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Abstract The usage of network-demanding applications is growing rapidly such as video

streaming on mobile terminals. However, network and/or service providers might not guar-

antee the perceived quality for video streaming that demands high packet transmission rate.

In order to satisfy the user expectations and to minimize user churn, it is important for net-

work operators to infer the end-user perceived quality in video streaming. Today, the most

reliable method to obtain end-user perceived quality is through subjective tests, and the

preferred location is the user interface as it is the closest point of application to the end-

user. The end-user perceived quality on video streaming is highly influenced by occasional

freezes; technically the extraordinary time gaps between two consecutive pictures that are

displayed to the user, i.e., high inter-picture time. In this paper, we present a QoE instru-

mentation for video streaming, VLQoE. We added functionality to the VLC player to record
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a set of metrics from the user interface, application-level, network-level, and from the avail-

able sensors of the device. To the best of our knowledge, VLQoE is the first tool of its kind

that can be used in user experiments for video streaming. By using the tool, we present a two

state model based on the inter-picture time, for the HTTP- and RTSP-based video streaming

via 3.5G. Next, we studied the influence of inter-picture time on the user perceived quality

through out a user study. We investigated the minimum user perceived inter-picture time,

and the user response time.

Keywords QoE (Quality of Experience) · QoS (Quality of Service) · Smartphone ·

Video · User interface · Human Computer Interaction (HCI)

1 Introduction

Wireless communication data traffic surges as more mobile applications and services are

being used in daily life for information sharing, communication and leisure [4, 22]. The

mobile terminals run cloud-based applications and services that rely on the performance of

Internet, and they are are sensitive to the variations of the wireless link capacity and the

expected load [2], which eventually influences the end-user perceived quality of a service

or an application. Mobile handheld terminals are one of the most challenging platforms

for assessing the end-user perceived quality of services provided on them, as they can be

used anytime, anywhere, and in any context [22]. Although a traditional network-centered

Quality of Service (QoS) approach can identify the key influential factors, such as packet

loss or delay, on the end-user perceived quality, the recent research suggests that QoS has to

be complemented with a more user-centric approach [1], e.g., Quality of Experience (QoE),

to satisfy end-user requirements and expectations. The most recent definition of QoE is

“the degree of delight or annoyance of the user of an application or service. It results from

the fulfillment of his or her expectations with respect to the utility and/or enjoyment of the

application or service in the light of the user’s personality and current state. In the context

of communication services, QoE is influenced by service, content, device, application, and

context of use” [32]. QoE assessment is preferably conducted close to the end-user, e.g.,

at the user interface, and by this way, it is less complicated as compared to the network to

interpret the relationship between the impairments at the user interface and the subjectively

perceived QoE.

According to the world-wide smartphone sales share, Android OS smartphones are the

most widely used terminals (more than 70 % of world sales share) [63], and they are capa-

ble of running diverse “life coach” applications/services. Moreover, amongst the available

services and/or applications, the most bandwidth demanding ones are the video streaming

applications [4] as those have large size end-to-end data delivery requirements. The end-

user perceived QoE of the video applications is highly depending on, amongst others, the

quantity and the duration of the freezes [16, 50] during the video streaming sessions. There

are existing approaches (e.g., YouTube) to improve perceived quality such as “download-

and-watch-later” with the cost of download time. However, those approaches do not suit

for real-time video streaming (e.g., live-broadcast of a soccer match), as the user expects

to receive the video content more or less at the same time with the service broadcast time.

In order to study QoE on the smartphone-based real-time video applications, it is impor-

tant to consider smartphone user interface, as it is the location of the concrete evidences,

e.g., temporal impairments, which can directly be perceived by the users. The reason for
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occasional short-term or long-term temporal freezes [66] in the video playout might be

due to the impairments at low layers in the network stack. In previous studies [11], the

network-traffic is studied within the network-layer in two different states: ON during a

packet flow (e.g., burst), and OFF when there is no packet flow, i.e., zero throughput. It is

necessary to complement the network-based two-state ON/OFF model with the user inter-

face measurements and then find out the distribution of the inter-picture times in the user

interface, which later help to understand the relationship between different layers in the

network stack. Yet, and to the best of our knowledge, there is no smartphone-based QoE

tool that can simultaneously record potential QoE metrics at different layers of the network

stack together with the sensor data. The contributions of this article are summarized as

follows:

– We develop and present the VLQoE tool that enables video QoE user studies on

Android-based smartphones. The collected data can help in design of future user-centric

video streaming applications.

– We present an exponential ON/OFF state model based on temporal impairments of

a video stream throughout measurements at the user interface during Enhanced 3rd

Generation (3.5G) based real-time video streaming on the smartphone.

– We present the influence of the temporal impairments such as freezes that are detected

objectively at the user interface on the end-user perceived QoE.

– We present the minimum perceived picture freeze duration for the users in the user

study.

– We present the user response time with respect to the freezes during video streaming

sessions. This helps to identify approximate user tolerance levels based on the temporal

impairments.

In this paper, firstly, a QoE instrumentation of the smartphone-based VLC player [56],

VLQoE, is introduced. Then, the studies conducted with VLQoE, which are based on the

inter-picture time, are presented in two parts. The first part of the study involves an in-

depth analysis of the inter-picture time metric, where the inter-picture times of the video

is studied with a two-state (ON/OFF) model. We refer to ON state during a smooth video

playout; and refer to OFF state during a video picture freeze. The second part of the study

involves the subjective study with the focus on the inter-picture time metric quantifying a

picture freeze. The influence of the inter-picture time on the end-user perceived quality of

the video, measured with five-level Absolute Category Rating (ACR) scale (1-bad, 2-poor,

3-fair, 4-good, 5-excellent), is presented. The user response time, i.e., the time it takes for

the user to react to a long picture freeze, are investigated in order to understand the user

tolerance levels to the inter-picture times.

The remainder of this paper is structured as follows. The state of the art on the application

layer video streaming protocols, and QoE assessment methods are recalled in Section 2. We

also review the related work done on the video QoE in this section, and discuss a set of QoE

metrics together with already existing tools and QoE management mechanisms. Section 3

presents the definition of proposed metrics as well as the detailed description of VLQoE

tool. Section 4 describes the experiment testbed and the experiment methods of our study.

Section 5 presents the results of the two-state ON/OFF modeling based on the inter-picture

time, and also the results of the subjective study that identifies the relationship between the

inter-picture time and the end-user perceived quality. The limitations in the study are given
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in Section 6. Section 7 concludes the paper, and it is followed by a set of items for future

work in Section 8.

2 Background and related work

This section first gives background information on a set of application-layer video streaming

protocols that are used in our work. Next, the definition and the application of the QoE

assessment method called Experience Sampling Method (ESM), employed to acquire user-

perceived quality (user ratings on the ACR scale), is given. Furthermore, the related work

with respect to the factors influencing the perceived QoE, the corresponding existing QoE

assessment tools, and QoE management mechanisms in video streaming are explored.

2.1 Video streaming protocols

Video clips on the mobile terminals can be streamed via two main application layer pro-

tocols: Real Time Streaming Protocol (RTSP) [45] or Hypertext Transfer Protocol (HTTP)

[18]. The RTSP video streaming is mainly based on the unreliable User Datagram Protocol

(UDP). The data packets are sent from the server to the smartphone as they are generated

by the video/audio codec [2]. The flow control is done by the RTSP in the application layer

with periodic control messages being sent from the client to the streaming server. RTSP is

implemented for live multimedia streaming. On the other hand, the HTTP video stream is

based on the reliable Transport Control Protocol (TCP) and the packets arrive at the client

(e.g., sink) in segments. The size of the segments depends on the available bandwidth and

vary with the window size of the TCP packets, which in turn influenced by Round Trip

Time (RTT) and Bandwidth Delay Product (BDP) [28]. HTTP streaming is used for multi-

media streaming and it commonly works based on progressive download, i.e., the video is

downloaded from a webserver and temporarily stored at the cache of end-user device and

then displayed on the screen. The periodicity of the control messages in RTSP streaming is

longer than in the HTTP streaming. The characteristics of each protocol with respect to the

network layer, e.g., burst size and duration, are hypothesized as different, and this difference

is expected to influence the application performance, and eventually the end-user perceived

QoE. Our aim in this paper is not to compare the RTSP and HTTP streaming, but to consider

both protocols in order to intensify the representativeness of video streaming data.

2.2 Experience sampling method (ESM)

ESM is a research method that is used to assess phenomena at the time they occur, from the

human perspective, in order to maximize the validity of the data [23]. Lutille et al. in [23]

claimed that the best time to ask the user about the preferences and/or the user needs is in

the midst of the actual activity being closely inspected. Moreover, an interface that could

build up an awareness and understanding of the users’ preferences is suggested. Previously

in [22], we have employed ESM in order to identify the most influential factors on QoE

of smartphone-based applications. Thereby, it is possible to consider the same method in

widely used mobile applications, particularly video streaming. This helps to identify the

end-user perceived quality on spot in ad-hoc manner, while delivering the video streaming

service to the user, and to relate it to factors influencing it. We employed ESM to the VLC

player in order to receive user feedback in-situ, while the users are watching the videos on

the smartphone.
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2.3 Related work on video QoE

We first recall the related work areas on the factors influencing video QoE.

Related work on influential metrics There are plenty of performance indicators to con-

sider while assessing the QoE of a particular service. The influence factors on video

streaming application in Internet are categorized in four categories: context (environment,

social/cultural background, purpose of using the service), user (expectations of user, mem-

ory and recency effects, usage history), system (transmission network, devices, screens,

video buffering strategies), and content level (video codex, format, resolution, duration,

content, type, motion pattern) [17]. In our work, we obtained data regarding the envi-

ronment and the user nationality to get cultural information within context category;

service usage history within the user category; screen, device, and network type within

the system category; and video resolution, duration, and content within the content level

category.
The performance of 3.5G (also known as HSDPA) and Wireless Fidelity (WiFi) networks

is studied by Junxianet et al. [19], and it is stated that the video download patterns depend

on the link type, e.g., 3.5G or WiFi, the smartphone type, the protocol, and the video player.

The different factors usually have different effects on the user perceived QoE, including,

but not limited to, the type of end user device, the communications protocols behind the

application as well as the transport methods in providing the video streaming service [8].

According to Bang et al. [61], TCP generally provides good streaming performance, when

the achievable TCP throughput is roughly twice the media bitrate. Frame rate, the periodic-

ity of the displayed video pictures on the screen, and the network bandwidth are important

influential factors on the video QoE [33, 59]. However, it is also important to quantify a

“good performance” from the user perspective based on measurement layers of the network

stack. Yang et al. [64] and Quan et al. [44] studied the frame rate metric, i.e., the num-

ber of displayed per second, to quantify jerkiness during video streaming. VLQoE can also

record the frame rate, yet we focussed only on the inter-picture time metric to be used in

duration-based ON/OFF modeling. Hossfeld et al. [16] studied the influence of a stalling

event, namely picture freeze (also called frame freeze) on the end-user perceived QoE by

user ratings on the five-level ACR scale, while considering the duration and the number

of occurrences. Based on the exponential QoE mapping functions to the stalling frequency

and the durations, they stated that one freeze with two seconds duration within 30s-long

video clip maps to a Mean Opinion Score (MOS) value 3 in desktop settings. Despite, fur-

ther studies on smartphone settings and with longer video clips without any restrictions of

video length need to be studied to obtain more reliable models. Van Kester et al. [52] have

investigated the average end-user perceived QoE (via five-level MOS) on 20 seconds long

video sources based on the number of freezes and concluded that the acceptable freezing

time (MOS > 3.5) is 360 milliseconds, and they noted that the frequency of the freezes must

also be taken into consideration in QoE assessment. In addition, no significant difference

in the video QoE was observed between when the video is stopped with or without skipped

frames.
The waiting times, i.e., the number and the duration of delays, for web browsing and

HTTP video streaming have been studied in [9], and the authors have presented a log-

arithmic relationship between the waiting time and the QoE. They state that the longer

the waiting time, the less satisfied the user becomes. The location of waiting time e.g.,

before/after the video has started displaying, is important as such. Hossfeld et al. [17]

showed that initial delays before the video has started has no severe impact on QoE. Yet,

we did not study the initial delays in our paper.



Multimed Tools Appl

In addition, the difference between the QoE models based on the application-level and

network-level page loading times (non-linear relationships and complex) are emphasized.

The non-linear relationship between the video bitrate and the perceived quality by the user

is stated in [36]. In [3], a No-Reference QoE assessment measure, A-PSQA, is proposed

as a performance evaluation method, based on the analysis with respect to the packet-loss

percentage. Zinner et al. [65] stated that the Structural Similarity Index Model (SSIM) can

be used to quantify the influence of packet loss on the QoE; while the Peak Signal-Noise

Ratio (PSNR) can not. Furthermore, by using SSIM, the authors also showed that the low-

resolution videos obtain high QoE as compared to high resolution disturbed videos. In our

work we conduct real-time measurements on the client device, thus, we do not consider

SSIM as it measures the image similarity, while comparing with the undistorted version as

a reference [60].

Related work on the tools PC-based based measurements on the VLC player were con-

ducted in [58], where the video/audio buffer utilization based on the Realtime Transport

Protocol (RTP) and UDP streaming is studied. The drawback of that study is that it does not

consider the picture freezes and the corresponding end-user perceived quality. YoMo [49] is

a java tool with a Firefox plugin and it estimates the video player buffer status on application

layer. Pytomo [27] is a Python-based client-level tool that analyzes the playback perfor-

mance of particular video sources on YouTube. It obtains the cache URL and IP addresses

of the hosting video server, ping/download/playback statistics, initial buffer, stalling event,

and buffering duration of the selected videos. These tools consider only YouTube videos and

they are not suitable for smartphones. Vishwanath et al. [55] conducted QoE experiments

using the ns-2 simulator and focused on application layer metrics such as the modulation

coding schemes, the video bitrate on short duration video clips. Migliorini et al. [37] pre-

sented QoE results based on the experiments done with a packet-based simulator with the

focus on PSNR and channel conditions. There exists the Perceptual Evaluation of Video

Quality (PEVQ) tool [42] that estimates end-user perceived quality, by using averaged val-

ues of user ratings, i.e., MOS, with respect the spatial impairments. However that tool fails

to deliver good estimations in case of picture freezes [38]. In contrast to the already exist-

ing tools, VLQoE can assess video QoE in real-time and on user’s own smartphones in any

context.

Related work on QoE management mechanisms Mekovski et al. [34] proposed a QoE con-

trol framework for adaptive video streaming that takes into account the temporal and spatial

characteristics of the video. Similarly, Latre & Turck’s work on QoE management in [31]

used the already existing QoE metrics and techniques such as traffic flow adaptation (by

changing transport configuration), admission control (by admitting/blocking new connec-

tions to avoid congestion), and video rate adaptation (by changing the actual video quality

level). Their work focuses on the low layer design for autonomic management architecture,

and emphasizes the need to design control loops at higher levels. In our work, although,

we have not yet employed such QoE management mechanism, it can be employed in the

future evolution of VLQoE as it is potentially possible by training it with the user data to

automatically detect the future artifacts.

3 Inferring the video QoE on the smartphone

This section presents the studied metrics at the user interface in our work, and explains in

details how they are related to QoE.
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Fig. 1 Illustration of transitions

between the two states

3.1 Acquisition of metrics

In this section, we studied the metrics that are measured at the user interface to investigate

the performance of video streaming on the smartphone. The primary metric that we stud-

ied is the inter-picture time (Dp). Afterwards, on the basis of Dp, two state modeling is

employed in the first part of our study. This is followed by a second part including a user

study, where we investigate the minimum perceived Dp for each user. We conclude this sec-

tion with a study on the user response time that reflects the time it takes for the user to react

to a perceived video freeze.

3.1.1 Inter-picture time (Dp)

Video is delivered to the smartphone as a series of pictures and then displayed on the smart-

phone screen. The inter-picture time Dp, the time gap between two consecutive pictures

displayed on the smartphone screen, are calculated as in Eq. 1. Tp(k) is the timestamp when

the kth picture is displayed on the smartphone screen.

Dp(k) = Tp(k) − Tp(k − 1) (1)

3.1.2 Two-state (ON/OFF) modeling

In the first part of our study, we investigated the video streaming with the assumption that

the video stream follows a two-state model, e.g., ON/OFF, throughout a video streaming

session, as shown in Fig. 1. The ON (time interval of a smooth playout) and OFF (time

interval of a freeze) states are defined based on the Dp metric. We considered an exponential

two-state model for the ON and OFF durations as the modulating ON/OFF process can be

assumed to be memoryless. In [46], 100 ms is defined as the maximum tolerance threshold

for the user to feel that the system is reacting instantaneously. Thereby, we chose 100 ms as

the state boundary between ON and OFF.

The Maximum Likelihood Estimation (MLE), developed by R.A. Fisher, is a standard

approach to parameter estimation, i.e., to find the probability distribution that makes the

observed data most likely [40]. It has optimal properties in estimation such as sufficiency,

consistency, and efficiency. Thus, we found the MLE of the durations spent in each state

(ON/OFF) is calculated as in Eq. 2–3. L(λ) is the likelihood function for exponential dis-

tributed samples; n is the number of samples; x̄ is the mean of the samples; and λ̂ is the

MLE.

L(λ) = λn exp(−λ n x̄) (2)

λ̂ =
1

x̄
(3)

In our study, each sample x, represents a duration instance of a state. Thereby, two

different sets of instances are obtained, i.e., ON and OFF.
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3.1.3 Inferring QoE based on inter-picture time

There are objective and subjective QoE assessment metrics. Using objective metrics is less

time consuming as they can assess the quality without the existence of actual users. How-

ever, as the objective metrics avoid the human subject expectations and context, they may

be less accurate as compared to the subjective ones [25, 62].

One of the most commonly used subjective metrics to assess the subjectively perceived

quality of a video is the five-level MOS scale [24]. R. Schatz et al. [48] recommended

Absolute Category Rating with Hidden Reference (ACR-HR) test method with five-point

quality scale as the mean value and the confidence intervals of the results from different

methods do not deviate much. However, the averaged value of the user ratings gathered in

five-level ACR scale has a set of drawbacks such as the weakness in the definition of quality

as summarized in [20, 48]. In addition, it is influenced by the “forgiveness effect” [53]. As

MOS might smooth out the low qualities, Hossfeld et al. [15] introduced Standard Deviation

of Opinion Scores (SOS) as it can better reveal the fluctuations of users’ perceived quality.

The Maximum Likelihood Difference Scaling (MLDS) approach used by Menkovski et al.

[36] relies on relative quality assessment that utilizes the direct comparison mechanisms

rather than rating. It is indeed a good method to understand the perceived quality differences.

However, we still believe that it is challenging to assess whether a “better” quality is “good-

enough”, or as compared to the quality at which point in time, especially knowing that we

are running user experiments with a single long video that is streamed in real-time.

In our study, we used ACR while decreasing the degree of freedom of quality to the

visual temporal impairments, i.e., stalling events. Firstly, we studied all the user indications

including the user ratings on the five-level ACR scale and the freeze indications. We cal-

culated the maximum inter-picture time values (Dpmax ) amongst all Dp values during the

time gap between two consecutive user indications, Ti and Ti−1. Thus Ti and Dpmax have a

one-to-one relationship. We denote the display timestamp of the picture with the maximum

display time (Dpmax ) as TDpmax
. In addition, we calculated the time between a user indication

and TDpmax
as in Eq. 4.

�(Ti−Dpmax
) = Ti − TDpmax

: Ti−1 < TDpmax
< Ti (4)

First low user rating time (TLowRating) and a number of alarms In the literature [17, 50], it

is stated that the influence of stalling event on QoE shows significant differences with the

duration of the video length. Therefore, we studied the influence of stalling events while

considering the streaming duration until the first low rating is received. In the impairment

definition of five-level ACR scale, the ratings below 4 reflects annoyance of the user [24];

and in the voice quality, MOS = 4 is still considered as acceptable [57]. In this work, we

considered the Low Rating as the ratings less than 4 (UR 4) together with the underlying

temporal reasons. We studied TLowRating, i.e., the time it takes from the start of the video until

the time of the first low user rating, e.g., UR < 4, per video session in more details. Next,

we focused on the low user ratings, i.e., UR < 4, and their underlying temporal reasons in

the application. We studied the frequency of the freezes and the corresponding subjectively

perceived quality. Pictures with the display duration higher than 100 ms were considered

as freezes. Thereby, the number of instance with the inter-picture (Dp) values higher than

100 ms are considered as freezes, namely the alarms. In parallel, we recorded the streaming

duration until when the first low user rating (TLowRating) has been received. We investigated

those for each user in both RTSP and HTTP streaming experiments.
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3.1.4 Minimum perceived inter-picture time

Pastrana et al. [54] stated that a single 200 ms long frame freeze was detected by all users

in a 10 seconds-long sequence with CIF resolution. The perceived video freeze depends on

the duration of the total duration of the video sequence. Staelens et al. [50] used short and

long video sequences that comprise video freezes, which last up to 320 ms–400 ms range,

and the authors claim that they have obtained different results with respect to the percentage

of the detected video freezes when the subjective tests were done with videos with differ-

ent durations. Therefore, the topic is still challenging, and it is important to understand the

minimum perceived inter-picture time of the end-users during a video stream on the smart-

phone, which directly relates to the freezes and consequently to the end-user perceived

QoE. Although, the visual perception depends on the context, e.g., time perception; mem-

ory effect [21]; illumination; content [36], we assumed that subjects indicate the freezes as

they perceive them. We conducted a user study; collected user data from the subjects. The

detailed procedure of the user study is given in Section 4.2. In summary, we asked the user

to indicate a perceived freeze by using the “Freeze” button located on the user interface

during the video playout.

Finding out the exact temporal impairment, i.e., pinpointing the exact Dp value for a

given indicated freeze by a user, is challenging. In other words, there might be many high

(higher than nominal 40 ms for 25 fps video) Dp > 40 ms values which the users might

react to. However, the user might not have reacted to all of them for some reason. An

example scenario is illustrated in Fig. 2. In the sketched scenario, suppose Tp(k) is the

timestamp of the last picture that is displayed; and Tifreeze
is the timestamp of the sub-

ject’s i’th indication. The subscript “freeze” stands for the type of user indication. It is

hard to interpret the reason for the freeze indication, i.e., upon which Dp values out of

{Dp(k − n − 1), . . . ,Dp(k − 1),Dp(k)} was the freeze indicated for within some interval

C ′
i . Thereby, in order to guarantee the minimum perceived inter-picture time of a user, we

analyzed the perceived user inter-picture time with the MinOfMax approach as explained

via the following.

MinOfMax Firstly, for all freeze indications at Tifreeze
by a user, we calculated the maximum

Dp value during Tifreeze
and Ti−1, i.e., C ′

i , as in Eq. 5. Note that Ti−1 is not necessarily a

freeze indication timestamp; it can be the timestamp of any indication amongst the six user

feedback choices (one, two, three, four, five, and freeze). We assumed that the user perceives

and indicates a new freeze after the previous indication. This procedure is repeated for each

freeze indication. Secondly, the minimum of the maximum values were calculated in Eq. 6,

Fig. 2 Illustration of a scenario where it is hard to interpret what the user rates
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which we called this value as the Minimum Perceived Inter-picture time (DpSmin) of user

S while considering two video streaming sessions (HTTP and RTSP). This way, the risk of

wrong interpretation of the freeze indication by a user is reduced.

Dpmaxi
= max{Dp(k)}, ∀ k within the time interval C ′

i (5)

DpSmin = min{Dpmaxi
} ∀ i of subject S (6)

Yet, we defined how the minimum perceived inter-picture time for each user is calculated

in this work. In addition, we believe that the time it takes for a user to react to the stalling

event, referred to “User Response Time”, needs to be investigated.

3.1.5 User response time

The influence of the waiting times to the end-user perceived quality is presented in previ-

ous work [9]. However, the duration until the user perceives a freeze and reacts to it has

not been studied within the scope of QoE. This is important to know as QoE assessment

depends on multidisciplinary parameters such as time perception and “inner-clock” [14]

of the user. Musser [39] states that the human consciousness lags 80 ms behind the actual

events. Studying the time it takes for a user to react (to press the “Freeze” button) to a freeze

event, is complex and depends on many factors. The authors of [14] studied the time per-

ception in depths, and state that the actual time is different than the subjectively perceived

time. However, in this study, we assume that the users indicate a freeze as they perceive it

on spot.

Therefore, in addition to the items discussed in Section 3.1.3 and Section 3.1.4, we inves-

tigated the user response time in two scenarios. The first scenario is when a user indicates

a past freeze during a smooth playout that we will refer as short; and the second scenario is

when the user indicates a freeze during a stalling event that we will refer as long.

First scenario – short Let’s assume that TDpmax
is the timestamp of the picture with the

longest display time amongst all Dp values within the interval C ′
i in Fig. 3. Assuming that

the user reacted and pressed the freeze button with respect to TDpmax
, the user response time

is calculated, as shown in Eq. 7.

Dresponseshort
= Tifreeze

− TDpmax
: TDpmax

∈ {Tp(k)}∀ k within C ′
i (7)

Fig. 3 Illustration for the calculation of Dresponseshort
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Indeed, Dresponseshort
is considered as �(Ti−Dpmax

) as previously defined in Eq. 4, if the

indication at Ti is a freeze indication.

Second scenario – long We study the freeze indications by the user for the long freezes,

i.e., pauses [66] as this metric might signify the end-users tolerance level to the long-

term freezes. This scenario is when the user intervenes the video stream by pressing the

freeze button at Tifreeze
, before the next picture k is displayed at Tp(k), as shown in Fig. 4.

Dresponselong
is calculated as the time gap between the display time of the frozen picture and

the freeze indication time by the user as in Eq. 8.

Dresponselong
= Tifreeze

− Tp(k − 1) (8)

3.2 VLQoE tool description

We implemented the VLQoE tool, as a version of open-source VLC Media Player, while

adding extra functionalities for video QoE assessment.

3.2.1 VLC media player

VLC is a packet-based media player [56] developed by Video LAN, first released in year

2000, available as open source, with GNU General Public License (GPL) and GNU Library

General Public License (LGPL) software licenses. Amongst other available players, VLC

is available for the most variety of Operating System (OS)’s, and also for Android-based

terminals. According to the sourceforge.net, VLC has been downloaded more than 17 bil-

lion times [51]. VLC supports many video formats including mp4; and streaming protocols

including HTTP and RTSP.

We added new functionalities to the VLC player source code in order to record picture

display times and the user data with the context and the perceived quality ratings during

video streaming. These functionalities are applied to different player components as detailed

in Table 1, which are grouped in Application; User Interface; Network and Physical; and

Other.

3.2.2 VLQoE tool

Although, the functionalities are implemented within VLQoE, in this study we do not inves-

tigate all of the metrics collected by VLQoE. We study the timestamp of the displayed

Fig. 4 Illustration for the calculation of Dresponselong
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Table 1 The VLQoE records the listed parameters with the corresponding timestamps

Components Parameters

Application re-buffering events

User Interface displayed video picture(frame), user controls, freeze indication,

user rating (UR), display orientation and brightness, screen touch events

Network & Physical interface type, service provider, signal strength(RSSI), packets/sec

Other GPS coordinates, battery level, unique device ID

video pictures; the timestamp of the user ratings; and the timestamp of the freeze indica-

tions by the users. The detailed description of the collected metrics is listed in the following

subsections.

3.2.3 Application layer

The timestamp of the rebuffering events at the application are recorded within the VLQoE.

Rebuffering events The rebuffering of the video content causes undesired picture freezes

in the midst of video streaming [9]. Thus, the rebuffering events upon the playback buffer

starvation are recorded with the corresponding event timestamps.

3.2.4 User interface

The original beta version of the smartphone-based VLC player consists of the video pane

that displays the video; a set of video control buttons such as play / pause / rewind /

forward; and the additional buttons that we added in order to fetch the user feed-

back on spot. This is especially important from the ESM perspective, and minimizes

the memory effect, i.e., the forgotten and/or neglected freezes as well as low QoE,

during the video playout. The snapshots from the user interface of the player are pre-

sented in Fig. 5. When the user launches the player, s/he sees a welcome message (see

Fig. 5a), and s/he is required to click the “OK” button. Afterwards, the user is asked

to type in and submit information regarding her/his mobility; location; gender; and age

(see Fig. 5b).

Video pane During a video stream, the timestamps of the displayed pictures on the device

display (after decoding and rendering) are recorded. Then, the Dp values are calculated. The

display is the video pane in Fig. 5c, and it is 196 × 117 pixels with a fixed vertical display

view.

User rating buttons (1, 2, 3, 4, 5) The user is instructed to press one of the horizontally

aligned five (based on ACR scale) user rating (UR) buttons (see Fig. 5c) whenever the

user feels like rating the quality. This helps to match the underlying application metrics

to the application QoE, however it does not give information whether a possible low QoE

is caused by a temporal impairment. Therefore, we need an additional button that helps

the user to indicate a freeze when required while the video is streaming. When any of the

rating buttons is pressed by the user, the event is recorded together with the corresponding

timestamp.
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Control
(a) Welcome message (b) Context, Demographics (c)Freeze, UR, Display, and 

Fig. 5 Snapshots from the VLQoE player

Freeze button This is a button that is located on top of the user interface (see Fig. 5c) for

the users to press whenever s/he perceives a picture freeze on the video display. When the

freeze button is pressed by the user, the event is recorded together with the corresponding

timestamp.

User control buttons There are three buttons (play/pause, rewind, forward) at the bottom of

the video pane, as shown in Fig. 5c. When these buttons are pressed by the user, the events

are recorded together with the corresponding timestamp.

Screen display The orientation (vertical/horizontal) and the brightness of the display are

recorded with the corresponding timestamps.

Screen touch events The users’ touch events on the display, while streaming video, are

recorded with the corresponding timestamps. This is especially important to understand how

the user reacts and/or interacts with smartphone upon a temporal impairment.

3.2.5 Network and physical layer

Packets The received and transmitted number of bytes to/from the smartphone are recorded

every second with the corresponding timestamp.

Interface type The active wireless interface of the device (3.5G or WiFi) is recorded for

once when the application is first launched.

Service provider The SIM card operator name is recorded when the application is first

launched.
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Signal strength The signal strength measured at the active wireless interface (3.5G or WiFi)

is recorded for once, when the application is first launched. Next, the signal strength is

recorded sporadically when the circumstances change, i.e., only when a different WiFi RSSI

is triggered by the Android OS on the smartphone.

3.2.6 Other

Other recorded metrics belong to the following components:

GPS Users’ GPS coordinates are recorded when the application launches for the first time.

The minimum time gap between the GPS polling is set to one minute. In addition, the

minimum distance change with respect to the previous location is set to 10 meters. Based

on these conditions, the software records the new coordinates with the new timestamp. The

user should manually enable the GPS and Network (via cell tower locations) to calculate

the location on the Settings menu of the smartphone. If not enabled, the software pops up a

notification and encourages enabling it when the application is launched for the first time.

The type of the active GPS component (Network/GPS) is also recorded. This way, it is

possible to get the mobility information of the user while video streaming.

Battery level The battery level is recorded on the device when the battery level changes. The

battery change is triggered by the Android OS of the smartphone upon the battery change

detection. The events are recorded with the corresponding timestamps.

Device ID The unique device ID of the smartphone is recorded for once when the applica-

tion is launched for the first time. The names of all data files are labeled with the device ID.

This is helpful to distinguish the users.

4 Experimental settings and methods

We have used the VLQoE tool primarily for performance analysis with respect to the Dp

metric while considering the user feedback. We conducted the experiments in two parts.

The first part consists of a study without user involvement to establish a ground truth and to

understand the video streaming characteristics with respect to the ON/OFF modeling. The

seconds part is the user study designed to capture the circumstances when the video QoE has

occurred, i.e., UR and freeze indications with respect to the inter-picture time (Dp) values.

The first part of the experiments is the “ON/OFF Study” and it is introduced in

Section 4.1; and the second part of the experiments is the “User Study” and it is introduced

in Section 4.2.

Video content used in both studies We used the same video in both parts; the streamed

video content was a 250.44 seconds-long water-sports theme video clip with 6251 pictures,

nominal frame rate of 25 fps, and was encoded with a nominal bitrate of 1000 kbit/s. The

video consists of various scenes comprising cheering fans, interviews with the sportsmen,

racing scenes of the sailing boats. The Scene Complexity (SC) is a metric as the average

of the spatial and the temporal details of all frames of a video clip, as shown in Eq. 9;

where F(n) is the luminance channel of the nth video frame; the temporal complexity (TI)

is calculated as the root mean square (RMS) of frame-to-frame image changes as in Eq. 10;
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Fig. 6 Experiment testbed

and the spatial complexity (SI) is calculated as the RMS of the sobel filtered luminance

channel of the frames, as shown in Eq. 11 [10, 26].

SC = log10(meann[SI (n) · T I (n)]) (9)

T I (n) = RMSspace[F(n) − F(n − 1)] (10)

SI (n) = RMSspace[Sobel(F (n))] (11)

We calculated the SC of our video clip as 7.04 with a high TI value of 67, and SI value

of 16. Based on the rough estimates of Ramos et al. [7], a video with TI greater than 38

could be considered as a video with high motion, but with some exceptions. In addition, we

observed that our calculated SC value is comparably higher than all of 25 ANSI standard

test scenes [10].

Common experiment settings The VLQoE software is installed to Samsung Galaxy S

(Android 4.2.2). The video was located at a dedicated Ubuntu 11.10 streaming server within

the BTH university campus (City of Karlskrona, Sweden), and it was streamed to the smart-

phone via RTSP and HTTP protocols (Fig. 6). The streamed videos were displayed on the

smartphone screen with a resolution of 196 × 117 pixels.

4.1 ON/OFF study (Part 1)

In the ON/OFF study, our main goal is to investigate and obtain a model with respect to the

Dp metric. During the first part of our experiments, we tested video streaming at different

locations (comprising university library, apartment basement) in Karlskrona, and tried to

find places where the video streaming quality was poor. Our purpose was to replicate the

worst-case scenarios with distortions during a real-time video stream. We conducted this

part without the user involvement (no user-interaction), and exactly the same video content

was streamed consecutively using two streaming protocols, e.g., RTSP and HTTP via 3.5G.

A test supervisor started the video stream and did not press any other control buttons, as this

part of the experiments aims to model Dp at the user interface during network-based video

playout. We performed two experiments, one for each protocol; and for each experiment we

did 30 repetitions.

Based on the Dp values, the durations spent on the ON and OFF states are investigated.

The state boundary between ON and OFF states is defined as 100 ms: the video is considered
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being in the ON state when the inter-picture time is less than 100 ms; and it is assumed in

the OFF state when the inter-picture time is greater than or equal to 100 ms. We collected

the ON and OFF durations in two different data sets called ON and OFF, and investigated

the distribution as well as the Maximum Likelihood Estimation (MLE) of the durations

within the states by using the Matlab. We did not apply extra artificial disturbances on the

link between the streaming server and the smartphone, but instead collected data at a similar

context that the users might experience in real life.

4.2 User study (Part 2)

In the second part of our study, we met with 30 subjects at various locations in Karl-

skrona, Sweden, and asked the users to watch the streamed video on the smartphone. A

more detailed background description on the selected subjects is presented in Table 2 in

Section 5.2. Each user first watched the RTSP-based video and then the HTTP-based video.

In total, we conducted 60 (30 users × 2 protocols) user experiments.

During the experiments, we tried to stick to the ITU-T P.910 [25] recommendations

for video quality in video conferencing and video-on-demand as much as possible. How-

ever, due to the inconsistency in the definition of experiment settings at different standards

documents (ITU-R BT.500, ITU-T P.910/1/2, ITU-R BT.1438), this is still a challenge

[48]. One of the strengths of our study is that we run the subjective tests in peoples’ nat-

ural daily life settings. In our work, the test supervisor did not set any restrictions such

as the distance between the phone and the user. Instead, the users were asked to hold

the smartphone at a comfortable distance and take a comfortable position in a silence

room with convenient illumination level, i.e., at a familiar physical space in daily life.

The users were asked to press the “Freeze” button anytime to indicate an evidence of

a visual freeze on the display, whenever s/he recognizes a freeze on the video. In addi-

tion each user was encouraged to rate the temporal quality based on the five-level MOS

scale, while pressing one of the five user rating buttons at her/his own will during the

playout.

As we study only the influence of temporal impairments on the users, not all QoE

aspects were considered in this study. For example, we used an additional “Freeze” button

on top of the ACR scale to collect the user reactions to the stalling events. ITU-P.910 [25]

recommends that the source signal (recording environment/system, scene characteristics,

spatial/temporal information of the video) needs to be taken into consideration to the con-

figuration at the user experiments. The standard is of high importance in analysis of content

level influential factors on QoE. However, in this study, our focus is more on the context,

system, and the user level aspects and we consider the temporal impairments on a single

video source with a length of more than four minutes long in realistic smartphone settings.

The traditional methods ask for user feedback on the quality such as ACR, after the video

is completed, however our aim in this work is to study and sample the experience on-the-

fly as the video continues to stream in real-time. The users streamed exactly the same video

content and the video is displayed on the video pane with 196 × 117 pixels resolution. We

muted the videos to let the users focus only on the visual impairments. This way, the influ-

ence of other impairments such as the discontinuity of sound is minimized. For simplicity,

the orientation (vertical) and the brightness of the display was kept constant for all users.

Hossfeld et al. [16] stated that stalling of video stream disturbs the video experience of the

user independent of the actual video characteristics. Yet, we have studied only one video

content in this study, but we schedule to replicate the user experiments with different video

characteristics.
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Table 2 Participants demographics and statistics summary. Unavailable data is depicted with “-” sign

S Nationality Net. Stream Stream OEF Interview VLQoE UR

per day via via MOS RTSP, HTTP

1 Pakistan 30 min Both 3.5G 4 4(50%), 4(46%)

2 Pakistan > 1 hour 3.5G 3.5G 4 3(32%), 4(34%)

3 Iran 5 min WiFi 3.5G 4 -, 4(63%)

4 Turkey < 2 min WiFi 3.5G 4 4(50%), 4(28%)

5 China Never Local - - 4(33%),4(25%)

6 China > 1 hour WiFi WiFi 5 5(59%),-

7 Turkey 30 min Both 3.5G 4 -, -

8 Sweden > 1 hour 3.5G - 4 5(26%), 3(34%)

9 China 5 min WiFi 3.5G 4 4(28%),2(25%)

10 India 30 min WiFi - 4 4(36%),4(33%)

11 Sweden 30 min Both 3.5G 4 5(62%),4(42%)

12 Sweden 5 min WiFi 3.5G 3 4(33%),5(38%)

13 Sweden Never - 3.5G 3 5(27%),-

14 India > 1 hour Both WiFi 4 4(46%),-

15 Pakistan 30 min 3.5G 3.5G 4 -,5(51%)

16 Sweden 5 min 3.5G - 4 5(80%),5(66%)

17 Bangladesh 5 min WiFi - 4 4(33%),3(63%)

18 Bangladesh > 1 hour 3.5G 3.5G 3 4(27%),3(49%)

19 Pakistan 30 min WiFi 3.5G 4 5(45%),4(58%)

20 Sweden 1 hour Both 3.5G 4 5(36%),5(76%)

21 Pakistan Never Local - 4 2(39%),4(35%)

22 Sweden 5 min WiFi 3.5G 3 -,4(46%)

23 Pakistan Never Local 3.5G 4 5(53%),5(65%)

24 Pakistan 10 min WiFi WiFi 4 2(41%),4(47%)

25 India 10 min WiFi - 3 4(58%),4(57%)

26 Pakistan 5 min WiFi WiFi 4 4(39%),-

27 Pakistan Never Local - 4 5(54%),3(33%)

28 Sweden 30 min Both 3.5G 4 5(31%),4(37%)

29 Sweden Never - - 4 -,3(25%)

30 Sweden 30 min WiFi 3.5G 4 5(62%),4(33%)

Furthermore, we conducted a short interview with each subject just after the experiments.

We collected demographics such as age, gender, and occupation. In addition we obtained

information on: (i) how often they are streaming video over the network on their own mobile

devices per day (less than 2 min; less than 5 min; less than 10 min; less than 30 min;

less than 1 h; more than 1 h); (ii) which network interface (3.5G or WiFi) they are using

during video streaming; (iii) the brand name and the operating system of their smartphone;

(iv) which wireless network interface they are experiencing freezes the most, namely Often

Experienced Freezes (OEF) on 3.5G or WiFi. After each user watched both videos, i.e., at

the end of the experiments, the test supervisor asked to rate this time the overall quality

based on both videos in the five-level MOS scale.
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5 Results

The presentation of the results are structured in two parts. The results for the ON/OFF study,

i.e., two-state modeling of the inter-picture times (Dp), are given in the Section 5.1. The

results of the second part of the experiments, i.e., the user study, are presented in Section 5.2.

5.1 ON/OFF study (Part 1)

The durations of the ON and OFF states is calculated for the 58 iterations amongst the 60

iterations. During 2 iterations (RTSP run #29 and HTTP run #27), the video stopped in the

very beginning due to very bad network coverage, which caused the video impossible to

stream. We excluded the two iterations from our dataset. We studied the durations spent

at the ON and OFF states. We first assured that the distribution of the ON and OFF state

durations in all 58 runs could fit into an exponential curve by obtaining the Coefficient of

Determination (R2) values, as it can show how well our hypotheses is correct, i.e., how well

the collected data points fit an exponential curve. We chose exponential modeling as we

assumed that the ON and OFF durations is memoryless, i.e., the current state of the video

streaming does not depend on its previous state. The mean R2 values were calculated as 0.93

and 0.81 for OFF and ON states, respectively. Next, the MLEs for the durations of ON and

OFF states for all 58 iterations are calculated, then the mean of all MLE values are obtained.

The mean MLE of OFF and ON durations is calculated as 642 ms and 9.7 s, respectively.

Complementary Cumulative Distribution Function (CCDF) plots are helpful in visualizing

random variables that are rare and above particular levels. Our aim is to emphasize the high

OFF durations that might cause low end-user perceived QoE. Thus we chose to visualize

the ON and OFF durations for all runs separately via CCDF plots as given in Fig. 7a and

b, respectively. We observe slight deviations between the CCDF plots, as the network con-

ditions were not identical on all runs. However, the mean R2 on exponential fits of all runs

for ON and OFF scenarios were above 0.8.

We observed long OFF durations followed by very short inter-picture durations. This

shows that the pictures were clumped and then displayed many back-to-back pictures to the

smartphone screen at once in very short duration. This behavior eventually manifests itself

on the user interface as fast-forward for a short period of time.

5.2 User study (Part 2)

The results with respect to the user study are presented in three parts. First the user feedbacks

captured during the interview are presented in Section 5.2.1. Next, the results with respect to

the data captured from the VLQoE is presented in Section 5.2.2. Afterwards, the minimum

perceived inter-picture times per participant is presented in Section 5.2.3. Before presenting

the results, we identified the corrupted (due to corrupted timestamps) or missing data.

Corrupted or missing data The freeze indications by the user are necessary to identify

the minimum perceived inter-picture times. Some user data was corrupted, or did not help

in identification of freezes due to the missing freeze indications. Amongst the 14 out of

60 user experiments, the users did not press the freeze button. We have not realized the

corrupted/missing data during the experiments and thus could not prevent it. We suggest

to check that starting from the early phases of the study as also suggested by the authors

of [41], in further related user studies to increase both the quantity and the quality of the

collected data.
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(a)Screen ON state durations (ms). Linear x-axis.

(b) Screen OFF state durations (ms). Logarithmic x-axis.

Fig. 7 CCDF plots for the duration in ON and OFF states for 58 runs

5.2.1 Short interview with the participants

In total, there were 30 participants in the user study. 28 participants were within 21–30 years

age range; S13 and S30 were within 31–40 years age range. Five subjects amongst all par-

ticipants (S2, S5, S16, S17, S22) were female. Five subjects watched the videos at home,

and 25 subjects at the university campus.

We collected background information regarding their experiences on their own smart-

phones, particularly during video streaming. This is helpful to select subjects from different

nationalities, and gender. In addition, we aimed to select subjects that stream videos on their

own smartphones in daily life and in their natural environments. The background informa-

tion of the subjects are presented in columns 2–5 in Table 2. The first column is the subject

ID of each user. The nationality of each selected user is listed in the second column; the

subjects were from six different nationalities. The third column shows the duration that the

users watch videos via wireless network interface on their own smartphones per day in daily
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life. 23 out of all subjects watch a video on the smartphone with a duration of at least 5 min

per day. The fourth column shows how the users watch video on their own smartphones, e.g.,

streaming via only 3.5G; via only WiFi; via only Local storage of the smartphone; or via

Both WiFi and 3.5G. 13 subjects stream video via only WiFi interface; five subjects stream

via only 3.5G; six subjects stated that they use both interfaces occasionally to stream video;

four subjects use only local streaming; and two subjects (S13, S29) never watch a video on

the smartphone. Six subjects (S5, S13, S21, S23, S27, S29) claimed that they never watch

a network-based video on the smartphone in daily life. Often Experienced Freezes (OEF)

during video streaming is given in column 5 of Table 2 and it is categorized as either 3.5G

or WiFi. In total, 17 subjects claimed that they often experienced freezes while streaming

via 3.5G; and only four subjects stated that they experienced freezes while streaming via

WiFi. S13 and S23 state that the reason for not watching network-streamed video is due to

their previously perceived low quality of experience of the freezes via 3.5G streaming.

5.2.2 ESM results

On the sixth column of Table 2, the subjects’ average evaluations (in MOS) on the temporal

quality of the videos are presented in five-level ACR scale. Five subjects rated 3-Fair, 23

subjects rated 4-Good; one subject rated 5-Excellent for the average temporal quality of

the streams. The average ACR received from one subject, i.e., S5, was lost. Although the

subjects have experienced occasional freezes during the video sessions, which is detailed

in Section 5.2.3, the overall UR values were higher than 2-Poor. This might be due to the

cognitive factors such as the human memory effect [21, 34].

After studying the user-perceived quality based on the short interviews, we examined the

user ratings in more details during the video stream, i.e., we analyzed the data collected via

ESM. In the last column of Table 2, the dominant user rating (UR), i.e., the user rating that is

rated with the highest amount, is given with the corresponding percentage amongst all other

given ratings from that user. The most frequent user rating received during each streaming

session is presented together with its percentage of its occurrence. For example, 4(50 %)

means that the highest percentage (50 %) of all ratings is 4 of that particular subject. The

values are stated for the two streaming protocols and for each user.

Fig. 8 Inter-picture time distribution of the corresponding user indications
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The maximum inter-picture time value during the period between the current and previ-

ous user indication (user rating or a freeze) is studied. The CCDF plots of the maximum

inter-picture time values for the user ratings 1–5, and freeze indications collected from all

users are given in Fig. 8. The plot clearly shows that 60 % of the Dp values (where the

y-axis is at 0.4) are less than or equal to approximately 65 ms, 80 ms, 150 ms, 500 ms,

500 ms, 700 ms for “UR 5”, “UR 4”, “UR 3”, “UR 2”, “UR 1”, and “Freeze”, respec-

tively. Van Kester et al. [52] found the acceptable (UR > 3.5) freezing time as 360 ms.

According to our results, if we consider the acceptable boundary as UR > 2, then the

Dp should not exceed 500 ms. The CCDF plots of “UR 1” and “UR 2” are almost the

same.

The more detailed statistics of the maximum Dp values before a user indication are given

in Table 3. The inter-picture time values for Dpmax values were exponential distributed with

R2 values given in Table 3. The dataset for the Dpmax values for all user indications were fit

to an exponential distribution with R2 value of higher than or equal to 0.84. The mean of

the maximum inter-picture time values were calculated as 152 ms, 282 ms, 321 ms, 768 ms,

831 ms, 1289 ms for “UR 5”, “UR 4”, “UR 3”, “UR 2”, “UR 1”, “Freeze”, respectively.

We also calculated the time gap between the user indication time, Ti , and the timestamp

of a displayed picture with the maximum display time, TDpmax
. The statistics on the latter

are given in the last three rows of Table 3. The mean �(Ti−Dpmax
) values were calculated as

2109 ms, 2650 ms, 3267 ms, 3808 ms, 3809 ms, and 2603 ms for “Freeze”, “UR 1”, “UR

2”, “UR 3”, “UR 4”, and “UR 5”, respectively.

First low user rating time (TLowRating) and number of alarms In this part, we categorized the

pictures that are displayed with more than 100 ms duration (Dp > 100 ms) on the display as

alarms. The number of alarms is visualised along with the corresponding low user ratings

(UR < 4) that are received, and this is done for all user experiments in Fig. 9. Each point on

the plot represents the result of one video experiment session. TLowRating for each user are

shown on the y-axis; and total number of alarms that are detected until TLowRating, are shown

on the x-axis. Some subjects were less picky, i.e., a low user rating at the 25th second of a

video session is received with respect to the 37 alarms recorded by the application within

this interval. In contrast, some people were rather picky, i.e., seven users rated the quality

with UR < 4 within the initial 30 seconds of the video, although there were no alarms with

Dp > 100 ms.

Table 3 Number of data points, goodness-of-fit, mean, median, standard deviation values are presented in

rows 2-6 for Dpmax together with the corresponding �(Ti−Dpmax
) values in rows 7–9

User indication Freeze UR=1 UR=2 UR=3 UR=4 UR=5 Unit

No. of Data Points 266 142 229 305 471 515 -

R2(Exp. Distribution) 0.96 0.94 0.94 0.84 0.90 0.94 -

Mean{Dpmax } 1289 831 768 321 282 152 ms

Median{Dpmax } 550 253 253 70 63 54 ms

Std{Dpmax } 2495 1611 1666 758 706 295 ms

Mean{�(Ti−Dpmax
)} 2109 2650 3267 3808 3809 2603 ms

Median{�(Ti−Dpmax
)} 1332 1457 1686 2387 2527 1335 ms

Std{�(Ti−Dpmax
)} 3147 3358 4220 4133 4016 3412 ms
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Fig. 9 The user ratings (UR < 4) are visualized with respect to the corresponding relative time from the

start of the video, number of alarms raised by the application

5.2.3 Minimum perceived inter-picture time

The minimum perceived inter-picture time values for each subject (subject ID at the

first column) are given in Table 4 at the columns 2 and 5 for HTTP and RTSP stream-

ing, respectively. The total number of freeze indications (#i) by each user are given in

columns 4 and 7, respectively. We considered the minimum perceived inter-picture times

that were reacted by the users at least 80 ms after TDpmax
[39]. There were two user exper-

iments (RTSP S6, RTSP S13) out of 60, in which Dresponseshort
were less than 80 ms,

therefore from those two datasets, we selected the first Dresponseshort
that is higher than

80 ms. The perceived inter-picture times for each user are presented in Table 4 ranging

between 40 ms and 4542 ms. The distribution of the measured inter-picture time val-

ues is exponential with R2 = 0.82. The exponential MLE of the perceived inter-picture

time based on all subjects is 328 ms. Some subjects indicated many freezes such as S6

(with 39 freeze indications) during RTSP streaming, while some did not contribute in any

freeze indication such as S3. The lack or low amount of freeze indications can be caused

by many reasons, some factors are: (i) the subject forgets to indicate a freeze, (ii) the

subject does not perceive the freezes, or (iii) there were not perceivable freezes in the

video due to a good quality. The DPSmin results presented in Table 4 complement the

results presented in Fig. 9 in the sense that the calculated DPS
value is different for each

user.

5.2.4 User response time

The user response time is calculated for each user while considering the first and the second

scenario, separately.

First scenario – short In this scenario, the user indicates a perceived freeze by pressing

the freeze button as the video plays out. The results with respect to the user response times

for the short freezes as defined in Section 3.1.5 are given in Table 4. The third and the

sixth column depicts the Dresponseshort
values for all subjects and for both RTSP and HTTP

streaming experiments, respectively.
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Table 4 Minimum perceived inter-picture times for each user. Corrupted or missing data is indicated by “-”

HTTP RTSP

S DpS min Dresponseshort
#i DpS min Dresponseshort

#i

1 49 ms 4451 ms 2 55 ms 4995 ms 4

2 53 ms 7075 ms 10 67 ms 318 ms 11

4 57 ms 10596 ms 8 43 ms 313 ms 7

5 41 ms 454 ms 5 43 ms 539 ms 5

6 - - - 41 ms 705 ms 39

7 51 ms 3538 ms 12 - - -

8 41 ms 218 ms 14 86 ms 111 ms 7

9 - - - 45 ms 1862 ms 2

12 103 ms 4401 ms 6 318 ms 2548 ms 7

13 - - - 515 ms 1399 ms 7

14 - - - 40 ms 385 ms 1

16 41 ms 275 ms 10 83 ms 534 ms 41

17 - - - 389 ms 6496 ms 8

18 50 ms 431 ms 4 50 ms 1124 ms 2

19 4542 ms 4969 ms 1 - - -

20 117 ms 4394 ms 9 45 ms 117 ms 9

21 43 ms 3367 ms 20 59 ms 666 ms 3

23 681 ms 1300 ms 3 2880 ms 2704 ms 2

24 53 ms 3959 ms 13 249 ms 1352 ms 1

27 474 ms 1493 ms 3 - - -

28 45 ms 2127 ms 4 49 ms 102 ms 15

29 2924 ms 319 ms 1 - - -

30 46 ms 369 ms 4 - - -

Second scenario – long In this scenario, the user indicates a freeze when the video pauses.

This happens when the display duration of the stalled picture exceeds the difference between

the timestamps of that displayed picture and the user’s freeze indication. The Dresponselong

values obtained from each subject are different. As the CCDF plot can reveal the high user

response times in the data, we plotted the CCDF plot of Dresponselong
values as given in

Fig. 10. Dresponselong
values are exponential distributed with R2 of 0.98. The MLE of the

Dresponseshort
values is calculated as 1533 ms. Again, based on the results plotted in Fig. 10,

the user response times vary from user to user.

5.3 Summary of the results

We developed a tool (VLQoE) that can record all the metrics detailed in Section 3.2.2, and

it is possible to analyze in detail all the collected parameters related to QoE either during

or after the experiments. By using VLQoE, we conducted a study in two parts: the first part

aims to model the inter-picture time at the user interface; while the second part aims to find

out the video QoE via subjective study. The most important findings of our work are stated

as follows:
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Fig. 10 CCDF plot of User Response Times, Dresponselong
, for the long freezes

– ON/OFF modeling based on the inter-picture time during video streaming is stud-

ied, and exponential models (with mean R2 values 0.81 and 0.93 for ON and OFF

states, respectively) are obtained. The mean ON duration is calculated as 9.7 s; and the

mean OFF duration is calculated as 642 ms during the streaming experiments. (Part 1,

Section 5.1)

– The minimum perceived inter-picture time is studied. The Exponential Maximum Like-

lihood Estimation (MLE) of the minimum perceived inter-picture time is calculated as

328 ms. (Part 2, Section 5.2)

– The mean of the highest acceptable (UR > 3) inter-picture time values is calculated as

282 ms. (Part 2, Section 5.2)

– The MLE of User Response Time (Dresponselong
) during a long freeze scenario is

calculated as 1533 ms. (Part 2, Section 5.2)

– The time it takes for the subjects to give a low user rating, i.e., UR < 4, from the start

of the video is studied. We found out that this is varying for each user. Some users are

less picky, and do not respond immediately despite the high number of alarms (freezes)

raised by the video player; while some users are rather picky and give a low user rating

with low number of alarms. (Part 2, Section 5.2)

6 Limitations

The obtained numbers in the results of this paper are valid for the particular video, for the

particular users involved in the study in particular conditions as stated. Further tests are

under investigation for a wide variety of videos and with the participation of more users.

The accuracy of the timestamping of the displayed pictures might be a few milliseconds

varying from the actual values. This depends on the clock accuracy, and drifting as well as

on the timestamping of the programming environment and operating system, and also to

the implementation related factors, e.g., particular location of the timestamping function in

the code. Moreover, the accuracy of the minimum perceived inter picture time values were

based on the number of freeze indications per user as well as other factors related to human

factors such as cognitive bias, user concentration level, etc. The improvement of the tool

with respect to this aspect is ongoing.
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During the experiments, we experienced corrupted or missing data for some subjects,

e.g., some users did not press the freeze button. Based on this experience, we recommend a

periodic check of the data during the study to detect and prevent similar anomalies in future

studies.

In the current version of VLQoE, we have employed only a subjective method with the

five-level ACR scale as it is a commonly used. On the other hand there are other recom-

mended assessment methods as such some focuses on the relative quality [36]. We leave the

task of studying other QoE methods on the user interface for future work, and in parallel we

encourage QoE researchers to modify the VLQoE for the target studies.

7 Conclusions

In this article, we presented the extended version of the VLC-media player, i.e., VLQoE that

is aimed to help researchers to conduct smartphone-based video QoE experiments. We did

this by adding an extra functionality to an open source VLC media player. VLQoE records

a set of metrics from the user interface, network-layer, and the available sensor metrics

from the Android OS. The network- and physical-level measurements enable the collec-

tion of lower layer QoS related metrics such as signal strength transmitted/received packets.

The measurements at the user interface enable the collection of direct user feedback with

respect to the temporal impairments; and the sensor/GPS components enable the collection

of user context during video streaming. The VLQoE tool can be used for user-centric QoE

modeling as a function of collected metrics such as the smartphone battery level; appli-

cation rebuffering events; numbers of received and transmitted video packets; smartphone

screen orientation/brightness level; smartphone network interface signal strength; and the

location/context of the end-user.

We used VLQoE to further study the temporal impairments of a network-based video

stream. We presented our approach in two parts. In the first part, we modeled the video

streaming session in two states with the assumption that 100 ms is the boundary inter-picture

time for a video playout to be considered either in ON (smooth playout), or in OFF (video

picture freeze) state. We presented the duration of ON and OFF states with exponential

models, and presented the inferential statistics for both states. In part 2, we focused on the

QoE centric modeling and conducted a user study to find out the boundary inter-picture

times between the ON and OFF states. To do that, we studied the minimum perceived inter

picture times, i.e., the minimum display duration of a video picture that is perceived by a

user, and we concluded that this metric varies from user to user (max. 2880 ms, min. 40 ms).

Next, we showed the influence of the inter-picture times on the end-user perceived QoE

as measured at the user interface. Based on the results obtained from the user study, the mean

of the maximum inter picture time values were 152 ms, 282 ms, 321 ms, 768 ms, 831 ms,

and 1289 ms for “UR 5”, “UR 4”, “UR 3”, “UR 2”, “UR 1”, “Freeze”, respectively. The

maximum inter-picture time increases as the user rating decreases; and the highest mean

of maximum inter-picture times have matched with the “Freeze” indications, as expected.

We observed almost similar maximum inter-picture time distributions for “UR 1” and “UR

2”. Moreover, we studied the first low (“UR < 4”) ratings that were received by the users

during the video streaming sessions. The occurrences of the high (greater than 100 ms) inter-

picture times, i.e., alarms, are studied together with the streaming time until the reception of

the first low user rating. In parallel, we analyzed the overall user response time of the sub-

jects in two scenarios (short/long freezes). The distribution of the user response time with

respect to the long freezes is found to be exponential distributed, and the MLE of the user
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response time is calculated roughly to 1.5 s. We presented the demographics and background

information of each user based on users’ daily life video streaming experiences on the

smartphones.

The ultimate goal of video QoE experiments is to detect degradation in the quality of

video stream, and to react in order to minimize the influence of it on the end-user perceived

quality. We believe that VLQoE tool can provide metrics with high information gain to

the machine learning mechanisms that will benefit in terms of improvement of the future

streaming quality. The content presented in this paper can be extended with more number

of test subjects (e.g., via Google Play), with long-duration studies, and could shed light on

construction of new methodologies for smartphone-based subjective studies and eventually

QoE modeling on the smartphone.

8 Future work areas

We believe that the VLQoE tool has great potential for further improvements for mobile-

based QoE assessments. It can further be enhanced with more variety of QoE assessment

methods, video content, and eventually to be put in the Android application store in order

to reach a larger number of subjects. The tool can be improved by adding the options that

helps the researchers to choose the desired QoE methodology (e.g., % slider instead of five

buttons), choose/upload new test videos (e.g., VQEG video clips), to be used in the video

experiments. This could be done by adding a separate drop-down interface that lets the

researchers to choose. The outcomes of testing different existing assessment methodologies

and videos will help in standardizing smartphone-based QoE assessment.

Assessment of QoE in real life user studies while being minimally obtrusive to the user

is challenging. Obtaining the user data non-obtrusively, i.e., without explicitly asking the

user to press the button, can be done by the accelerometer data of the device during the

video streaming. This might help to identify the user behavior (e.g., jiggling the mobile

device) with respect to the video freeze. Similarly, the obtained user data on the screen touch

events may potentially reflect the user perception in a less obtrusive and more objective

way. These items can be studied in future work. On the other hand, continuous recording

of accelerometer data might be resource consuming. Therefore, one recommendation is an

automatic recording of the accelerometer data once a high inter-picture time at the user

interface has been detected.

Some further future works could be applied; in fact be re-designed in order to increase the

engagement of the subjects to the study, e.g., tournament to detect freezes. The VLQoE tool

can be turned into a game platform where the user feedback with respect to the quality of the

video would be collected in minimally intrusive away. This way, the number of participants,

the variety of context, and consequently the quality of the data might be improved. The

score of each user based on the game can be presented as public and the subjects will be

able to compete with each other to detect and indicate the highest number of freezes with

the cost of uploading their data to a public QoE database. The collected data can then be

fed into machine learning mechanisms so that the application itself will be trained and then

suggest the “good- enough” levels of the parameters for the video source, which could then

be fed into the control loop.

We have so far studied inter-picture time with the focus on network-based video

streaming, and the collected data depends on the real-time condition (available band-

width) of the network link during the experiments. Therefore, we plan to comple-

ment our work with controlled experiments, e.g., predefined disturbances, to have



Multimed Tools Appl

ground truth, and stream videos that are pre-recorded from the local storage of the

smartphone.
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