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Abstract

This thesis describes the development and testing of a simple visual system fabricated us-

ing complementary metal-oxide-semiconductor (CMOS) very large scale integration (VLSI)

technology. This visual system is composed of three subsystems. A silicon retina, fabri-

cated on a single chip, transduces light and performs signal processing in a manner similar

to a simple vertebrate retina. A stereocorrespondence chip uses bilateral retinal input to

estimate the location of objects in depth. A silicon optic nerve allows communication be-

tween chips by a method that preserves the idiom of action potential transmission in the

nervous system. Each of these subsystems illuminates various aspects of the relationship

between VLSI analogs and their neurobiological counterparts. The overall synthetic visual

system demonstrates that analog VLSI can capture a significant portion of the function

of neural structures at a systems level, and concomitantly, that incorporating neural ar-

chitectures leads to new engineering approaches to computation in VLSI. The relationship

between neural systems and VLSI is rooted in the shared limitations imposed by computing

in similar physical media. The systems discussed in this text support the belief that the

physical limitations imposed by the computational medium significantly affect the evolving

algorithm. Since circuits are essentially physical structures, I advocate the use of analog

VLSI as powerful medium of abstraction, suitable for understanding and expressing the

function of real neural systems. The working chip elevates the circuit description to a kind

of synthetic formalism. The behaving physical circuit provides a formal test of theories of

function that can be expressed in the language of circuits.
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Chapter 1

Introduction

I have been exploring mechanisms of computation in VLSI analogs of biological visual

systems. By mechanism of computation I mean a physical structure that executes an

implicit algorithm mapping input to output. I argue that analog circuit design is an ex-

perimental tool for the investigation of neurobiological systems and that the analog circuits

are an efficient language for expressing neural function. Furthermore, these VLSI circuits

are the building blocks of entirely new kinds of computers whose algorithms are wed to

their structure, and hence may be orders of magnitude more efficient at specific tasks than

general-purpose computers.

The study of biological systems brings us up against the issue of the relationship between

form and function, the objective and the subjective. Unlike man-made structures, whose

purposes we know and whose histories we have documented, biological systems come to us

without cosmic blueprint; all that we can see are the traces of the forces and constraints

that gave rise to the modern organism. It is as if we are presented with the living artifacts

of a magnificent civilization and are left to winnow out their purposes and functions. If we

do not admit a purpose, we are reduced to a description of the brain as an organic soup

of lipids, sugars and proteins. An alternative to objective description is to invoke natural

selection as the process by which biological organisms have evolved. Of all the organs, the

brain is unique because it is explicitly subjective. It generates abstractions to represent

long-term and instantaneous information, which is used to facilitate survival. The task of

perception is specifically not one of instrumentation. The goal is not to represent exactly

what is out there but in some other way; instead, the brain must represent reality in the
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most simplified way possible while maintaining the distinctions necessary for appropriate

behavior. For example, it is critical to recognize a hungry tiger whether it is moving or

standing still, in light or in shadow. The solution to this problem is not reserved for a

homunculus in the higher centers of the brain who sits and watches the movie of reality

through the eyes. The solution starts in the retina itself.

The evolutionary process endows the material with special significance. Man-made com-

putational systems are created by a designer who regards the system from the outside. The

creator analyzes the computation in terms of external constraints, and designs an algorithm

to perform the computation which then can be implemented on a machine. Implementation

is specifically excluded from algorithmic considerations. This was the approach expounded

by David Marr in his classic text, Vision. Natural selection, however, seems unconcerned

with the distinctions between objective constraint, algorithm, and implementation. The

constraints on the computation are just as much a function of the material with which the

machine is made as they are of the external task.

The CMOS VLSI medium is related to the neural medium at the base level. The

CMOS transistor is analogous to the ligand- or voltage-sensitive channel that is the basis

of neural computation. The current flow through a transistor is a monotonic function of

the voltage difference across it and and a steep (exponential or square-law) function of the

gate voltage. In a population of neuronal channels, the current through the membrane is

a function of difference between the reversal potential and the intracellular potential, and

exponentially gated by the intracellular potential or a transmitter concentration. In addition

to these gain elements, threshold and saturating nonlinearities are computational primitives

of both media. For example, current-limited transistors might be analogous to finite channel

density in the nerve membrane. In addition, elementary arithmetic functions arise from

Kirchoff’s laws and systems dynamics are an inevitable consequence of conductances and

capacitances. At a systems level, both neural and CMOS VLSI systems are made of large

numbers of mismatched elements. This property necessitates mechanisms of self-calibration.

Furthermore, limitations in the amount of DNA and in the technical difficulty of a circuit

design both favor systems that are specified algorithmically. The computations performed

by both of these systems are limited by the physical medium. Wiring density, bandwidth

limitations, and the high cost of energy must be taken into account.
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If we could succeed in defining algorithms that are consistent with the properties of the

VLSI medium, we could create new machines that are far more computationally efficient

than the general-purpose digital computer in use today. The digital representation allows

the computation to proceed in spite of element mismatch but strips the transistor of much

of its intrinsic computational power. The digital encoding of a number is susceptible to

device failure, since single failures are just as likely to affect the most-significant as the

least-significant bit. The fight against the intrinsic capacitances of the material leads to

large power consumption as devices are forced to switch as quickly as possible. Biological

systems have evolved algorithms and representations that are efficient and robust and which

take advantage of natural dynamics. To the extent that neural systems and VLSI systems

share the same fundamental hardware limitations and attempt to perform similar tasks, the

algorithms and representations of neural systems will be appropriate for incorporation into

VLSI circuits.

If the computational requirements of the algorithm are tailored more and more closely to

the requirements of the medium, the specification of the algorithm may be most conveniently

rendered by a description of the material that embodies it. Certainly in one sense, the best

description of an organism is the organism itself. However, in contrast to description,

understanding specifically requires the creation of an abstraction that is not a replica of the

organism. This abstraction must capture essential qualities and relationships, which can

be generalized to similar situations. To understand highly evolved biological systems, it is

likely that the abstractions that preserve the essential qualities of the form of the organism

will most efficiently communicate its function.

Analog circuits are abstractions capable of representing many of the essential qualities

of neural systems. They are a more natural basis for representing neural circuits than words

or equations because the patterns of interrelationship that are the essence of the collective

function are implicit in the form of the circuit itself. Although a circuit may be physically

instantiated, it also has an ideal existence. Like the circuits in the brain, analog circuits

cannot physically be taken out of context because then they are not circuits anymore–their

circular nature is interrupted. However, they can be distinguished and thought of as entities

in much the same way as a word in a language. The attributes of this ideal circuit remain

physical in nature. The circuit as abstraction is well situated between undifferentiated ideal
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and uninformed matter.

The fundamental difference between the biological system and the analog is that the

analog is explicitly designed to perform a particular function. Its circuits are defined by their

functional significance, rather than an arbitrary morphological demarkation. The functional

approach to understanding neural systems was introduced by Gordon Shepherd. He points

out that the obvious physical characteristics of neural systems, like the cell boundaries of

the neuron, are not the appropriate conceptual units of the nervous system. He states, “the

neuron can no longer be regarded as the basic functional unit of the nervous system; rather,

the nervous system is organized on the basis of functional units whose identity in many

cases is independent of neuronal boundaries.” The functional units can only be discerned

by their participation in the computation. Because the analog is created for a purpose, the

functional boundaries of the circuits are clear.

Existing both in the domain of form and function, the analog system provides a frame-

work in which to integrate information from disparate experimental and theoretical tech-

niques. It incorporates the electrical characteristics that are the domain of electrophysiology,

the behavioral characteristics that are the domain of psychophysics and the purposive char-

acteristics that are the domain of engineering. At all of these levels of complexity, the analog

can be compared to the neural system. This dialectical interaction between the analog and

the real system depends simultaneously on the similarities and the differences between the

two media.

Analog VLSI is, ultimately, a synthetic tool for understanding neural systems. Al-

though the circuit exists in an abstract sense, its true power is revealed only when it is

realized. The instantiated circuits exist as written words that express neural function and

our understanding is tested by the performance of the systems that we build.

1.1 Overview

I describe the components of a primitive analog CMOS vision system for doing real-time

stereopsis. These components include a silicon retina, an optic nerve, and a stereoscopic

matching array. The choice of representation of information and the computations per-

formed using that representation are suggested by the properties of the analog medium in
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which the system is implemented.

1.1.1 The Silicon Retina

Chapter 1 describes the silicon retina. The silicon retina shares several features with its

biological counterpart. Transducers and computational elements (silicon neurons) are ar-

rayed in a thin layer over a two-dimensional surface. The lens focuses the image directly on

the transducers. Image processing occurs in parallel at each node of the array. The com-

putation proceeds in real-time. Like the biological retina, the silicon retina acts to reduce

the bandwidth needed to communicate reliable information. The need for data compression

arises because ambient light intensity varies over many orders of magnitude, yet the local in-

tensity variation in a single image is usually small. In the presence of noise, communication

of absolute image intensity would require a large dynamic range to encode reliably small

differences in image intensity over the full possible illumination range. The retina reduces

the bandwidth by subtracting average intensity levels from the image and reporting only

spatial and temporal changes. Adaptation at the photoreceptor level prevents amplification

of static component mismatch.

The goal of keeping retinal output confined to a reasonable bandwidth creates an ab-

stract representation of an image. For example, by reporting only contrast edges the retinal

output provides sensory invariance. The contrast of white square on a black background is

invariant under changes in illumination even though the photon flux from the black back-

ground in bright illumination may be larger than the photon flux from the white square in

dim illumination. The abstraction created by the silicon retina results in output patterns

that are reminiscent of several visual illusions, such as simultaneous contrast, the Herring

grid illusion and the Mach band illusion. The process of adaptation results in the formation

of after-images, since the receptors cannot tell the difference between internal miscalibration

and a persistent pattern of illumination.

The advantages of using a network of resistors and conductances to perform this com-

putation are discussed. The concept of conductance, typically seen as a passive discrete

element, is generalized to include the action of nonlinear feedback circuits. A relationship

between feedback inhibition and the conductance properties of light sensitive channels in

vertebrate cones is postulated.
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The abstraction created by the silicon retina has several ramifications for further vi-

sual processing in our analog CMOS system. The form of retinal output suggests a novel

representation that allows data to be transferred reliably between chips.

1.1.2 Optic Nerve

Communication of high bandwidth information between chips is a major impediment to

progress in building parallel, neural-network computers. I have designed an interchip com-

munication protocol that takes advantage of the representation of the visual world created

by the silicon retina. Experimental results are reported from a simple two chip system: a

silicon retina and a receiver that copies the image from the retina. I call this system the

silicon optic nerve.

The silicon optic nerve is based on a self-timed digital multiplexing technique which

uses an address-event representation. The address-event representation has much in com-

mon with the action-potential representation used by real neurons. Like neuronal action

potentials, events in this system are stereotyped digital amplitude events and the interval

between events is analog. Information is encoded in the time between events. The action

potential events of all the neurons are transmitted one at a time in an asynchronous fashion

as the address of the neuron that issued the event. This encoding scheme reduces N wires

to (1 + log2 N) wires. The retinal encoding of visual information insures that only a few of

the neurons in the retinal array will be firing with high spike rates in response to the image.

This protocol devotes all of the bandwidth of the bus to transmitting accurate temporal

information when the data rate is low. As the data rate increases, the protocol resembles

more and more closely the traditional sequential scanning methods of data transfer.

Because the address-event representation preserves timing information, it is particularly

suited for signaling dynamic events. These dynamic events are an integral part of real-time

sensorimotor processing. If this data transmission protocol is widely adopted, it will allow

many types of chips to easily be interfaced to each other.

1.1.3 Stereopsis

I have designed a chip for fusing data from two one-dimensional retinal regions into a

single depth image. The chip is designed to use the communications framework described
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above to receive data from two retina chips. Because the retinal output using the address-

event representation has not been perfected yet, artificial data was provided by a hardware

interface to a digital computer.

The algorithm for stereo matching embedded in the stereo chip is novel. It evolved from

an earlier attempt to do stereo matching on an analog VLSI chip that was based on Marr and

Poggio’s cooperative stereo correspondence algorithm. Marr and Poggio’s algorithm uses a

place valued encoding of disparity; it requires an array of correlators, each one tuned to a

different disparity. Positive feedback between correlators in the array helps disambiguate

matching, so that fusion can be achieved even in dense arrays of identical targets in which

there are many possible false matches. The pattern of interaction between correlators limits

the images which can be correctly fused to those that are in a fronto-parallel plane with

respect to the observer. We have extended their algorithm so that it performs correctly on

images that are tilted in depth. The innovation in this chip is the transformation of place

encoding into an analog value encoding of disparity. This is convenient because the analog

domain provides a natural representation for surface interpolation. The analog encoding is

used to guide the stereo matching process that takes place in the correlator array.

The performance of this chip can explain the human performance on dot patterns de-

scribed by Mitchison and McKee. These patterns are constructed with combinations of

ambiguous and unambiguous targets and attempt to reveal the matching strategy used by

the visual system. The results obtained with these patterns have not previously been ex-

plained by any computational model. The correspondence between the performance of the

circuit and humans on these patterns, suggests that the model may be capturing something

fundamental about the way stereoscopic fusion is achieved by the visual system.

The nodes of the analog circuit mimic the response of the major disparity cell types

observed in the macaque monkey primary visual cortex. There is no generally accepted

biological explanation of how the tuning characteristics arise, or what their computational

function is. However, since the circuit was designed to perform a specific computation,

the computational function and origin of these tuning characteristics are known in this

case. The tuning characteristics of these nodes cannot be understood by analysis of inputs.

Instead the responses are a result of the neuron’s embedding in a nonlinear network. There

is no proof that the analog circuit is performing the same computation that is performed
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in the monkey; however, the circuit does provide a number of hypotheses of brain function

that are testable. For example, the analogy between a particular class of nodes in the circuit

and disparity flat cells suggests that the disparity flat cells are smooth inhibitory cells. This

hypothesis can be tested using currently available electrophysiological techniques.
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Chapter 2

The Silicon Retina

The retina is a thin sheet of neural tissue that partially lines the orb of the eye. This tiny

outpost of the central nervous system is responsible for collecting all the visual information

that reaches the brain. Signals from the retina must carry reliable information about

properties of objects in the world over many orders of magnitude of illumination.

The encoding of visual information in the retina is generated, in large part, by the initial

analog stages of retinal processing, from the photoreceptors through the outer-plexiform

layer (OPL). Processing in the OPL relies on lateral inhibition to adapt the system to a

wide range of viewing conditions, and to produce an output that is mostly independent

of the absolute illumination level. A byproduct of lateral inhibition is the enhancement of

spatial and temporal changes in the image.

In collaboration with Carver Mead, I have designed two versions of silicon retinas mod-

eled on the outer-plexiform layer (OPL) of the vertebrate retina. These chips generate, in

real time, outputs that correspond directly to signals observed in the corresponding levels

of biological retinas. In this chapter, I describe the silicon retinas and compare and contrast

their performances. I interpret some of the biophysical mechanisms of signal processing in

the OPL of the vertebrate retina in light of these silicon circuits.

2.1 Vertebrate Retina

The retina has been the subject of a tremendous number of investigations (see Dowling [8]

for a review). Although the details of each animal’s retina are unique, the gross structure
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of the retina has been conserved throughout the vertebrates.

2.1.1 Basic Anatomy

The major divisions of the retina are shown in cross-section in Figure 2.1. Light is trans-

duced into an electrical potential by the photoreceptors at the top. The primary signal

pathway proceeds from the photoreceptors through the triad synapses to the bipolar cells,

and thence to the retinal ganglion cells, the output cells of the retina. This pathway pen-

etrates two dense layers of neural processes and associated synapses. The horizontal cells

are located just below the photoreceptors, in the outer-plexiform layer (OPL). The inner-

plexiform layer (IPL), just above the ganglion cell bodies, contains amacrine cells. The

horizontal and amacrine cells spread across a large area of the retina, in layers transverse to

the primary signal flow. The OPL and IPL are the site of interaction between the various

cell types of the retina.

2.1.2 Function of the Outer-Plexiform Layer

The most salient feature of the OPL is its ability to adapt to prevailing light conditions. The

photoreceptors, horizontal cells and bipolar cells take widely varying amounts of incoming

light and produce a signal with much narrower dynamic range that nonetheless captures

the important information in an image. The outer-plexiform layer allows a system with

limited output range and finite analog resolution to communicate small local changes in

image intensity when the background intensities may vary by a factor of one million.

The initial stage of retinal processing is performed by the photoreceptors that trans-

duce light into an analog electrical signal. In fact, all of the neurons in the OPL represent

information with smoothly varying analog signals, rather than action potentials used by

most neurons. The photoreceptor amplifies the photon-event with a second messenger cas-

cade. The absorption of a single photon activates an enzyme that catalyzes the destruction

of many molecules of cGMP. Lowering the cGMP concentration causes sodium-permeable

channels to close and the cell becomes hyperpolarized.

Because the photoreceptor must respond over several orders of magnitude in photon

flux, it must change its gain to be commensurate with the average number of incoming

photons. Cones possess an intrinsic light-adaptation mechanism operating over a time
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Figure 2.1: Artist’s conception of a cross-section of a primate retina, indicating the pri-

mary cell types and signal pathways. The outer-plexiform layer is beneath the foot of the

photoreceptors. The invagination into the foot of the photoreceptor is the site of the triad

synapse. In the center of the invagination is a bipolar-cell process, flanked by two horizontal

cell processes. R:photoreceptor, H:horizontal cell, IB:invaginating bipolar cell, FB:flat bipolar

cell, A:amacrine cell, IP:interplexiform cell, G:ganglion cell. Adapted from Dowling [8]
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course of a couple of seconds that is based on calcium regulation of cGMP synthesis (for a

review see [26]). Calcium enters the cell through open sodium-permeable channels and is

removed by a pump. When channels close in response to light stimulation, more calcium

is pumped out than is flowing in so the intracellular concentration of calcium decreases to

a lower equilibrium value. Low calcium concentration stimulates the synthesis of cGMP

so the light-adapted cone recovers quickly from the absorption of light (the destruction of

cGMP). Light-adaptation allows the cone to respond at high illumination without depleting

its store of sodium-permeable channels and consequently saturating its voltage to maximum

hyperpolarization. A more rapid adjustment of the electrical operating point of the cone is

provided by interactions between the cones and the OPL network.

Some of the cellular interactions in the OPL are summarized briefly here. The cones

make excitatory (glutaminergic) synapses onto both horizontal cells and bipolar cells [8].

The horizontal cells inhibit both the cones and the bipolar cells by electrogenic GABA

release [15]. In addition, horizontal cells are electrically coupled to each other with gap

junctions. The gap junctions couple the horizontal cells into a resistive sheet. The sheet

has capacitance to the extra-cellular fluid due to the cell membranes. The horizontal cells

thus compute a spatially and temporally smoothed version of the photoreceptor signal. This

average is used as a reference point for the system.

The horizontal cells provide two forms of lateral inhibition, one by feedback inhibition

to the cones, the other by feedforward inhibition of the bipolar cells. Feedback inhibition

allows the cones to respond with high gain to small local changes in illumination and still

span a large input range [31]. Feedforward inhibition to the bipolar cells gives these cells

their classical center-surround receptive field structure; bipolar cells amplify the difference

between the average computed by horizontal cells and the local photoreceptors [38]. Hyper-

polarizing and depolarizing bipolar cells transmit a differential signal to the retinal ganglion

cells.

2.2 Silicon Retina

Several versions of the silicon retina have been previously described [17, 18, 22, 20]. Al-

though each version is different, they have several features in common. For example, because
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Figure 2.2: Diagram of the silicon retina showing the resistive network; a single pixel element

is illustrated in the circular window. The silicon model of the triad synapse consists of a

follower-connected transconductance amplifier by which the photoreceptor drives the resistive

network, and an amplifier that takes the difference between the photoreceptor output and the

voltage stored on the capacitance of the resistive network. These pixels are tiled in a hexagonal

array. The resistive network results from a hexagonal tiling of pixels.

they are implemented on a physical substrate, they have a straightforward structural rela-

tionship to the vertebrate retina. A simplified plan of a typical silicon retina is shown in

Figure 2.2. This view emphasizes the lateral spread of the resistive network, corresponding

to the horizontal cell layer. The image signal is transduced and processed in parallel by

circuitry at each node of the network.

The computations performed by these retinas are based on the interaction between the

photoreceptor, the horizontal cells and the bipolar cells in the OPL. These retinas include

the following elements:

1. A phototransducing element that generates a current proportional to the light inten-

sity coupled with an MOS transistor whose subthreshold voltage-current relation is

logarithmic.

2. A resistive network modeling the horizontal cell layer that spatially and temporally
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averages the photoreceptor output.

3. A bipolar cell output that is proportional to the difference between the phototrans-

duced signal and the horizontal cell signal.

The data presented here are taken from two types of silicon retina. These retina are

are described in parallel in the text. The first retina is a feedforward retina [17]. The

feedforward retina is so called because the signal path is in the forward and lateral directions

only. It demonstrates the ability of the resistive network to be used for lateral inhibition.

The simple resistive structure gives rise to complex spatiotemporal behavior. The second

retina described here [18] is an extension of the first. It includes feedback from the resistive

network to the photoreceptors. In addition, the photoreceptor includes a mechanism for

light adaptation that also cancels transistor mismatch to improve imaging performance.

Analogies between the feedback retina and the vertebrate retina lead to a new interpretation

of biophysical phenomena observed in the OPL.

2.2.1 Photoreceptor Circuits

The photoreceptor transduces light into an electrical signal. The logarithmic nature of the

response of the biological photoreceptor is supported by psychophysical and electrophysio-

logical evidence. Psychophysical investigations of human visual-sensitivity thresholds show

that the threshold increment of illumination for detection of a stimulus is proportional to

the background illumination over several orders of magnitude [28]. Physiological record-

ings show that the photoreceptors’ electrical response is logarithmic in light intensity over

the central part of the photoreceptors’ range, as are the responses of other cells in the

distal retina [8]. The logarithmic nature of the response has an important system-level

consequence: the voltage difference between two points is proportional to the contrast ra-

tio between the two corresponding points in the image. In a natural image, the contrast

ratio is the ratio between the reflectances of two adjacent objects, reflectances which are

independent of the illumination level.

The silicon photoreceptor circuit consists of a photodetector, which transduces light

falling onto the retina into an electrical photocurrent, and a logarithmic element, which

converts the photocurrent into an electrical potential proportional to the logarithm of the
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local light intensity. Our photodetector is a vertical pnp bipolar transistor, which occurs

as a natural byproduct in the CMOS process [2]. The base of the transistor is an isolated

section of well, the emitter is a diffused area in the well, and the collector is the substrate.

Photons with energies greater than the band gap of silicon create electron–hole pairs as

they are absorbed. Electrons are collected by the n-type base of the pnp phototransistor,

thereby lowering the energy barrier from emitter to base, and increasing the flow of holes

from emitter to collector. The gain of this process is determined by the number of holes

that can cross the base before one hole recombines with an electron in the base. The

photodetector in our silicon photoreceptor produces several hundred holes for every photon

absorbed by the structure.

The current from the photodetector is fed into an MOS transistor arrangement. The

operation of an MOS trasistor in the subthreshold regime is described by Mead in Analog

VLSI and Neural Systems [2]. The current-voltage relation of a MOS transistor operating

in the subthreshold regime is exponential.

IDS = I0e
κ(Vg−Vs)(1 − e−(VD−VS))

The voltage on the gate of the transistor required to supply a particular current is propor-

tional to the logarithm of the current. The MOS transistor transforms the current from the

photodetector that is proportional to the light intensity, to a voltage that is logarithmic in

the light intensity.

Logarithmic compression can be used to compress a large input range into a smaller

output range. This was the approach adopted in the feedforward silicon retina. However,

this compression leads to a lack of sensitivity. The feedforward silicon retina produced a

mottled output because the intensity variations within a uniformily illuminated scene are

small, roughly the same order as the transistor mismatch. In fact, in biological systems, the

range of response of the cones at a particular level of background light adaptation spans only

a fraction of the perceptual range [31, 14]. The region of sensitivity of the cones is shifted

by feedback from the horizontal cell network. This interaction was incorporated in the

feedback silicon retina to increase sensitivity. However, in addition to amplifying the visual

signal, feedback of this kind amplifies static transistor mismatch, so an adaptive mechanism
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Figure 2.3: Measured response of a logarithmic photoreceptor. Photocurrent is proportional

to incident-light intensity. Response is logarithmic over more than four orders of magnitude

in intensity. Direct exposure of the chip to room illumination resulted in an output voltage

of 2.1 volts. The symbol for the photoreceptor circuit is shown in the inset.

was incorporated into the photoreceptor in the feedback retina. These two photoreceptors

are described sequentially in the following text.

The low-gain photoreceptor in the feedforward retina, depicted in Figure 2.3, uses two

diode-connected MOS transistors in series to supply the photocurrent. The photocurrent

biases these transistors in the subthreshold region. This arrangement produces a voltage

proportional to the logarithm of the current, and therefore to the logarithm of the incoming

intensity. The constant of proportionality is Vout ∝ κ/(κ + 1), rather than κ as is the

case for a single diode, because the change in the output voltage of the second diode must

compensate for the change in the gate voltage with current of the first diode. We use two

transistors to ensure that, under normal illumination conditions, the output voltage will be

within the limited allowable voltage range of the resistive network. Even so, at very low

light levels, the output voltage of the photoreceptor may be close enough to VDD that the

resistor bias circuit described by Mead [2] cannot adequately bias the horizontal resistive

connections.
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The voltage out of the low-gain photoreceptor circuit is logarithmic over four to five

orders of magnitude of incoming light intensity, as shown in Figure 2.3. The lowest pho-

tocurrent is about 10−14 amps, which translates to a light level of 105 photons per second.

This level corresponds approximately to a moonlit scene focused on the chip through a

standard camera lens, which is about the lowest illumination level visible to the cones in

a vertebrate retina. At high light levels, the diode-connected transistors enter the above-

threshold operating regime where the output voltage goes as the square root of the current.

The photoreceptor of the feedback retina, shown in Figure 2.4, includes a transducing

element embedded in a feedback loop from a high-gain amplifier. The photocurrent is

supplied from the power supply through the action of transistor Q1. The current through

Q1 clamps the emitter voltage, VE, to be equal to the absolute value of the gate-source

voltage on the bias transistor, Vbias. Small variations in VE are amplified by the inverting

stage comprising the bias transistor and Q2. The output of the receptor, Vout, is the voltage

output of the inverting amplifier. Because Q1 has an exponential current-voltage relation

in subthreshold, the voltage response of the receptor is proportional to the logarithm of

the light intensity. To the extent that the gain of the amplifier is effective at clamping the

emitter voltage, the gate voltage, W of Q1 is related to the current through the bipolar

transducer by the equation

W =

(

1

κ

) (

ln
Iphoto

I0
+ (VDD − Vbias)

)

.

If the horizontal network potential is held fixed, this gate voltage is modulated exclusively

by the capacitor, C1, coupling it to the output of the inverting amplifier. The change in

gate voltage, W , is related to a change in the output voltage, Vout, by the equation:

δW =
C1

CF + C2 + C1
δVout,

So the final output of the high-gain receptor is given by:

Vout =

(

CF + C2 + C1

C1κ

) (

ln
Iphoto

I0
+ (VDD − Vbias)

)

.

The high-gain photoreceptor circuit has higher sensitivity and a commensurately reduced
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Figure 2.4: Schematic of the high-gain photoreceptor in the feedback retina.

output range relative to the low-gain receptor. In order to function over a wide input

range, the operating point of the receptor must shift. The operating point of the receptor

is controlled for short times by feedback from the horizontal cell network and in the long

term by adaptation within the photoreceptor itself.

2.2.2 Adaptation

A silicon analogue of light-adaptation in cones was first incorporated in a silicon retina

by Mead [22] using an ultraviolet-programmable floating gate. As is done in the tiger

salamander retina, the operating point of a high-gain receptor was modulated by feedback

from the resistive network [31]. Although the transduction processes in cones and in silicon

are unrelated, slow adaptation plays an important role in silicon circuits. Slow adaptation

was incorporated in the Mead retina in order to keep transistor mismatches from being

amplified by the feedback from the resistive network. After adaptation this retina responded

quite well to low-contrast images without offsets. However, the adaptation needed to be

repeated if the background light level changed significantly. Because ultraviolet could not

be used continuously to adapt the chip while it was in operation, this adaptive retina had

practical limitations.
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Adaptation in the high-gain receptor is mediated by slow negative feedback through the

diode connected transistors, Q3 and Q4. Adaptation reduces the gain of the receptor for

long times to kT/qκ volts per e-fold increase in photocurrent from the transducer. The time

scale of this adaptation is set by the leakage current through Q3 or Q4 and the amount of

capacitance on node W . These transistors share a common gate that is tied to the well in

which the transistors are sitting. No matter which way the light changes, one of the diodes

will be reversed biased.

As current flows through the diodes onto node W , current flows back out through

the coupling capacitors connected to the node. Adaptation through the diodes allows the

photoreceptor and the horizontal network to relax. This slow adaptation insures that offsets

between transistors will not be amplified in a sustained way by feedback from the resistive

network. Continuous adaptation of this kind provides a “single point correction” at every

operating point.

2.2.3 Horizontal Resistive Layer

The retina provides an excellent example of the computation that can be performed using

a resistive network. The horizontal cells are connected to one another by gap junctions to

form an electrically continuous network in which signals propagate by electrotonic spread

[8]. The lateral spread of information at the outer-plexiform layer is thus mediated by the

resistive network formed by the horizontal cells. The voltage at every point in the network

represents a spatially weighted average of the photoreceptor inputs. The farther away an

input is from a point in the network, the less weight it is given.

Inspired by the horizontal cells of the retina, the silicon retina was the first VLSI system

to incorporate a resistive network to perform computation. Each photoreceptor in the

network is linked to its six neighbors with resistive elements, to form the hexagonal array

shown in Figure 2.2. Each node of the array has a single bias circuit to control the strength

of the six associated resistive connections. The photoreceptors act as voltage inputs that

drive the horizontal network through conductances. By using a wide-range amplifier in place

of a bidirectional conductance, we have turned the photoreceptor into an effective voltage

source. No current can be drawn from the output node of the photoreceptor because the

amplifier input is connected to only the gate of a transistor.
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The horizontal network computes a spatially and temporally weighted average of pho-

toreceptor inputs. The spatial scale of the weighting function is affected by the product of

the lateral resistance and the conductance coupling the photoreceptors into the network.

Varying the conductance of the wide-range amplifier or the strength of the resistors changes

the space constant of the network, and thus changes the effective area over which signals

are averaged. The time constant of intergration is determined by the capacitance at each

node of the network and the magnitude of the conductance. The space constant and time

constant of integration can be varied independently.

The spread of activity in a passive resistive network is analyzed extensively in Analog

VLSI and Neural Systems [2]. This analysis applies to the feedforward retina in which the

voltage output of the photoreceptors is unaffected by the voltage of the network itself. A

short summary of the analysis of a one-dimensional passive network, shown in Figure 2.5,

is provided here. This analysis is extended to the feedback retina, in which the network

activity modifies the magnitude of the voltage sources driving it. The equations show that

signals propagate with exponential decay in the feedback network just as in the feedforward

network, with an appropriate change in variables. Whereas in the feedforward network,

signal propagation depends only on the passive components, R and G, in the feedback

network, signal propagation depends also on the active gain of the feedback loop.

The analysis of the passive network begins with conservation of charge. By Kirchoff’s

current law, the network obeys the equation:

G(Vn − Un) =
Un − Un+1

R
+

Un − Un−1

R

Rearranging to get the driving term on one side, the equation becomes:

GR(−Vn) = Un+1 − 2αUn + Un−1,

where 2α = 2+RG. Set all the Vn equal to zero and guess that the form of the solution for

Un will be Aγn. Then divide out a factor of Aγn−1 to derive the characteristic equation:

0 = γ2 − 2αγ + 1.
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Figure 2.5: One-dimensional passive resistive network driven by photoreceptors acting as

voltage sources.

The solution to this equation, derived with the quadratic formula, is:

γ = α −
√

α2 − 1.

Substituting for α, the solution becomes:

γ = 1 + RG/2 −
√

RG
√

1 + RG/4.

This root is chosen to insure that the solution decays to zero for infinite n. The solution

for negative n must be the same by the symmetry of the network.

The solution decays exponentially from the point of drive. As it is difficult to grasp

intuitively the behavior of such expressions, Mead [2] has compared this discrete case to

the more familiar continuous case. The continuum approximation to the solution for a

one-dimensional network is:

V = V0e
− 1

L
|x|

where 1/L =
√

RG. The variable x is analogous to n. The factor e− 1
L is analogous to γ.
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Substituting 1/L for
√

RG in the expression for γ gives:

γ = 1 −
1

L

√

1 +
1

4L2
+

1

2L2

This expression is close to the Taylor expansion for e− 1
L :

e− 1
L ≈ 1 −

1

L
+

1

2L2
. . .

The continuum approximation is very good, even for values of L as low as 1. The intuitive

interpretation of 1/L =
√

RG is that a signal spreads farther in the network when R is small

and G is small because it meets little resistance to its spread within the network and it has

small opportunity to escape.

The amplitude of the response of the network to a single input of magnitude V is

calculated by considering the effective impedance of the network. The current through the

resistor connecting two adjacent nodes of the network is given by:

InR = Un − Un+1

Dividing both sides by UnR the equation becomes:

GIN =
In

Un
=

1 − γ

R
.

GIN is the effective conductance seen by node Un of the network going to ground through

the network accessed by that resistor. At each node of the network there are two such

conductances being driven by a voltage source Vn through the conductance G, as shown in

Figure 2.6. To solve for the voltage on the network Un set the currents flowing in and out

of the node equal to each other.

G(Vn − Un) = 2GINUn

Solve this equation for Un to calculate the response of the network to a single input, Vn.

Un =
G

2GIN + G
Vn
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Un

Vn

GIN GIN

G

Figure 2.6: Calculation of the amplitude of response of a one-dimensional network driven by a

single voltage source. A voltage source, Vn, drives a network node Un through a conductance,

G. The network has been replaced by an equivalent input conductance, GIN.

Substitute for GIN to obtain the solution in terms of R and G.

Un = (
1

√

1 + 4
RG

)Vn

Un approaches Vn when RG is large; the more effective an input is at driving the network

to its own voltage, the less distance signals will be able to propagate in the network.

Linear superposition can be used to calculate the response at any point in the network

to a complex input pattern. The effects of the inputs sum together at each node weighted

by the distance between each node and the input.

Un =





1
√

1 + 4
RG





∞
∑

i=−∞

γ|i−n|Vi

This analysis is easily extended to the feedback retina, in which the response of the

network modulates the output of the receptor. A one-dimensional version of the circuit is

shown in Figure 2.7.
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Figure 2.7: A one-dimensional network provides feedback inhibition for the high-gain pho-

toreceptor.
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The resistive network is capacitively coupled via C2 to the control voltage of the pho-

toreceptor, Wn. The whole circuit satisfies the constraint that the voltage Wn is sufficient to

supply the current being drawn by the phototransistor. Wn is logarithmic in the incoming

light intensity, Ilight.

Wn ∝ ln Ilight.

The capacitor C2 acts as a reference point for Wn, much as the capacitor CF, but in this

case, the reference voltage, computed by the resistive network, changes with time. The

equation that governs steady-state changes in the output voltage of the amplifier is:

δVn = δWn
CT

C1
− δUn

C2

C1
,

where CT = C1 + C2 + CF . The output of the photoreceptor amplifier, which is the input

voltage to the resistive network, is a function of the difference between the local light

intensity, Wn, and the average, Un, computed by the resistive network.

This system can be represented in a simplified visual way by replacing the detailed

circuit elements with abstract amplifiers. The abstracted system is depicted in Figure 2.8.

The values for the gains and the inputs to the system are derived from the equation for

δVn.

P =
CT

C1
;H =

C2

C1
.

The multiplier, P , multiplies the phototransducer voltage, Wn, while the multiplier, H,

multiplies the network voltage, Un. P is analogous to the gain of the isolated photore-

ceptor, described in the previous section, when the horizontal network potential is held

constant. H is a measure of the extent to which changes in the network voltage affect the

photoreceptor output. If the light level is held constant and the network voltage is charged,

the photoreceptor must compensate so that the voltage Wn stays constant. This value is

simply the ratio of the capacitor coupling the network to Wn and the capacitor that couples

the output of the photoreceptor to Wn.

Feedback from the resistive network prevents saturation of the receptor when the back-

ground illumination level changes. The network voltage acts as a moving reference point

for the photoreceptor by adjusting the reference voltage for the C2 capacitor. If the input
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PH

Figure 2.8: Abstract representation of the one-dimensional feedback network.

to the retina is spatially uniform, then the voltages on all of the nodes of the network are

identical and so no current flows through the lateral resistors, R. Setting δVn = δUn in the

equation for δVn gives:

δVn =
CT

C1 + C2
δWn =

P

1 + H
δWn.

Spatially uniform changes in intensity will give rise to changes in the network voltage

that are proportional to changes in Wn. As described in the photoreceptor section, Wn

is proportional to the logarithm of the light intensity. The amount that the receptor and

the network have to shift to sink a change in the photocurrent is determined by the size

of the fixed capacitor, CF. If the fixed capacitance on the Wn node of the photoreceptor,

CF, is much less than C1 +C2, then the system responds with approximately unity gain for

spatially uniform changes in intensity. Feedback from the network extends the operating

range of the photoreceptor by centering its operating point around the response to uniform

illumination.

The equation describing Kirchoff’s Current Law in the resistive network is:

G[(PWn − HUN ) − Un] =
Un − Un+1

R
+

Un − Un−1

R
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This equation is identical to the equation for that of the passive resistive net except that

the driving term is now P Wn and the term multiplying Un on the left-hand side is (1 + H)

instead of 1. The solution of this equation is therefore identical to that of the passive RG

network, except that the effective conductance is given by:

GEff = G(1 + H).

Just as in the feedforward network, the solution for the spatial spread of signals in the

network is an exponential decay. However, the decay of signals is more rapid with distance,

with 1/L =
√

RGEff .

The origin of the increased effective conductance at each node of the network is illus-

trated in Figure 2.8. The definition of effective conductance is the amount of current that

needs to be injected to charge the network by a fixed voltage increment.

δI

δU
= GEff

If a current is injected into node Un, and the change in voltage measured to determine the

conductance of the node, the conductance will appear larger than the physical conductance

because no account has been taken of the fact that Vn has changed by an amount δUnH, so

the total voltage change driving current through the physical conductance is

δI = GδVdrive = G(δU + δUH)

So the effective conductance, δI
δU = G(1 + H).

The photoreceptors in the feedback retina have a center-surround response, shown in

Figure 2.9. The decay of signals in the network is due not only to passive decay through

a conductance, G, but also to active absorption by the receptors themselves. As a current

propagates and charges the network, it affects the voltage output of the receptor and a

larger fraction of the current leaks out of the feedback network than would have leaked out

of a passive network. The larger the response of the photoreceptor to differences between

itself and the network, the harder it forces the resistive network to its own voltage and,

therefore, the more quickly the signal in the network decays.
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Figure 2.9: Mathematically computed spatial response of a one-dimensional array of receptors

(a) and horizontal cells (b) in a feedback arrangement. The ordinate is distance in the array;

the coordinate is the response of the cell at that location. Input to the system is a unit delta

function at position 10. Notice that the receptor response has a gentle inhibitory surround.
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The temporal response of the network is a result of the natural physical properties

of the medium. Both biological and silicon resistive networks have associated parasitic

capacitances. The fine unmyelinated processes of the horizontal cells have a large surface-

to-volume ratio, so their membrane capacitance to the extracellular fluid will average input

signals over time as well as over space. The effect of the capacitance of the horizontal cells

is to delay their response. Even changes in the background intensity of the image are passed

through the bipolar cells since the horizontal cell surround signal takes time to catch up

with the photoreceptor center signal.

Our integrated resistive elements have an unavoidable capacitance to the silicon sub-

strate, so they provide the same kind of time integration as do their biological counterparts.

The effects of delays due to electrotonic propagation in the network are most apparent

when the input image changes suddenly. The temporal integration time of the network is

determined by the magnitude of the conductance, G, and the capacitance of the network.

The capacitive coupling of the horizontal cell node to the photoreceptor in the feedback

retina must be properly ratioed to the horizontal cell node capacitance to achieve the

proper temporal response from the pixel. In order to maintain a large response from the

pixel for short times, CH must be much larger than C2. In this case, the network acts as an

effective reference voltage. The capacitors CH and C2 combine like conductances in series.

If CH >> C2 the network acts as a fixed reference, because charge can be drawn from CH

to hold Wn fixed without changing Un very much.

2.2.4 Bipolar Cell

The receptive field of the bipolar cell shows an antagonistic center-surround response [35].

The center of the bipolar cell receptive field is excited by the photoreceptors, whereas the

antagonistic surround is due to the horizontal cells [38]. The gain of the bipolar cell is larger

than that of the photoreceptors or the horizontal cells and so the bipolar cell saturates over

a smaller range of inputs. The center-surround organization keeps the high-gain of the

bipolar cell centered around an appropriate operating point.

The final outputs of both silicon retinas are analogous to the output of a bipolar cell

in a vertebrate retina. The bipolar cell analog is a transconductance amplifier that senses

the voltage difference across the conductance, and generates an output proportional to the
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difference between the photoreceptor output and the network potential at that location. The

output of the bipolar cell analog thus represents the difference between a center intensity

and a weighted average of the intensities of surrounding points in the image.

Schematic diagrams of all circuits in the feedforward and feedback pixels are shown in

Figure 2.10.

2.3 Accessing the Array

The floorplan for the retina is shown in Figure 2.11. The chip consists of an array of pixels,

and a scanning arrangement for reading the results of retinal processing. The output of any

pixel can be accessed through the scanner, which is made up of a vertical scan register along

the left side of the chip and a horizontal scan register along the bottom of the chip. Each

scan-register stage has 1-bit of shift register, with the associated signal-selection circuits.

Each register normally is operated with a binary 1 in the selected stage, and binary 0s in all

other stages. The selected stage of the vertical register connects the out-bias voltage to the

horizontal scan line running through all pixels in the corresponding row of the array. The

deselected stages force the voltage on their horizontal scan lines to ground. Each horizontal

scan line is connected to the bias control (Vb) of the output amplifiers of all pixels in the

row. The output of each pixel in a selected row is represented by a current; that current is

enabled onto the vertical scan line by the Vb bias on the horizontal scan line. The current

scale for all outputs is set by the out-bias voltage, which is supplied from off-chip. A

more complete description of the data scanning methods, including particular circuitry, is

provided in [2, 29]. Improvements on these circuits and associated current-sensing amplifiers

are described in [23].

The scanners can be operated in one of two modes: static probe or serial access. In

static-probe mode, a single row and column are selected, and the output of a single pixel

is observed as a function of time, as the stimulus incident on the chip is changed. This

method is equivalent to an intracellular electrode recording from a single cell. In serial-

access mode, both vertical and horizontal shift registers are clocked at regular intervals to

provide a sequential scan of the processed image for display on a television monitor. A

binary 1 is applied at horizontal, and is clocked through the horizontal shift register in
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(a)

(b)

Figure 2.10: Schematics of single pixels of the feedforward (a) and feedback (b) silicon retinas.

The pixel is hexagonally tiled to generate the retinal array. Each pixel contains the photore-

ceptor, the transconductance amplifier coupling the photoreceptor into the resistive network,

and the resistors that couple the node of the resistive network to adjacent pixels.
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Figure 2.11: Layout of the retina chip. The main pixel array is made up of alternating

rows of rectangular tiles, arranged to form a hexagonal array. The scanner along the left

side allows any row of pixels to be selected. The scanner along the bottom allows the output

current of any selected pixel to be gated onto the output line, where it is sensed by the off-chip

current-sensing amplifier.
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the time required by a single scan line in the television display. A binary 1 is applied at

vertical, and is clocked through the vertical shift register in the time required by one frame

of the television display. The vertical scan lines are accessed in sequential order via a single

binary 1 being clocked through the horizontal shift register. After all pixels in a given

row have been accessed, the single binary 1 in the vertical shift register is advanced to the

next position, and the horizontal scan is repeated. The horizontal scan can be fast because

it involves current steering and does not require voltage changes on the capacitance of a

long scan wire. The vertical selection, which involves the settling of the output bias on the

selected amplifiers, has the entire horizontal flyback time of the television display to settle,

before it must be stable for the next horizontal scan. This method is like a brain scan

with single cell resolution; the outputs of all the cells are displayed simultaneously from the

perspective of a person viewing the monitor.

The core of the chip is made up of rectangular tiles with height-to-width ratios of
√

3

to 2. Each tile contains the circuitry for a single pixel, as shown in Figure 2.10, with the

wiring necessary to connect the pixel to its nearest neighbors. Each tile also contains the

sections of global wiring necessary to form signal nets for VDD, the bias controls for the

resistive network, and the horizontal and vertical scan lines. The photoreceptors are located

near the vertical scan line, such that alternating rows of left- and right-facing cells form

a hexagonal array. This arrangement allows the vertical scan wire to be shared between

adjacent rows, being accessed from the left by the odd rows, and from the right by even

rows. Covering the chip with a solid sheet of second-layer metal, with openings directly

over the photoreceptors protects the processing circuitry from the effects of stray minority

carriers. This second-layer metal covering also distributes the ground of the power supply

to the pixels.

2.4 Data–An Electrode’s Eye View

Neurophysiologists have undertaken a tremendous variety of experiments in an attempt

to understand how the retina performs computations, and they have come up with many

explanations for retinal operation. Different investigators emphasize different aspects of

retinal function, such as spatial-frequency filtering, adaptation and gain control, edge en-
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hancement, and statistical optimization [32, 1]. It is entirely in the nature of biological

systems that the results of several experiments designed to demonstrate one or another of

these points of view can be explained by the properties of the single underlying structure.

A highly evolved mechanism is able to subserve a multitude of purposes simultaneously.

Experiments on the silicon retina have yielded results remarkably similar to those ob-

tained from biological systems. From an engineering point of view, the primary function

of the computation performed by the silicon retina is to provide an automatic gain control

that extends the useful operating range of the system. It is essential that a sensory system

be sensitive to changes in its input, no matter what the viewing conditions. The structure

executing this gain-control operation can perform many other functions as well, such as

computing the contrast ratio or enhancing edges in the image. Thus, the mechanisms re-

sponsible for keeping the system operating over an enormous range of image intensity and

contrast have important consequences with regard to the representation of data.

2.4.1 Sensitivity Curves

The computation performed in the distal portion of the retina prevents the output from

saturating over an incredible range of illumination levels. Feedback from the horizontal cells

to the cones provides a varying amount of current to compensate for the current flowing

into the cell through the light-sensitive channels. The cone can avoid saturation over six

orders of magnitude change in light level. The shift in photoreceptor output is mediated

by feedback from the horizontal cells, which compute a spatially averaged version of the

photoreceptor outputs. The cone response is dominated by contrast in the image, rather

than absolute light level.

In addition to keeping the cones out of saturation, the horizontal cell response defines

the gray-level for the image by feedforward inhibition onto the bipolar cells. The bipolar cell

senses the difference between the photoreceptor output and the potential of the horizontal

cells, and generates a high-gain output. The maximum response occurs when the photore-

ceptor potential is different from the space–time averaged outputs of many photoreceptors

in the local neighborhood. This situation occurs when the image is changing rapidly in

either space or time.

The effects of feedback from the horizontal cells to the receptor are illustrated in Fig-
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ure 2.12. The response of the photoreceptor was measured in isolation on a small test chip

so that all of the nodes in the circuit could be instrumented. Feedback to the pixel was pro-

vided by an external pad that emulated the response of the network. The receptor response,

measured at node V depicted in Figure 2.4, is similar around all four operating points. The

response has slightly lower gain at light levels lower than tenths of a milliwatt/mm2. (How-

ever, the absolute light level is unreliable.) The gain of the adapted response of the receptor,

mediated by the diode-connected transistors, Q3 and Q4, coupling the receptor output, V ,

directly to W , is 30 mV/e-fold change in light level. This value is consistent with a value

of 0.85 for κ. The gain of the receptor was measured in two different conditions at each op-

erating point and compared to the gain predicted from estimates of the circuit capacitance

values derived from the layout. Estimated capacitance values are:

C1 = 70fF;C2 = 422fF; andCF = 315fF

The value for CF was larger on the test chip than in the two-dimensional array due to

parasitic capacitance introduced by the instrumentation pad. The receptor is operating in

its high-gain condition when C2 is tied to a fixed potential. This condition emulates the

response of the retina to a small test flash. A small flash does not significantly affect the

average computed by the horizontal cell network, so the network voltage is nearly constant.

The photoreceptor gain in this condition is 430 mV/e-fold. This response is 20% larger

than predicted by the capacitance values estimated from the circuit layout. The receptor

operates in its low-gain condition with C2 driven directly by the photoreceptor output, V .

This condition emulates the response of the system to full-field illumination. The gain of

the receptor in the low-gain condition averaged over the three brighter illumination trials

61 mV/e-fold. This value is 20% higher than that predicted by the capacitance values

estimated from the layout. The deviation between estimated and measured photoreceptor

gain may be due to the finite gain of the clamping amplifier.

In the feedback silicon retina, the photoreceptor in isolation demonstrates invariance

to overall changes in illumination. This invariance does not appear in the feedforward

retina until the bipolar-cell level. Figure 2.13 shows the shift in operating point of the

bipolar-cell output of both a biological and a two-dimensional feedforward silicon retina, as
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Figure 2.12: Response of the photoreceptor to changes in light intensity of a green light

emitting diode (LED). Each set of curves was taken within the same range of currents through

the LED. Light energy from the LED was calibrated with a photometer, in milliwatts/mm2.

Due to the light level calibration method, the light intensity values are low. The estimated area

of the detector is 336 µm2. Neutral density filters were used to shift the light intensity over

four orders of magnitude. The heavy line indicates the receptor’s DC response to illumination

measured after fully adapting to that illumination level. The response of the photoreceptor

was measured at each adaptation level under a high-gain (solid line) and low-gain (broken

line) condition (see text). Light level was briefly displaced and peak voltage response was

measured.
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Figure 2.13: Curve shifting. Intensity-response curves shift to higher intensities at higher

background illuminations. (a) Intensity-response curves for a depolarizing bipolar cell elicited

by full-field flashes. The test flashes were substituted for constant background illuminations.

These curves are plotted from the peaks of bipolar response to substituted test flashes. Peak

responses are plotted, measured from the membrane potential just prior to response. (Data

from Werblin, 1974 [35].) (b) Intensity-response curves for a single pixel of the silicon retina.

Curves are plotted for four different background intensities. The stimulus was a small disk

centered on the receptive field of the pixel. The steady-state response is plotted.

a function of surround illumination. At a fixed surround illumination level, the output of

the bipolar cell has a familiar tanh characteristic; it saturates to produce a constant output

at very low or very high center intensities, and it is sensitive to changes in input over the

middle of its range. Using the potential of the resistive network as a reference centers the

range over which the output responds on the signal level averaged over the local surround.

Image features are reported with high gain without fear that the output will be driven into

saturation in the absence of local image information.

The action of the horizontal cell layer is an example of lateral inhibition, a ubiquitous

feature of peripheral sensory systems [34]. Lateral inhibition is used to provide a reference

value with which to compare the signal. This reference value is the operating point of the

system. In the retina, the operating point of the system is the local average of intensity as
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computed by the horizontal cells. Because it uses a local rather than a global average, the

eye is able to see detail in both the light and dark areas of high-contrast scenes, a task that

would overwhelm a television camera, which uses only global adaptation.

2.4.2 Time Response

Time is an intrinsic part of an analog computation. In analog perception systems, the time

scale of the computation must be matched to the time scale of external events, and to

other real-time parts of the system. Biological vision systems use an inherently dynamic

processing strategy.

Figure 2.14 shows the response of a single bipolar cell output of the feedforward retina

to a sudden increase in incident illumination. Output from a bipolar cell in a biological

retina is provided for comparison. The initial peak represents the difference between the

voltage at the photoreceptor caused by the step input and the old averaged voltage stored

on the capacitance of the resistive network. As the resistive network equilibrates to the new

input level, the output of the amplifier diminishes. The final plateau value is a function

of the size of the stimulus, which changes the average value of the intensity of the image

as computed by the resistive network. Having computed a new average value of intensity,

the resistive network causes the output of the amplifier to overshoot when the stimulus is

turned off. As the network decays to its former value, the output returns to the baseline.

The temporal response of the silicon retina depends on the properties of the horizontal

network. The voltage stored on the capacitance of the resistive network is the temporally

as well as spatially averaged output of the photoreceptors. The horizontal network is like

the follower–integrator circuit [2], which weights its input by an amount that decreases

exponentially into the past. The time constant of integration is set by the bias voltages of

the wide-range amplifier and of the resistors. The time constant can be varied independently

of the space constant, which depends on only the difference between these bias voltages,

rather than on their absolute magnitude.

The form of time response of the system varies with the space constant of the network.

When the resistance value is low, γ approaches one, and the network is computing the global

average. A test flash of any limited size will produce a sustained output. Conversely, when

the resistance value is high, γ approaches zero, and the triad synapse is just a temporal
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Figure 2.14: Temporal response to different-sized test flashes. (a) Response of a bipolar cell

of the mud puppy, Necturus maculosus. (Data from Werblin, 1974 [35].) (b) Output of a pixel in

the silicon retina. Test flashes of the same intensity but of different diameters were centered

on the receptive field of the unit. The space constant of the network was γ = 0.3. Larger

flashes increased the excitation of the surround. The surround response was delayed due to

the capacitance of the resistive network. Because the surround level is subtracted from the

center response, the output shows a decrease for long times. This decrease is larger for larger

flashes. The overshoot at stimulus offset decays as the surround returns to its resting level.
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differentiator circuit [2], which has no sustained output. Because the rise time of the pho-

toreceptor is finite, the space constant also can affect the initial peak of the time response.

The dynamics of a small test flash are dominated by a pixel charging the capacitance of the

surrounding area through the resistive network. In contrast, a pixel in the middle of a large

test flash is charging mainly its own capacitance, because adjacent nodes of the network

are being charged by their associated photoreceptors. The peak value of the output is thus

larger for a small test flash than it is for larger test flashes.

2.4.3 Edge Response

The suppression of spatially and temporally smooth image information acts as a filtering

operation designed to enhance edges in the image. The outputs of the bipolar cells directly

drive the sustained X-type retinal-ganglion cells of the mud puppy, Necturus maculosus.

Consequently, the receptive-field properties of this type of ganglion cell can be traced to

those of the bipolar cells [35]. Although the formation of the receptive field of the X-

type ganglion cells of the cat is somewhat more complex [8], the end result is qualitatively

similar. The receptive fields of these cells are described as antagonistic center-surround

fields. Activation of the center of the receptive field stimulates the cell’s response, and

activation of the surround produces inhibition. Cells with this organization are strongly

affected by discontinuities in intensity. The response of a sustained X-type ganglion cell

to a contrast edge placed at different positions relative to its receptive field is shown in

Figure 2.15. The spatial pattern of activity found in the cat is similar to the response of our

silicon retina to a spatial-intensity step, as shown in Figure 2.15. The way the second spatial

derivative is computed is illustrated in Figure 2.16. The surround value computed by the

resistive network reflects the average intensity over a restricted region of the image. As the

sharp edge passes over the receptive-field center, the output undergoes a sharp transition

from lower than the average to above the average. Sharp edges thus generate large output,

whereas smooth areas of the image produce no output, because the local center intensity

matches the average intensity.

Figure 2.17 shows the exponential nature of the spatial decay of the response on one

side of an edge for different space constants. The edge stimulus, being uniform in one

dimension, generates current flow in only the transverse direction. The one-dimensional
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Figure 2.15: Spatial-derivative response of a retinal ganglion cell and of a pixel to a contrast

edge. The vertical edge was held stationary at different distances from the receptive-field

center. Contrast of the edge was 0.2 in both experiments. (a) On-center X-type ganglion cell

of the cat. The contrast edge was turned alternately on and off. The average pulse density

over the period 10 to 20 seconds after the introduction of the edge was measured for each edge

position. (Data from Enroth-Cugell et al. 1966 [9].) (b) Pixel output measured at steady state

as the edge was moved in increments of 0.01 centimeter at the image plane. Interpixel spacing

corresponded to 0.11 centimeter at the image plane. Response is shown for two different

space constants. The rate of decay of the response is determined by the space constant of the

resistive network.
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Figure 2.16: Model illustrating the mechanism of the generation of pixel response to spatial

edge in intensity. The solid line, labeled receptors, represents the voltage outputs of the pho-

toreceptors along a cross-section perpendicular to the edge. The resistive network computes a

weighted local average of the photoreceptor intensity, shown by the dashed line. The average

intensity differs from the actual intensity at the stimulus edge, because the photoreceptors on

one side of the edge pull the network on the other side toward their potential. The difference

between the photoreceptor output and the resistive network is the predicted pixel output,

shown in the trace labeled difference. This mechanism results in increased output at places in

the image where the first derivative of the intensity is changing.
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Figure 2.17: Exponential decay of one side of the response to an edge, as shown in Figure 2.15.

Each curve was taken with the setting of the VG control shown. For all curves, VR was 0.55

volt. The slope of the decay corresponds to the space constant of the network.

network therefore is a good approximation to the response of the two-dimensional network

to an edge.

In the feedforward silicon retina, the value of L is determined by the product of the

conductance G and the resistance R. Both G and R are exponential functions of their

respective bias controls:

G ∝ eVG

and

R ∝ e−VR

Substitute these expressions into the equation for the space constant to get the space con-

stant in terms of the bias control voltages:

1

L
=

√
RG ∝ e(VG−VR)/2.

The space constant thus should be a function of VG − VR, and should not be dependent
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Figure 2.18: The response of a pixel to a 0.2 contrast edge measured for a fixed difference

between the conductance bias voltage and the resistor bias voltage. (DC offsets in the re-

sponse were subtracted out.) The space constant of the network depends on only the ratio of

conductance bias current to resistor bias current. Resistor bias voltages were 100 millivolts

greater than were the conductance bias voltages. The form of the response stayed essentially

unchanged as bias voltages were swept over a 250-millivolt range, thereby changing the bias

current by more than three orders of magnitude.
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on the absolute voltage level. The constant of proportionality contains the width-to-length

ratios for transistors in the horizontal resistor and in the resistor bias circuit, and those for

transistors in the transconductance amplifier. Figure 2.18 shows the edge response of the

silicon retina measured for several values of bias voltages, with a fixed difference between VG

and VR, and thus a fixed ratio between the transconductance bias current and the resistor

bias current. The form of the static response of the system is unchanged, as expected.

The continuum form of the resistive decay is a good approximation to the horizontal

network when the space constant is greater than one and the slopes of the decay curves in

Figure 2.17 can be compared to the theoretical expression, where all voltages are expressed

in terms of kT/qκ. The comparison is shown in Figure 2.19; the voltage dependence of the

decay constant is in excellent agreement with the theoretical prediction. The absolute value

of the curve in Figure 2.19 was adjusted for the best fit to the data, and is higher, by a factor

of about two, than the value deduced from the device geometries in the resistive connections

and in the transconductance amplifiers. A number of factors may be responsible for this

discrepancy, including inaccurate calibration of the interpixel spacing, partial saturation of

resistive connections due to voltage offsets, uncertainties in the channel lengths of short-

channel devices, and so on. None of these factors should have a large effect on the voltage

dependence of the decay, in keeping with our observations.

The space constant determines the peak amplitude of the response as well as the decay

constant of the exponential. The decay length L is small when the conductance feeding

the local input to the network is large relative to the lateral conductance. Under these

conditions, the difference between the local photoreceptor and the network also is small,

because the average is dominated by the local input. The decay length L is large when

the conductance feeding the local input to the network is small relative to the lateral

conductance. Under these conditions, the difference between the local photoreceptor and

the network approaches the full difference between the local photoreceptor and the average

over many photoreceptors, because the average is affected very little by the local input. This

dependence of peak amplitude on space constant can be seen in the curves in Figure 2.17.

The precise nature of this dependence cannot be determined from the continuum limit,

because the input conductance is inherently tied to the discrete nature of the network.

Feinstein discusses these matters in more detail [10].
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Figure 2.19: Space constant of the response data of Figure 2.17, plotted as a function of

VG − VR. The straight line is the theoretical expression, using the measured value of κ = 0.73.

The magnitude of the curve was adjusted for best fit to the data, and is about a factor of two

higher than expected from the width-to-length ratios of transistors in the transconductance

amplifier and in the resistor bias circuit.
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2.4.4 Adaptation

Adaptation is a much slower process than the spatio-temporal edge enhancement previously

discussed. Adaptation takes place in the photoreceptor circuit itself. It is mediated by the

two diode-connected transistors, Q3 and Q4, shown in Figure 2.4. Although it is not

depicted in the diagram, the transistor gate node is also tied to the well containing Q3

and Q4, which eliminates the back-gate effect. The adaptation of a single photoreceptor to

large steps in illumination is illustrated in Figure 2.20 and Figure 2.21. The time-course

of adaptation is set by the leakage current through these transistors. In principle, the

leakage current should be the same for both transistors and so the temporal characteristics

of adaptation to either direction of step should be the same. However, Delbrück (personal

communication) has shown that both photo- and thermally generated carriers flowing from

the well to the substrate are significant. In a dark-going transition, the output of the

photoreceptor, V , goes low. Thus V acts as the drain for Q3 and the source, gate, and bulk

of Q3 are tied together, and Q3 acts as a diode. In contrast, the gate, bulk, and drain of

Q4 are tied together and the source is node W . Thus transistor Q4 is in a conducting state.

Any carriers that are flowing from the well to the substrate are pulled off of W through

Q4. Therefore, the time-course of adaptation to dark-going steps is not set by the leakage

current through Q3, but by the photo- and thermally generated carriers in the well. In spite

of this asymmetry in temporal response, the circuit still adapts to the proper level with a

time course longer than necessary for proper spatio-temporal edge enhancement.

The performance of the adaptive feedback retina to static edge detection is compared

to the performance of the nonadapting feedforward retina in Figure 2.22. Adaptation ad-

justs the operating point of the receptor to the appropriate level. Adaptation is driven by

the voltage V at the output of the receptor. The photoreceptor amplifies the difference

between its own phototransducer and the average computed by the horizontal cells. If the

phototransducing elements could be perfectly calibrated with respect to each other by some

omniscient external agent, this computation would be straightforward. Without external

calibration there is no guarantee that two receptors will respond identically when stimulated

with the same amount of light. Differences in their responses are amplified by the output

circuitry as if there were real differences in the incoming light intensity. The system is faced

with the problem of having to calibrate itself provided only with its own response. It does
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Figure 2.20: Response of a single photoreceptor to a step increase in light from a green LED.

The LED intensity was varied from darkness to 315 mW/mm2. Top trace shows the output

of the photoreceptor, V , and the bottom trace is the response of the emitter voltage of the

phototransistor, VE (see Figure 2.4). The adapting current flowing onto W is limited by the

diode-connected transistor, Q4. The data were collected at room temperature.
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Figure 2.21: Response of a single photoreceptor to a step decrease in light intensity from a

green LED. The LED intensity decreased from 315 mW/mm2 to darkness. Top trace shows the

output of the photoreceptor, V , and the bottom trace is the response of the emitter voltage

of the phototransistor, VE (see Figure 2.4). The adapting current flowing onto W is limited

by the diode-connected transistor, Q3. The data were collected at room temperature.
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this calibration via slow adaptation, which is a fundamental component of neural systems.

The outcome of this process is that any static image, which cannot be differentiated from

offsets in the detectors, is canceled out. If the image is removed, a negative afterimage

appears that reveals the pattern of adaptation.

2.5 Form and Function: Encoding Information with a Phys-

ical System

The retina, as the first stage in the visual system, provides gain control and image enhance-

ment, as well as transduction of light into electrical signals. The evolutionary advantage

of this kind of preprocessing is evidenced by the ubiquitous occurrence of retina structures

in the vertebrates, and even in invertebrates such as the octopus. From an engineering

viewpoint, the center-surround receptive field encodes visual information in an optimal way

when the amount of correlation in the image is large. Using measures derived from infor-

mation theory, several investigators have provided a definition of visual information and

examined the efficacy with which the retina transmits this information to the brain [1, 32].

These analyses show that the retina makes highly efficient use of the bandwidth of the optic

nerve and adapts its encoding to be appropriate at different light levels. The retina devotes

its limited output dynamic range to transmitting visual information; it excludes redundant

aspects of the image and minimizes the effects of noise.

At low illumination levels, the major source of noise is in the phototransducers, which

are trying to measure a small number of photons in the presence of spontaneous photoiso-

merization. Noise is a form of redundancy since, by definition, it contains no information.

Under these conditions, the receptors themselves average over a larger area by coupling

to each other and the effects of the inhibitory surround disappear. The retina reports the

actual light level.

The silicon retina operates in the photopic region. In photopic lighting conditions,

redundancy in the image comes from correlations. When the number of photons falling on

the retina is large, the spatial variation caused by objects of different reflectances is relatively

small. If the retina simply tried to report the number of photons received as a function of

position, noise in the output would be confused with the properties of objects and the most
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Figure 2.22: Comparison of the edge responses of the Mead and Mahowald retina and the

adaptive retina. Stimulus was a 0.2 log unit, one-dimensional step in intensity. Data were

taken by multiplexing the analog responses of a row of pixels perpendicular to the intensity

edge to a digital storage scope. The current output of the chip was converted to a voltage by

an off-chip sense amplifier. The gain of this amplifier, hence the voltage scale of the response,

is arbitrary. The DC offsets of the photoreceptors and the output amplifiers appear as small

differences in the responses of different pixels. The spatial averaging areas of the resistive

grids in both retinas were large. (a) Response of the Mead and Mahowald retina. Top trace

shows the response to a uniform field. Middle trace shows raw edge response. The bottom

trace shows the edge response minus the uniform field response. The position of the edge is

visible only after performing this differencing operation off-chip. (b) Response of the adaptive

retina. Top trace shows the response to a uniform field to which the retina was adapted.

Middle trace shows raw edge response. The edge was centered roughly around the intensity

of the uniform field. The position of the edge is immediately apparent.
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apparent feature of neural activity would be the overall illumination level. Instead of taking

this direct approach, the retina removes much of the redundant information about uniform

light level and encodes the image as a pattern of changes occurring over particular spatial

and temporal scales. The overall illumination level is represented with small variations in low

spontaneous firing rate, which occur over large regions in the image. One could imagine that

neurons with different spontaneous rates might divide the ambient illumination level into

different populations, those with sensitive spontaneous rates encoding lower illumination

levels and those with higher thresholds being recruited as the illumination level increased.

Contrast information would be superimposed on this background activity with much higher

spike rates. This encoding leads naturally to perceptual constancy since the pattern of

neural activity in response to a particular image is not greatly affected by the constant

illumination level.

The constraints imposed by the physical medium determine the way that information

is represented. The graceful transition between one type of information encoding (scotopic-

mesopic) and another (photopic) is implicit in the biophysics of the retina. It is possible to

abstract these functions into simple circuits in such a way that major aspects of information

processing are retained. The description of such a circuit is a compact parameterization

of retinal function. For example, the receptive field size of the X-type ganglion cell ana-

lyzed by Atick can be characterized by the strength of lateral electrotonic coupling and the

strength of the feedback from the horizontal cells to the photoreceptors. Parameterization

in circuit terms leads to an understanding of the relationships between functions that might

otherwise remain disjoint, such as lateral inhibition and receptor calibration. Finally, the

characteristics of the representation that arise from these physical constraints affect further

processing, as is evidenced by the existence of several visual illusions.

2.5.1 Wiring

The center-surround computation is the basic feature of information encoding in the retina.

In computer vision, a common visual primitive is the Laplacian filter, which can be approx-

imated by a difference of Gaussians [4]. These filters have been used to help computers

localize objects; they work because discontinuities in intensity frequently correspond to ob-

ject edges. Both of these mathematical forms express, in an analytically tractable way, the
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computation that occurs as a natural result of an efficient physical implementation of local

level normalization. The information processing abilities of the retina are a direct result of

its physical structure.

It is possible to generate a center-surround function in a variety of ways. As previously

shown, the center-surround may be computed by a feedforward or feedback mechanism.

The surround may be computed using point-to-point wiring [6] or with a resistive net. If

feedback is coupled with a structure in which multiple nodes are coupled to each other,

as in point-to-point coupling [6] or two coupled resistive networks, then spatial oscillation

may result [3]. Although point-to-point connections and resistive networks can compute the

same functions, the resistive net is more economical in terms of wiring required to create

the same sized receptive field. A comparison of the wiring density needed to compute a

receptive field with discrete connections and the wiring requirements of the resistive net

is plotted as a function of receptive field size in Figure 2.23. In the figure, the wiring

requirements of the resistive net are constant irrespective of receptive field size. In addition

to wiring efficiency, the receptive field size can be easily manipulated by changing the space

constant of the network.

The retina, like many other areas of the brain, minimizes wire by arranging the signal

representation such that as much wire as possible can be shared. The resistive network

formed by horizontal cells is the ultimate example of shared wiring. By including a pixel’s

own input in the average, we can compute the weighted average over a neighborhood for

every position in the image, using the same shared structure. The principle of shared wire

is found, in less extreme forms, throughout the brain. Computation is always done in the

context of neighboring information. For a neighborhood to be meaningful, nearby areas in

the neural structure must represent information that is more closely related than is that

represented by areas farther away. Visual areas in the cortex that begin the processing se-

quence are mapped retinotopically. Higher-level areas represent more abstract information,

but areas that are close together still represent similar information. The topographic nature

of the cortex insures that most wires can be short; it is perhaps the single most important

architectural principle in the brain.
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Figure 2.23: Relationship between receptive field size and wire density. The wire density is the

wire used per pixel and is equal to the amount of wire necessary per receptive field, assuming

one receptive field per pixel. The pixels are assumed to be in a hexagonal array and the radius

of the receptive field is in units of the internode spacing of the hexagonal array. The formula

for calculating the wire required for point-to-point connectivity is: W = 6[(
∑R

i=1
i) + R]. This

function is quadratic in R. The wire density required for a resistive net (nearest neighbor

connectivity) is constant with receptive field radius with six units of wire per pixel.
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2.5.2 Interpretation of Biological Data

In the previous sections, an argument was made for adopting the principle of center-surround

organization in sensory systems, both biological and man-made. An engineering approach

to interpretation of biological function leads to new appreciation of the biophysical details

of retinal processing.

The retina executes a center-surround computation at the level of the cones by means

of feedback from the horizontal cells [2] and again by feedforward synapses onto the bipolar

cells [38]. As in the silicon retina, the feedback from horizontal cells to cones balances

the current from light-sensitive channels with the average photocurrent computed by the

horizontal cells.

Biological systems do not have direct access to either current sources or voltage sources.

Instead, they perform most of their computations by modulating the amplitudes of conduc-

tances. One major difference between biological neuronal elements and CMOS transistors

is the ohmic behavior of individual membrane channels. The current through a transistor

biased in subthreshold is exponential in the gate voltage and, for voltages greater than a

few kT
q , it behaves as an almost perfect current source with respect to the voltage across

its terminals. The number of channels open in a biological membrane is some function of

voltage across the membrane or of neurotransmitter, either exponential or sigmoidal. In

addition, the current through an open channel is linear in the driving potential across it.

The modulation of a conductance is an essentially nonlinear operation. Because the

biological system modulates conductances in the membrane, it is a challenge to keep the

space constant of the horizontal cell resistive network fixed while input from the cones

is presumably changing with light level. It is important that the spread of activity in the

horizontal cell network remain unchanged as a function of the background illumination level

if the center-surround characteristics of the bipolar cells is to remain fixed. The biological

retina has come up with clever mechanisms to compensate for its own nonlinearities, thus

giving the appearance of a linear system.

It is known that the cones hyperpolarize and decrease their release of transmitter in

response to light. The cone transmitter, probably glutamate, holds open a depolarizing

conductance in the horizontal cell membrane [8]. In the light, this conductance decreases

[36], thus hyperpolarizing the horizontal cell. One expects that the increased membrane



56

resistance of the horizontal cell would result in a larger electrotonic spreading distance, L,

resulting in a larger receptive field. However, in turtle [5] and cat [24] the spreading distance

of the horizontal cells appears to be, if not constant, then decreasing slightly with increased

ambient illumination.

One straightforward mechanism for keeping the space constant constant is to mediate

changes in potential with a resistive voltage-divider mechanism that operates on a push-pull

basis, one conductance increasing while another is decreasing. Lasater and Dowling [8] have

found evidence for a potassium channel in isolated carp horizontal cells that closes in re-

sponse to L-glutamate. This channel would act in concert with the sodium sensitive channel

to keep the membrane resistance of the horizontal cell constant. Thus the spread of voltage

in the network should follow an essentially linear passive electrotonic decay irrespective of

light level.

However, many experiments demonstrate that a linear model fails to account for the

response properties of horizontal cells. Measurements of the spread and summation of

signals in cat horizontal cells [16] have shown that the best-fit estimate of the passive space

constant depends on whether a slit or a spot stimulus is used. In addition, the space

constant appears to be a function of time [16, 5]. Experiments in which the membrane of

the horizontal cell has been artificially polarized [36, 4] show that impedance is a nonlinear

function of membrane voltage.

Several mechanisms for how these phenomenon might occur have been proposed, such

as nonlinear gap junction resistance [33] and nonlinear voltage-dependent conductances in

the non-synaptic horizontal cell membrane [4]. There is no evidence for gap junctions with

intrinsically nonlinear conductance properties. Gap junction conductance is modulated by

the release of dopamine, probably from interplexiform cells [7]. However, this process,

which relates to retinal light adaptation, is too slow to account for the observed temporal

changes in the spread of signals in the horizontal cells. Evidence for a voltage-dependent

conductance in the non-synaptic membrane of the horizontal cells has been obtained for the

most part by experiments in intact retinas, in which the network properties could not be well

controlled [36, 4]. Evidence against a voltage-dependent conductance has been obtained in

the L-type horizontal cells of the carp retina [13]. These cells receive input from two types

of cones, red and green. The spread of activity in the horizontal network is dependent on
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Figure 2.24: A simple model of a single photoreceptor in a feedback loop with a single hori-

zontal cell.

which type of cone was activated, irrespective of absolute voltage level. Kamermans et al.

modeled this effect using a network with different strength feedback from the horizontal

cell to each type of cone. The feedback to the cones influences the spread of activity in

the horizontal cell network [13]. Kamermans’s elegant simulations suggest a role for future

experimentation on the silicon retina.

In the silicon retina, the feedback contributed an additional effective conductance to the

horizontal cell network. This effective conductance was mediated by changing the voltage

source that was driving the network. A simplified model of the analogous situation in the

biological retina is shown in Figure 2.24.

In order to maintain a uniform space constant, the effective impedance of each node

must remain invariant. The crux of this model is to divide the effective impedance into two

components, one due to membrane conductance and the other due to the relation between

the photoreceptor and the horizontal cell.

This analysis leads to a set of non-linear partial differential equations for the synaptic

efficacies of the excitatory and inhibitory synapses between the horizontal cells and the

photoreceptors as a function of presynaptic voltages. A simulation technique using discrete
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Figure 2.25: Modulation of input impedance by feedback. (a) The voltage, V , of the photore-

ceptor (left) is set by a balance between the conductance due to light, gL, and the hyperpolar-

izing conductance modulated by the horizontal cell, gP[U ]. The voltage, U, of the horizontal

cell (right) is set by a balance between the passive membrane conductance, gm. Conductance

is the slope of the line on the current-voltage plot. (b) When a test current δI is injected into

the photoreceptor (left) or horizontal cell (right), until a fixed δV is produced, some of the

current is absorbed by the change in conductance produced by the action of the feedback loop

from horizontal cells to photoreceptors.
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steps was developed by Lloyd Watts was used to examine the simplified case in which current

is injected into the the photoreceptor. The horizontal cell interactes were lumped into a

black box, so the conductance gp changes as a function of V . From an initial starting point

with gL=gP=0.01, a fixed amount of current Iinj was injected into the photoreceptor. The

conductance gP was adjusted so that the change in V was constant. In order to take the next

step in the iteration, the injected current was removed and the light-sensitive conductance,

gL was adjusted to maintain the voltage V that was developed in the previous step. The

results are plotted in Figure 2.26. The actual conductance changes by a factor of 100 but

the effective conductance evaluated at a particular δV and Iinj remains constant.

This simulation demonstrates the qualitative effect of feedback on modulating the ef-

fective input conductance of a node. When the physical conductance values are small, the

feedback must be large in order to maintain a constant input conductance. When the physi-

cal conductance values are large, the feedback must be diminished. This result is consistent

with the observed shift in relative strength of the center and surround component of the

receptive fields in the retina as a function of light-level. At high light levels (low conduc-

tance values) the surround component is prominent, implying large amounts of feedback.

At low light levels (high conductance values) the surround component drops out, indicating

that there is no feedback. This change in the balance of center surround is predicted by

information theoretical arguments about optimal encoding of visual information at differ-

ent light levels. The modulation of synaptic strength is a simple parameter that is able to

generate the required changes in a resistive network architecture. Further work is necessary

to determine if the input impedance of both the photoreceptor and the horizontal cell can

be held constant by the same mechanism simultaneously. The implications of

this model extend to spatial summation in two dimensions [16, 13], and dynamical changes

in space constant [5, 16]. The interaction of spatial and temporal factors in the feedback

retina is complex and has not yet been explored. curious dynamical behavior has been

observed in vertebrate OPL. Changes in the spread of activation in a gap junction coupled

cell syncytium have been observed in turtle [6, 5]. This response has been attributed to

voltage-sensitive channels [6] and modeled as an inductive element in the cell membrane.

However, a delayed feedback mechanism is another possibility [5]. This system illustrates

the importance of models in the interpretation of data. The behavior of a neuron embedded
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Figure 2.26: Conductance, gp, as a function of photoreceptor voltage. Although the actual

conductance is changing, the effective conductance of the photoreceptor defined as a specific

change in potential for a fixed magnitude of injected current is constant. The large change in

conductance when the voltage output is small compensates for the small actual conductance.
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in a network cannot be taken as evidence for intrinsic membrane channels without careful

consideration of the alternatives. I believe that silicon retinas are effective modeling tools

in this area and that future silicon modeling efforts will lead to a deeper understanding of

these phenomena.

Few experiments have been done on light adaptation as relates to the function of the

retinal network. However, the silicon retina suggests that cone adaptation serves to can-

cel out inter-cone variability. Cone adaptation is mediated by the intracellular calcium

concentration, which is a function of the number of light-sensitive channels that are open

[26]. This number is in turn a function of the potential of the cone, due to the divalent

cation block of the channels. This voltage-dependence allows the electrical feedback from

the horizontal cells to affect the chemical concentration of calcium that determines the

state of light adaptation in the cone. The voltage-dependence of the current through the

light-sensitive channels is unique to cones, which do receive feedback from the horizontal

cells, and is absent in rods, which do not receive horizontal cell feedback. The functional

significance of the voltage-dependence of the cone channels is unclear. Yau and Baylor [39]

state, “It is possible that the peculiar current-voltage relation of the cone conductance has

a deeper significance that has not yet been appreciated.” The silicon retina has suggested

one functional property of this conductance may be a method of inter-receptor calibration.

As in the silicon retina, cone light adaptation serves not only to get the cone into the proper

operating range, but it cancels out differences between adjacent cone responses through the

feedback action of the horizontal network.

2.5.3 Visual Illusions

The brain interprets retinally encoded information to create a model of the objective world.

This process remains largely mysterious. However, visual illusions provide some hints about

the interaction between retinal output and cortical processing. When the brain perceives an

illusion, it is in some sense confusing the real stimulus pattern and another possible stimulus

pattern; what one sees looks like something else. In fact, the output of the silicon retina

correlates well with several well-known visual illusions, such as the simultaneous contrast

illusion (Figure 2.27 and Figure 2.28), Mach Bands (Figure 2.29), and the Hermann–Hering

grid illusion (Figure 2.30-Figure 2.35). The center-surround encoding process maps the
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illusory input to an output that looks like the illusory percept.

There are some cases in which the retinal responses to the illusory stimulus and the

actual stimulus are identical. For example, in retinal afterimages (Figure 2.36-Figure 2.39)

the response to the removal of the image to which the retina has adapted is identical to what

the retinal response would be if it had been adapted to a uniform field and then presented

with the negative image. The extent to which the identity between the illusory stimulus

and an actual stimulus exists at the output of the retina indicates the relative role of retinal

and cortical processing in producing an illusion.
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Figure 2.27: The stimulus to produce a simultaneous contrast illusion. The stimulus consists

of two identical grey rectangles placed over backgrounds of opposite contrast. The grey square

surrounded by black looks brighter than the grey square surrounded by white.
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Figure 2.28: The response of the silicon retina to this stimulus. The retina encodes the sign

of the contrast, which is positive (bright) for the grey square on black and negative (dark) for

the grey square on white.
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Figure 2.29: Mach bands are illusory bright and dark bands that appear at the edges of an

intensity ramp. The positions of the illusory bands correspond to the positions where the

the first derivative of the intensity is changing. Because the retina performs a second-order

filtering of the image, changes in the first derivative of intensity are enhanced. (a)Ramp

stimulus illustrates the function of a second-order filter. The solid line indicates the intensity

profile of an ideal Mach-band stimulus. The dashed line is the weighted local average of the

intensity. The difference between the local average and the point intensity is the output of

the retina. The magnitude of the difference is large at the point in the image where the first

derivative is changing.

(b)Response of a pixel to ramp stimulus. This stimulus is a shadow cast by an opaque sheet

between an extended light source and the image plane. The stimulus is moved over the retina

in 50-micron steps. The enhanced response at the edges of the ramp is due to the second-order

behavior of the retinal response. The shift in DC value across the response is due to intensity

variation as the light source approaches the pixel.
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Figure 2.30: The Herring grid illusion appears as grey spots at the intersection points of

a square grid viewed at the correct distance. The center-surround receptive fields of the

retina compare the average intensity in the surround (dotted outline) to the intensity in the

center (solid outline). The neighborhood of the intersections contains more white space and

so reduces the apparent brightness of the intersection itself.
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Figure 2.31: Output of the silicon retina. When the center is roughly the size of the white

space and the surround is moderately sized, the positive output of the pixels centered at the

intersections of the grid are smaller than the outputs of pixels in the boarders. At this viewing

distance, this diminished output is interpreted by the brain as dark spots in the intersections.
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Figure 2.32: When the surround is large relative to the grid then the retina reports the

image intensity reference to the average grey level. The spread of activity in the resistive

network is large enough that the average is the same everywhere in the image.
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Figure 2.33: Response of the retina to grid stimulus when the averaging distance in the

resistive net is very large. In this configuration, the resistive net is essentially reporting the

global lighting conditions. The output is not edge-enhanced; intensity is reported relative to

the global average.
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Figure 2.34: When the center and surround are small relative to the grid, then the edges are

enhanced. In this viewing condition, no illusion is perceived, although the mechanism used

by the brain to interpret the retinal output is unknown.
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Figure 2.35: Response of the retina to grid stimulus when the center of the receptive field is

small compared to the width of the grid. The center lines of the grid are neutral gray except

at the outermost edges.
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Figure 2.36: High-contrast line drawing of Abraham Lincoln used to illustrate the formation

of after-images by the feedback retina.
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Figure 2.37: Response of the retina to the stimulus shown in Figure 2.36. The image is

positive and edge-enhanced.
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Figure 2.38: After 2 minutes, the response has faded due to photoreceptor adaptation.
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Figure 2.39: When the image of Lincoln to which the retina has adapted is replaced by a

uniform intensity pattern, a netative contrast afterimage appears.
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2.6 Summary

The primary task of the retina is to produce meaningful output in a wide range of lighting

conditions. It must do so within the constraints of its own physical medium. The power

supply limits the output range and the resolution within that range is limited by noise

and device imperfections. Furthermore, the nature of optical projection requires that the

transducing surface form a two-dimensional sheet with detector-packing density limiting

resolution. The solution to this problem under these constraints leads naturally to lateral

inhibition via a resistive network.

The silicon retina is a simple physical structure similar to the vertebrate retina. The

resistive network computes with minimum wire density a spatiotemporal average that is used

as a reference point for the system. By feedback to the photoreceptors, the network signal

balances the photocurrent over several orders of magnitude. As the surround mechanism

for the bipolar cell receptive field, the horizontal cell also computes the gray-level (zero)

for retinal output. The silicon retina’s response to spatial and temporal changing images

captures much of the complex behavior observed in the OPL.

Analysis of the silicon retina highlights the role of active processes in controlling signal

spread in the horizontal network. A comparison between the silicon retina and the biological

retina suggests a dual role for the voltage sensitivity of light-gated channels in the cone; the

voltage-sensitivity maintains the effective conductance of the active feedback and provides

a means of inter-cone calibration through calcium adaptation.

Physical constraints on the operation of the retina determine the way in which infor-

mation is represented. This point is of further biological significance because the encoding

affects later stages of visual perception. The real-time two-dimensional output of the sili-

con retina illustrates the relationship between lateral inhibition and several visual illusions.

From an engineering viewpoint, the efficiency with which the retina encodes visual infor-

mation encourages a re-evaluation of the way in which image data are transmitted. The

silicon retina has inspired the development of a novel protocol for efficient transmission of

neural-like signals between chips, which is described in Chapter 3.
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Chapter 3

The Silicon Optic Nerve

3.1 Introduction

Communication between neuronal elements is a principal limiting factor in the design of

VLSI neuromorphic systems. This fact is not surprising considering that a large fraction

of the volume of the nervous system is composed of myelinated axons. The degree of

convergence and divergence of single neurons is staggering in comparison with man-made

computers. It might appear impossible, even in principle, to build such structures in VLSI

circuits, which are limited to an almost two-dimensional plane of silicon. Surprisingly, the

cortices of the brain are nearly two dimensional as well. In fact, it has been shown that

the degree of connectivity in a system whose wires occupy space cannot be increased by

employing a structure in which nodes are arrayed in three dimensions [27]. There is nothing

fundamental about the structure of neural tissue that cannot be embedded in silicon. The

thickness of cortical structures can be represented with a correspondingly larger silicon

surface area. However, silicon surface area is available on small die, which are several

millimeters on a side and so the number of neurons that can be fabricated on a single die

is limited. Consequently, connections between silicon neurons located on different chips are

essential for building even moderately sized artificial neural systems.
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3.2 Summary of Existing Techniques

The degree of connectivity and the real-time nature of neural processing demand different

approaches to the problem of interchip communication than those used in traditional digital

computers. VLSI designers have adopted several strategies for interchip communication in

silicon neural networks. Each strategy has advantages and the choice of method depends

on which factors are most crucial to the system.

One of the most literal approaches to interconnecting processing nodes has been adopted

by Paul Mueller’s group [19]. Mueller uses a direct physical connection between nodes on

different chips through a cross-bar switching array. A major advantage of this approach is

that it allows continuous time communication between nodes. In addition, the switching

arrays provide flexible connectivity and can be programmed digitally by a host computer.

The system is able to handle large connectivities because the dendrites of a single artificial

neuron can extend over multiple chips. However, this approach requires many chips to

model even a small number of neurons. The number of artificial neurons on each output

chip is limited to roughly half the number of pins that are available. Current technology

supports 84-pin grid arrays, and in the near future will be extended to 128, meaning at most

64 neurons per chip. A further disadvantage of this design is that, in order to achieve a

reasonable degree of matching between the analog performance of the different chips in the

system, the transistors are used in their above threshold regime, where power dissipation is

great.

Some applications, such as sensory transduction [16] in which the silicon surface acts as a

sensory epithelium, require many neurons to be placed on the same chip. The total number

of neurons in such a structure greatly exceeds the number of pins available for transmitting

their outputs to off-chip targets. The standard approach to resolving this difficulty is to

sample and transmit the states of the neurons in sequence. In this case continuous time

communication must be sacrificed in order to time-multiplex the outputs of many neurons

onto a small number of wires. The output of each neuron is sampled and transmitted for

a brief time. The speed at which data can be transmitted determines the frequency above

which information will be lost due to temporal aliasing.

Traditional multiplexing schemes are serial access. Each node is polled in fixed sequence
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and its output sent off-chip. Each time slot is allocated to a particular node and the receiving

device must be synchronized with the sending device in order to preserve the identity of

the transmitting node. Most multiplexing schemes rely on a global clock to perform this

synchronization. Global clock signals may be skewed to the point of dysfunction if the chips

comprising the system are too far from each other.

The choice of multiplexing technique depends on how the neural elements in the system

encode information. Some systems use analog-valued outputs, which encode several bits of

information on a single wire. In analog multiplexed systems, the receiver chip samples the

data stream and holds the data in a buffer until the next frame [10, 18]. This approach

is particularly useful for interacting with video equipment as such equipment is designed

to work with analog-valued image frames [26]. However, analog data transfer is difficult

between chips, in part because the analog data are easily perturbed by noise due to mul-

tiplexing. More importantly, the variations in the parameters of fabrication on different

wafers means that different chips will have disparate interpretations of analog voltages.

These difficulties are avoided by transmitting digital amplitude signals.

Both synchronous and asynchronous techniques have been used to time-multiplex digital

amplitude data [20]. Digital signal transmission can be very fast because the settling time

for an analog amplifier is avoided. Furthermore, digital signals are noise resistant and

independent of variations in fabrication parameters. Synchronous transmission of multiple

bits of information has the drawback that synchronous switching of many elements causes

noise on the power supply. Asynchronous serial digital communication methods in which

the duration of the digital pulse encodes several bits of information have been used [3, 20].

In the voltage-controlled-oscillator encoder used by Murray and collaborators [20, 3], the

duration of the pulse is inversely proportional to the analog value of the output. Rather

than using a global clocking mechanism to allocate specific time-slots to particular nodes,

the identity of the sending neuron is determined by its position in the pulse stream. The

node position is computed from the number of transitions in the stream itself. The pulse

stream provides its own clock. The pulse stream technique uses time to encode analog state,

rather than to communicate explicitly temporal information.
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3.3 The Address-Event Representation

The interchip communication protocol that we have developed is an asynchronous digi-

tal multiplexing technique which uses an address-event representation. The address-event

representation has much in common with the action-potential representation used by real

neurons. Like neuronal action potentials, events in this system are stereotyped digital am-

plitude events and the interval between events is analog. Information is encoded in the

time between events. The principle of this encoding scheme is that N axonal fibers, with

one active at a time, can be replaced by (1 + log N) wires, which are simultaneously ac-

tive. Several fibers in a real nerve bundle may be simultaneously active and so violate the

encoding condition. This situation can be dealt with in the address-event representation

by making the event duration very short (approximately 1 µsecond) compared with the

width of neural action potentials (approximately 0.5 millisecond). Short-duration events

have small opportunity to overlap. Since, as in a real neuron, the maximum firing rate of

a node is limited, even if events from several nodes did occur synchronously, they could be

arbitrarily arranged so that they occurred in close succession with little loss of information.

The address-event representation is illustrated in Figure 3.1. The neurons in the sender

array generate a temporal sequence of digital amplitude events to encode their output,

a representation conceptually equivalent to a train of action potentials. Each neuron is

associated with a digital address which uniquely identifies it. Whenever a neuron signals

an event, the multiplexing circuitry broadcasts that neuron’s address on the inter-chip data

bus. The nodes have a refractory period that limits the frequency at which they can issue

events. The inter-event interval at a neuron is much longer than the time required to

broadcast the neuron’s address. Therefore, many addresses can be multiplexed on the same

bus. The receiver interprets the broadcast of the address as an event that corresponds to

the occurrence of an action potential from the neuron identified by that address. For this

reason, we have named our communication code an address-event representation.

Although I have chosen to transmit only the neuron address, which corresponds to a

digital amplitude event, it is possible in principle to use the address-event representation

to transmit explicitly analog signals. In such a system, the address would be transmitted

along with one or more analog values associated with the identified pixel. The pixel would
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Figure 3.1: The address-event representation. Self-timed neurons on the sending chip gener-

ate trains of action potentials. The neurons request control of the bus when they generate

action potentials and are selected to transmit their addresses by the multiplexing circuitry.

A temporal stream of addresses passes between the sender chip and the receiver chip. This

temporal stream is decoded by the receiver into trains of action potentials that reach their

proper postsynaptic targets. The detailed timing of the events is preserved.
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make a request to transmit the analog data when some control signal indicated a threshold

had been passed.

The address-event representation is designed to provide high-bandwidth communication

between large arrays of neuron elements. Time-multiplexing is the only way to transfer

data from several thousand output nodes within the pin limitations of existing packaging

technology. The premise underlying the address-event representation is that the channel

bandwidth should be devoted to the transmission of significant signals. For example, the

silicon retina [16] has roughly 4000 output nodes. Conventional scanning techniques require

that each node be sampled once every frame. Since the retina generates output only at

areas in the image where there is spatial or temporal change in the image, most of the

nodes will have almost no output, but are sampled anyway. The address-event protocol, in

contrast, is data driven. Only pixels that have something to report are transmitting their

output over the data bus. Therefore, areas of uniform illumination do not contribute to

the communication load. A further major advantage of the address-event communications

framework is that it minimizes temporal aliasing by transmitting events as they occur. It

need not introduce the degree of sampling inherent in a sequential scanning technique. At

low data rates, the bandwidth of the bus is completely devoted to accurate transmission of

relative timing of events.

3.3.1 Model of Data-Transfer Timing Efficiency

The temporal efficiency of a traditional, sequentially scanned data-multiplexing system is

easy to evaluate because it is exclusively a property of the machine and not a property

of the data. The data will occur at random within the frame, and so the average error

introduced by waiting to scan the data out of the array is half a frame time. The frame

time increases linearly with the number of elements in the array.

Since the address-event communications protocol specifically synchronizes data transfer

with the timing of the data, the details of timing efficiency cannot be analyzed without a

model of the data to be transmitted. However, an analysis of the average behavior of the

system can be performed by assuming that the elements in the array are initiating data

transfer requests independently of each other, each at some rate.

A simple model is shown in Figure 3.2. In this model, all of the elements in the array



87

free waiting refractory

αf 1/τp

r/τr

data sent

Figure 3.2: Model of the address-event data transfer process. Each sending neuron can be in

one of three state, free to generate an event, waiting to transmit an event that it has already

generated, or refractory, having just transmitted an event.

are initiating requests at the same rate, α, which has units of events/unit time/element. An

element can be in one of three states: it can be free to initiate a request, it can be waiting

to have its data transmitted, or it can be in a refractory state. The refractory period is a

time in which the element is prohibited from making another request for data transfer after

it has successfully transmitted an event. This send time plus the refractory period sets the

absolute maximum event rate that an element can attain. Since all of the elements must

be in one of these three states, the sum of the elements in all of the states is equal to the

total number of elements.

N = f + w + r

where N is the total number of elements, f is the number free, w is the number waiting

and r is the number refractory. The equations governing the movements of elements from

one pool to another are:
df

dt
= −αf +

r

τr
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dw

dt
=











αf − 1
τp

if w ≥ 1

αf − w
τp

) if 0 ≤ w ≤ 1

dr

dt
=











− r
τr

+ 1
τp

if w ≥ 1

− r
τr

+ w
τp

if 0 ≤ w ≤ 1

None of the pools is allowed to contain a negative number of elements. Elements move

from the free pool to the waiting pool at an average rate of αf . The waiting elements are

serviced one every τp, the data transfer time. If there is less than one element waiting on

average, the event will be transmitted as soon as it occurs. Of course, the time between

events is longer, which is reflected in the equations when 0 ≤ w ≤ 1. Elements enter the

refractory pool as they are serviced. They leave the refractory pool and re-enter the free

pool at a rate r
τr

, the number of elements that are refractory divided by the refractory time.

This term depends on the system having reached steady state, so that the elements are

hopping in and out of the refractory pool at the same rate. If events stopped entering the

refractory pool, all of the elements that were in the pool would be gone after one refractory

time, τr, had elapsed. Therefore, in time dt, dt
τr

fraction of them will leave the refractory

pool.

In steady state, all of the derivatives are zero, and the solutions for w and r become:

w/N =











1 − 1
Nα

1
τp

− τr

Nτp
if w ≥ 1

ατp

1+α(τr+τp) if 0 ≤ w ≤ 1

r/N =











1 − 1
Nα

1
τp

− τr

Nτp
if w ≥ 1

ατr

1+α(τr+τp) if 0 ≤ w ≤ 1

When the data rates are low, α is small, and w ≤ 1. When the system is operating within

its design limits, the total number of events generated per second, Nα, is smaller than the

data transfer rate, 1
τp

. If the refractory period is fairly short, the equations for w and r

have denominators approximately equal to 1. The number of neurons waiting is just equal

to the number of events in one data transfer time, and the number of neurons refractory is
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Figure 3.3: Comparison of address-event data transfer timing error with that of a serial

scanning system. Ordinate is the average event-rate of the neurons in the array. Coordinate

is the average waiting time for the transmission of the event.

just equal to the number of events in one refractory time. At these data rates, the system

functions ideally and barring correlations in the data stream, each event is transmitted as

soon as it is generated.

When the data rate is high, there is more than one element waiting to transmit its data.

In this case, the refractory period is holding as many elements as it can, which is τr

τp
. If the

refractory period is so large that N events can be transmitted in one refractory time, the

number of neurons waiting must be none, because they can be serviced as soon as they fall

out of the refractory state. At higher rates, the system fails gracefully, since the neurons

that cannot be serviced are taken out of the pool that is free to generate new events and

placed in the waiting pool and the refractory pool.

If the neurons are selected at random from the waiting pool, w, then the mean waiting
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time will be 2wτp. In the implementation of the address-event communications framework

described in this chapter, the data transfer time, τp, scales logarithmically with the number

of neurons. A comparison of a sequential scanning system with the address-event system

is shown in Figure 3.3. The mean event delay is plotted against the events per second

generated by each neuron; time is given in units of seconds. The data transfer time, τp, is

1 microsecond. This plot shows the data rates for which the address-event protocol gives

shorter time delays than sequential scans. The sequential scan data transfer rate per pixel

is estimated to be 0.05τp. The refractory time is set to (N/4)τp. This plot shows that the

data transfer delay in the address-event system is much better than that in the sequential

scan system when the data rate is less than the critical value, after which the address-event

system becomes rapidly worse than sequential scan. As mentioned previously, this model

does not take into consideration correlations between events either due to random chance or

correlated input. It simply illustrates the maximum allowable data rate for the system. The

critical point is reached when the number of events generated per second is larger than the

number of data transfer times per second. The refractory period can absorb some neurons

so that, at the point of failure, the number of neurons that are free to generate events at

rate α is N − τr/τp. When the system fails, it simply transmits data as quickly as it can,

but all of the neurons may be waiting to send more data. If the system briefly exceeds the

maximum spike rate, the neurons enter the waiting queue and are removed when their data

are transferred. Transient periods of high spike rate cause a loss of temporal resolution, but

do not cause irrevocable failure.

This model is over-simplified in several respects, one aspect being that the data are

unlikely to be evenly distributed over all of the elements in the system. The model can

be extended to include several sub-populations of elements generating events with different

rates. Each sub-population follows its own conservation law:

Ni = fi + wi + ri

where Ni is the number of neurons in the sub-population that generates events at a rate, αi

events/second/element. The total number of elements is N =
∑

i = 1MNi, where M is the

number of different sub-populations. The populations are coupled together by the fact that
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they are serviced by a common data transfer mechanism. If this mechanism is unbiased

then the equations that govern the distributions of elements within each population are:

dfi

dt
= −αifi +

ri

τr

dwi

dt
=















αifi − 1
τp

wi
∑M

k=1
wk

if wi ≥ 1

αifi − wi

τp

wi
∑M

k=1
wk

) if 0 ≤ wi ≤ 1

dri

dt
=















− ri

τr
+ 1

τp

wi
∑M

k=1
wk

if wi ≥ 1

− r
τr

+ wi

τp

wi
∑M

k=1
wk

if 0 ≤ wi ≤ 1

Once again, none of the fi, wi, or ri is allowed to be negative. This system is non-linear in

the case of 0 ≤ w ≤ 1, and is difficult to solve. Some progress, however, can be made in the

case where w ≥ 1. Setting all of the derivatives equal to zero gives:

fi =
1

αiτp

wi
∑M

k=1 wk

ri =
τr

τp

wi
∑M

k=1 wk

Ni =
1

αiτp

wi
∑M

k=1 wk

+ wi +
τr

τp

wi
∑M

k=1 wk

Let W = wi
∑M

k=1
wk

.

WNi = (
1

αiτp
+ W +

τr

τp
)wi

Rearranging to solve for wi yields:

wi =
WNi

1
αiτp

+ W + τr

τp

The fraction of Ni that is waiting is larger for the populations that are generating events

at a higher rate, αi.

To calculate the delay time, it is necessary to solve for W . Unfortunately, even with

such a simplified model, the mathematics once again becomes intractable. The equation for
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W is polynomial of order M , and can only be solved when M = 2. Summing both sides of

the previous equation over all the populations gives:

M
∑

i=1

wi = W =
M
∑

i=1

WNi
1

αiτp
+ W + τr

τp

Dividing through by W gives:

1 =
M

∑

i=1

Ni
1

αiτp
+ W + τr

τp

I have used these equations to calculate the waiting time for event transfer in one

system in which I intend to use the address-event communications framework, namely, in

the silicon retina. The silicon retina has roughly 4000 pixels. In a typical image about a

quarter of them are activated above the spontaneous level. The spontaneous rate for our

silicon neurons is 15 Hz and a fast event rate is 300 Hz. The refractory time of a neuron

is about 1 millisecond. The data transfer time measured for the system described here is

τp = 2 × 10−6. With these parameters, there is no queue for data transfer. The average

number of spikes/second/neuron is 86, which is within the working range for the event-

address system depicted in Figure 3.3. This estimate does not account for correlations in

the image that give rise to correlated firing. However, it does indicate that at these data

rates, the system is performing as well as it could; it has not reached the domain where

neurons are not able to generate new events whenever they wish. Used with a system

that has a sparse activation profile, the address-event communication framework is able to

preserve timing information orders of magnitude better than a sequential scan.

3.3.2 Advantages of Address-Events

The address-event representation provides a unifying framework for the construction of

multi-chip systems. Digital-amplitude analog-time events have been used successfully in

many silicon neuromorphic systems: auditory localization and pitch perception [11], elec-

trolocation models [12], central pattern generators [21], sensory-motor systems [5], and

prototype real-time learning systems [14]. These existing chips could be easily integrated

to form more complex systems by placing them in an address-event design frame.
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The use of a digital address to specify the identity of the sending neuron makes the

mapping of pre-synaptic signals onto post-synaptic targets extremely flexible because the

address-event carries its place of origin within itself. Unlike serial-scanning multiplexors, in

which temporal order is easily confused with spatial position, the address-event can be easily

decoded into any physical ordering on the receiving chip. The ordering can be specified when

the chip is designed, particularly if the technique of silicon compilation is used to specify the

design. Alternatively, the connectivity pattern can be specified dynamically when the chip

is being tested by using static digital latches. In the latter case, specification of the mapping

between input and output can be controlled by a host digital computer. The mapping of

input to output is itself a complex computation in the nervous system [22] and is a task

more easily performed by computer than by hand wiring.

The address-event multiplexing method bears a close resemblance to the action potential

representation that is the common coinage of communication in the nervous system. It is

likely that the underlying reasons are similar. In an event-based communication scheme,

the amplitude of a signal is represented by the number and times of events. Time is the

same everywhere in the system, and number is an abstract quantity that is also the same

everywhere in the system. For example, a signal may be at maximum value when there are

200 events generated per second. The actual voltage value that this maximum corresponds

to may be specified independently for each unit in the system. This normalized encoding

is useful because an actual analog value is difficult to transmit when the ground potential

is not the same everywhere. The lack of a common ground is like the problem of transistor

mismatch, which can be modeled to first order as an offset voltage on the transistor gate.

It is certainly the case in the nervous system that the ground potential is not uniform in

different areas of the brain. In addition to reducing the impact of such static noise, the

problem of dynamic noise on the axonal “wires” is ameliorated by using a strongly restored

signal.

The richness of this biological representation is not fully understood. Sensory processing

has been shown in some cases to take full advantage of the event-like nature of the action

potential. For example, the timing of action potentials in the auditory system is crucial in

auditory localization [17]. Psychophysical studies indicate that event timing is significant in

visual stereo and motion processing [4]. Recently, interest in the spatio-temporal processing
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capabilities of cortical neurons has given rise to several hypotheses of information processing

in the brain. For example, it has been proposed that information is encoded as synchronized

neuronal activities over populations of action-potential generating neurons [8]. This type of

synchronization cannot be emulated with multiplexing systems whose frame rate is on the

same time scale as the neural oscillation.

The choice of representation of information for inter-chip communication is critical be-

cause it determines the way that the system can easily evolve. I believe that this choice of

representation can lead to the development of silicon systems whose fundamental informa-

tion processing strategies are similar to those of neuronal systems. For example, learning

based on spatio-temporal processes within the dendritic tree is under investigation [2] and

may turn out to be a key issue in neuronal information processing. The flexibility of the

digital address allows individual synapses in an artificial dendritic tree to be mapped to

their presynaptic elements after fabrication. The address-event representation preserves

the temporal order of events. The role of placement of inputs along the dendritic tree in

learning spatio-temporal patterns can therefore easily be investigated. If the computational

primitives are correctly chosen, the processes of understanding biological systems and of

building silicon systems are complementary.

3.4 Data Transfer in One Dimension

A more complete review of self-timed systems can be found in [23]. A few definitions and

basic principles are described here to provide background for the remaining discussion.

A self-timed system generates its own idea of time, independently of an external clock, by

keeping track of a sequence of events. The nature of sequence is exemplified by a handshake.

Like an ordinary handshake, involving two people, a simple handshake involves two chips.

One chip, the sender, initiates the process, by the equivalent of putting forth its “hand”

initiating a request. The second chip, the receiver, must acknowledge the request by “shaking

hands” with the sender. To complete the handshake, the sender drops his “hand,” removing

the request, and the receiver drops his “hand” by removing the acknowledge. The system is

returned to its initial state. Both parties are quiescent until some process within the sender

initiates another request. The address-event protocol is said to be data driven because the
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REQUEST

DATA OUTPUT

ACKNOWLEDGE

Figure 3.4: The handshake. The INITIATION signal is strictly within the sending chip, while

the REQUEST, DATA OUTPUT, and ACKNOWLEDGE signals travel between the sender

and the receiver. A pixel with data to transmit initiates data transfer by prompting the

sender to make a request. After the sender makes the request, it places the output data on

the bus without waiting for the receiver to do anything. The receiver acknowledges receipt of

the data. The initiation signal is reset so the sender drops the request. The data are removed

from the data bus and the acknowledge is withdrawn.

initiation of the handshake depends on the neural nodes in the sender trying to transmit

an event.

We have fabricated a sender retina with 64 × 64 pixels and a receiver chip with 64 × 64

nodes in a 2u p-well CMOS process. Data transfer between the retina and the receiver is an

asynchronous procedure, which is driven by the data generated by the pixels on the sender

chip. The request initiated by a pixel begins a cycle of events that results in the transfer of

that pixel’s address to the receiving chip. When the data transfer cycle terminates, the state

of the system is reinitialized so that the cycle is free to occur again when there is another

data event. This data transfer protocol is illustrated in simplified form in Figure 3.4. The

protocol used by the implementation of address-event data transfer described in this chapter

is based on the absolute voltage levels of the signals, rather than their transitions.

In this section, the transfer of address-events between one-dimensional neuronal arrays
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is developed. The data transfer process resembles the sequence of events that takes place

in the generation of an action potential in real neurons. The communications framework is

described in terms of a simple circuit described by Mead [16] as the “axon hillock” circuit

which has been used extensively in VLSI neuromorphic systems that use action potential-

like communication within and between chips [11, 12, 21, 5, 14].

3.4.1 The Action Potential

The action-potential of a neuron is generated by two main currents, the sodium current and

the potassium current. The sodium current is activated when the membrane voltage crosses

a threshold level. It depolarizes the membrane and generates the rising phase of the voltage

spike. The membrane is repolarized by the delayed potassium current. This function is

captured abstractly by the basic circuit shown in Figure 3.5. It is like a three-inverter

oscillator except that instead of being fully connected head to tail, the closing link is split

into a pull up transistor PP, and a pull down, NA. Since the tail activates the pull-down

transistor, the oscillator goes through a single cycle and stops. The oscillation, which is

similar to the generation of an action potential, is equivalent to the data transfer process. A

single cycle of oscillation (i.e. a single datum transfer) is initiated by the pull up transistor

PP.

As a starting point for analysis of the circuit, assume that PP is off and the capacitor on

the Initiation node is discharged to ground. In this resting state, the Request node is high

and the Acknowledge node is low. The data event initiating a cycle activates PP, which pulls

up the Initiation node. In this analysis, we are assuming that PP supplies enough current

to pull the Initiation node well above the inverter threshold before the signal can propagate

through the oscillator. Because the real system has many stages of delay which have been

lumped together in the inverting amplifiers in this diagram, the circuit cannot hang in a

state in which PP is just balanced by NA. (The “axon hillock” circuit was prevented from

hanging by positive feedback through a coupling capacitor between the Initiation node and

the Acknowledge node.) When the Initiation node goes high, the signal propagates through

the oscillator. The Request node goes low and the Acknowledge node goes high, activating

NA. Assume that NA is stronger than PP, so that the Initiation node is pulled down,

independent of the gate voltage controlling PP. When the Initiation node is pulled below
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Figure 3.5: A modified three-inverter oscillator and timing diagram illustrating the sequence

of events in a single cycle of the oscillator. Inverter A is part of the sending chip. Inverter B

is part of the receiving chip.

the inverter threshold, that transition cycles through the oscillator, the receiver withdraws

the Acknowledge and turns off NA. The circuit is now ready to begin another cycle, as soon

as the Initiation node is charged up again past the inverter threshold.

The voltages on the nodes of the oscillator are shown as a function of time in Figure 3.5.

The Initiation node is analogous to the membrane voltage of a neuron before an action

potential is generated. Current is integrated on the Initiation capacitor until it passes the

inverter threshold. The request, which is amplified by the inverter, is analogous to the

sodium conductance in an active membrane. The delayed rectifier potassium current that

repolarized the membrane is analogous to the Acknowledge signal. When the Acknowledge

node is pulled up, it begins the second phase of the cycle by discharging the Initiation

capacitor through NA and resets the system to its initial state. In previous applications of
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Figure 3.6: Address-event communication system with a single neuron and single-bit address

(1). The output of the A inverter has been split into two halves, one of which is directly

transmitted to the receiver as the request, the other of which goes back into the neuron to

reset the neuron’s state and places the neuron’s address on the data bus. These two outputs

from the A inverter are recombined on the Receiver to generate the Acknowledge signal.

the axon hillock circuit, the action potential waveform was compared to the fully restored

digital signal that has been called the Acknowledge in this discussion. The temporal course

of the Acknowledge signal is a digital amplitude pulse whose onset is triggered by the

Initiation node going above the inverter threshold.

Our data transfer procedure must transfer an address, rather than a single digital am-

plitude pulse. The axon hillock circuit has been adapted to this end. The adapted circuit

is shown in Figure 3.6. The output of the inverter, A, is broken into two parts to be passed

on to the Receiver: the select, which places the address on the data bus, and Request sig-

nal, which indicates that the data transfer process is activated. The Request signal is low

(active) while data transfer is in progress.

The Receiver, which was originally a simple inverter, has been extended to accept the

address-event passed on by the sender. The address-event is decoded on the receiver chip

into a current that stimulates the post-synaptic neuron. In addition to stimulating the post-
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synaptic target, the decoded address pulls up on the Acknowledge node. The pull down

transistor driving the Acknowledge node is turned off because the active Request from the

A inverter indicates that data transfer is in progress. The successful transfer of an address is

the culmination of the forward phase of the data transfer cycle. The reset phase is initiated

by the Acknowledge being pulled high by the decoded address. The Acknowledge indicates

that data have been transferred. It returns to the Sender and discharges the Initiation node

below the inverter threshold.

3.4.2 One-Dimensional Arrays

This circuit is generalized to perform event multiplexing and transmission for many neu-

rons. A one-dimensional sender array is illustrated in Figure 3.7. It is possible to transmit

events simply as they happen; however, when events overlap temporally, spurious addresses

might be generated. In order to preserve the fidelity of the data without simply discarding

the colliding data, arbitration necessary to resolve contention for the bus. The Arbiter, an

extension of the A inverter, is responsible for multiplexing events that occur nearly simul-

taneously onto a single data bus by forcing the neurons to take turns sending their data.

In order to perform its multiplexing function, the Arbiter, described in the next section, is

extended to have as many inputs as there are neurons in the array. Each neuron controls

its own Initiation node. Several neurons may drive their respective Initiation nodes above

threshold nearly simultaneously. As in the single pixel case, the output of the Arbiter is

split into two types, a single Request signal that is transmitted to the Receiving chip, and

the select signals, one for each neuron in the array. The Request signal is activated when-

ever any event has been supplied to the Arbiter, even if the Arbiter has not selected which

event to process. In each data transfer cycle, the Arbiter activates a single Select signal.

The Select signal transfers the address of the chosen neuron onto the data bus.

The address encoder is illustrated in Figure 3.8 for a simple two-bit address with the

particular value 01. The bits are added to the address encoder as needed and the layout is

arranged in such a way that 1’s and 0’s are interchangeable. This encoder was developed

by John Wawrzynk. The address bits are driven onto the address lines by activating the

select signal. I have incorporated pull-down transistors at the ends of the address lines so

that the address goes to all zeros, which is a null address, when none of the neurons is



100

1

3

2
2

3

1

data bus

(address)

acknowledge

Sender Receiver

r

Figure 3.7: A one-dimensional data transfer system. The select signals coming from the

Arbiter are depicted as coming from the left side of the Arbiter amplifier. The Request that

the arbiter transmits to the Receiver is labeled r.

selected. Since the address lines may take different amounts of time to stabilize and, in

the process, take on spurious valid addresses, a DATA VALID signal has been incorporated

into the address encoder. The DATA VALID signal is another address bit whose settling

time is manipulated by making its pull-down current, through PD1, stronger than that of

the other bits, PD2. The stronger pull down makes the DATA VALID bit to go high more

slowly than the address bits and also makes it go low more quickly than the address bits.

When the DATA VALID line is high, the address should have stabilized. The encoder is

redundant for this application since the bits that are low in the address are already pulled

down.

The Receiver is generalized so that the Acknowledge signal can be pulled up by the

receipt of any valid address. The address is decoded by a circuit shown in Figure 3.9. This

example shows the decoding of the address 01, corresponding to the encoder in Figure 3.8.

The decoded address pulls up directly on the Acknowledge node. The Acknowledge node is

a wired-OR structure. The Acknowledge signal returns to the Sender and marks the reset

phase transfer process.
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Figure 3.8: An address encoder for the address 01 with a DATA VALID bit. The DATA

VALID pull-down is biased by a DC voltage PD1 and the pull-downs on the address bits are

biased by a DC voltage PD2. The expected time course of the DATA VALID signal relative

to that of the address bits is shown below.
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Figure 3.9: An address decoder for the address 01 with an additional DATA VALID bit. The

decoded address pulls up directly on the Acknowledge node.
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In a one-dimensional system, the Acknowledge need only reset the initiation node of the

neuron whose data were transferred. The reset transistor, NA, shown in Figure 3.6, may

be put in series with a gating transistor that allows current to flow only when the neuron

is selected. This implementation is particularly space efficient because part of the data

processing of the neuron can be incorporated in the data transfer machinery. The initiation

node is analogous to the membrane capacitance of a biological neuron. The membrane is

hyperpolarized by the delayed-rectifier potassium current even though the synaptic input

(the current through the PP transistor in Figure 3.6) is still flowing. The discharge of

the initiation node terminates the data event from that neuron. This implementation is

also temporally efficient because events from other neurons that occurred during this data

transfer period and have propagated some distance into the Arbiter can be selected with

minimum delay because they are not reset. However, some consideration must be given to

the method of distinguishing individual events, since there will be no reset signal from the

Arbiter to remove the Acknowledge between events. I have not implemented such a system.

The implementation described in this chapter is conservative. The entire state of the

system is reset at the end of each data transfer cycle. In this implementation, the Acknowl-

edge signal returns to the Sender and resets all of the Initiation nodes. This protocol is

necessary for generalization to arbitration in two dimensions. When all of the Initiation

nodes have been reset, the Arbiter reinitializes itself. Upon reinitialization, the select signal

is terminated and the Request signal from the Arbiter goes high, indicating that there is

no data transfer in progress. When the select signal is terminated, the data are removed

from the bus. Although the Acknowledge is no longer pulled up by PR, it will remain high

until it is pulled down by the withdrawal of the Request. The Arbiter ensures that the

Request signal will not be withdrawn before the select is terminated. When the Request

signal is withdrawn, the state of the entire Arbiter has been initialized. At this point, the

data transfer cycle is completed, the Acknowledge goes low, and the Initiation nodes can

once again be activated by the neurons.

Because the Acknowledge must reset all of the initiation nodes, a problem arises that

was not evident when only a single neuron generated events. The problem is that the system

must keep track of which neuron has succeeded in broadcasting its address in such a way

that it does not send the same data more than once and that it does not erase any data that
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are still waiting their turn to be transmitted. This problem has several possible solutions.

The one described here is suited for extension to two-dimensional arbitration.

The problem of deciding who has transmitted data is solved in this system by creating an

additional state variable inside the neuron. This state variable is reset only when the neuron

is selected and has presumably transmitted its data. Although all of the Initiation nodes

must be discharged by the Acknowledge signal from the Receiver in order to complete one

cycle of data transfer, the neurons that have not been selected remember that they would

still like to transmit their addresses. Their data are not erased by the data transfer cycle.

The internal state variable of the neuron must be regulated in such a way that one and

only one event is transmitted during the data transfer process. The event which initiated

the data transfer process must be terminated by the time the process is complete, and no

new events may be generated before the process is completed. The mechanisms by which

these conditions are enforced are depicted in Figure 3.10. The select signal going back to

the neuron from the Arbiter activates these mechanisms.

To ensure that the state of the pixel has been reset before another data transfer cycle is

initiated, the Acknowledge signal resets the Initiation nodes in one of two ways, depending

on whether the pixel is selected or not. The select signal is active low. If the pixel has not

been selected, the Acknowledge signal is able to pull down on the Initiation node through

transistor NA and forcibly reset the Initiation node. If the pixel is selected, the pull down

transistor limits the current that the Acknowledge signal can apply through transistor NA2.

The Initiation node associated with the selected pixel will not be discharged until the pixel

itself has removed its data from PP. This mechanism is similar to one that is seen in real

neurons and has to do with the strength of the potassium current. A neuron cannot fire a

second action potential unless it has been hyperpolarized sufficiently to reactivate its sodium

channels [9]. This feature has been used to advantage by the amacrine cells of the retina,

which have a potassium current that turns off before the sodium inactivation is released [1].

These cells generate a single spike in response to a persistent bipolar cell input. By making

the potassium current sufficiently weak, the cell is prevented from generating another event

until the depolarizing current into the cell is sufficiently reduced that it hyperpolarizes

enough to reactive its sodium channels. Unfortunately, in this multiplexing system, waiting

for a single neuron to hyperpolarize means that a single recalcitrant neuron can hold up
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Figure 3.10: Mechanisms for resetting data transfer. The internal state variable of the neuron

is the voltage on capacitor CN. This state variable integrates the input data with a time

constant set by CN and the leak voltage. The state variable CN is put through a non-linear

threshold and the output of that threshold function drives the initiation node of the Arbiter.

The neuron contains a circuit to reset CN and make it refractory if it is selected by the Arbiter.

The duration of the refractory period is set by the size of capacitor CR and the magnitude

of the refractory control voltage. The reset of the initiation node proceeds independently of

that of CN. Once activated, the initiation node remains activated until the Acknowledge is

returned. The initiation node is reset through transistor NA if this neuron is not selected. If

the neuron is selected, reset is accomplished by transistor NA2.
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data transfer from the whole array. Although this waiting mechanisms has been included

in the design, it is probably not really necessary, since the mechanism for resetting the

neuron’s internal state variable is rapid and can be made arbitrarily strong.

The resetting of the neuron’s internal state variable, CN, is mediated by transistor QR

whose gate is connected to capacitor CR. Capacitor CR is charged when the neuron is

selected. Since the select is a rapid digital-amplitude signal, CR is quickly charged up so

that the current through QR is larger than the current through the data transistor and the

voltage on CN drops below the inverter threshold. When CN has been reset, the neuron

turns off transistor PP. However, the select signal is not removed until the Acknowledge

signal resets the Initiation node. The selected pixel cannot initiate another event until

the current through QR has become smaller than the data current so that CN can be

charged up past the inverter threshold. The reset variable, CR, provides an opportunity

to create a refractory period for the neuron. If the charge leaks off of CR slowly, the

neuron will be unable to charge CN above threshold for some time after the select has been

withdrawn. The current through QR is similar to the delayed rectifier potassium current of

the biological neuron. It limits the maximum spike rate of the cell. The refractory period

allows arbitration between coincident events to proceed more effectively than if neurons

were allowed to fire at arbitrarily high firing rates.

When the data transfer cycle is completed, competition for the bus begins again, as if

all nodes were requesting for the first time. Because the pixels that were not selected have

not had their states reset, their PP transistors have remained on. When the Acknowledge

goes low, their Initiation nodes will go high. Arbitration in this system is not fair since no

attempt is made to keep a list of who has initiated data transfer previously and in what order.

Making the refractory period of the neuron long prevents it from reengaging in competition

with the neurons whose data events have not been transmitted. The maximum desirable

refractory period considering multiplexing constraints alone is one that will allow all of

the events that could possibly occur simultaneously to be transferred in rapid succession,

before a new event is generated. All of the neurons are able to send all of their data if

the refractory period of a neuron is longer than the number of neurons sharing the bus

multiplied by the data transfer period. Addresses must be transferred faster than the the

maximum event frequency of the neuron multiplied by the number of neurons in order to
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guarantee that all the events will be transferred. However, if the system is operating in the

intended regime, in which the number of events to be transmitted is sufficiently small, the

length of the refractory period should be set equal to the number of anticipated coincident

events. A refractory period of 2 milliseconds, which is a biologically plausible time, would

be sufficient to transmit about 1000 effectively synchronous events, before a neuron that

had already had a turn could get back into the queue.

3.4.3 Arbiter

The Arbiter itself is central to the success of the address-event protocol. It selects one of

many requests for transmission by using a high gain positive feedback element to resolve

contention. The Arbiter was designed and the basic circuit element analyzed by Mass

Sivilotti [27]. The arbiter described here was slightly modified for more robust behavior.

Binary Tree

The Arbiter was designed to scale well, in terms of both area and speed, as the size of the

pixel array is increased. The basic one-dimensional Arbiter is a binary tree of simple arbiter

elements as shown in Figure 3.11. For a linear array of size N, the total number of Arbiter

elements required is N-1. The entire Arbiter thus occupies only a thin strip along the edge

of the array. I have implemented a silicon compiler written in WOLCOMP [25], which is

described in Appendix A. The compiler to automatically and reliably construct Arbiters

for any sized array from a library of cell types included in the WOLCOMP module. Each

Arbiter element receives two input request lines from the lower level and sends a single

request line to the next level of the tree. Each element receives a single select line from

above and sends two select lines to the lower level. The job of each element is to choose one

of the two incoming request signals, and to pass along the select from above to the chosen

request. If the select is not received from above, then neither of the incoming requests is

selected. Starting from a completely initialized state, the time required to complete the

arbitration is determined by the amount of time required for a request to propagate to

the top level of the tree and for the select to propagate back down. Arbitration occurs in
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Figure 3.11: The Arbiter is a binary tree of two-input arbitration cells. Each cell receives two

requests from below and an Acknowledge from above. It transmits a request to the higher

level of the tree and passes down two Acknowledge signals.

parallel at each level of the tree, so the delay through the Arbiter increases only slowly with

the size of the array. The total delay through the Arbiter is proportional to log(N).

Circuit

A circuit schematic of the Arbiter element is provided in Figure 3.12. The circuit is

composed of three parts. The first part is an OR gate that transmits a request signal to

the next level of the tree if either incoming request is activated. The second circuit chooses

one of the two incoming requests. This circuit is composed of two cross-coupled NAND

gates. The cross-coupled element ensures that only one request will be chosen even if both

requests are active. The incoming requests are labeled R1 and R2. The lines indicating

which request has been chosen are labelled R′
1 and R′

2. Unlike the request lines, the choose

variables are active when they are at a low voltage. If R′
1 is low, it indicates that R1 has

been chosen by this Arbiter element. There are eight possible incoming signal states, listed

in Table 3.1. The third circuit directs the select signal coming from the next level of the

tree to the descending select output corresponding to the chosen request. This circuit acts

as a differential amplifier whose power is turned on by the incoming select. The chosen

variable that is in the more active state will drive the corresponding select signal high.

The interaction between the choosing circuit and the select steering circuit is the crux of

safe arbitration. The problem is to prevent a select from propagating down the tree before
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Figure 3.12: Schematic of two-input Arbiter element. (a): the request-generating circuit. (b):

the choosing circuit. (c): the steering circuit.
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R1 R2 SIN R′
1 R′

2 S1 S2 ROUT

0 0 0 1 1 0 0 0

0 1 0 1 0 0 0 1

1 0 0 0 1 0 0 1

1 1 0 0 1 0 0 1

1 1 0 1 0 0 0 1

0 0 1 1 1 0 0 0

0 1 1 1 0 0 1 1

1 0 1 0 1 1 0 1

1 1 1 0 1 1 0 1

1 1 1 1 0 0 1 1

Table 3.1: Truth table for a single arbitration element in the Arbiter. Input parameters are:

incoming request from below R1, incoming request from below R2, incoming select from above

SIN. Output parameters are: outgoing request to above ROUT, outgoing select to below S1,

and outgoing select to below S2. The intermediate results indicating which of the incoming

requests have been chosen are: R′

1 and R′

2. These two signals are active low. The table is

divided in half for convenience; all of the states in which this Arbiter cell has not been selected

from the higher level of the tree, and which therefore have no active outgoing select signals,

are shown in the top half of the table.
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a clear choice has been made. Since the OR gate that issues a request to the higher level

of the tree can do so while the choosing circuit is hung in a metastable (and undecided)

state, it is possible that the select could be issued before the choice has been made. The

select can be kept from propagating down the tree if the choice lines do not cross threshold

while the choice circuit is in its metastable state. Even when SIN is active, the outputs S1

and S2 must be low when R’1 is equal to R’2. (R’1 equal to R’2 is the metastable state of

the cross-coupled nand gates if they have identical geometries.) This condition can be met

by making N6/N7 strong relative to P6/P7 and/or P3/P4 wide relative to N3/N4. Using

conservative estimates, Sivilotti [27] calculated that safe arbitration could be achieved if

the P3/P4 transistors were six times stronger than N3/N4. This ratio is satisfied by the

current Arbiter.

In the forward phase of the data transfer cycle, the requests propagate from the lowest

level of the tree to the top. At the top level of the tree, the outgoing request is tied to the

incoming select. This signal is the request that goes to the receiver chip. When the select

propagates back to the bottom level of the tree, the selected neuron address is placed on

the data bus. In the reset phase of the data transfer cycle, the neuron Initiation nodes are

reset at the lowest level of the tree by the Acknowledge from the receiver. When both of the

requests coming into an Arbiter leaf cell are off, the select signal does not pass through that

leaf cell. Therefore, the select to the pixel is inactivated before the state of the whole Arbiter

has been reset. In the communications protocol that I have implemented, the request to

the receiver is terminated only when the reset of the requests has propagated to the top of

the tree. If the Acknowledge from the receiver remains active until the request has been

terminated, the state of the system is fully reset at the end of a data transfer cycle.

3.5 Data Transfer in Two Dimensions

The example system is a 64x64 pixel retina that uses the address-event representation

to copy its image onto a receiving chip. The data transmission protocol for this system

is complicated by the fact that the retina is a two-dimensional structure. The complexity

arises because of geometrical constraints in implementation of the circuit. The multiplexing

machinery is best kept to a small area at the edge of the data processing array. Not only
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does this arrangement save area, but the delicate analog machinery responsible for light

transduction within each pixel is best kept as well isolated as possible from the fast digital

signals involved in multiplexing. The consequence of restricting the multiplexing machinery

to the periphery of the chip is that each pixel is specified by an x- y-coordinate address.

This encoding system has relatively little impact on the receiver chip, depicted in Fig-

ure 3.13. The core of the receiver chip is a 64x64 square array of nodes. The circuitry at

each node is shown in Figure 3.17 and will be described in the next section. Each node on

the receiver is driven by the pixel in the corresponding position in the sender array. The

address-events are decoded into a position by a set of digital decoders located on two edges

of the array. Input to the node requires that the decode line in the x-dimension and the de-

code line in the y-dimension be activated by the proper address. The ANDing of the address

coordinates in the two dimensions is a straightforward extension of the decoding process

described in the one-dimensional system. An additional modification for a two-dimensional

receiver is that the pull up of the Acknowledge of this system must be aggregated in two

dimensions, as shown in Figure 3.13. The coincidence of activation on the x- and y-decode

lines pulls down a line that runs along that column. The column lines correspond to the

individual node pull-ups in the one-dimensional system. In this way, if any of the nodes in

the array is activated, the Acknowledge is pulled-up to indicate that the address-event has

been received.

The generalization of the data transfer protocol is more difficult for the two-dimensional

sender. The selection of the pixel which will transmit its address must be coordinated

in the two dimensions. If there were two contending pixels, (x1, y1) and (x2, y2), and the

arbitration in the two dimensions were allowed to proceed independently, two ghost events

at (x1, y2) and (x2, y1) might be transmitted. In order to avoid this problem, arbitration in

the two dimensions proceeds sequentially.

The sender is illustrated in Figure 3.14. The core of the chip is a 64 x 64 array of pixel

elements. One pixel is depicted in Figure 3.20. The circuitry of the pixel will be described in

detail in the next section. The portion of the circuit involved in data transfer is identical to

that illustrated in Figure 3.10. Two sides of the array are occupied by the sequential analog

multiplexors for video display, which have been described previously [26]. The remaining

two sides of the array are occupied by the data transfer mechanism.
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Figure 3.13: Schematic of receiver. The address is decoded independently in the x- and y-

dimensions. When the address has been successfully decoded, the Acknowledge signals from

all the pixels are aggregated by a wire OR structure, first along columns and then along rows.

Because only one address can appear on the data bus, only one node will be pulling on the

wire OR at any time (see Figure 3.17).
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Figure 3.14: The sending chip contains an array of pixels surrounded by multiplexing circuitry;

the Arbiter, two white boxes, which decides which pixel has control of the data bus at each

instant; two gray boxes adjacent to the Arbiter, which include the address encoders and

circuitry involved in coordinating the data transfer process between the two chips; and analog

scanning circuitry, depicted as two black boxes along the remaining two sides of the chip.
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The data transfer process is initiated by a pixel. The initiation process is sequential,

occurring first in the vertical, then in the horizontal dimension. When the data processing

circuitry inside a pixel decides that it would like to transmit an event, it pulls up on the

initiation line which runs the length of the row. If that row is selected by the vertical

Arbiter, the select signal on that row is activated and the y-dimension address bits of that

row are placed on the bus. The row select allows all of the pixels along that row to pull up

on initiation lines running the length of the columns. In the second stage of the initiation

cycle, the horizontal Arbiter selects an initiating pixel on the row that was just selected

by the vertical Arbiter and activates the appropriate column select line. This places the

x-dimension address bits on the bus. The completed address can then be decoded by the

receiver.

The two-dimensional data transfer protocol requires some modification from the one-

dimensional case. The pixel must have an internal state variable and threshold, as described

in Figure 3.10. There are several reasons for this additional state variable. For example,

the initiation process is asymmetrical in the two dimensions. The initiation lines in both

dimensions have one pull-up transistor for each pixel. Because the effects of the pull-up

transistors sum, it is possible for several pixels on a row in combination to bring the row

initiation line above threshold. However, since only one pixel per column is enabled by

the row select, only one pixel may pull up on the column initiation line of the horizontal

Arbiter. If the pixel outputs are small analog values, they may sum to initiate an event

on the row but none of them individually may be able to bring the column line above

threshold. Therefore, the pixel must have an internal threshold amplifier with enough gain

to ensure that it is either fully on or off. This internal state variable provides a mechanism

for generating a refractory period for the pixel once it has been selected. As in the one-

dimensional case, the state of the selected pixel is reset, this time by the AND of a row and

column select signal.

There are more possible reset protocols for the Arbiter in the two-dimensional system

than there were in the one-dimensional system. I have chosen to implement an extremely

conservative protocol, which resets the state of the entire system, including all of the in-

termediate nodes in both the horizontal and vertical Arbiter trees, after each data transfer

cycle. However, more temporally efficient mechanisms are possible. I will describe two such



116

hypothetical protocols before describing what I actually implemented. One hypothetical

protocol would not reset the selected row of the vertical (row-selecting) arbiter until all of

the neurons making column requests had transmitted their data. This sequence is necessary

so that the proper x- and y-addresses remain associated. Only the selected column and row

initiation nodes would be reset, and they would be reset with weak NA2 transistors so that

the neurons would have to have been transmitted before their initiation nodes could be

reset. This protocol has the disadvantage that one row might control the bus indefinitely if

it had a persistently active pixel on it.

An alternative Arbiter reset protocol, suggested by Alain Martin (personal communi-

cation) entails resetting the entire horizontal (column-selecting) Arbiter and resetting only

the selected row. The vertical Arbiter would be forced to choose a new row and the initi-

ation nodes of the horizontal Arbiter would be reset so that the new row could enter into

fresh competition. The address stream would be punctuated by the reset of the horizontal

Arbiter, which would toggle the request to the Receiver chip. The selected vertical Arbiter

initiation node could be reset by the Acknowledge signal, which would also reset all of the

horizontal Arbiter initiation nodes. If necessary, the method of resetting the initiation nodes

used in the one-dimensional case could be applied to the reset of the horizontal Arbiter be-

cause the selected row is essentially a one-dimensional system. This reset mechanism would

be faster than the one that I implemented because the partial state of the vertical Arbiter

tree would be conserved. In light of my present experience, this protocol appears to be

preferable to the one that I have implemented, which is described next.

In the implemented system, all of the initiation nodes of the the vertical Arbiter are

forcefully reset by the AND of the horizontal Arbiter top-level request, indicating that all of

the column-initiation lines have been reset, and the Acknowledge. It is not necessary, nor is

it possible, to determine at this point whether or not the internal state of the selected pixel

has been reset. This determination is made previously in the reset protocol by the horizontal

Arbiter reset, as described in the one-dimensional case. When the vertical Arbiter has been

reset, the withdrawal of the request pulls down the Acknowledge and completes the data

transfer cycle. The reset of the initiation lines is terminated and the pixels are free to

reinitiate requests at the base of the vertical Arbiter tree. A single complete data transfer

cycle performed by the sender and the receiver chips is shown in Figure 3.15.
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Figure 3.15: Timing diagram for data transfer between sender and receiver.

3.6 Image Transfer

The system used to demonstrate the address-event protocol transfers a time-derivative image

from a transmitting retina to a receiver. The circuits on the sender that encode the image

and the circuits on the receiver that reconstruct the image are described here. A node in

the receiver array is illustrated in Figure 3.17. The node that is tiled to make the receiver

array contains both multiplexing circuits and the actual integrator that reconstructs the

address-event stream into an analog potential. The address is decoded independently in

the x- and y-dimensions and ANDed inside the pixel. When both the x- and y-decode lines

are active, the Acknowledge aggregation line is pulled low through transistors Ax and Ay.

In addition, some current flows onto the state capacitor C through transistors Sx and Sy.

The generation of an Acknowledge in response to the decoding of an address-event and

the placing of an increment of charge on the state capacitor is shown in Figure 3.18. The

magnitude of the current is controlled by delta and the total amount of charge is a function

of the length of time the address data are valid. Current leaks from the capacitor at a rate

set by tau. The data from the capacitors are scanned out serially for display on a video

monitor.
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Figure 3.16: Data transfer between sender and receiver. Data taken from real system. [Not

all the signals shown in the timing diagram (Figure 3.15) are instrumented on the chips]. Data

were collected with a digital scope triggering off of the falling edge of the x-select signal and

are synchronized to that. The chip was configured in such a way that all the neurons were

firing at a high rate, in order to measure the minimum data transfer period. The minimum

period was approximately 2 · 10−6 seconds.
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Figure 3.17: Schematic of single node in the receiver array.
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Figure 3.18: The receiving element generates a step in potential in response the arriving

address-event. The voltage step size was arbitrarily scaled by the off-chip current-sensing

amplifier. The bottom trace is the Acknowledge signal that terminates the data transfer. The

Acknowledge signal is 5 volts in amplitude and 1 microsecond in duration.
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The behavior of the receiving pixel is illustrated in Figure 3.19. Synthetic data in the

form of a temporal stream of digital addresses were generated on an HP 9836C workstation

and transmitted to the chip with a custom hardware interface board. The time constant of

integration on the receiver determines the time over which spikes can be averaged. This time

constant of integration, controlled by tau, can be varied over several orders of magnitude.

A long integration time is advantageous for integrating a small signal that is contaminated

with sporadic random noise. A short integration time increases the temporal resolution

of the system and a simple threshold is able to detect spike coincidence to within the

integration time of the integrator.

This receiving pixel should be modified to include a leak whose magnitude is a function

of the voltage level of the integrator. This feature would allow a stable translation of event

frequency into analog voltage level. Additional circuitry may be necessary to control better

the quantity of input charge for each event. In the existing design, the event duration is

linearly related to the amount of charge that is deposited on the integration capacitor for

a given event. Events of different duration will result in different amounts of current being

integrated on the capacitor. One solution to this problem would be to put a timing element

in each pixel that regenerated a long-duration spike, triggered by the event. If such a long-

duration spike mechanism were incorporated the fractional variation in event width would

be caused by transistor mismatch on the receiving chip rather than transmission variability.

A longer spike would presumably have less fractional duration variation. However, this

solution requires more area. Event durations do not appear to vary by more than 50 percent.

Until it can be demonstrated that there is a significant impact on the computation, there

is no reason to include such a mechanism.

The first step in image transfer is the creation of the image on the retina. The retinal

pixel incorporated into the self-timed data transfer system generates events when the light

level increases. In this way, it is similar to the on-transient retinal ganglion cell [7]. A

schematic diagram of the pixel circuitry is shown in Figure 3.20. The drive to the spike-

generating pixel generated by a circuit similar to that of the feedforward retina described

in the previous chapter, but the resistors have been omitted to reduce the size of the pixel.

The drive circuit averages the output of the logarithmic photoreceptor with a follower-

integrator whose time constant is controlled by tau. The output of the drive circuit is a
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Figure 3.19: The output of a single pixel on the receiver chip shown for two different inte-

gration times. Address-events were generated with a custom hardware interface board and

an HP9836C computer for the receiver pixel accessed by the serial scanner. The integration

time of the pixel was modified by changing the bias voltages on the tau and delta controls.

Level was set to 4.046 volts. For the fast integration time trace, delta was set to 0.67 volts

and tau was set to 2.756 volts. For the slow integration time trace, delta was set to 0.62 volts,

and tau was set to 2.85 volts. See Figure 3.17.
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Figure 3.20: Schematic of a single pixel in the sender array.

current proportional difference between the average intensity and the instantaneous values

of intensity, which is scaled by the control voltage i. This system is analogous to the bipolar

cell of the outerplexiform layer of the retina. The spike-generation circuitry of the pixel

is like that shown in Figure 3.10, except that data transfer sequence takes place in two

dimensions. The primary state variable, CN, is like the membrane capacitance of a retinal

ganglion cell. This capacitor is a leaky integrator with a time-constant set by the leak

parameter, which determines the quiescent voltage on CR. Capacitor CN integrates the

charge supplied by the drive circuitry until its voltage reaches the inverter threshold. The

inverter initiates the data transfer process. Once the pixel is selected in both the x- and

y-dimensions, capacitor CN is discharged.

The parameter settings of the pixel affect the number of spikes that it generates in

response to a particular stimulus. The responses of a pixel to a flashing LED for several

different settings of the time-constant of the differentiator are shown in Figure 3.21. If

the follower integrator is able to follow the stimulus intensity more quickly, less current is

produced by the differencing amplifier and so fewer spikes are produced.

Figure 3.22 shows the difference in response caused by the refractory period, which is

analogous to the duration of the delayed-rectifier current, IKD
, in biological neurons. Like
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Figure 3.21: The response of the complete sender-receiver system to a flashing light-emitting

diode (LED) of intensity 63.2 mW/mm2 with three different time-constants for the differen-

tiator. Stimulus onset is indicated by a vertical line. The output of the sending pixel and

the corresponding node on the receiver are shown as a pair, the sender pixel waveform above

the receiver response. Responses were averaged by the digital oscilloscope over eight stimulus

presentations. The voltage, tau, controlling the time constant of the differentiator in the send-

ing pixel is shown next to each pair of responses. All other parameters were held constant.
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Figure 3.22: The output of a single pixel on the sender chip and the corresponding node on

the receiving chip. Stimulus was a flashing LED of intensity 63.2 mW/mm2. Stimulus onset is

indicated by a vertical line. Values of the refractory transistor gate voltage are shown next to

each pair of responses. As the refractory period decreases, the maximum event rate increases

so the number of events per stimulus presentation increases.

the IKD
current, the reset current is sensitive to the voltage of the pixel. The reset current

increases in amplitude until the voltage on capacitor CN is discharged below the inverter

threshold. When the Acknowledge has reset either the x- or y-initiation node, the select

signals that are contributing to the reset current are withdrawn. The magnitude of the reset

current set by the voltage on capacitor CR decays at a rate set by the refractory control.

When the reset current is smaller than the current from the differentiator, the pixel voltage

begins to increase. When the reset current is of longer duration, the voltage on the pixel

capacitor remains low longer. Fewer spikes are produced in response to the same stimulus

and thus there is less activity in the receiving node.

The gain of the action-potential is generated in biological neurons by the positive feed-
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back from the sodium spike channels. The sodium phase of the action potential is generated

by the digital circuitry on the chip. Even with the gain of the inverter, the parameter i

that scales the difference current driving the state capacitor must not be too small, or else

the inverter will not cross threshold quickly enough for the data transfer process to proceed

quickly. Several of the inverters in a row may be approaching their transitions and their ef-

fects sum to initiate a horizontal request. Once the row is selected, there is a delay until one

of the inverters crosses threshold far enough to initiate data transfer in the column. This

delay is apparent only when the current flowing into the state capacitor is very small. The

gain problem may be ameliorated by incorporating positive feedback from the row select to

the pixel. However, all of the pixels along the row would receive this positive feedback. Any

such feedback mechanism should be capacitive, so that the feedback cannot be integrated

by the initiation mechanism into an entirely new event. The magnitude of the feedback

should be small enough not to bring all the pixels in the row past the inverter threshold.

The major drawback to this particular pixel is that it is not sufficiently sensitive with

low-offset to make a practical imager using this communications protocol. The gain of this

photoreceptor is low and the DC offsets are integrated by the pulse generation mechanism so

that much of the bandwidth is occupied transmitting offset data. The data that were taken

in this chapter were taken with the chip configured to have a large quiescent leak, which

reduced DC offset problems. However, the stimulus needed to be high contrast enough to

elicit an above-threshold response.

Figure 3.23 shows the response of the system to increasing intensity steps. The mag-

nitude of the step in light intensity is encoded by the number of spikes generated. Event

timing as well as total number of events carry information about the image since the latency

of response is increased when the stimulus has lower contrast. A similar phenomenon is

observed in biological visual systems. It forms the basis of the Pulfrich effect, a stereoscopic

depth illusion. Placing a neutral density filter in front of one eye causes a delayed response

to the stimulus from that eye. This delay is interpreted by the motion-interpolation pro-

cessing in the cortex as a shift in the position of the target between the two eyes. This

artificially induced disparity is indistinguishable from real depth. A pendulum bob swinging

back and forth in a plane in front of the viewer is seen to move in a circle in depth.

The representation of temporal change is natural for the address-event representation;
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Figure 3.23: Analog data from a single sender pixel and the corresponding receiver node to

flashing LED of different intensities. Light onset is indicated by a vertical line. The intensity

of the flash is shown next to each pair of traces. The number of spikes and the response

latency are a function of the step size. The bottom pair of traces shows the response of the

sending pixel to a small intensity flash. Current is integrated on the state capacitor, but the

pixel fails to reach threshold. The current decays away at a rate set by the leak voltage. In

this case, the leak voltage was 0.65 volt.
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temporal accuracy is important and events are sparse in the retinal array. In general, a

delta-modulated encoding of data is best for this communication protocol. The full signal

must be represented by changes in the signal, and the effects of these changes integrated

by the receiver, if the full DC value is to be reconstructed. For such a reconstruction, the

time constant of integration on the receiver should be long. In contrast, the time constant

of integration on the receiver should be short for the detection of temporal coincidence of

events. Both of these regimes of operation are easily achieved within the range of current

levels in subthreshold CMOS transistors. Both can be done in parallel on the same re-

ceiving chip, or on different receivers. Different time constants of integration or frequency

characteristics are observed in parallel streams of the visual system. The magnocellular

system is responsible for transmitting high temporal frequency information and has a lower

integration time, while the parvocellular system is responsible for higher spatial frequencies

but with longer integration times.

Of course, it is desirable to instrument the entire imaging array. The retinotopic nature

of image transfer is best illustrated by comparing images scanned from the sender and the

receiver chip using traditional analog video scanning techniques. The image of a flashing

LED as it appears on the sending retina is depicted in Figure 3.24 and the corresponding

image on the receiver is shown in Figure 3.25.

3.7 Future System Development

I have used the particular example of the retina to illustrate the use of the address-event

representation. However, the address-event representation can be used to advantage by any

system whose event generation rate is sufficiently low. The significance of the representation

lies in its generality, which makes possible the modular design of multi-chip systems. The

general technical issues faced in the development of multi-chip systems are discussed in the

following section. Some biologically motivated example systems are then discussed.

3.7.1 Extensions of the Address-Event Representation

The arbitration procedure that has been described for a single sender and a single receiver

can be extended to systems with multiple senders and receivers. In the one-dimensional
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Figure 3.24: Response of the retina to a flashing LED. The voltage on the pixel state variables

is sequentially scanned to the video monitor. The origin of the addresses is in the upper-left-

hand corner of the image. The response is indistinct because the voltage of the sending pixel

only rises to the threshold level before it is reset by data transmission.
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Figure 3.25: The receiver integrates the address-events coming from the sender. The voltages

on the nodes of the receiver are sequentially scanned for display to the video monitor. The

origin of the addresses is in the lower-left-hand corner of the image. Consequently, the pattern

of activity on the receiver is mirrored around the horizontal axis from that of the sender in

Figure 3.24.
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Figure 3.26: System of 16 neurons (black squares) distributed over four identical chips. The

binary arbitration tree is distributed over all the chips and constructed by the wiring pattern

between chips. Each bit of the address bus is driven by the Arbiter elements at the appropriate

level of the tree. When the element to the right is selected, a zero is placed on the bus (filled

circle) and when the element to the left is selected, a one is placed on the bus (open circle).

case, the binary arbitration tree can be distributed over multiple transmitters, as shown

in Figure 3.26. All of the transmitters compete for control of a common bus. A major

constraint on the size of the system is, as in the single chip case, the number of events

generated by the combination of all the neurons in the system per address broadcast time.

The layout of the Arbiter elements on each chip is identical; each chip contains a complete

binary tree of Arbiter elements for its own neurons and a single additional Arbiter element

whose inputs and outputs are brought off-chip. Binary trees of any size can be concatenated

from the appropriate number of chips. The address is generated by logic distributed over

all of the chips. The bits of the address are set by the Arbiter element at the appropriate

level of the tree.

The Acknowledge generation in a multi-receiver system may be made conditional on all

of the chips having received the data; however, this approach is useful only when all of the

receiving chips would like to listen to all of the data. The decoding structure on each chip
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would have to span the entire address space. Alternatively, each address might go to only one

receiver, in which case, the Acknowledge would simply be the OR of the Acknowledges from

all of the receivers. The simplest and most general method for terminating data transfer is

to have the transmitter simply generate its own Acknowledge after some predefined waiting

period. This procedure does not guarantee that the data have actually been received,

but it may be perfectly adequate for the neuromorphic systems for which the address-

event representation was designed. Unlike digital-logic-based systems, the occasional failure

to transmit an event should not change the outcome of the computation. Even if the

handshaking protocol is dropped, procedure for decoding the address performed by the

receiving chips depends on the desired connectivity pattern of the system. One possible

connectivity pattern is illustrated in Figure 3.27. In this case, the connectivity pattern is

semi-local, with each receiver configured to accept data from a local address space. The

higher-order bits of the desired address are externally established for each chip. This address

is subtracted from the address on the bus to transform the address into local coordinates.

The address-event representation is particularly attractive for use in multi-chip systems

because it transforms a concrete signal associated with a particular time and place into

the abstract domain of digital logic. Space in the abstract domain can be manipulated to

extend across the physical chip boundaries and time can be divided so finely that many

digital events can go by in an instant on the timescale of the macroscopic biological world.

The address-event representation attempts to overcome the volumetric wiring deficiencies

of VLSI relative to neural tissue by using the strengths of digital VLSI medium, its speed,

and its abstract symbolic manipulation efficiency.

In terms of circuit architecture, time and space are often interchangeable. This principle

is the foundation of multiplexing, which reduces the number of wires needed to transmit

the activity of an array of elements. The number of wires in the address-event represen-

tation can be further reduced by multiplexing the bits of the address. Since arbitration

proceeds sequentially, the same data bus could transmit the y- and x-address bits for a

two-dimensional array as they are selected without delaying transmission of the event. This

address encoding is used in commercial dynamic RAM circuits and requires only half as

many address pins. This procedure could be extended to all of the bits of the address, since

the address is really determined one bit at a time as the select signal proceeds down the
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Figure 3.27: Semi-locally connected multi-receiver system. (a) Five receivers accept events

from a contiguous, local region of the global address space. The origin of the contiguous region

is programmed onto each chip. The regions spanned by the various chips overlap. (b) The

decoding of the address by the receiver is accomplished by subtracting the origin of the local

coordinate system, stored in the static latch (gray rectangle), from the incoming address.
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binary arbitration tree.

The trade-off of time and space can be taken advantage of in a multi-chip address-event-

based system by using digital logic and multiplexing to construct artificial dendritic and

axonal arborizations, which are extended in time rather than in space. One idea would be

to construct a look-up table that would transform a single event from pre-synaptic address

to a stream of post-synaptic target locations, as illustrated in Figure 3.28 The post-synaptic

target locations would be transmitted as a stream of events before the next pre-synaptic

event could be issued. Temporal resolution is compromised for the space saved by reducing

the number of synapses necessary for the post-synaptic neurons. Since only one pre-synaptic

event is transmitted at a time, the same post-synaptic synapse can be used to receive events

from a number of pre-synaptic neurons. The synaptic weight connecting each pre- and post-

synaptic pair could be stored on the digital transforming chip and transmitted along with

the event to the receiver, either as an analog voltage or as the duration of the post-synaptic

address.

3.7.2 Systems Examples

The computational significance of temporal relationships between action-potentials in neural

systems has not been extensively explored in a systems context. A VLSI neuromorphic

system based on the address-event representation would allow experimentation in this area.

In any sizable neural system the axonal conduction delays must be taken into account if

timing relationships are to be preserved. Conduction delay is critical in auditory localization

[17] and has been incorporated into silicon auditory models [11]. Delays can be incorporated

in the address-event representation. Events might propagate through several chips that are

only locally interconnected, as shown in Figure 3.29. In this very simple system, each chip

simply loads events into synchronous delay lines as they are received. This method reduces

the temporal resolution of the address-event encoding to the synchronous clock period. One

delay line runs in each direction. Each chip inserts its locally generated addresses in the

center of both delay lines. The inserted addresses have their chip coordinate set to zero and

the chip coordinate is incremented as the data are passed from chip to chip. The data bus

therefore encodes the original address bits, plus bits that indicate how many chips the data

had passed through. The address changes in time since it is expressed in local coordinates.
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Figure 3.28: Constructing artificial receptive fields using address-events and digital processing

to store the receptive field structure. The projection pattern illustrated in part (a) is recalled

by the digital processor (b) when neuron 5 generates an event. The digital processor transmits

events to the post-synaptic neurons on the receiver to which neuron 5 projects. When all

of the postsynaptic neurons have acknowledged receipt of an event, the digital processor

acknowledges the sender, which then is free to transmit another event.
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One advantage to this encoding scheme is that receptive fields are easily made translationally

invariant. As the event propagates away from the source, its coordinate bits get bigger and

bigger. The events must be rejected after they have propagated some distance in order to

make room for new events to be inserted into the delay lines. Alternatively, locally generated

addresses could simply overwrite non-local events in the delay line. The probability of being

overwritten would increase with distance. The number of events that can be stored and

their temporal resolution are determined by the number of stages in the delay line. The

system can be extended to two-dimensions. The number of delay lines necessary for events

to propagate to each node in the array via a unique path is eight for a square grid and

twelve for a hexagonal grid.

Investigation of the interaction of the morphology and conduction properties of a neu-

ronal dendritic tree requires spatio-temporally patterned inputs. The address-event rep-

resentation is flexible enough to allow reconfigurable spatial decoding of the event into a

position along the post-synaptic dendrite by means of digitally-programmable static-latch

decoders. Although these latches are larger than hard-wired decoders, they are critical to

this application. In fact, a number of such configurable synapses may be desirable in general

systems if the space used by including them is less than the space taken up by the unused

synapses in a general system hard-wired to allow full connectivity.

The next chapter describes stereopsis chips that perform one-dimensional matching using

an address-event representation. Stereomatching of real images requires that the imaging

foci be separated by a distance much larger than that available on the surface of a single chip.

Although in principle this problem can be solved using optics, it is much more convenient

to separate the image planes and communicate the information electronically. Furthermore,

stereopsis is believed to rely heavily on the output of transient (change-detecting) magno-

cells [13] and be influenced strongly by the temporal order of events [24, 4]. The task of

stereomatching provides a system-level test of the ability of the address-event representation

to preserve salient temporal and spatial sensory information.
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Figure 3.29: Address-event encoding scheme that generates axonal conduction delay. A linear

array of three chips (black rectangles), each containing neurons and an associated address-

event generator, and associated delay-lines, is depicted for three timesteps. When a chip

generates an address-event, the event is loaded into the delay lines. The event propagates

with delay throughout the system. In this architecture, the delay lines are synchronous.
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Chapter 4

Stereopsis

4.1 Introduction

Stereopsis is the combination of visual information from two eyes for the determination

of depth. Stereopsis has been studied using psychophysics, neurophysiology and computa-

tional vision. The analog stereo-matching chip presented in this chapter represents a new

experimental approach to the study of stereocorrespondence, a primary subtask of stere-

opsis. It organizes much of what has been learned about stereocorrespondence using more

traditional approaches, in a physical framework supplied by the basic circuits that underlie

the computation.

Stereoscopic depth is a derived quantity, not immediately present in the two-dimensional

images formed by the retinae. Neuroanatomical studies place the most peripheral locus at

which stereopsis may occur at the primary visual cortex, the first site at which information

from the two eyes is combined in higher animals. The step into cortex opens a Pandora’s box

of possibilities. It could be that stereopsis relies on object recognition, semantic knowledge

and consciousness. Fortunately, psychophysical studies show that the problem of stereopsis

may be approached without addressing the full complexity of the brain. Indeed, Julesz [14]

has described stereopsis as a process mediated by a centrally located “cyclopean retina,”

not so different from the monocular retina. By using random dot stereograms (see Fig-

ure 4.1), Julesz has shown that stereofusion can occur without cognitive cues. Stereopsis is

a fascinating problem that lies in the alluring region somewhere between passive sensation

and active imagination.
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Figure 4.1:

Random-dot stereograms. (a) Making a random-dot stereogram. A random pattern of 1s

and 0s is generated to be presented to the left eye. An identical copy of the pattern is made

for the right eye, except that a central square region within the image (labeled with As and

Bs) is displaced to the right. When the two images are fused, this square region will appear

closer than the background. Occluded areas (areas having no counterpart in the opposite eye’s

image) are labeled with X’s and Y’s. (Modified from Julesz, 1971[14].) (b) A random-dot

stereogram showing a raised square. You can fuse the stereogram by letting your eyes diverge

as though you were looking at infinity. Your left eye should see the pattern on the left, and

your right eye should see the pattern on the right. The primary difficulty is focusing on the

paper while your eyes are diverged. Myopic readers may find it helpful to remove their glasses.
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Because the random dot stereogram reduced the problem of stereopsis to comprehensible

primitives, it has become the canonical test case for the computational vision community,

which has proposed a variety of algorithms for its solution. Each algorithm is rooted in a dif-

ferent tradition. These traditions include: robotic vision [16, 10], psychophysics [26, 41, 40]

and computational theory [25]. By and large, these algorithms have been expressed in and

constrained by the language of the digital computer and are thus often difficult to relate

to analog neurophysiological function. In spite of the gap between experimental electro-

physiology and theoretical model, the existence of working algorithms makes stereopsis an

attractive arena for the study of cortical function; there is some hope that computational

functions might be associated with individual neuronal response.

The study of the neurophysiological basis of stereopsis has indicated that stereoscopic

fusion has correlates in neuronal response as early as primary visual cortex (for a review see

[36]). Primary types of response to binocular stimuli (including random dot patterns) have

been identified and individual neurons are classified on this basis. As is often the case, it is

not possible to definitively assign a computational function to a particular class of neurons.

Aside from the teleological difficulties that arise from consideration of the computational

purposes of neurons, it has been difficult just to gather enough information using single

electrode recording to place the neurons in a network context.

Network interactions are a critical part of stereopsis because disparity tuning is funda-

mentally unlike the classical problems of orientation tuning [11] or velocity tuning, which

can in principle be performed by spatiotemporally oriented receptive fields that are con-

volved with the retinal input [28]. Computational and psychophysical experiments indicate

that stereofusion of a random dot pattern is an inherently nonlocal and nonlinear operation,

which probably requires positive feedback [14, 25]. Although anatomy and basic neuronal

biophysics reveal that these operations are consistent with the predominant features of cor-

tical circuitry, few models explaining neuronal response characteristics have attempted to

incorporate them because they are difficult to analyze or even to simulate numerically.

This chapter explores the interaction between computational algorithm and physical

implementation. The system described is an analog CMOS stereo-matching circuit based

on a new stereocorrespondence algorithm. The algorithm was devised under the constraints

of the analog electronic medium. It is embodied in a compact circuit that is able to solve
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one-dimensional random dot patterns. The circuit implementation is efficient since the

algorithm requires relatively low wiring density and takes advantage of the device physics.

The circuit includes nonlinear positive and negative feedback elements and converges to a

solution in less than 25 milliseconds. Unlike previous circuits [22] that were based on Marr

and Poggio’s cooperative stereocorrespondence algorithm [24], the new algorithm/circuit

performs well on surfaces that are tilted in depth. Individual electrical nodes in the circuit

can be related to the types of stereo-tuned neurons found in primary visual cortex. The

tuning curves of the electrical nodes in the circuit are explained in terms of the function of

the whole network.

4.2 The Problem of Stereocorrespondence

The problem of recovering the three-dimensional geometry of space from two-dimensional

projections can be broken down into several related subtasks, such as feature extraction, eye

vergence control, computation of real distance from image disparity and eye position, etc.

The subtask solved by the circuitry described in this chapter is called stereocorrespondence,

which allows the determination of image disparity. A more complete description of the

problem of stereocorrespondence can be found in [14, 37].

Binocular vision generates two images of a scene, one from each eye. Because the two

eyes regard the scene from different points of view, they differ in their impression of the

relationships between objects. Figure 4.2 shows two eyes of an observer in cross-section.

The lens of the eye focuses an image of the scene composed of discrete targets located in

three-dimensional space onto the surface of the retina. Stereocorrespondence is the pairing

of features in one retinal image with features on the other retinal image that arose from the

same target in three-dimensional space.

The task of finding matching features in each eye would be straightforward if features

could be identified uniquely. However, random dot stereograms [13] demonstrate that the

human visual system can compute disparity even when there are many identical features

in close proximity (see Figure 4.1). Because no pattern is visible monocularly, the deter-

mination of correspondence must take place without cognitive assistance. Furthermore, no

single pair of targets is sufficient to determine the appropriate correspondences; since all



144

Figure 4.2: Stereopsis. This figure illustrates the projection of images of four identical targets

(dark disks) onto the right and left eyes of an observer. The lines going through the lenses

connecting each target with the retinas are lines of sight. The intersections of the lines of

sight indicate possible target positions in space. False targets (transparent disks) are located

at the intersections of lines of sight that originate from different targets in the two eyes.
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targets are identical, they could be matched with any of the others. The intersection of

lines of sight for features that do not correspond represents false targets. There is no way to

differentiate a false target from a real target without making some assumptions about the

three-dimensional structure of the targets. The determination of appropriate correspon-

dence is a cooperative process that must consider simultaneously many possible feature

pairings.

Calculation of stereocorrespondence is simplified by the fact that the search need not

take place over the entire two-dimensional image. The features in the right and left image

corresponding to the same target are confined to lie along lines on each of the retinae, as

shown in Figure 4.3. These lines, called epipolar lines, are the locus of points that must

be searched to establish the stereocorrespondence of the features that line on them. The

origin of the epipolar lines can be understood by imagining that the image position of a

single feature is known, as are the positions of the two eyes, but that the 3-D position of the

target giving rise to the image feature is not. The feature in the image projects through the

nodal point of the eye along a line of sight. The target could lie anywhere along this line.

That line of sight is imaged through the nodal point of the other eye to the corresponding

epipolar line. Corresponding epipolar lines in the two images result from intersection of the

plane defined by the nodal points of the two eyes and the target, with the image planes.

When the eyes are verged to infinity so that the optical axes of the eyes are parallel, the

epipolar lines are all parallel to the horizontal axis (assuming that the image planes are flat).

Features in the right image at a particular elevation must correspond to features in the left

image at that same elevation. However, as vergence changes, the epipolar lines tilt. All of the

epipolar lines intersect at the point defined by intersection of the line connecting the nodal

points of the eyes and the (infinitely extended) image plane [10]. In this case, the search for

corresponding features must extend over different vertical displacements, depending on the

state of vergence of the eyes. Although the region of possible correspondence shifts as the

epipolar lines are tilted, for any given state of fixation, the search for possible correspondence

is a one-dimensional problem.

Once the stereocorrespondence of the targets has been determined, the disparity can be

calculated. In this chapter, disparity is defined geometrically, as if the points in the retina

were assigned coordinates (xl, yl) in the left eye and (xr, yr) in the right eye. The geometry



146

Figure 4.3: The epipolar lines for two targets at different elevations. The retinas (vertically

oriented image planes) are shown symmetrically verged about the midline. The nodal points

of the lenses are shown as filled circles. Two targets (filled squares), one above the other, are

shown with associated lines of sight (dotted lines). Each target, along with the nodal points,

defines a plane, which intersects the retinas to form epipolar lines. The epipolar lines intersect

at the point of intersection between the line joining the nodal points of the eyes and the image

plane.
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of the epipolar lines depicted in Figure 4.3 demonstrates that, in general, receptors with

the same coordinates on the two retinae cannot be stimulated by the same target. The

locus of points in space that stimulate the same coordinates on the two retinae is called the

horopter and is the zero-disparity surface of fixation. The horopter exists over an entire

two-dimensional image only when the optical axes of the eyes are parallel. Otherwise, the

geometrical horopter exists only in the horizontal plane that intersects the nodal points of

the eye and is perpendicular to the image plane. This horopter is known as the Vieth-

Müller circle. The simplest interpretation of the one-dimensional stereocorrespondence

chip is that it is computing correspondence on the epipolar line of this circle. All the

image features corresponding to targets in the plane of the Vieth-Müller circle have the

same retinal y-coordinate. Targets closer to the viewer than the horopter have crossed

(negative) disparity, (xl < xr). (See Figure 4.5.) Targets more distant than the horopter

have uncrossed (positive) disparity, (xl > xr).

4.3 Overview

A number of algorithms for the computation of stereocorrespondence have been proposed,

several of which are based in part on psychophysical measurements and/or neurophysio-

logical recordings from single cells. The stereocorrespondence algorithms that are executed

on digital machines have provided new insight into the function of neural systems by cre-

ating a level of abstraction that organizes individual measurements. The stereomatching

chip described in this chapter differs from digital algorithms because, in addition to taking

account of neurophysiological and psychophysical data, it is constrained by the properties

of the analog electronic medium. These constraints create another level of correspondence

between form and function. Because it is designed to function in the real world, it must deal

with unnormalized, continuous time input. In contrast to a sequential digital simulation,

the cost of connectivity in the analog medium is higher than the cost of iteration, so a

feedback structure with local connectivity is cheaper than a globally connected feedforward

structure. Electronic analogs make new links between single-cell physiology, algorithm and

psychophysics because they incorporate electrical behavior, purposive design, and real-time

system performance.
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4.3.1 Neurophysiology

The mechanisms that biological systems use to compute stereodisparity are unknown. How-

ever, some of the neurophysiological characteristics of the neurons believed to participate

in the computation have been elucidated. Gian Poggio has summarized the physiologic

responses of cell types sensitive to binocular disparity in macaque monkey, which are il-

lustrated in Figure 4.4 [36, 38]. He lists five major categories of cell: the tuned excitatory

cell, which is stimulated strongly only by binocular stimuli that are close to zero dispar-

ity; the tuned inhibitory cell, which is typically strongly stimulated by monocular targets

presented to one of the two eyes and is always inhibited by binocular stimuli at zero dis-

parity; the tuned-near/tuned-far cells and the near/far cells, which are driven by stimuli

of larger crossed or uncrossed disparity; and the disparity flat cells that are stimulated by

targets presented through either eye alone, or by binocular targets at any disparity. All

of these cells are usually also tuned to other stimulus parameters, such as contrast, spatial

frequency, orientation, and direction of motion, and may be classified as simple or complex

based on the structure of subregions in their receptive fields. Similar proportions of simple

and complex neurons are sensitive to the disparity of narrow bars. Only complex cells,

however, appear to be sensitive to random dot stereograms.

4.3.2 Computational Algorithms

Many stereocorrespondence algorithms that are more or less consistent with neurophysio-

logical and psychophysical data have been proposed, a number of which are reviewed by

Poggio and Poggio [37] and Blake and Wilson [2]. These algorithms fall into two major

classes: those that discriminate true targets from false targets based on cooperative inter-

actions, and those that pre-filter the input across multiple spatial scales and restrict the

search area in order to reduce the probability of a false match.

Cooperative algorithms typically include arrays of units that are narrowly tuned for

disparity, similar to the tuned-zero neurons. These elements participate in two forms of

interaction:

1. A nonlinear inhibitory mechanism that suppresses false targets.

2. A nonlocal interaction that gathers evidence to guide this decision.
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Figure 4.4: Schematization of the disparity tuning curves of several of the major cell types

believed to be involved in the computation of disparity in the macaque monkey. (a) TE: tuned

excitatory cell; (b) NE/NF: tuned near and tuned far cells. (c) TI: tuned inhibitory cell; (d)

FL: disparity flat cell. Dotted lines show the response of the cells to monocular stimulation.

Adapted from Poggio et al. [38].
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A diagram of a network structure that supports a typical cooperative algorithm is shown in

Figure 4.5. The algorithm is implemented with an array of correlators (circles) depicted be-

neath two retinas. The correlator array represents internally the space outside the observer.

Each row of correlators responds to targets at a particular depth. Columns in the array

correspond to horizontal image position, or cyclopean angle. The outputs of each retina are

projected into the correlator array at 45 degrees. The lines of retinal projection correspond

to lines of sight. There is a non-linear competition between correlators to select the true

matches. The correlators in competition with each other are either those in a column or

those along the same line of sight. This competition is based on the idea that each feature

in one retina should only correspond to one feature in the other retina. This constraint

arises because one object along a line of sight occludes another object behind it.

The accumulation of evidence favoring true targets over false ones is gathered for some

distance across the image. This interaction shown in Figure 4.5 by heavy lines coupling

correlators at the same disparity. Candidate matches support other candidates that are

consistent with themselves. Which candidates are consistent with each other depends on

some assumption about the structure of physical objects. Typically, the assumption is that

objects are continuous in depth. (Pollard et al. [40] have employed a constraint on the

solution based on psychophysics that has a similar effect–namely, that the correct solution

should not include targets whose depth changes too quickly with horizontal distance.) Since

the candidates of a consistent solution mutually support each other, this interaction is a

form of positive feedback. Positive feedback may be implemented explicitly [7, 24, 40] or

via disinhibition [46].

The Marr and Poggio cooperative stereomatching algorithm [24] was translated into an

analog VLSI circuit [22]. There were several shortcomings to the algorithm. First, the

positive coupling must pass from node to node in the correlator array. The depth solution

is filled in and must exist at every point in the image. Targets must be close together if

they are to influence each other, or else the excitation must be strong enough to propagate

over large distances through the correlator array. Second, the algorithm only works well on

fronto-parallel surfaces, since the excitation propagates only within a single disparity.

Another class of algorithm, illustrated in Figure 4.6, relies on spatial frequency filters

to eliminate false matches. Marr and Poggio [25] pointed out that false matches occur
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Figure 4.5:

General framework of the cooperative algorithms. The left and right retinas with five pixels

are depicted looking out at a scene (above) with two targets at zero disparity and a false target

visible at -1 disparity (another false target is implied at +1 disparity but is not shown). The

external scene is reconstructed beneath the two retinas in a correlator array (circles). Gray

circles are correlators responding to false matches, and black circles are correlators responding

to true matches. Inhibitory interaction among correlation elements run along lines of sight

(dotted lines) or along lines of equal cyclopean angle (dashed line). Solid lines along disparity

planes indicate positive coupling between correlators.
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only at disparities on the order of the width of the spatial frequency of the filter. If the

peaks of spatial intensity modulation are considered targets, then another target closer than

the spatial frequency of the filter would constitute a higher spatial frequency and would

have been filtered out. Observing that cortical cells respond at roughly half amplitude for

frequencies twice their peak frequency, Blake and Wilson [2] have proposed a “quarter-cycle

limit.” To eliminate false matches, the maximum disparity for fusion should be less than a

quarter cycle of the spatial wavelength of the stimulus.

Combining the outputs of filters tuned to different spatial frequencies gives rise to a range

of disparity tuning curves. Filters tuned to high spatial frequency have narrow disparity

tuning, like the tuned-zero cells, and filters tuned to low spatial frequency have broad

disparity tuning, similar to that of the tuned-near/tuned-far or near/far cells [27]. Low

spatial frequency filters with shallow tuning curves respond in an analog fashion over a

range of stimulus disparities.

Because only low-spatial-frequency units can be used at large disparities without in-

troducing false matches, the stereoacuity at large disparities is poor. In order to achieve

fine disparity resolution over a large range of disparities, these algorithms shift the range

of the high-spatial-frequency filters to be centered around the disparity indicated by the

coarser resolution channels. This shift can either be accomplished with eye movements [25]

or by gating the activity of the high resolution units with the activation of the low-spatial-

frequency units [35].

The multi-resolution algorithms are practical and effective. Nishihara [35] has imple-

mented a multi-resolution algorithm with special-purpose digital signal processing hardware,

which is able to find the disparity in real scenes illuminated with speckled light, which in-

creases target density. The disparity map is generated at a rate of 30 seconds per frame.

However, comparison with human performance on stereocorrespondence tasks suggests

that these multi-resolution algorithms are incomplete. Psychophysical measurements indi-

cate that the quarter-cycle limit reasonably obeyed for spatial frequencies less than about

2 cycles per degree. However, at higher spatial frequencies, the fusional limit is constant

at about 15 minutes of arc, large enough for significant numbers of false matches to oc-

cur [44]. Humans are able to process images with large disparities even in the absence of

low-spatial-frequency information.
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Figure 4.6: Multi-resolution algorithm. Two one-dimensional retinae with two arrays of band-

pass filters are shown above. The left retina shows highlighted the receptive fields, correspond-

ing to the position of retinal features. The outputs of the filters of the same type in the two

retinae are convolved by binocular cells to produce the disparity tuning curves depicted below.

Correlation of the activated filters of the right and left retinae produce candidate matches in

the correlator array. The low-spatial-frequency binocular cells activate the portions of the fine

disparity array that is correlated with their own response (grey box). This activation selects

the true targets, which are unambiguously indicated in the coarse disparity array.
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Figure 4.7: Transformation between place-value encoding of disparity in the correlator array

and analog-valued encoding of disparity.

4.3.3 Electronic Analog

I have invented a new algorithm, embodied in a VLSI circuit, that generates electrical re-

sponses similar to those found in neurobiology. The algorithm links multiple-scale disparity

algorithms and cooperative algorithms to remedy some of the shortcomings of each. The

principal innovation is the addition of analog-encoded disparity units that interact via posi-

tive feedback with the correlators in the disparity array. Unlike the multi-scaled algorithms

which are feedforward from low-spatial-frequency to high-spatial-frequency encoding, my al-

gorithm generates a low-spatial-frequency estimate of disparity from high-spatial-frequency

units. The system as a whole performs a transformation of the representation of disparity

from a place-valued encoding of disparity in the correlator array to an analog-valued en-

coding of disparity [1], which is analogous to a low-spatial-frequency estimate of disparity.

This transformation, illustrated in Figure 4.7, allows interpolation to occur in the analog

domain where it is implemented more easily.

A block diagram showing the major components of the algorithm is depicted in Fig-

ure 4.8. The largest block is the correlator array. The units in this array are analogous
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to the tuned excitatory cells. They receive input from binocular receptive fields that are

slightly displaced from each other on the two retinae. The magnitude of the displacement

determines the peak disparity tuning of each unit.

Beneath the correlator array is an array of monocularly driven units that have electrical

responses that are similar to the tuned inhibitory cells. The response characteristics of these

units arise because they are in competition with the correlator array. When the correlator

array is stimulated by a binocular input, it suppresses activity in the monocular units.

Competition between the cells in the correlator array and the monocular units is me-

diated by an array of Winner-Take-All (WTA) units shown beneath the monocular units.

The WTA units provide feedback inhibition to all the correlators and monocular units at

a particular horizontal position in the image. Because they receive input from all the cor-

relators, they respond to input at all disparities, like the disparity flat neurons. The effect

of the WTA inhibition is to suppress the activity driven by a retinal feature at the WTA

horizontal position in all but one correlator or monocular unit. This non-linear inhibition

suppresses false targets.

The final array of units is the analog-valued disparity units, which are analogous to the

near/far neurons in that their response magnitude is monotonic in disparity over a larger

range than that of the tuned cells. These analog-valued units are part of a positive feedback

loop with the tuned units in order to lend support to feature matches that are smoothly

varying in disparity.

The major interactions between the elements of the circuit are illustrated in Figure 4.9.

Most of the interactions take place within the correlator array. A correlator receives input

from a single position on each retina. Inputs from the right and left retinas are multiplied

before summing into the output node, V.

The correlators compete with each other at each horizontal position via negative feed-

back from a common winner-take-all circuit. The negative feedback pathway is indicated

by dashed lines in Figure 4.8. The winner-take-all (WTA) circuit suppresses false matches.

The inhibition level is averaged over horizontal position since the WTA circuits are spatially

coupled.

The WTA circuit cannot discriminate between correlations of equal strength. Therefore,

false matches are distinguished from true matches by providing additional input to the true
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Figure 4.8: Block diagram of the major components of the algorithm. This diagram presents

a narrow horizontal slice through the chip. The chip contains 57 retinal positions in the

horizontal dimension (3 are shown). The retinas are not shown. There are 9 × 57 correlators

(grey boxes), 2 × 57 monocular units (one linear array for each eye) shown in dotted outline,

and linear arrays of analog-valued units (black squares) and WTA units (squares in heavy

outline). Each component corresponds to a cell type observed in biological systems. (See

text.) Dashed vertical lines indicate negative feedback from the WTA circuit to the correlator

array and the monocular units. Solid vertical lines indicate positive feedback from the analog-

disparity units to the correlator array. The WTA and the analog-valued units are coupled to

their neighbors at adjacent horizontal image positions.
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match via a positive feedback from the analog disparity unit. The analog disparity unit

estimates the true disparity in the image by converging to a non-linear, non-local average

of the correlations.

Although in principle the analog units could receive low-spatial-frequency retinal input,

in this implementation, input to the analog disparity units is provided exclusively by the

correlator array. Each correlator drives the analog-valued unit associated with horizontal

position through a variable conductance, which is modulated by that correlator’s activity.

The value to which the correlator drives the analog-valued unit is determined by the cor-

relator’s peak disparity tuning. Each disparity peak is assigned a disparity reference value,

which is computed by a resistive voltage-divider. Correlators tuned to larger disparities

drive the analog-disparity unit to larger voltages. The analog-disparity unit thus computes

a weighted average of activity at that point in the image.

The analog units are coupled to each other in a one-dimensional resistive network, which

averages the local average of disparity across horizontal image position. The voltage on each

node of the resistive net represents the best estimate of the image disparity at that position.

The resistive coupling allows the disparity solution to be linearly interpolated so that objects

tilted in depth can be properly resolved. The interpolated value in the analog net represents

the depth at that point in the image, although there are no retinal targets present at that

location. In this way, depth is represented at every point, without the necessity of activating

the correlation units directly.

The discrimination between true and false targets performed by the WTA circuit is

biased to the smooth solution by feedback from the analog-disparity units into the corre-

lator array. The analog-disparity unit maximally stimulates the correlator whose disparity

reference voltage most closely agree with its own voltage. This interaction is represented

in Figure 4.9 by the element represented as a circle enclosing a tuned response. The peak

response of the element occurs at the disparity reference voltage. The maximally stimulated

correlator begins to win the competition and the losing correlators make less and less con-

tribution to the voltage of the analog-disparity unit. The system converges to a solution in

which at most one correlator is activated at each horizontal position. The amplitude of the

tuned feedback is in proportion to the magnitude of the input at that horizontal position,

which is measured by the WTA circuit. This scaling insures that the positive feedback will
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be in proportion to the level of retinal input. When the input is large, the feedback must

be large enough to elevate the true matches above the false ones. Yet when the input is

weak, the feedback must not be so strong that the system locks into a state from which it

cannot escape.

In addition to the analog units, a set of units that report the existence of unmatched

monocular targets was incorporated in the network. Monocular units receive input from

only one retina. The retinal input is summed with positive lateral inputs from neighboring

monocular cells so that regions of unmatched features in the same eye support each other

and compete with unmatched regions in the other eye. The monocular units of the right and

left retinas compete with each other and with the correlator units via the WTA inhibition.

The system tries to decide if a retinal feature has a match in the other retinal image;

however, it has a place to represent the feature if there is no match. Unmatched targets

arise in real images from occlusion events at depth discontinuities. The monocular units

are used to break the disparity interpolation by controlling a fuse circuit that disconnects

the analog units from each other where there is an occlusion event. The analog estimate of

depth therefore is not averaged across occluded targets that signal a depth discontinuity.

The use of fuses in stereodisparity computations has been previously proposed in the context

of an analog network interpolation algorithm based on a variational principle [5]. In my

algorithm, however, the fuse is controlled by the monocular unit driven by retinal input,

rather than the voltage representing disparity at the terminals of the fuse. This external

control allows the system to remain continously sensitive to changing retinal input.

The convergence properties of this chip are difficult to analyze, as the behavior of all

the elements depends nonlinearly on the stimulus. An attempt to characterize convergence

empirically is presented after the circuit details are discussed. The performance of the chip is

compared to human psychophysical performance on stereo disparity tasks. Stimuli include

random dot stereograms with abrupt transitions and occluded features, disparity patterns

that are tilted in depth, and periodic patterns whose disparity is unambiguous only at the

end points. Also, the disparity gradient limit for fusion of two targets is measured.
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Figure 4.9: Summary of the major interactions between elements of the stereocorrespondence

chip. A single correlator element is shown in gray at the top of the figure. The resisitive

voltage-divider that generates the disparity reference voltage is shown at the left. Beneath

the correlator is a dotted box containing a monocular unit. Monocular units are coupled

to their neighbors. Beneath that is the WTA element and beneath the WTA is the analog-

valued unit. Both the WTA elements and the analog-valued units are resistively coupled to

their neighbors. The resistors coupling the analog-valued units are drawn with fuses that are

controlled by the output of the monocular units. Interaction with the WTA takes place along

the dashed line. Interaction with the analog-valued unit takes place along the solid line. rr:

right retinal input, rl: left retinal input.
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4.4 The Chip

The architecture of the stereo matching chip is shown in Figure 4.10. The chip correlates

the outputs of two one-dimensional retinas, and the representation of the solution expands

into the second dimension of the silicon surface.

There are two principle paths along which information propagates, lines of sight and

lines of average retinal position, illustrated in Figure 4.5. Retinal input units, of course,

project into the correlator array along lines of sight. Most of the interesting computation,

however, takes place along lines of average retinal position. If the eyes are symmetrically

verged, these lines are lines of equal cyclopean angle. Cyclopean angle is equivalent to

horizontal cyclopean image position. If i is the location of a pixel in one retina and j is the

location of a pixel in the other retina, then the correlators associated with the nth cyclopean

angle line receive input from the retinal coordinates i = n − d/2; j = n + d/2 where d is

the disparity to which the correlator is tuned. Monocular units are assigned a cyclopean

position that is equal to their retinal position. This assignment places them on the same

cyclopean angle line as the zero-disparity cell with which they have a common retinal input.

There are twice as many cyclopean angles as there are monocular retinal positions, since

both pixel positions and disparities are integer valued. The negative and positive feedback

interactions in the algorithm take place along lines of cyclopean angle.

4.4.1 Input

The input to the stereo chip is buffered in two one-dimensional retinas which represent

the corresponding epipolar lines from each eye along which matching can take place. Each

retinal array has 57 elements. These retinas are not themselves light sensitive, rather they

are driven by address-events like the receiver chip described in Chapter 3. The circuit

diagram of the retinal node is shown in Figure 4.11. Two eight-bit-wide input ports supply

addresses and DATA VALID signals. Although the structure was designed to be used

with two retinae that generate address-events, the chip was characterized with computer-

generated stimuli, as described in Chapter 3.

The address-events represent features that has been detected by some earlier stage of

processing. The features could be spatio-temporal image contrast derived by a center-
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Figure 4.10: The architecture of the stereocorrespondence chip. The topography is deformed

from the conceptual correlator arrays shown in Figure 4.6 and Figure 4.5 to facilitate the

layout. The retinas project into the correlator array and monocular arrays along lines of

sight. Line of sight from the lower retina is dashed and the line of sight from the upper retina

is dotted. The analog-value resistive network and the inhibitory resistive network are below

the lower retina. An analog-valued unit, indicated with a dot, interacts with the correlator

array along the line of equal cyclopean angle shown in thin, unbroken line. Corresponding

retina and monocular positions are indicated by dots. The shape of the line of equal cyclopean

angle (average retinal position) on the surface of the chip is the average of the shapes of the

upper and lower lines of sight. The output of the chip is scanned with a two-dimensional analog

scanner shown in black. Images scanned from the chip for video display show activity on the

retinae, the monocular arrays, and the correlator array. The responses of the analog-valued

array and the inhibitory array are monitored on an oscilloscope.
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Figure 4.11: Schematic of retinal pixel that receives address-events. When an address-event

is decoded, it removes an amount of charge from the output capacitor. The amount of charge

removed is regulated by delta. Charge gradually leaks onto the capacitor at a rate controlled

by tau. The output of the pixel is a voltage that is active low.
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surround silicon retina, or a more complex signal, like a bandpass oriented edge. The image

feature that drives stereocorrespondence is entirely a function of the circuitry generating

the addresses.

4.4.2 Correlators

The heart of the chip is the correlator array, analogous to the tuned excitatory cells. The

disparity-tuning curve for a single correlator is depicted in Figure 4.12. The correlator

response is high at a single value of stimulus disparity and low at all other disparities.

The tuning curves of all the correlators are similar except that they are shifted across the

disparity axis. The maximum disparity to which correlators are tuned in this chip is ±4, for

a total of 9 rows of correlators. The range of disparity over which these correlators is tuned

is the range of disparity over which images can be fused. Psychophysically this area is called

Panum’s Fusional area. The extent of Panum’s area is a function of the spatial frequencies

present in the stimulus [44]. These units represent high-spatial-frequency features and the

constant disparity range of the chip is similar to the 15 minutes of arc fusional limit at

frequencies greater than 2 cycles per degree.

The circuit schematic of a correlator is shown in Figure 4.13. The retinal input to a

correlator is a nonlinear combination of the output of two pixels, one pixel from each retina.

Each row of the correlator array is an iso-disparity plane that represents a point-by-point

cross-correlation between the two retinas, at a spatial offset corresponding to that plane’s

disparity. The combination of signals from the right and left pixels is performed in the

correlator cell by means of two serially connected transistors. In subthreshold, these two

transistors compute the function:

Imult =
IrIl

Ir + Il
.

Ir and Il are the currents through the rectifiers in the right and left pixels, respectively.

This operation is a normalized multiplication of the two retinal inputs. If either retinal

input is small, the current into the correlator is small. In principle, the algorithm does not

depend on the nonlinearity in the combination of retinal inputs; the nonlinear inhibition

should be sufficient to eliminate the units that are stimulated by only one retinal input.
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Figure 4.12: Response of a single correlator as a function of disparity plotted for the correlator

tuned to zero disparity. The tuning curves of all of the correlators are similar, but shifted

on the disparity axis. There is no response to monocular stimulation due to the nonlinear

combination of inputs from the two retinae. These tuning curves are similar to those of the

tuned excitatory cells (TE).
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Figure 4.13:

Simplified version of the electrical interactions at a correlation element. The correlator output

voltage, V , is determined by the sum of the currents flowing into the node. The retinal input,

provided by current-mirror M1, is a current that is a nonlinear AND–type function of the

signals from pixel i in the right retina and pixel j in the left retina. Input from analog-

valued units through mirror M3 is summed with the retinal input. The WTA circuit provides

feedback inhibition that sinks the input current to Vdd. Mirror M3 is controlled by a bump

circuit whose bias is set by the voltage on the winner-take-all line. The current onto the WTA

common line supplied by the correlator is mirrored by M2 to bias the follower driving the

analog-valued unit.

However, the signal-to-noise ratio is much higher if this nonlinearity is present. The retinal

input is summed into the output node, V , by current mirror M1.

The correlator receives an additional input through current mirror M3, which provides

feedback from the analog-valued unit via the bump circuit. The feedback from the analog-

valued units to the correlators is the basis for convergence to a solution that is globally

optimal. The sum of the currents through mirrors M1 and M3 is the total positive input to

the correlator. This current is counterbalanced by inhibition from the WTA circuit.

The feedback pattern from the analog-valued unit into the correlator array is depicted

in Figure 4.14. The distribution pattern is along lines of equal cyclopean angle. The bump
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circuit measures the difference between the analog-value unit voltage and the disparity

reference voltage of the correlator and provides input to the correlator whose disparity is in

agreement with the analog disparity estimate. The amount of feedback to a correlator at

disparity d is a function of the analog-valued unit voltage that is a bump centered around

the disparity reference voltage, which is denoted by Vd. This function is specified by the

following equation:

Ifeedbackd
=

In

1 + α cosh2 [β (Vd − Vanalogn
)]

where α and β are constants and In is exponential in the difference between voltage on the

common line of the WTA circuit at cyclopean angle n and the control voltage labeled gain.

The gain of the positive feedback is adjusted to be sufficiently low to prevent the system from

latching up into a fixed state. The fact that the magnitude of the feedback is proportional

to the activity at the cyclopean angle of the correlator itself has several consequences. It

means that the feedback gets stronger as the solution gains strength. The magnitude of the

positive feedback scales with the magnitude of the retinal input so that the input magnitude

can vary widely and the feedback strength does not need to be externally adjusted. This

scaling could also be accomplished by making the positive feedback proportional to the

activity of the correlator itself; however this method would not allow correlators that were

losing the competition to receive any positive feedback. Offsets in the magnitude of the

retinal input might be able to keep the correct solution from winning the competition by

preventing the correct correlator from receiving any positive feedback.

4.4.3 Inhibition

Inhibition in this system is responsible for normalizing the output in the face of inputs

of various magnitudes and selecting between competing hypotheses about the true image

disparity. It is implemented by a Winner-Take-All (WTA) circuit [17].

A simple, two-channel, WTA circuit is illustrated in Figure 4.15. To understand how

the circuit works in subthreshold, imagine that the circuit is in equilibrium and that each

channel is receiving an identical input current. In this configuration, I1 = I2 = Iout1 = Iout2 .

The voltage on the common line, Vc, is therefore constrained to be logarithmic in the input

current. The voltages on the output nodes, V1 and V2, are constrained to supply the bias
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Figure 4.14: Positive feedback from the analog-valued units to the correlator array along a

line of cyclopean angle is mediated by bump circuits.

current to the common line through source-follower transistors, T21
and T22

. These voltages

are above the common line voltage by an amount that is logarithmic in the bias current.

To make one channel win over the other, we increase its input current. Increasing the

current to one channel charges up that channel’s output node. The voltage on the common

line follows the output voltage of the winning channel with a voltage difference set by the

bias current. The output node stops charging when the current through its T1 transistor

is equal to the new input current. The output voltage of the winning channel increases

logarithmically with input current while the loser’s voltage decreases.

The loser is suppressed because the inhibition is drawing more current than is being

supplied by its input. Since the voltage on the common line, Vc, controls the current out

of both channels, the capacitor of the channel with less current is discharged until its T1

transistor draws only its input current. For current differences between the channels of more

than a few percent, the T1 transistor of the losing channel will come out of saturation; the

output voltage is within a few kT
q of ground. When the current difference between channels

is small, the output voltage on the losing channel is determined by the Early voltage of the

T1 transistor and by the level of the input current.
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Figure 4.15: The winner-take-all circuit. (a) Schematic of a simple two-channel winner-take-

all circuit. (b) Current-voltage characteristic of the two channel WTA circuit. The voltage

output of the two channels is plotted against the ratio of their input currents.

The WTA circuit is extended to N input channels by simply connecting each channel to

the same common line. The connectivity of such a system is 2N. The common line collects

input from all N nodes in the competition and inhibits all of them.

In this stereocorrepondence chip, the WTA circuit establishes a competitive feedback

interaction between all the correlators along a line of cyclopean angle [7, 34], rather than

along lines of sight [24, 22]. The monocular units also engage in the WTA competition

along the same line of cyclopean angle as the zero-disparity correlators that are driven by

the monocular units’ retinal input. All the correlators along a line of cyclopean angle drive

the same common line, thus the disparity-tuning curve of the WTA common line is flat.

Since the monocular cells are also in competition with the correlators, the WTA circuit

also responds to monocular stimulation. The extent to which it responds to monocular

targets compared to binocular targets is a function of the magnitude of the input to the

monocular cells relative to the correlator cells. The disparity tuning curve for the voltage

on the common line of the WTA circuit is shown in Figure 4.16.

The common lines of the WTA circuits are resistively coupled, thus inhibition is spatially
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Figure 4.16: Disparity tuning curve for voltage on the common line of the winner-take-all

circuit. This tuning curve is analogous to the disparity tuning curve of the disparity flat cell.

averaged across multiple lines of cyclopean angle. The spread of inhibition allows correlators

on different cyclopean angles to inhibit one another. The strength of the resistor relative

to the bias current on the common line (Ibias in Figure 4.15 and WTA bias in Figure 4.17)

sets the spread of inhibition across retinal position.

An additional channel with fixed input, depicted in Figure 4.17, participates in the

WTA competition at each cyclopean angle and thereby sets a threshold for activation of

the correlators. The threshold level is set so that the bump circuit feedback from the analog-

valued units is unable to bring a correlator above threshold. The system does not latch into

a state and stay there because the correlator input falls below threshold when the retinal

input is removed. When the threshold element is winning the WTA competition, it drives

the analog-valued unit to a resting potential through a follower that acts as a conductance.

The magnitude of the conductance is set by the limit transistor.

4.4.4 Analog-Valued Units

The analog-valued units encode disparity as an analog voltage. Their response to stimuli at

different disparities, shown in Figure 4.18, is similar to the near/far cells. In the biological
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Figure 4.17: Circuit schematic for threshold element. The threshold input level sets the

magnitude of input a correlator or monocular unit must attain in order to win the WTA

competition. The threshold elements set the resting voltage and passive conductance for the

analog-valued units.
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Figure 4.18: Disparity tuning curve of the analog-valued units is most similar to that of the

near/far or tuned-near/tuned-far cells.

system, these cells probably receive input from the retina as well as intra-cortical input.

However, in this chip, the voltage output of the analog-valued units is derived exclusively

from the activity within the correlator array.

The analog-valued units aggregate the activity in the correlator array along equal cy-

clopean angle lines to form an analog estimate of the image disparity. The activity in the

correlator array is transformed into an analog value using a follower aggregation circuit [2]

shown in Figure 4.19. Each correlator on the cyclopean angle line controls the conductance

of a transconductance amplifier that couples the analog-valued unit to a disparity reference

voltage. The voltage of the analog disparity unit is the weighted average of the voltages of

the disparities indicated by active correlators. The equation for this average is:

Vanalog =

∑N
d=−N GdVd

∑N
d=−N Gd

where Vanalog is the voltage of the analog disparity unit, Vd is the disparity reference voltage

associated with disparity d, and Gd is a function of the activation of the correlator tuned

to disparity d. Gd is set by the current that the correlator at disparity d is supplying to the
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Figure 4.19: Follower aggregation. The correlator at disparity d drives the analog-valued unit

voltage to its disparity reference voltage with a normalized driving signal. The normalized

signal is the current that the correlator is providing to the WTA. Winning correlators provide

more current to the WTA and thus drive the analog-valued unit voltage more strongly.

WTA common line. This current is mirrored into the bias control of the follower by M2 (see

Figure 4.13). Since the total current flowing into the common line is set by the WTA bias

(Figure 4.17) the total conductance onto the analog-valued unit,
∑N

d=−N Gd, is constant.

In the final state of the system, only one correlator should be active so all the other Gd are

zero and the conductance set by the winning correlator is equal to the WTA bias. The final

output of the analog disparity unit is simply equal to the voltage that corresponds to the

disparity of the active correlator.

In addition to being stimulated by correlators, analog-valued units are resistively coupled

to each other across equal cyclopean angle lines. The follower-aggregation circuitry and the

resistive coupling between analog-valued units form a one-dimensional resistive network.

The coupling between analog units means that their estimate of disparity is no longer

purely local, but instead is based on a semi-global average. When the analog-valued units

are resistively coupled, their voltage response is influenced by the responses of adjacent

analog units. The current from the aggregation circuitry is summed on a capacitor, as
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shown in Figure 4.20. The total current into each analog unit is given by this equation:

0 =
N

∑

k=−N

Gk





N
∑

d=−N

Gd(Vd − Vanalogn
)

∑N
k=−N Gk



 +
Vanalogn+1

− Vanalogn

Ragg
+

Vanalogn−1
− Vanalogn

Ragg

The space constant of aggregation is set by the magnitude of the resistors and the mag-

nitude of the WTA bias current. However, when there is no retinal input at a particular

cyclopean angle, all of the correlators are below threshold. The threshold unit then de-

termines the space constant of the analog-valued network with the follower that drives the

analog-valued unit to its resting potential. Typically the limit transistor (Figure 4.17) is

set to a lower conductance than the WTA bias, so that the voltage on the analog-valued

network decays very slowly where there are no retinal features. In this way, the analog

estimate of disparity can propagate for a long way in the network with little attenuation.

The distance over which the information travels in the absence of retinal targets is inde-

pendent of the degree of averaging between targets. Since the conductance at each node in

the analog unit array is a function of the activity level of the correlators along its cyclopean

angle line, this system is highly stimulus dependent. The spread of activity in the resistive

net cannot be calculated without knowing the state of the correlator array.

The qualitative effect of resistive coupling of the analog-valued units is to perform an

interpolation in depth. The averaging effect may be undesirable when the change in dis-

parity is too large, indicating a boundary between objects at different depths. In order to

investigate this issue, a fuse whose state is controlled by the monocular units described in

the next section was included to break the averaging across disparity discontinuities. The

principle is that the presence of a binocularly unfused target may represent an area of occlu-

sion that occurs at disparity edges. The monocular units activate a fuse circuit that makes

the resistance between two units in the analog-valued network very large. This circuit was

invented by Carver Mead. It has the advantage that the activation of the fuse keeps the bias

circuit in a well-behaved, well-defined state. Even if the fuse operation of the monocular

units is disabled by making the pullup very strong, the current that can be drawn across

a disparity discontinuity is limited by the nonlinearity of the resistor. Saturation of the

resistor allows a large voltage difference to form across the edge [12].
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resistor bias pullup
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PD

Figure 4.20: The analog-valued units are coupled across lines of cyclopean angle with resistor

circuits. The bias circuit sets the magnitude of the resistance by raising the gate voltage of

the lateral transistors above the voltage of the central node. The maximum current through

the lateral transistors is equal to the current flowing through the diode-connected transistor

PD. When the fuse line is pulled low, the current flowing through PD goes to zero so the

resistance becomes very large. Although the current through PD is zero, the currents flowing

in the bias circuit remain unperturbed so that the circuit does not transit into an undefined

state.
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Figure 4.21: Circuit diagram of the monocularly stimulated element.

4.4.5 Monocular Units

In addition to representing binocularly correlated targets, the system also includes state

variables that indicate the presence of unpaired, or monocular targets. The circuit diagram

for the monocular unit is depicted in Figure 4.21. Monocular units are driven by input from

a single pixel. The magnitude of the retinal input to the monocular cell relative to that in

the correlator array is set by the input gain control. Monocular units are inhibited by the

WTA circuit on the line of cyclopean angle associated with their retinal input. Monocular

units excite each other by means of an active lateral excitation circuit. The gain of the

positive feedback loop is controlled by the source labelled FB gain. As in the correlator

array, the magnitude of the positive feedback scales with the magnitude of the retinal input.

The response of these units to stimulation with binocular targets is shown in Figure 4.22.

The response is vigorous for disparities that are not fused in the correlator array. The

response is inhibited when the disparity range is within the disparity range of the correlator

array. This tuning curve resembles that for the tuned inhibitory cells (TI) [36]. Although

it is not apparent in this measurement, the inhibition between the monocular units and the

correlator array is largest at zero disparity and diminishes at larger disparities. The reason



176

-10 -8 -6 -4 -2 0 2 4 6 8

Disparity

R
es

p
o
n
se

Figure 4.22: Monocular response as a function of disparity.

for this decrement is the geometry of the line of cyclopean angle. The only correlator on

the same line of cyclopean angle as the monocular unit that receives input from the same

pixel is at zero disparity. Correlators at different disparities that receive input from the

monocular unit’s pixel must be on different lines of cyclopean angle.

4.5 Analog Psychophysics

In this section, classical stimuli are used to examine the performance of the stereocorre-

spondence chip and a qualitative understanding of its function is developed. The stimuli

were presented as address-events generated by computer. Unless otherwise stated, the pa-

rameter settings on the chip were the same for all of the stimulus patterns presented. The

input gain of the monocular units was very low except for the measurement of the disparity

gradient limit and the random-dot stimulus. The chip is very sensitive to the timing of the

presentation of events. The data bus was able to present a single target to the two retinae

simultaneously. Care was taken to randomize the pairing of the address-events so that the

chip could not use temporal correlation as a method for determining stereocorrespondence.

In addition, the order of presentation of targets across the image was randomized as much
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as possible, since it was observered that the order of presentation of targets could affect

the final state of the system. This occurred because the data presentation rate from the

computer was much slower than the convergence time of the chip. To test that stimuli

were being fairly evaluated, the positive feedback was disabled until the complete stimulus

pattern had established itself on the retina. If the solution obtained in this way was not the

same as the one immediately generated upon serial presentation of the stimulus, the order

of address generation was changed. The reduction in the gain of the positive feedback has

the advantage that it makes most of the false targets visible in the correlator array. The

inhibition is unable to determine a winner because the true and false targets receive equal

amounts of retinal stimulation.

The performance of the chip on these stimuli suggests interpretations of canonical psy-

chophysical results in terms of the underlying circuitry. The data presented in this section

are scanned off the chip using the same method as in previous chapters. The output of

the inhibitory units and the analog-values units are captured on an oscilloscope trace and

presented separately from the two-dimensional correlator output.

4.5.1 Tilted Surfaces

Many stereo algorithms have been designed to cooperatively solve stereograms. However,

they frequently assume assume that the stereogram depicts a surface that is fronto-parallel

[24, 7, 34]. The pattern of excitatory interactions between correlators that assist in the

determination of true matches are localized to one disparity plane, and so false matches

that occur on the same disparity plane will be encouraged instead of true matches that lie

along a smoothly varying trajectory.

The stereocorrespondence chip is able to fuse tilted stereograms, as depicted in Fig-

ure 4.26 and Figure 4.25. The addition of the analog-valued units allows interpolation to

occur in a more natural representation. A comparison of the analog-valued unit output in

the false target case (Figure 4.24) and the case in which the positive feedback has been es-

tablished (Figure 4.26) show that the analog-valued output converges to match the correct

solution. The convergence to a correct solution depends to some extent on the depth aver-

aging of the follower aggregation network. Even before the false matches in the correlator

array have been suppressed, the analog-valued solution lies in the vicinity of the correct re-
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sponse because the false targets on one side of the true solution cancel out the effects of the

false targets on the other side of the true solution. Disparity averaging to eliminate false tar-

gets has been proposed by Tyler [47]. Analog-valued units have the additional feature that

an analog representation of disparity is easier to average across space than the place-valued

representation used in the narrowly tuned correlator array. Analog interpolation has been

used previously in intensity-gradient disparity algorithms [5]. These algorithms use the spa-

tial derivative of intensity in a single image and the change in intensity at identical spatial

locations in the images from the two eyes to compute the disparity. Intensity-gradient algo-

rithms depend on image features with smooth intensity-gradients that are larger than the

disparities that you would like to perceive. Like feedforward multi-resolution algorithms,

they place a constraint on the perceived disparity and the spatial frequency content of the

image. This constraint is not obeyed by one-dimensional dot patterns.
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Figure 4.23: The retinal input is depicted at the top and bottom of the figure. Lighter grey

indicates activity. The correlator array shows activity at all the possible feature correlations

when the positive feedback to the analog-valued disparity units is disabled.
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Figure 4.24: Analog-valued disparity output when positive feedback is disabled.
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Figure 4.25: Positive feedback from the analog-valued units allows the WTA competition to

suppress false targets.
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Figure 4.26: Analog-valued disparity output converges to the correct solution when positive

feedback to the correlators is enabled.

4.5.2 Interpolation from Unambiguous Endpoints

Mitchison and McKee [30, 31, 32] have shown that the perception of the depth of closely

spaced targets can be predicted by interpolation between unambiguous end points. Some

of the simpler stimuli used in their experiments, shown in Figure 4.27 through Figure 4.34,

were presented to the stereocorrespondence chip. These stimuli consist a periodic array of

dots whose stereocorrespondence is ambiguous except at the ends of the array. Like human

observers, the chip is able to perceive the stimulus configuration most consistent with the

unambiguous endpoints. The analog-valued units perform an interpolation into the target

array from the unambiguous endpoints.

The solution to which the chip converges is biased by the average computed by the

analog-value units. A comparison of the analog-value unit response shown in Figure 4.28

and Figure 4.32 reveals that the average computed by the analog-value units is closer to the

solution at disparity + 2 when the endpoints are set at +1 and that the average is closer to

the solution at disparity -2 when the endpoints are at disparity -1. The chip fails to find the

correct solution when the array of ambiguous points is too large relative to the averaging

distance of the analog-value units. An asymmetry in the design of the bump circuit biases
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the solution to larger disparity values.
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Figure 4.27: Output of the correlator array. Endpoints have disparity +1. Possible targets

visible when positive feedback is disabled.
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Figure 4.28: Analog-valued disparity output when endpoints have disparity +1 and positive

feedback is disabled. The voltage corresponding to zero disparity is shown by the dotted line.
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Figure 4.29: Solution at disparity +2 is favored by endpoints at +1 when positive feedback is enabled.
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Figure 4.30: Analog-valued disparity output for solution at +2. The voltage corresponding to

zero disparity is shown by the dotted line.
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Figure 4.31: Endpoints have disparity -1. False targets visible when positive feedback is

disabled.
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Figure 4.32: Analog-valued disparity output when endpoints have disparity -1 and positive

feedback is disabled. The voltage corresponding to zero disparity is shown by the dotted line.
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Figure 4.33: Solution at disparity -2 is favored by endpoints at -1 when positive feedback is

enabled.
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Figure 4.34: Analog-valued disparity output for solution at -2. The voltage corresponding to

zero disparity is shown by the dotted line.

4.5.3 Setting Parameters

Identical parameter settings were used for all of these experiments. Convergence was most

greatly affected by the spread of activity in the analog-value network and in the inhibitory

network. Changes in the final state of the stereocorrespondence chip in response to the same

stimulus for different configurations of the analog-value network and the WTA inhibitory

network are shown in Figure 4.35 and Figure 4.40 respectively. Due to the non-linearity

introduced by the low resting conductance of the analog-network (see Figure 4.17), it is

difficult to evaluate whether the inhibition spreads farther than the excitation, although the

parameter settings indicate that this is the case. The conductance, and thus the spreading

distance of both networks is scaled by the WTA bias voltage (Figure 4.17). A difference

in bias voltage of the resistor bias and the WTA bias voltage of 40 millivolts accounts for

an approximately
√

e change in the spreading distance. When the difference between the

WTA bias voltage and the resistor bias voltage is large and negative, the averaging distance

in the network is large. Activity in both networks must be allowed to spread over several

spatial positions in order for the solution to converge properly.



192

0 114
Cyclopean Angle

200 millivolts

-4.71

-4.49

-4.00

-3.70

Figure 4.35: Activity in the analog-valued array in response to a random dot stereogram for

four different coupling resistor strengths. The voltages on the resistor bias circuits are shown

next tot each trace. The WTA bias voltage was -4.26 volts. The WTA-coupling resistor bias

was -3.91. The chip was p-well and voltages are reported according to the grounded substrate

convention.
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Figure 4.36: Activity in the correlator array in response to a random dot stereogram with

analog-valued-unit-coupling resistor bias voltage at -4.71. See Figure 4.35. This solution shows

little false target supression.
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Figure 4.37: Activity in the correlator array in response to a random dot stereogram with

analog-valued-unit-coupling resistor bias voltage at -4.49. See Figure 4.35. This solution shows

some false target suppression.
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Figure 4.38: Activity in the correlator array in response to a random dot stereogram with

analog-valued-unit-coupling resistor bias voltage at -4.00. See Figure 4.35. This solution is

optimal.
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Figure 4.39: Activity in the correlator array in response to a random dot stereogram with

analog-valued-unit-coupling resistor bias voltage at -3.70. See Figure 4.35. This solution is

smoothed too much across the disparity discontinuity.
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Figure 4.40: Profile of activation of the WTA common-line array for WTA-coupling resistor

bias voltages -4.22 and -3.91 volts. The WTA bias voltage was -4.26 volts.
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Figure 4.41: Activity in the correlator array in response to a random dot stereogram with

WTA-coupling resistor bias voltage at -3.70. Compare with Figure 4.38, in which the WTA-

coupling resistor bias voltage was -3.91. This solution is undesirable.
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4.5.4 Disparity Gradient Limit

The disparity gradient limit was first described by Burt and Julesz [4]. The disparity

gradient is defined as the binocular disparity between two targets divided by their binocular

separation. The limiting case in which the two targets are aligned along the same line of

sight in one eye, and so appear as a single target, but are visible separately from the other

eye’s perspective is known as Panum’s limiting case and corresponds to a disparity gradient

of two. Objects with a higher disparity gradient than this will appear in opposite order

on the two retinae. The disparity gradient for fusion in humans is about one. Figure 4.42

depicts the forbidden area resulting from a disparity gradient of two and one in terms of

the stereocorrespondence chip architecture. The black square in the center of the correlator

array indicates the presence of a target at zero disparity. The shaded areas represent the

positions of matches which would be prohibited by the presence of a match at zero disparity,

if the chip generated the same disparity gradient limit as the human visual system.

The disparity gradient limit has been the basis for several stereo-matching algorithms

[40, 41]. These algorithms assumed that a forbidden region existed around each possible

match and chose a set of matches which were consistent with each other. However, the

mechanism by which the forbidden region is generated has not received much attention.

The disparity gradient limit for fusion arises in this chip through a combination of inhibition

that includes the correlators and the monocular cells, and excitatory interactions between

the correlators and the analog-valued units.

Several features of these interactions are revealed by data from the stereocorrespondence

chip, depicted in Figure 4.43. The limit was measured by placing one target at zero disparity

and presenting the additional target. When the disparity gradient was greater than two, a

new solution arose that paired one retinal feature of the original zero disparity target with

the other retinal feature of the new target. The match at zero disparity disappeared and

two new matches of similar near or far disparity appeared. When the disparity gradient

was equal to two, the fusion of the new target was often inhibited. (Positions of inhibition

are shown as medium grey squares). However, inhibition is ineffective when the positive

feedback between the two targets is strong, so that one cannot suppress the other. Thus

two adjacent targets on one retina both match with a single target on the other retina a

produce a blurred target that activates two correlators, one at zero disparity, the other at
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±1. This output may be interpreted as a target at ±0.5 and so represents a reasonable

interpolation of the disparity of a single blurred target. When the disparity gradient is

between 1 and 2, the target is often not fused or incompletely fused. When the target is not

fused, it appears in the monocular unit array. In a state of incomplete fusion, the correlator

that should represent the match flickers due to oscillation in the circuit. This oscillation

may be analogous to the lusterous quality perceived by humans viewing improperly fused

targets. Often the monocular cell associated with the new target is partially activated.

The monocular cells extend the disparity gradient limit. If the input gain to the monoc-

ular cells is decreased, they cannot compete as effectively with the correlator array, and the

disparity gradient limit of the chip diminishes. The monocular units help suppress the for-

mation of a fused match because the correlator that would represent the match is flanked by

an active correlator at zero disparity, and a monocular cell on the other side. The combined

inhibition from these two units and the lack of positive feedback is sufficient to suppress

the fused target. Further experiments must be performed to tease apart the interaction of

excitation and inhibition in the stereocorrespondence network. A disparity gradient could

be enforced by many connectivity patterns in a network. However, the results in this bio-

logically plausible network suggest that the tuned inhibitory neurons may play a significant

role in establishing the psychophysically measured disparity gradient limit.

4.5.5 Occlusion

Occlusion is a significant clue to depth. Nakayama has shown that occlusion alone is

able to generate the perception of a raised surface and also generates a sharp edge at

the boundary of a surface that has targets on it [33]. The monocularly activated units in

this stereocorrespondence algorithm provide a natural opportunity to explore the role of

occlusion in stereocorrespondence.

Few network models have considered the role of occlusion in the computation of stere-

ocorrespondence. The question of whether occlusion is computed before, after or during

stereocorrespondence is unanswered. Intensity gradient stereo algorithms based on Markov-

random field models have used fuses to eliminate disparity interpolation across discontinu-

ities [5]. While this approach cannot generate depth from occluded areas alone, it is easy

to implement in a VLSI resistive network.
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Figure 4.42: Disparity gradient limit. A:Idealized representation showing disparity gradient

greater than two (ordering constraint violated) in dark grey, disparity gradient equals two

(Panum’s limiting case) in medium grey, and disparity gradient greater than or equal to one

(human fusional limit) in light grey.
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Figure 4.43: Disparity gradient limit. Data from the chip showing areas of target reordering

(numbers indicate perceived targets), no fusion (medium grey), and incomplete fusion (light

grey). The area of target reordering is equivalent to disparity gradient greater than two. The

areas of incomplete fusion nearly correspond to a disparity gradient limit of one.
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I have incorporated fuses to interpolation in the analog unit array that are broken by

activation of a monocular cell. This strategy improves the disparity estimate computed by

the analog-valued units in response to a one-dimensional random dot stereogram, shown in

Figure 4.44 and Figure 4.46. The stimulus has a single disparity discontinuity and a single

unpaired feature on the lower retina. The disparity estimate computed by the analog-

valued units smooths over the discontinuity when the fuse is disabled (Figure 4.47). When

the fuse is enabled, however, the disparity solution at +2 is filled in up to the discontinuity

(Figure 4.48).
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Figure 4.44: Activity in the correlator array in response to a random dot stereogram with

single disparity discontinuity and occluded target. Positive feedback is disabled so false targets

are visible. The input gain of the monocular units was temporarily reduced so that the

monocular units did not suppress the unreinforced targets in the correlator array.
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Figure 4.45: Response of analog-valued units with positive feedback disabled. Analog-valued

units compute the average disparity of all the active correlators.
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Figure 4.46: Response of correlator array to random dot stimulus when positive feedback is

enabled. Compare to Figure 4.44.
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Figure 4.47: Random dot stereogram with single disparity discontinuity and occluded target.

Positive feedback is enabled and fuse is disabled. The analog-valued unit output is smoothed

across the discontinuity and the occluded target visible as activity in the lower array of monoc-

ular units in Figure 4.46. The position of the occlusion had to be determined in an ambiguous

string of four contiguous features.



208

200 millivolts

0 114
Cyclopean Angle

Figure 4.48: Random dot stereogram with single disparity discontinuity and occluded target.

Positive feedback and monocular fuse circuits are enabled. An occluded target breaks the

interpolation in the analog-valued unit array and allows the solution to be filled in at disparity

+2 up to the occlusion event, although there are no additional targets on the surface.
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4.6 Discussion

The analog stereo matcher suppresses false matches by a collective interaction that re-

quires a transformation of representation. This transformation allows the generation of

stable states of the system in which the units have analog-valued outputs. This feature

distinguishes the stereomatcher from the traditional Hopfield network in which the state

of the system is pushed to corners of the hyperspace by the positive feedback responsible

for reconstruction of the stored memory [9]. However, this stability arises from a neurobi-

ologically unfounded type of “synaptic” interaction; namely, synapses whose magnitude is

a non-monotonic function of the value of the presynaptic neuron. This type of interaction

has previously been proposed for the construction of radial basis functions [39]. The radial

basis function has mainly been used in the context of interpolation in a high dimensional

input space, rather than in the context of associative memory. Although the radial basis

function may not be the function of a single synapse, it is possible that a network of neurons

with proper traditional synaptic connections might compute such a non-monotonic func-

tion. The success of this algorithm and circuit at solving the stereocorrespondence problem

as well as the successes of radial basis function networks, motivates the search for such a

network architecture.

Although this algorithm has used a single “feature” based input, this is not the ideal

form. It is likely that there are several interacting populations of neurons that are tuned

for different orientations, directions and spatial frequencies. The analog valued units of this

algorithm most likely correspond to disparity units tuned to low spatial frequencies. The

analog valued units should not be seen as derived or secondary to the finely tuned corre-

lator array. The algorithm was designed to operate specifically on tasks in which the low

spatial frequency information had been removed. I believe that the algorithm represents

only a small fraction of the interactions normally taking place in cortical computation of

stereocorrespondence. The general principle is that the state of cortex must be consistent

with itself over small distances in all its dimensions. This algorithm embodies the require-

ment for consistency between narrowly tuned units and broadly tuned analog units at one

physical location and consistency between analog units at different spatial locations. This

requirement for consistency was sufficient to perform stereocorrespondence, even when the
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low spatial frequency units receive no retinal input.

One of the novel features of the stereocorrespondence chip is the incorporation of monoc-

ular units into the cooperative computation. However, this experiment has had an ambigu-

ous result; the role of the monocular units in binocular fusion remains mysterious. Measure-

ment of the disparity gradient limit of the chip indicates that the monocular units play a

significant role in the formation of the forbidden zone. However, activation of the monocular

units during the normal fusion process in general seemed to produce a negative effect, even

if the fuse governing analog-value unit interpolation was disabled. This effect was manifest

as an unwillingness of the network that included monocular units to find solutions near

zero disparity. It arises because the competition between the zero disparity correlators and

the monocular units is direct. The difficulty may well be a result of the inhomogeneity of

the positive feedback mechanisms in the array. In order to get the monocular units into

the competition, their input gain had to be adjusted to a high level, relative to the retinal

input level of the correlator array. This increased feedforward gain places the monocular

cells at an unfair advantage early in the convergence process. The development of a more

consistent cooperative framework, in which all units participate on an equal footing, will

be necessary before the role of monocular units in the computation of stereocorrespondence

can be evaluated.

The necessity for a common framework for neural interaction is counterbalanced by the

need to limit the possibilities. Investigators in neural networks have adopted a strategy

of employing predefined architectures and fixed neuronal representations. For example,

Qian and Sejnowski [42] have shown that a back-propagation network initially configured

according to the architecture of the cooperative stereocorrespondence algorithms is capable

of learning to fuse random dot stereograms and can even handle transparency. Lehky and

Sejnowski [20] have demonstrated depth interpolation and representation of transparency

using a population encoding of disparity that had both narrowly tuned and broadly tuned

features. However, their analysis assumed that the units tuning curves were given and

did not address issues of finding stereocorrespondence in random dot patterns. Since the

analog circuit relates interpolation and stereocorrespondence, one logical extension of the

circuit would be to add a number of analog-valued units as are present in Lehky and

Sejnowski’s representation and explore the perception of transparency. Transparent surfaces
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would gather consistent patterns of activation. As long as both surfaces had equal levels

of consistency, they would both rise above the adaptive threshold level set by the common

line inhibition of the WTA.

The stereocorrespondence chip can be expanded in many directions. One generalization

of the circuit is the incorporation of adaptation in the neurons. I believe that adaptation

will allow the monocular or tuned-inhibitory units to exhibit binocular rivalry [18]. The

psychophysics of long-term adaptation (i.e. to oriented gratings) and binocular rivalry has

been studied by Lehky and Blake [21]. They conclude that binocular rivalry must occur

before binocular fusion. However, these experiments do not rule out the possibility of rivalry

occurring in the monocular cells that are participating in the fusional process, as is the case

for the monocular cells in this algorithm.

Another interesting avenue of investigation is the use of temporal correlation in stereop-

sis. I have observed that the stereocorrespondence problem that the chip needs to solve is

greatly simplified by the addition of temporal correlation of the address-events supplied to

the two retinae. The addition of analog delay structures, perhaps based on dendritic mor-

phology, will allow the exploration of motion interpolation and stereopsis. Little research

has been done in time-based algorithms for stereopsis because it is difficult to simulate tem-

poral functions using traditional methods. Previous stereomatching chips [22] have used

time-derivatives as the input for stereo matching. The use of time derivatives improved the

performance of the matcher by amplifying the input signal relative to the offsets. It is known

that time is an intrinsic part of the disparity computation in natural systems. Perceptual

psychologists have shown that binocular time delay and disparity can be substituted for

each other in moving stimuli [3]. Binocular time delay has been used to characterize dispar-

ity sensitive neurons in visual cortex [8]. Signals that are time delayed between the two eyes

result from motion in a complex environment in which surfaces occlude one another [45].

The address-event communication protocol facilitates investigation of these issues since it

does not introduce the kind of temporal aliasing as does a sequential-scanning multiplexing

method.
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4.7 Summary

The stereocorrespondence chip embodies a new algorithm, intermediate between multi-

resolution algorithms and cooperative algorithms. It can find the correct stereocorrespon-

dence in an one-dimensional random dot stereogram depicting front-parallel or oblique

surfaces. Its performance on a number of stimuli that have been used in psychophysical re-

search resembles the performance of the human subjects. Furthermore, the disparity-tuning

curves of several of the electrical units of the circuit are similar to the disparity-tuning curves

of stereo-tuned neurons in primate cortex. Thus, the stereocorrespondence chip links elec-

trophysiology with psychophysical behavior and computational function.

The stereocorrespondence chip has opened a number of avenues for future research in

the fields of neurophysiology, computational neurobiology and engineering. The perfor-

mance of the chip suggests that the disparity tuning characteristics of the disparity flat

cell and the tuned inhibitory cell may be a result of network interactions. The algorithm

used by the chip motivates the search for neurally plausible architectures that perform a

transformation of representation between place-valued and analog-valued encoding. The

rapid and robust function of the stereocorrespondence chip raises the possibility of building

an analog multi-chip system to compute stereocorrespondence in real time based on the

address-event communication protocol. Although the directions and possibilities for future

research are many, they all lead towards the development of a vocabulary of realizable circuit

elements that form a rich and self-consistent framework for the synthesis of architecturally

differentiated neural structures.
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Chapter 5

Conclusion

This thesis has described the development and testing of a simple artificial visual system

fabricated using analog CMOS VLSI. This visual system is composed of three novel subsys-

tems. A silicon retina that transduces light and performs signal processing of kind similar

to that observed in simple vertebrate retinae. A stereocorrespondence chip uses bilateral

retinal input to estimate the location of objects in depth. A silicon optic nerve provides

a communication system between chips by a method that preserves the idiom of action

potential transmission in the nervous system. Each of these subsystems illuminates various

aspects of the relationship between VLSI analogs and their neurobiological counterparts.

The silicon retina described in chapter 2 is a classical example of the unity of form and

function in evolved systems [6, 1]. The purposive function of the retina, to provide relevant

visual information to the organism, is performed in the context of physical limitation, such

as finite communication bandwidth. The center-surround receptive field structure that is

optimal for information transmission is computed with lateral inhibition via a resistive net-

work. The resistance of the network and the gain of the feedback to the photoreceptors are

parameters controlling the size of the center-surround operator. Modulation of these intrin-

sic parameters adapts the retina to different viewing conditions. Photoreceptor adaptation

is naturally integrated into the feedback retina. In this case, the feedback serves to calibrate

the individual receptors with respect to each other. Relative calibration is the most that

autonomous systems, which act without external reference, can achieve. The constraints

of form in the retina lead to a representation of visual information that is largely invariant

with respect to changes in illumination. Thus, the process of scene abstraction, usually
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considered a purely cognitive phenomenon, in fact commences in the most peripheral stages

of vision. As evidence for this I have shown that several subjective visual illusions are

observed in the output of the chip.

The address-event communications protocol described in Chapter 3 capitalizes on the

representation generated by the retina to efficiently transmit information between chips.

Both VLSI chips and neuronal systems suffer from bandwidth limitations. The communi-

cations bandwidth is set by the product of the number of wires in the channel and the speed

of each. Therefore, the strength of silicon technology relative to neurons, its speed, can be

used to compensate for its weakness, the small number of pins available to communicate be-

tween chips. This trade-off is accomplished while preserving the event-like quality of nerve

impulse transmission. The viability of this protocol depends explicitly on the efficiency of

information encoding that is used in the retina, and which may be a general characteris-

tic of neural systems. More work needs to be done in this area in order to define a precise

inter-chip communication protocol that can be used commonly among VLSI neural network

designers. The speed of the arbitration protocol and the interface of arbitration to internal

analog circuitry can both be improved substantially. In addition, provisions for interfacing

multiple senders and receivers and systems for determining the optimal number of data

buses, the width of the data buses, and the partitioning of neurons onto these buses must

be devised. The design of buses for interchip communication in analogs of specific neural

structures will require a through understanding of their anatomy.

The stereocorrespondence chip described in chapter 4 is based on a novel stereocorre-

spondence algorithm that unites cooperative and multi-resolution approaches. The electrical

elements of the chip have disparity-tuning characteristics similar to those found in biologi-

cal systems. These characteristics arise from network interactions. The form and function

of these electrical elements suggest plausible hypothesis for the mechanism of formation of

biological receptive field properties and hints at their role in the computation of stereodis-

parity. Future research should explore new architectures based on stereotyped elements.

The success of the present algorithm, based on a transformation of representation, suggests

that we should search for architectures that can perform similar transformations, but have

more neurally-plausible subunits. The computation of transparency and the rectification

of the imbalance between the correlator array and the monocular units both require the



220

development of stereotyped subcircuits that can be combined into complex architectures.

Just as the silicon retina is able to emulate the spatial and temporal response of the biolog-

ical retina to arbitrary stimuli within a single physical structure, the evolution of a physical

structure for the computation of stereo disparity should result in a system whose behavior

is consistent with psychophysical and neurophysiological data over a large range of stimuli.

The silicon retina, the silicon optic nerve and the analog stereocorrespondence chip

demonstrate that analog VLSI can capture a significant fraction of the function of neural

structures at a systems level, and, concomitantly, that neural architectures can lead to new

engineering approaches to computation in VLSI. The relationship between neural systems

and VLSI is rooted in the shared limitations imposed by performing computation in similar

physical media. The systems discussed in this text support the belief that the physical

limitations imposed by the computational medium have as significant an effect on the algo-

rithm. Since circuits are essentially physical structures, I advocate the use of analog VLSI

as powerful medium of abstraction, suitable for understanding and expressing the function

of real neural systems. The working chip elevates the circuit description to a kind of syn-

thetic formalism. Thus, the physical circuit provides a formal test of theories of function

that can be expressed in a circuit language.

Circuit language exists only in embryonic form. Carver Mead [2] has begun development

of such a language, but at this time, the definition of the semantics of the primitive circuit

elements and the syntax of their combination is still unclear. However, dramatic progress

has been made towards standardizing design techniques in the related field of digital VLSI

design [3]. There is every reason to believe that similar techniques will emerge in the field

of neuromorphic analog design. The address-event communications protocol described in

Chapter 2 is a major step towards such a standardization.

Neurobiological systems are sufficiently complex that the transition from description to

traditional formal analysis is difficult. These systems consist of large numbers of non-linear

elements and are analytically intractable and computation intensive for numerical simula-

tion. Circuit design will play an increasingly significant role in computational neuroscience.

One major advantage to building analog VLSI circuits is that, unlike digital simulation,

VLSI analogs can be cascaded without affecting their performance. The real-time sensor-

driven analog system exists at the same level as its biological counterpart. It can be driven
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with real stimuli and generate electrical and even motor behaviors that can be observed

with the same tools used to evaluate the performance of biological organisms. The ability

to harness such extraordinary computational power will inevitably lead to qualitatively new

understanding that will benefit both neuroscience and technology.
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Appendix A

Compiling the Arbiter

Silicon compilation is an essential tool for constructing VLSI chips that use the binary

tree arbiter described in Chapter 3. Constructing a large binary tree structure is difficult in

VLSI because the structure is regular between scales but not at any particular scale. Simple

tiling of small elements cannot capture the large scale structure. In order for the Arbiter to

be used in a practical sense as a design frame, it must be automatically scalable to any size

array. I have written a WOLCOMP program in Pascal that automatically places a fixed

set of small geometry cells to build an arbiter tree of whatever size is specified by the user.

The compilation of the arbiter means that the design frame is essentially transparent to

the user, although currently the library of geometry cells must be modified by each user to

have the same pitch as user’s base neuron element.

A well-commented program is listed at the end of the text. It will build arbiters of any

size that have an even number of input neurons. However, Arbiters that are not a power of

2 will have timing asymmetries and thus favor some pixels over others. The tree generated

by this routine is folded so that it occupies minimum space at the edge of the neuron array.

A simple folded tree that arbitrates between four neurons is depicted in Figure A.1. The

program is designed to fill the tree in from the bottom up. A tree with six neurons is shown

in Figure A.2. The wiring for the tree is composed of small routing cells, illustrated in

Figure A.3. The cell configuration for the four neuron tree is shown in Figure A.4.

import

$search ’/LIB/WOLLIB/WOLCOMP/WOLCOMP’$ wolcomplib,
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Figure A.1: Folded four-neuron tree arbiter.

Figure A.2: Folded six-neuron tree arbiter.
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$search ’/LIB/WOLLIB/WOLCOMP/WOLCOMPII’$ wolcompII,

const

maxdepth=9; allows for 512 arrays

type

intarray= array[1 .. maxdepth] of integer;

var

numlayer : intarray; number of cells in each layer of the arbiter tree

digit : intarray; binary encoding of the number of the current pixel

dig : intarray; binary encoding of the number of pixels

depth: integer; tells the depth of the array

depth2: integer; tells the number of address bits

numcells x: integer;

numcells y: integer; function expon(base,power:integer):integer;

var

i,temp:integer;

begin

temp:=1;

for i:=1 to power do

begin

temp:=temp*base;

end;

expon:=temp;

end; procedure binary(num:integer);

deals with the structure of the binary tree of arbiter elements

it calculates the number of two-input arbiters at each layer of the tree

and stores the result in numlayer

it also calculates the structure of the tree and stores it in dig array

when dig[n]=1, then the tree is complete at level n

complete means that all of the inputs coming up from n-1 have been allocated

to a two-input arbiter element at the nth level of the tree

the tree is built to be complete from the bottom
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odd men out are left to the top of the tree structure

var

temp,i:integer;

begin

temp:=num-1;

initialize dig variable that stores the binary encoding of num

for i:=1 to maxdepth do

begin

dig[i]:=0;

end;

i:=0;

while temp¿=1 do

begin

start with LSB level of the tree–call it level 1

i:=i+1;

numlayer[i]:=temp div 2;

if (temp mod 2)=1 then

begin

dig[i]:=1;

numlayer[i]:=numlayer[i]+1;

end

else

dig[i]:=0;

temp:=temp div 2;

end;

depth:=i;

depth is the number of levels in the binary arbiter tree

if expon(2,depth)=num then

figures out how many address bits (depth) are needed for num pixels

since counting begins at one, 2N pixels need N + 1 address bits

depth2:=depth+1
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else

depth2:=depth;

end; procedure binary2(num:integer);

calculates the addresss bits for the numth pixel and stores it in digit

var

temp,i:integer;

begin

temp:=num;

for i:=1 to maxdepth do

begin

digit[i]:=0;

end;

i:=0;

while temp¿=1 do

begin

i:=i+1;

if (temp mod 2)=1 then

begin

digit[i]:=1;

end

else

digit[i]:=0;

temp:=temp div 2;

end;

end; procedure arbiter make(num:integer; dnum:integer; horizontal:boolean);

num is the actual number of pixels in the array

dnum controls the desired width of the address bus, typically equal to num

the width of the address bus is as wide as if there were dnum pixels

num and dnum must be even

var

tmpvar1,tmpvar2,tmpvar3,pitch,level,toplevel,i,j,k:integer;
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noconnect,try:boolean;

begin

decide to build arbiter for horizontal side of pixel array, or vertical

since the neurons may not be square, a different set of buffers may be necessary

if horizontal then

pitch:=cell width(’pixel’)

else

pitch:=cell height(’pixel’);

binary(dnum);

calculate the structure of the tree

for i:=1 to num-1 do

place the arbiter element that abbuts pixel i at the correct level in the tree

for all but the last pixel in the array–begin counting pixels at 1

begin

j:=depth;

guess that the arbiter cell associated with pixel i

is at the top level of the tree

the guess is decremented at the end of the routine

try:=true;

while try do

keep trying until you get it right

begin

if (i mod expon(2,j-1))=0 then

if this is the position for an arbiter at depth j

begin

arbiter is built from bottom to top (1 st pixel to num th pixel

and from left to right

order of cells is pixel-reset circuits (hreset, vreset)

- address bits (1 addr, 0 addr)- interface (*arbufl1, *arbufl0)-

two input arbiter element(scan)-

arbiter tree wiring cells (in1, ip, imn, dn, un)
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add initiation node reset circuitry to aribter

x0:=0;

y0:=(pitch*(i-1));

calculate vertical coordinate of the i th pixel

if horizontal then

place(’hreset’)

else

place(’vreset’);

x0:=x1; make address bits of the ith pixel

since the pixel numbering starts at 1, there are “depth2” bits

binary2(i);

for k:=1 to depth2 do

begin

if digit[k]=1 then

place(’1addr’)

else

place(’0addr’);

x0:=x1;

end;

place buffers to interface cells to arbiter

if (i mod 2)=0 then

begin

if horizontal then

place(’harbufl1’)

else

place(’varbufl1’)

end

else

begin

if horizontal then

place(’harbufl0’)
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else

place(’varbufl0’)

end;

x0:=x1;

if horizontal then

place(’harbbuf’)

else

place(’varbbuf’);

y0:=y1;

place(’scan’);

x0:=x1;

place(’inv’);

x0:=x1;

y0:=(pitch*(i-1));

re-calculate vertical coordinate of the i th pixel

find the level in the tree that you need to send connection to

provision for non-2N trees

if i¿=(num-expon(2,(j-1))) then

test if i is close enough to the top of the tree to be irregular

begin

k:=j+1;

noconnect:=true;

while noconnect do

find the level of the tree that you will connect to

begin

if k¡=depth then

begin

if dig[k]=0 then

there is no one for you to connect with at this level

begin

noconnect:=true
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end

else

dig[k]=1 and you are connecting at level k-1

begin

level:=k-1;

noconnect:=false;

end;

end

else

if k ¿ depth you are at the top and should connect

begin

noconnect:=false;

level:=k;

end;

k:=k+1;

end;

end

else

you are regular and the level in the tree you are connecting to is your depth

level:=j;

do routing

there are (depth-1) routing channels that need to be placed

for k:=1 to (depth-1) do

begin

if k¡(j-1) then

if you will connect to an arbiter element farther out than

the current wiring track level k

place(’imn’)

make sure your inputs will get to you and break wiring tracks that shouldn’t pass

else

if k=(j-1) then
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make your connection to one level below you on the tree

place(’in1’)

else

if k=level then

send your output to the arbiter element you should connect to

begin

test to see if lower or upper branch in the arbiter tree

tmpvar1:=trunc(i/expon(2,j));

tmpvar2:=i+expon(2,j-1);

if ((tmpvar1 mod 2)=0) and (num¿tmpvar2) then

you are reaching up

place(’un’)

else

you are reaching down

place(’dn’);

end

else

k ¿ your connection level and you should provide wiring tracks

and send your output up in case you are the top level arbiter

place(’ipn’);

x0:=x1;

end;

try:=false;

you have successfully built pixel i’s segment of the arbiter

so you can stop trying

end

else

else this is not a position for arbiter level j

j:=j-1;

decrease your guess and try again

end;
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end;

top off the arbiter

place reset circuitry

x0:=0;

y0:=pitch*(num-1);

if horizontal then

place(’hreset’)

else

place(’vreset’);

x0:=x1;

binary2(num);

find the address of the top bit

place address bits

for i:=1 to depth2 do

begin

if digit[i]=1 then

place(’1addr’)

else

place(’0addr’);

x0:=x1;

end;

place interface circuitry

if (num mod 2)=0 then

begin

if horizontal then

place(’harbufl1’)

else

place(’varbufl1’)

end

else

begin
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if horizontal then

place(’harbufl0’)

else

place(’varbufl0’)

end;

place dummy cells at the top

x0:=x1;

place(’arbtop’);

x0:=x1;

place(’arbtinv’);

x0:=x1;

y0:=(pitch*(num-1));

for i:=1 to (depth-1) do

begin

place(’arbtch’);

x0:=x1;

end;

end;

end of making arbiter


