
VLFeat - An open and portable library of computer vision
algorithms

Andrea Vedaldi
Department of Engineering Science

Oxford University
Oxford, UK

vedaldi@robots.ox.ac.uk

Brian Fulkerson
Computer Science Department

University of California at Los Angeles
Los Angeles, CA, USA

bfulkers@cs.ucla.edu

ABSTRACT

VLFeat is an open and portable library of computer vi-
sion algorithms. It aims at facilitating fast prototyping
and reproducible research for computer vision scientists and
students. It includes rigorous implementations of common
building blocks such as feature detectors, feature extrac-
tors, (hierarchical) k-means clustering, randomized kd-tree
matching, and super-pixelization. The source code and in-
terfaces are fully documented. The library integrates di-
rectly with Matlab, a popular language for computer vision
research.

Categories and Subject Descriptors

D.0 [Software]: General; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding

General Terms

Algorithm, design, experimentation

Keywords

Computer vision, object recognition, image classification, vi-
sual features

1. INTRODUCTION
Current computer vision research builds on established vi-

sion and machine learning algorithms such as feature extrac-
tion, clustering, and learning. Most of these foundational al-
gorithms are relatively new and experimental, and when an
implementation is available, it is often only in binary form
and only for a few specific platforms. The lack of source
code availability poses operative restrictions that hamper
the adoption of new algorithms; most importantly, it makes
difficult to learn the algorithm details and to modify them to
implement novel research ideas. This does not favour open,
reproducible, and efficient research and undermines the ed-
ucational value of these closed-source implementations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

Figure 1: SIFT. Left: an input image. Right: ex-
amples of detected SIFT features along with their
descriptors.

VLFeat [14] bundles high-quality implementations of com-
mon computer vision algorithms in an open, flexible, and
portable package. The intended users are computer vision
researchers and students. As such, the library strives for
convenience of use, openness, and rigor. The library in-
cludes optimized implementations (e.g. SSE2 based compu-
tation of kernel matrices) for algorithms that are likely to
be bottlenecks in computer vision research. VLFeat source
code and algorithms are fully documented and their usage is
exemplified by numerous example programs. VLFeat has
no external software dependencies (beyond the C runtime),
simplifying compilation and encouraging users to study and
modify the code.

VLFeat is usually accessed through its Matlab
1 inter-

faces, although a partial command line interface is available,
as well as third party Python bindings [12]. The interfaces
access algorithms implemented in a core library, written in
C. The choice of the C language favours portability and
binary compatibility. It also makes the code simple to un-
derstand for the large base of programmers familiar with C
and its variants.

Section 2 introduces some of VLFeat’s functionalities,
Section 3 shows how to obtain and run VLFeat, Section 4
illustrates an application to semantic image categorization,
Section 5 motivates VLFeat design, and Section 6 summa-
rizes the material and suggests future directions.

2. ALGORITHMS
This section introduces a selection of algorithms imple-

mented in VLFeat.

SIFT feature detector and descriptor (Fig. 1). The
Scale Invariant Feature Transform (SIFT) [8, 9] is probably

1Experimental support for GNU Octave is included.

Figure 2: MSER. Left: original image. Right: de-
tected MSER regions (green: positive level sets, yel-
low: negative level sets).

the most popular feature used in computer vision. SIFT
detects salient image regions (keypoints) and extracts dis-
criminative yet compact descriptions of their appearance
(descriptors). SIFT keypoints are invariant to viewpoint
changes that induce translation, rotation, and rescaling of
the image. Keypoints from multiple views of the same scene
can be put in correspondence by comparing their descrip-
tors. This may be used as a basis for a three-dimensional
reconstruction of the scene. Alternatively, keypoints with
discretized descriptors can be used as visual words [13] as
an intermediate image characterization. Histogram of vi-
sual words can then be used by a classifier to map images
to abstract visual classes (e.g. car, cow, horse).

Despite its popularity, the original SIFT implementation
is available only in binary format [8]. The VLFeat imple-
mentation is output equivalent.

Dense SIFT. Dense SIFT is a fast algorithm for the com-
putation of a dense set of SIFT descriptors. Some of the
best performing image descriptors for object categorization
use these descriptors (see Section 4).

MSER feature detector (Fig. 2). Maximally Stable Ex-
tremal Regions (MSER) [10] is a robust and fast feature
detector. In contrast to SIFT keypoints, MSERs are invari-
ant to full affine transformations, which makes them suit-
able to track flat surface elements through arbitrary view-
point changes. The VLFeat MSER implementation sup-
ports data of arbitrary dimension, extending MSERs to video
sequences and volumetric data.

Randomized kd-trees (Fig. 3). A kd-tree is a hierarchi-
cal structure for fast (approximate) nearest neighbor com-
putation and similarity queries. VLFeat implements the
randomized kd-tree variant introduced by FLANN [11].

K-Means (Fig. 4). K-means is a standard clustering al-
gorithm often used on large sets of feature descriptors for
the computation of dictionaries of visual words. VLFeat

implements the standard Lloyd [7] k-means algorithm and
a variant from Elkan [2]. For large datasets, the latter im-
plementation can be an order of magnitude faster. VLFeat

also includes a hierarchical version, which can be used to
efficiently create very large dictionaries.

Fast distances and similarity computation. Often, al-
gorithms need to calculate the mutual similarity of large sets
of vectors. For instance, repeated evaluation of a similarity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

speedup over linear search (log times)

re
la

ti
v
e
 o

v
e
re

s
ti
m

a
ti
o
n
 o

f
m

in
m

iu
m

 d
is

ta
n
n
c
e
 (

%
)

VLFeat (1 tr.)

FLANN (1 tr.)

VLFeat (2 tr.)

FLANN (2 tr.)

VLFeat (5 tr.)

FLANN (5 tr.)

VLFeat (10 tr.)

FLANN (10 tr.)

Figure 3: Randomized kd-tree forest. Left: a kd-
tree used to find nearest-neighbors relations in a set
of 2D points. Right: speedup in the approximated
NN matching of two sets of SIFT features (compar-
ison between FLANN [11] and VLFeat implementa-
tions).

Figure 4: Hierarchical k-means tree computed from
of a dataset of 2-D points uniformly distributed on a
square. k-means can be used to construct large yet
efficient vocabularies of visual words.

Figure 5: Quick shift superpixels at two different
scales. Superpixels over-segment an image into vi-
sually coherent parts and can be used to simplify
further processing.

measure is the basis for the evaluation of non-linear support
vector machines. VLFeat includes SSE2 optimized routines
to do this, with 2x or 4x speedup over trivial implementa-
tions.

Quick shift superpixels (Fig. 5). Quick shift [15] is a
mode seeking algorithm like mean shift that can be used
to partition an image into a set of superpixels. Unlike mean
shift, quick shift does not iteratively shift each point towards
a local mode; instead, it forms a tree of links to the nearest
neighbor which increases an estimate of the density.

Agglomerative information bottleneck (AIB) (Fig. 6).

3 clusters

Figure 6: Agglomerative Information Bottleneck
clusters discrete data while preserving the mutual
information between the data and its labels.

Informative visual vocabularies tend to be significantly large,
including thousands of visual words. Compression tech-
niques can be used to reduce the dimensionality of such
vocabularies while preserving the descriptive power of the
visual words. The Agglomerative Information Bottleneck
(AIB) algorithm is one such technique. It works by itera-
tively merging pair of visual words (or more generally, any
discrete alphabet) while preserving the mutual information
between words and the image visual class.

3. GETTING STARTED

Installation. TheVLFeat website [14] includes both source
code and binary packages. Binaries are available for Linux,
Mac OS X, and Windows in 32 and 64 bit variants. Instal-
lation in a Matlab environment is as simple as download-
ing the binary package and including VLFeat to Matlab’s
path by adding the command vl_setup toMatlab’s startup
file.

Compiling from source. VLFeat has no external de-
pendencies. On GNU/Linux and Mac OS X typing make is
usually enough (this assumes that GCC is installed; com-
piling the Matlab interface requires the Matlab mex com-
mand to be in the path). For Windows, a nmake makefile is
included for compilation with Microsoft Visual C++. De-
tailed compilation instructions can be found in the VLFeat

website [14].

Demos. The command vl_demo runs a suite of demos that
demonstrate the usage of the VLFeat commands (the fig-
ures in this paper have been generated using this code). For
instance, extracting SIFT features from the bundled image
a.jpg image is as simple as:

im = imread(fullfile(vl_root, ’data’, ’a.jpg’)) ;

im = im2single(rgb2gray(im)) ;

[frames, descriptors] = vl_sift(im) ;

The resulting keypoint frames and descriptors can then be
visualized by

image(im) ; hold on ;

vl_plotsiftdescriptor(descriptors, frames) ;

Documentation. The Matlab commands are self docu-
mented (e.g. help vl_sift); an HTML version of the Mat-

lab command documentation is available from the VLFeat

website. Detailed information about the algorithms and API
is embedded in the source code of the VLFeat core library

(in Doxygen format) and a copy is available on the web-
site as well. Beyond detailing the VLFeat C interface, this
documentation includes a full technical description of the
implemented algorithms.

4. EXAMPLE: IMAGE CATEGORIZATION
Image categorization is the problem of assigning an image

to one of a number of visual categories. VLFeat can be used
to obtain state-of-the-art image descriptors in the Caltech-
101 [4] classification benchmark. The full code of this ex-
ample, a single Matlab file, can be downloaded from [14].
This combines the following building blocks:

Feature extraction. VLFeat vl_dsift is used to effi-
ciently compute a dense set of multi-scale SIFT descriptors
from a given input image (PHOW descriptors [1]). While
vl_sift can also be used for this purpose, vl_dsift is an
order of magnitude faster.

Vocabulary learning. VLFeat vl_kmeans is then used
to cluster a few hundred thousands visual descriptors into
a vocabulary of 103 visual words. vl_kmeans implements
the Elkan algorithm, which is for this task several times
faster than the standard Lloyd k-means implementation, and
orders of magnitude faster than theMatlab native k-means.

Spatial histograms. A spatial histogram [6] characterizes
the joint distribution of appearance and location of the vi-
sual words in an image. VLFeat vl_kdtreequery can be
used to map visual descriptors to visual words efficiently by
using a KD-Tree andVLFeat vl_binsearch and vl_binsum

can be used to quickly accumulate the visual words into a
spatial histogram.

Training of a non-linear SVM. The spatial histograms
are used as image descriptors and fed to a linear SVM classi-
fier. Linear SVMs are very fast to train [3], but also limited
to use an inner product to compare descriptors. Much bet-
ter results can be obtained by pre-transforming the data
through vl_homkermap, which computes an explicit feature
map that“emulates”a non linear χ2-kernel as a linear one [16].
Then, training with 15 images for each of the 101 Caltech-
101 categories can be done by using vl_pegasos, an imple-
mentation of stochasting gradient SVM training.

Results. The computation and quantization of the dense
SIFT features and testing of the SVM requires under a quar-
ter of a second for each image. Training the SVM requires
less than a minute. In terms of accuracy Fig. 7 shows that
the PHOW features, efficiently computed using VLFeat,
are a state-of-the-art image descriptor (better classification
results can be obtained by combining a variety of different
descriptors [5]).

5. DESIGN

Granularity. VLFeat avoids implementing specific appli-
cations (e.g. there is no face detector); instead it focuses
in cimplementing algorithms (feature detectors, clustering,
etc.) that can be combined in order to produce full applica-
tions.

Openness. VLFeat is distributed under the GNU GPL
license. The source code is fully documented in Doxygen
format. The library is written in as simple a manner as
possible to provide a good trade-off between speed and un-

Confusion matrix (65.54 % accuracy)

10 20 30 40 50 60 70 80 90 100

BACKGROUND_GoogleFacesFaces_easyLeopardsMotorbikesaccordionairplanesanchorantbarrelbassbeaverbinocularbonsaibrainbrontosaurusbuddhabutterflycameracannoncar_sideceiling_fancellphonechairchandeliercougar_bodycougar_facecrabcrayfishcrocodilecrocodile_headcupdalmatiandollar_billdolphindragonflyelectric_guitarelephantemueuphoniumewerferryflamingoflamingo_headgarfieldgerenukgramophonegrand_pianohawksbillheadphonehedgehoghelicopteribisinline_skatejoshua_treekangarooketchlamplaptopllamalobsterlotusmandolinmayflymenorahmetronomeminaretnautilusoctopusokapipagodapandapigeonpizzaplatypuspyramidrevolverrhinoroostersaxophoneschoonerscissorsscorpionsea_horsesnoopysoccer_ballstaplerstarfishstegosaurusstop_signstrawberrysunflowerticktrilobiteumbrellawatchwater_lillywheelchairwild_catwindsor_chairwrench

Figure 7: Caltech-101 image categorization example. Left: some images from the Caltech-101 benchmark.
Right: confusion matrix obtained by using a χ2-SVM on top of 4 × 4 spatial histograms and dense SIFT
features, computed by using VLFeat. This is one of the best image descriptors available for this type of task.

0

1750

3500

5250

7000

Oct-08 Jan-09 May-09 Aug-09 Dec-09 Apr-10

Figure 8: VLFeat impact. Number of visits to
vlfeat.org per month since October 2008.

derstandability. This encourages users to study and possibly
modify VLFeat source code.

Portability. A goal of VLFeat is to provide binaries that
can be readily used in Linux, Mac OS X, and Windows.
Portability is important in a research environment, where
different computational platforms are likely to be in use, per-
haps concurrently. Portability is enhanced by the fact that
VLFeat is written in C and has essentially no external de-
pendencies. It is compatible with GNU/Linux (GNU GCC),
Windows (Visual C), and Mac OS X (GNU GCC/Xcode).
The project also provides pre-compiled binaries for most ar-
chitectures.

Speed. VLFeat’s main focus is not speed, but certain por-
tions of the library have been optimized for speed when this
was likely to constitute a bottleneck for research. Exam-
ple include feature extraction, kd-tree matching, and vector
comparisons. Some functions, such as image convolution
and distance calculations, are SSE enhanced.

6. CONCLUSIONS
We have introduced VLFeat, a library of computer vision

algorithms for fast prototyping in computer vision research.
VLFeat encapsulates powerful computer vision algorithms
in a simple and portable package that encourages code un-
derstanding and customization. VLFeat is already popular
in the computer vision community (Fig. 8). In the future,
we would like to increase the number of contributors to the
project.

Acknowledgments. We are grateful for financial support from

ERC grant VisRec no. 228180 and ONR MURI N00014-07-1-

0182.

7. REFERENCES
[1] A. Bosch, A. Zisserman, and X. Muñoz. Image

classification using random forests and ferns. In Proc.

ICCV, 2007.

[2] C. Elkan. Using the triangle inequality to accelerate
k-means. In Proc. ICML, 2003.

[3] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9, 2008.

[4] L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian
approach to unsupervised one-shot learning of object
categories. In Proc. ICCV, 2003.

[5] P. Gehler and S. Nowozin. On feature combination for
multiclass object classification. In Proc. ICCV, 2009.

[6] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag of
features: Spatial pyramid matching for recognizing
natural scene categories. In Proc. CVPR, 2006.

[7] S. Lloyd. Least square quantization in PCM. IEEE
Trans. on Information Theory, 28(2), 1982.

[8] D. Lowe. Implementation of the scale invariant feature
transform.
http://www.cs.ubc.ca/~lowe/keypoints/, 2007.

[9] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. IJCV, 2(60):91–110, 2004.

[10] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust
wide baseline stereo from maximally stable extremal
regions. In Proc. BMVC, 2002.

[11] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithmic configuration.
In Proc. VISAPP, 2009.

[12] M. Rousson. A VLFeat Python wrapper.
http://github.com/mmmikael/vlfeat, 2009.

[13] J. Sivic and A. Zisserman. Video Google: A text
retrieval approach to object matching in videos. In
Proc. ICCV, 2003.

[14] A. Vedaldi and B. Fulkerson. VLFeat: An open and
portable library of computer vision algorithms.
http://www.vlfeat.org/, 2008.

[15] A. Vedaldi and S. Soatto. Quick shift and kernel
methods for mode seeking. In Proc. ECCV, 2008.

[16] A. Vedaldi and A. Zisserman. Efficient additive kernels
via explicit feature maps. In Proc. CVPR, 2010.

