ

′) sinϕ] exp(ik∗1 |z′|)
k∗1

√

Q(λ′)
(74)

f (3)
x (λ′) ≈ p′4(k

∗
1 , λ

′) cos 2ϕ exp(ik∗1 |z′|)
k∗1

√

Q(λ′)
(75)
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FIGURE 3: Real part of the integrand of (a) I
(1)
x1 , (b) I

(2)
x1 ,

(c) I
(3)
x1 versus λ′ before applying the speed-up convergence

algorithm. (f = 10 kHz, z = ρ = 0.1λe, ϕ = 30◦.)

Pre-processed by the speed-up convergence algorithm, the

integrands of the former integrals of (70)-(72) (we denote

them as I
(1.1)
x1 , I

(2.1)
x1 , I

(3.1)
x1 ) become fast converging func-

tions as well and I
(1.1)
x1 , I

(2.1)
x1 , I

(3.1)
x1 are now integrable

as is shown in Fig. 4. For the latter integrals in (70)-(72)

(we denote them as I
(1.2)
x1 , I

(2.2)
x1 , I

(3.2)
x1 ), all integrands only

possess a pole at λ′ = a and a branch point at λ′ = b in the

upper plane of λ′ (assume the imaginary parts of a and b are

positive). Therefore, based on the complex variable theory,
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FIGURE 4: Real part of the integrand of (a) I
(1.1)
x1 , (b) I

(2.1)
x1 ,

(c) I
(3.1)
x1 versus λ′ after applying the speed-up convergence

algorithm. (f = 10 kHz, z = ρ = 0.1λe, ϕ = 30◦.)

I
(1.2)
x1 , I

(2.2)
x1 , and I

(3.2)
x1 can be further expressed as follows:

I
(1.2)
x1 =

∫ ∞

−∞

f (1)
x (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ = πiH

(1)
0 (aρ′)

·
{

p′3[k
∗
1(a), a] +

1
2p

′
4[k

∗
1(a), a]

}

exp[ik∗1(a)|z′|]
k∗1(a)

(

1− ε1
ε3

)

+

∫

Γ

f (1)
x (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ (76)

I
(2.2)
x1 =

∫ ∞

−∞

f (2)
x (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ = πiH

(1)
1 (aρ′)

· {p
′
1[k

∗
1(a), a] cosϕ− p′2[k

∗
1(a), a] sinϕ} exp[ik∗1(a)|z′|]

k∗1(a)
(

1− ε1
ε3

)

+

∫

Γ

f (2)
x (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ (77)

I
(3.2)
x1 =

∫ ∞

−∞

f (3)
x (λ′)H

(1)
2 (λ′ρ′)λ′dλ′ = πiH

(1)
2 (aρ′)

· p
′
4[k

∗
1(a), a] cos 2ϕ exp[ik∗1(a)|z′|]

k∗1(a)
(

1− ε1
ε3

)

+

∫

Γ

f (3)
x (λ′)H

(1)
2 (λ′ρ′)λ′dλ′ (78)

Note that the first terms in (76)-(78) are the residues at the

pole λ′ = a, while the second terms represent the integral

along the branch line Γ, where Γ is a branch line circling

around the branch point λ′ = b. The locations of the pole,

branch point, and branch line in the upper complex plane of

λ′ are illustrated in Fig. 5. If we define b = β + iγ, it is

readily verified that β ≪ γ, and at the branch point we have

λ′ρ′ ≈ γρ′ ≫ 1 as long as ρ ≥ 0.05λe [19]. In this case, the

Hankel functions can be expanded in its asymptotic forms. If

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083743, IEEE Access

T. He et al.: VLF Near-Field Excited by an Arbitrarily Oriented Electric Dipole in a Magnetized Plasma

we let λ′ = b+ iγτ2 at the two sides of the branch line, then

the Hankel functions can be written as

H
(1)
0 (λ′ρ′) ≈

√

2

πλ′ρ′
ei(λ

′ρ′−π
4
)

=

√

2

π(b+ iγτ2)ρ′
ei(bρ

′−π
4 )e−γρ′τ2

(79)

H
(1)
1 (λ′ρ′) ≈

√

2

πλ′ρ′
ei(λ

′ρ′− 3π
4
)

=

√

2

π(b+ iγτ2)ρ′
ei(bρ

′− 3π
4 )e−γρ′τ2

(80)

H
(1)
2 (λ′ρ′) ≈

√

2

πλ′ρ′
ei(λ

′ρ′− 5π
4
)

=

√

2

π(b+ iγτ2)ρ′
ei(bρ

′− 5π
4 )e−γρ′τ2

(81)

Integration path

Pole
λ' = a  ✱

Branch point
λ' = b

Γ

Im(λ')

Re(λ')
Origin

FIGURE 5: Locations of the pole, branch point, and branch

line in the upper complex plane of λ′.

Because γρ′ ≫ 1, it is deduced from the attenuation char-

acteristic of the exponential factor that the main contribution

of the integral along the branch line concentrates near the

branch point. Hence, we can further approximate k∗1 as

k∗1 =

√

−ε1
ε3

√

λ′2 − b2

=

√

−ε1
ε3

√

(b+ iγτ2)2 − b2 ≈
√

2γbε1
ε3

ei
3

4
πτ (82)

It is noted that the phase of k∗1 has a difference of 180◦

at the two sides of Γ. By substitutions of (79)-(81) and

(82) into the second terms of (76)-(78) separately and use

approximation λ′ ≈ b, all the integrals along the branch line

Γ can be rewritten in the following forms:

∫

Γ

f (1)
x (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ =

2iε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

·
∫ ∞

−∞

(cx1τ
2 + cx2)e

i

√

−2iγbε1
ε3

τ |z′|
e−γρ′τ2

dτ

(83)

∫

Γ

f (2)
x (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ =

2ε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

·
∫ ∞

−∞

(cx3τ
3 + cx4τ)e

i

√

−2iγbε1
ε3

τ |z′|
e−γρ′τ2

dτ

(84)

∫

Γ

f (3)
x (λ′)H

(1)
2 (λ′ρ′)λ′dλ′ =

−2iε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

·
∫ ∞

−∞

(cx5τ
2 + cx6)e

i

√

−2iγbε1
ε3

τ |z′|
e−γρ′τ2

dτ

(85)

where

cx1 = iε1bγ

(

2− b2

ε3

)

(86)

cx2 = ε1ε3 − ε1b
2 +

1

2
b2(b2 − ε3) (87)

cx3 =

(−2iγbε1
ε3

)
3

2

b cosϕ (88)

cx4 =

√

−2iγbε1
ε3

b [(b− ε1) cosϕ− iε2 sinϕ] (89)

cx5 =
−2iγb3ε1

ε3
cos 2ϕ (90)

cx6 = b2(b2 − ε3) cos 2ϕ (91)

If we define

W1(ρ
′, z′) =

∫ ∞

−∞

τ4e−uτ2

eqτdτ (92)

W2(ρ
′, z′) =

∫ ∞

−∞

τ2e−uτ2

eqτdτ (93)

W3(ρ
′, z′) =

∫ ∞

−∞

e−uτ2

eqτdτ (94)

W4(ρ
′, z′) =

∫ ∞

−∞

τ3e−uτ2

eqτdτ (95)

W5(ρ
′, z′) =

∫ ∞

−∞

τe−uτ2

eqτdτ (96)

by utilizing the integral equation of exponential functions

[27]

∫ ∞

−∞

e−ux2±qxdx =

√

π

u
e

q2

4u , Re(u) > 0. (97)

and let

u = γρ′, q = i

√

−2iγbε1
ε3

|z′| (98)
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then the analytical formulas for W1-W5 can be obtained. We

write

W3(ρ
′, z′) =

∫ ∞

−∞

e−uτ2

eqτdτ =
√
πe

q2

4uu− 1

2 (99)

W2(ρ
′, z′) = −dW3

du
=

1

2

√
πe

q2

4u

(

u− 3

2 +
q2

2
u− 5

2

)

(100)

W1(ρ
′, z′) = −dW2

du

=
1

4

√
πe

q2

4u

(

3u− 5

2 + 3q2u− 7

2 +
q4

4
u− 9

2

)

(101)

W5(ρ
′, z′) =

dW3

dq
=

√
π

2
qe

q2

4uu− 3

2 (102)

W4(ρ
′, z′) = −dW5

du
=

√
π

2
qe

q2

4u

(

3

2
u− 5

2 +
q2

4
u− 7

2

)

(103)

Therefore, the final expressions for (83)-(85) are as follow-

ing:

∫

Γ

f (1)
x (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ =

2iε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

· [cx1W2(ρ
′, z′) + cx2W3(ρ

′, z′)]
(104)

∫

Γ

f (2)
x (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ =

2ε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

· [cx3W4(ρ
′, z′) + cx4W5(ρ

′, z′)]
(105)

∫

Γ

f (3)
x (λ′)H

(1)
2 (λ′ρ′)λ′dλ′ =

−2iε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

· [cx5W2(ρ
′, z′) + cx6W3(ρ

′, z′)]
(106)

By now, we have given the complete procedures for evalu-

ating the near-field of an arbitrarily oriented electric dipole in

a magnetized plasma. The formula contains the contributions

of both the O-wave and E-wave, where the integral for the

O-wave can be directly estimated through numerical integra-

tion, while the integral for the E-wave includes a speed-up

converged integral and an analytical part. By summing the

integrals for both the O-wave and E-wave, the field in the near

zone is determined. It is worth mentioning that as the strength

of the geomagnetic field B0 tends to zero, the ionospheric

plasma will reduce to an isotropic medium and there is no

longer any so-called O-wave or E-wave but only one mode in

the isotropic case. This isotropic radiation-field problem can

be readily solved with existing techniques in literature.

Moreover, the near-field components Ey , Ez excited by an

arbitrary oriented dipole can also be obtained with similar

procedures. Detailed formulations for deriving Ey , Ez are

provided in Appendix and will not be discussed here. Finally,

the field components in cylindrical coordinates are readily

obtained via coordinate transformation. We write




Eρ

Eϕ

Ez



 =





cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1









Ex

Ey

Ez



 (107)

III. COMPUTATIONS AND DISCUSSIONS

Based on the proposed method, we will carry out corre-

sponding computations under several different conditions.

The parameters used in computation are selected as follows:

the operating frequency is taken as f = 10 kHz, the strength

of the earth’s magnetic field is B0 = 0.5 × 10−4 T, and the

electron density and collision frequency of the ionosphere are

taken as N = 1.4× 1012 m−3, ν = 1000 s−1, then we have

ωp = 6.6×107 arc/s, ωc = 8.6×106 arc/s, and the condition

ω < ωc < ωp is satisfied.
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FIGURE 6: Field strength of Eρ for the E-wave varying with

the propagation distance ρ under different geomagnetic dip

angles. (f = 10 kHz, z = 0.2λe, ϕ = 0◦.)

Under anisotropic conditions, the field excited by an elec-

tric dipole consists of both the O-wave and the E-wave.

To investigate the effect of dipole orientation on the field

properties of the O-wave and E-wave, the Eρ component for

the E-wave and O-wave versus propagation distance ρ are

displayed separately in Figs. 6 and 7 with different geomag-

netic tilt angles. The longitudinal propagation distance and

azimuth angle are set as z = 0.2λe, ϕ = 0◦. It is seen that the

field strength of both waves decreases with the propagation

distance, where the O-wave decays obviously faster than the

E-wave. Despite the O-wave is an evanescent wave with large

attenuation rate, it still has comparable amplitudes with the

E-wave in the near zone (e.g. ρ < λe, z < λe). There-

fore, the influence of the O-wave to the total field should

never be neglected if we want to calculate the near-field

accurately for an anisotropic case. It is worth mentioning

that the minima on the O-wave’s curves are caused by the

phase mutation of the O-wave during propagation and the
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FIGURE 7: Field strength of Eρ for the O-wave varying with
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angles. (f = 10 kHz, z = 0.2λe, ϕ = 0◦.)

locations of those minima exactly coincide with the phase

mutation points [19]. Moreover, it is found that the magnitude

of both waves increases when the dip angle becomes larger.

Since the field excited by an arbitrarily oriented dipole is

the superposition of the field due to a vertical electric dipole

and a horizontal electric dipole relative to the magnetic field,

this phenomenon indicates that the field produced by the

horizontal dipole is much stronger than that by the vertical

one. We may thus infer that for an arbitrarily oriented electric

dipole in a magnetized plasma, the field generated by the

dipole perpendicular to the magnetic field is of dominant

effects.
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FIGURE 8: Radiation patterns of the E-wave and O-wave at

different geomagnetic dip angles. (f = 10 kHz, θb = 15◦

and 30◦, field component: Ez in dB(µV/m).)
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FIGURE 9: Radiation patterns of the E-wave and O-wave at

different geomagnetic dip angles. (f = 10 kHz, θb = 45◦

and 75◦, field component: Ez in dB(µV/m).)

To see the field distribution more intuitively, the radiation

pattern (in dB(µV/m)) of the Ez component of the dipole is

visualized at different dip angles shown in Figs. 8 and 9. It

is observed that the field distribution of the O-wave is very

similar to that in an isotropic medium, and the larger the dip

angle, the more evident the pattern of the O-wave is alike that

of a horizontal dipole in free space. However, the radiation

pattern of the E-wave exhibits conspicuous “aggregation

effect” on the direction of the geomagnetic field, indicating

that the propagable mode under an anisotropic condition

propagates mainly along the magnetic field. The reason for

this fact is that, the attenuation rate of the E-wave will

increase with the geomagnetic inclination angle in the VLF

range, and the wave will decay faster when the propagation

direction deviates from θb = 0◦. By comparison of the

radiation patterns at different angles, it is readily seen that the

overall amplitude of the field becomes larger as the dip angle

increases, especially when θb < 45◦. This phenomenon is

totally consistent with the one found in Figs. 6 and 7, which

is attributed to the dominant field contribution coming from

the horizontal electric dipole. Therefore, in order to obtain

a stronger radiation field with limited power, the orientation

of the dipole should be as perpendicular as possible to the

geomagnetic field when placed in the magnetized plasma.

IV. CONCLUSION

We investigate the VLF near-field due to an electric dipole

at arbitrary orientation to the magnetic field in a magnetized

plasma. The arbitrarily oriented electric dipole is regarded

as the superposition of dipoles parallel and perpendicular

to the magnetic field. The excited field in this case consists

of the contributions of both the O-wave and E-wave, where

the O-wave can be directly estimated through numerical

integration, and the E-wave in the near zone is evaluated

using a speed-up convergence algorithm and the complex
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variable theory. It is noted that deforming the integration path

into the complex plane of λ′ may also provide similar effects

in improving the convergence of the E-wave’s integrands

[28]. Computations show that the field strength of the O-wave

still has comparable magnitude with the E-wave when the

propagation distance is small, and the dipole perpendicular

to the magnetic field dominates the near-field. Moreover, the

radiation pattern shows that there exists remarkable “aggre-

gation effect” in the field distribution of the E-wave, which

implies that the propagable mode in a magnetized plasma

mainly orients along the geomagnetic field. By precisely

evaluating the near-field of an arbitrarily oriented radiator

under anisotropic conditions, this work paves the way for the

antenna analysis in realistic VLF space-borne transmitting

applications.

APPENDIX. EVALUATION OF THE FIELD COMPONENTS

EY , EZ

The near-field components Ey , Ez excited by an arbitrarily

oriented electric dipole in a magnetized plasma can also be

expressed with the integral contributions from both the O-

wave and E-wave. We write

Ey(ρ
′, ϕ, z′)=± k20η

4πε3
[Iy1(ρ

′, ϕ, z′)−Iy2(ρ
′, ϕ, z′)] (108)

Ez(ρ
′, ϕ, z′)=± k20η

4πε3
[Iz1(ρ

′, ϕ, z′)−Iz2(ρ
′, ϕ, z′)] (109)

where

Iym(ρ′, ϕ, z′) = − sin θbI
(1)
ym(ρ′, z′)− i cos θbI

(2)
ym(ρ′, ϕ, z′)

+
1

2
sin θbI

(3)
yj (ρ′, ϕ, z′) (110)

Izm(ρ′, ϕ, z′) = cos θbI
(1)
zm(ρ′, z′)− i sin θbI

(2)
zm(ρ′, ϕ, z′)

(111)

and

I(1)ym(ρ′, z′) =

∫ ∞

0

p′5(λ
′) exp(ik′m|z′|)

k′m(k′21 − k′22 )
J0(λ

′ρ′)λ′dλ′

(112)

I(2)ym(ρ′, ϕ, z′) =

∫ ∞

0

[p′1(k
′
m, λ′) sinϕ+ p′2(k

′
m, λ′) cosϕ]

k′m(k′21 − k′22 )

· exp(ik′m|z′|)J1(λ′ρ′)λ′dλ′ (113)

I(3)ym(ρ′, ϕ, z′) =

∫ ∞

0

p′4(k
′
m, λ′) sin 2ϕ exp(ik′m|z′|)

k′m(k′21 − k′22 )

· J2(λ′ρ′)λ′dλ′ (114)

I(1)zm(ρ′, z′) =

∫ ∞

0

p′6(k
′
m, λ′) exp(ik′m|z′|)
k′m(k′21 − k′22 )

J0(λ
′ρ′)λ′dλ′

(115)

I(2)zm(ρ′, ϕ, z′) =

∫ ∞

0

[p′1(k
′
m, λ′) cosϕ+ p′2(k

′
m, λ′) sinϕ]

k′m(k′21 − k′22 )

· exp(ik′m|z′|)J1(λ′ρ′)λ′dλ′ (116)

In (110)-(116), m = 1 corresponds to the integrals for the

E-wave and m = 2 corresponds to the integrals for the O-

wave. Note that Iy2 and Iz2 are also fast converging integrals

due to the large imaginary part of k′2, they can be directly

evaluated via numerical integration. For the integrals Iy1 and

Iz1, the speed-up convergence algorithm is also applied and

the resulting formulas are

I
(1)
y1 (ρ′, z′) =

∫ ∞

0

[

p′5(λ
′) exp(ik′1|z′|)

k′1(k
′2
1 − k′22 )

− f (1)
y (λ′)

]

· J0(λ′ρ′)λ′dλ′

+
1

2

∫ ∞

−∞

f (1)
y (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ (117)

I
(2)
y1 (ρ′, ϕ, z′) =
∫ ∞

0

{

[p′1(k
′
1, λ

′) sinϕ+ p′2(k
′
1, λ

′) cosϕ] exp(ik′1|z′|)
k′1(k

′2
1 − k′22 )

− f (2)
y (λ′)

}

J1(λ
′ρ′)λ′dλ′

+
1

2

∫ ∞

−∞

f (2)
y (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ (118)

I
(3)
y1 (ρ′, ϕ, z′) =

∫ ∞

0

[

p′4(k
′
1, λ

′) sin 2ϕ exp(ik′1|z′|)
k′1(k

′2
1 − k′22 )

− f (3)
y (λ′)

]

J2(λ
′ρ′)λ′dλ′

+
1

2

∫ ∞

−∞

f (3)
y (λ′)H

(1)
2 (λ′ρ′)λ′dλ′ (119)

I
(1)
z1 (ρ′, z′) =

∫ ∞

0

[

p′6(k
′
1, λ

′) exp(ik′1|z′|)
k′1(k

′2
1 − k′22 )

− f (1)
z (λ′)

]

· J0(λ′ρ′)λ′dλ′

+
1

2

∫ ∞

−∞

f (1)
z (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ (120)

I
(2)
z1 (ρ′, ϕ, z′) =
∫ ∞

0

{

[p′1(k
′
1, λ

′) cosϕ+ p′2(k
′
1, λ

′) sinϕ] exp(ik′1|z′|)
k′1(k

′2
1 − k′22 )

− f (2)
z (λ′)

}

J1(λ
′ρ′)λ′dλ′

+
1

2

∫ ∞

−∞

f (2)
z (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ (121)

where

f (1)
y (λ′) =

p′5(λ
′) exp(ik∗1 |z′|)
k∗1

√

Q(λ′)
(122)

f (2)
y (λ′) =

[p′1(k
∗
1 , λ

′) sinϕ+ p′2(k
∗
1 , λ

′) cosϕ] exp(ik∗1 |z′|)
k∗1

√

Q(λ′)
(123)

f (3)
y (λ′) =

p′4(k
∗
1 , λ

′) sin 2ϕ exp(ik∗1 |z′|)
k∗1

√

Q(λ′)
(124)

f (1)
z (λ′) =

p′6(k
∗
1 , λ

′) exp(ik∗1 |z′|)
k∗1

√

Q(λ′)
(125)

f (2)
z (λ′) =

[p′1(k
∗
1 , λ

′) cosϕ+ p′2(k
∗
1 , λ

′) sinϕ] exp(ik∗1 |z′|)
k∗1

√

Q(λ′)
(126)
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With the help of the complex variable theory, the second

terms of (117)-(121) can be further expressed as a sum of

the residue at the pole and the integral along the branch line.

They are

∫ ∞

−∞

f (1)
y (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ = πiH

(1)
0 (aρ′)

· p
′
5(a) exp[ik

∗
1(a)|z′|]

k∗1(a)
(

1− ε1
ε3

) +

∫

Γ

f (1)
y (λ′)H

(1)
0 (λ′ρ′)λ′dλ′

(127)

∫ ∞

−∞

f (2)
y (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ = πiH

(1)
1 (aρ′)

· {p
′
1[k

∗
1(a), a] sinϕ+ p′2[k

∗
1(a), a] cosϕ} exp[ik∗1(a)|z′|]

k∗1(a)
(

1− ε1
ε3

)

+

∫

Γ

f (2)
y (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ (128)

∫ ∞

−∞

f (3)
y (λ′)H

(1)
2 (λ′ρ′)λ′dλ′ = πiH

(1)
2 (aρ′)

· p
′
4[k

∗
1(a), a] sin 2ϕ exp[ik∗1(a)|z′|]

k∗1(a)
(

1− ε1
ε3

)

+

∫

Γ

f (3)
y (λ′)H

(1)
2 (λ′ρ′)λ′dλ′ (129)

∫ ∞

−∞

f (1)
z (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ = πiH

(1)
0 (aρ′)

· p
′
6[k

∗
1(a), a] exp[ik

∗
1(a)|z′|]

k∗1(a)
(

1− ε1
ε3

) +

∫

Γ

f (1)
z (λ′)H

(1)
0 (λ′ρ′)λ′dλ′

(130)

∫ ∞

−∞

f (2)
z (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ = πiH

(1)
1 (aρ′)

· {p
′
1[k

∗
1(a), a] cosϕ+ p′2[k

∗
1(a), a] sinϕ} exp[ik∗1(a)|z′|]

k∗1(a)
(

1− ε1
ε3

)

+

∫

Γ

f (2)
z (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ (131)

The latter terms of (127)-(131) represent the integral along

the branch line Γ, by using the integral equation of exponen-

tial functions, their final analytical forms are given as:

∫

Γ

f (1)
y (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ =

2iε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

· cy1W3(ρ
′, z′) (132)

∫

Γ

f (2)
y (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ =

2ε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

· [cy2W4(ρ
′, z′) + cy3W5(ρ

′, z′)] (133)

∫

Γ

f (3)
y (λ′)H

(1)
2 (λ′ρ′)λ′dλ′ =

−2iε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

· [cy4W2(ρ
′, z′) + cy5W3(ρ

′, z′)] (134)

∫

Γ

f (1)
z (λ′)H

(1)
0 (λ′ρ′)λ′dλ′ =

2iε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

· [cz1W1(ρ
′, z′) + cz2W2(ρ

′, z′) + cz3W3(ρ
′, z′)]
(135)

∫

Γ

f (2)
z (λ′)H

(1)
1 (λ′ρ′)λ′dλ′ =

2ε
3

2

3

√
γeibρ

′

√
πρ′ε1(ε1 − ε3)(b2 − a2)

· [cz4W4(ρ
′, z′) + cz5W5(ρ

′, z′)] (136)

where

cy1 = iε2(ε3 + b2), cy2 =

(−2iγbε1
ε3

)
3

2

b sinϕ (137)

cy3 =

√

−2iγbε1
ε3

b[(b2 − ε1) sinϕ+ iε2 cosϕ] (138)

cy4 = −2iγb3ε1
ε3

sin 2ϕ, cy5 = b2(b2 − ε3) sin 2ϕ (139)

cz1 = −4γ2b2ε21
ε23

, cz2 =
4iγbε21
ε3

− 2iγb3ε1
ε3

(140)

cz3 = ε21 − ε22 − ε1b
2, cz4 =

(−2iγbε1
ε3

)
3

2

b cosϕ (141)

cz5 =

√

−2iγbε1
ε3

b[(b2 − ε1) cosϕ+ iε2 sinϕ] (142)

After evaluating the integrals of each field component for

both the O-wave and E-wave and using (108), (109), the near-

field components Ey , Ez are obtained accordingly.
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