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VLSI Architecture for Layered Decoding of QC-LDPC
Codes With High Circulant Weight

Yang Sun and Joseph R. Cavallaro

Abstract— In this brief, we propose a high-throughput layered decoder
architecture to support a broader family of quasicyclic low-density parity-
check (QC-LDPC) codes, whose parity-check matrices are constructed
from arrays of circulant submatrices. Each nonzero circulant submatrix is
a superposition of K cyclic-shifted identity matrices, where the circulant
weight K ≥ 1. We propose a novel layered decoder architecture to support
QC-LDPC codes with any circulant weight. We present a block-serial
decoding architecture which processes a layer of a parity check matrix
block by block, where each block is a Z × Z circulant matrix with
a circulant weight of K . In the case study, we demonstrate an LDPC
decoder design for the China Mobile Multimedia Broadcasting (CMMB)
standard, which was synthesized for a TSMC 65-nm CMOS technology.
With a core area of 3.9 mm2, the CMMB LDPC decoder achieves a
maximum throughput of 1.1 Gb/s with 15 iterations.

Index Terms— ASIC, MIMO detection, shortest path algorithm,
soft-output MIMO detector, VLSI architecture.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] have received tremen-
dous attention in the coding community because of their remarkable
error correction capability. In the LDPC code family, the structured
QC-LDPC codes have been widely used in many practical systems
due to their efficient hardware implementation and good error per-
formance. Layered decoder architectures are often used to decode
structured QC-LDPC codes [2]–[9].

The traditional layered decoder architecture handles only circulant-
weight-1 LDPC codes. For example, the LDPC codes defined in
IEEE 802.11 n and IEEE 802.16e standards are an array of circulant
submatrices, where each submatrix is either a zero matrix or a Z × Z
cyclic-shifted identity matrix. The circulant weight of each nonzero
submatrix is 1, so that there are no data conflicts when updating
the a posteriori probability (APP) log likelihood ratio (LLR) values.
However, more generally, a nonzero submatrix can be a superposition
of K cyclic-shifted identity matrices, i.e., the circulant weight K can
be greater than 1. For example, the parity check matrices defined
in the DVB-S2, DVB-T2, and CMMB LDPC codes consist of both
circulant-weight-1 and circulant-weight-2 submatrices. One of the
parity check matrices proposed for the wireless personal area network
(WPAN) standard is composed of circulant-weight-4 submatrices
[10]. Some custom-designed high-rate LDPC codes [11] in storage
applications have a circulant weight of 3 or larger.

Due to the LLR memory updating conflicts, the traditional layered
decoder architecture cannot be directly used to support QC-LDPC
codes with a circulant weight of K > 1. Marchand et al. [12]
present a solution to avoid the memory conflicts by splitting a
circulant-weight-2 submatrix into two circulant-weight-1 submatrices.
This scheme works for a specific LDPC code structure. But it has
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the disadvantage of reduced parallelism and is not very scalable
to handle higher circulant weights. In [13], a specific solution to
handle circulant-weight-2 submatrices is presented; it splits the LLR
memory into two banks to avoid conflicts. This scheme does not scale
very well to support higher circulant weights, i.e., K > 2, and the
maximum row parallelism is limited. In [14], the authors propose a
specific decoder architecture for K = 2 cases by assuming that there
is always an identity matrix in any of the double-diagonal matrices.
Therefore, it is not very straightforward for the decoder in [14] to
handle a more general K >= 2 case with arbitrary shift values.
The authors in [15] present a solution to handle circulant-weight-2
submatrices by changing the layer updating order. However, to make
this scheme work, the matrix needs to be reordered in some way to
avoid conflicts among layers. As the layer reordering pattern depends
on the structure of the parity check matrix, it is not a general solution
and the scheme only works for certain code structures.

The main contribution of this brief is a general layered decoder
architecture that can support LDPC codes constructed from arbitrary
high-circulant-weight (K ≥ 1) submatrices. We propose a block-
serial layered decoding architecture that processes the parity check
matrix block by block, where each block is a Z × Z circulant
submatrix with a circulant weight of K . Each block is processed
in one clock cycle so that the decoding latency in terms of clock
cycles is independent of the circulant weight K . In the case studies,
we have implemented a layered LDPC decoder for the China Mobile
Multimedia Broadcasting (CMMB) and DVB-S2 standards.

II. ALGORITHM

A. QC-LDPC Codes and the Layered Decoding Algorithm

QC-LDPC codes are a special class of LDPC codes. The parity
check matrix for a QC-LDPC code can be represented with an
array of submatrices, where each submatrix is either a Z × Z zero
matrix or a Z × Z circulant matrix. The cyclic-shifted identity
matrix is a special case of the circulant matrix where the circulant
weight is 1. However, more generally, the circulant weight of a
sub-matrix can be greater than 1 by superimposing multiple cyclic-
shifted identity matrices in. For example, K can be 2 for the LDPC
codes defined in the DVB-S2, DVB-T2, and CMMB. K can be 3
or 4 for certain custom-designed high-rate LDPC codes in storage
applications [11]. In this brief, we investigate the more general case
where the circulant submatrix consists of K superimposed cyclic-
shifted identity matrices, where K ≥ 1.

We adopt the layered decoding algorithm [2] in our VLSI imple-
mentation. To facilitate the algorithm and architecture description, we
define the following notation: The APP LLR of each bit n is defined
as Ln = log(Pr(n = 0)/Pr(n = 1)). The check node message
from check node m to variable node n is denoted as Rm,n . The
variable message from variable node n to check node m is denoted
as Qm,n .

The conventional layered decoding algorithm works only for LDPC
codes with circulant-weight-1 submatrices (K = 1 case), where each
variable node in a layer of H has at most one check node connected
to it. However, for the case of K > 1, there could be multiple check
nodes connected to the same variable node in a layer of H. This will
cause LLR updating conflicts when multiple check nodes are trying to
update the check-to-variable messages for the same variable node. To
resolve the access confliction, researchers have proposed to combine
the contributions from every check node that connects to the same
variable node [14], [16], [17]. Let m0, m1, . . . , mK−1 denote the
check nodes that are connected to a variable node n in a layer of
H. Then, the LLR value for variable node n can be updated as [14],
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Fig. 1. Block-serial scheduling algorithm and its pseudocode implementation.

[16], [17]

L ′
n = Ln +

K−1∑

j=0

(R′
m j ,n − Rm j ,n). (1)

It should be noted that there is a small side effect of this LLR
combining. For example, the performance degradation for K = 2, 3, 4
cases is less than 0.1 dB according to [17].

B. Proposed Block-Serial Scheduling Algorithm

To implement the extended layered algorithm as shown in (1), we
developed a block-serial scheduling algorithm, which is shown in
Fig. 1. In this algorithm, a parity check matrix is processed layer
after layer. Inside each layer, each Z × Z submatrix is treated as a
unit for parallel processing. The decoding algorithm is based on the
scaled min-sum algorithm with a scaling factor of S. As shown in
Fig. 1, the submatrices in a layer are serially scanned through twice.
For a given row m, each submatrix has K nonzero column positions,
i.e., n0, n1, . . . , nK−1. Before decoding, the LLR Ln for the bit n is
initialized with the channel LLR value, and the check node messages
Rm,n are initialized with 0. The bottom portion of Fig. 1 shows the
pseudocode for the proposed scheduling algorithm. In the algorithm,
Am and Bm are two variables for holding the first minimum and the
second minimum values for parity check row m and are initialized
to +∞. The processing time for the proposed scheduling algorithm
is independent of the circulant weight.

III. VLSI ARCHITECTURE

We propose a flexible VLSI architecture for layered decoding of
QC-LDPC codes with circulant weight (K ). Unlike the methods in the

existing solutions such as [14] and [15], which are specially designed
for a particular code matrix, we aim at designing a more general
decoder architecture to handle QC-LDPC codes with arbitrary circu-
lant submatrices. The proposed LDPC decoder architecture is shown
in Fig. 2. This architecture is a partial-parallel architecture by employ-
ing Z check node processing (CNP) units. Fig. 3 shows the block dia-
gram of the CNP unit which is to compute the check node messages.

In this scalable decoder architecture, the memory structures are
designed in such a way that they do not change as the circulant weight
K changes. This is one of the important features that differentiate our
decoder from the existing solutions. There are three types of storage:
the LLR memory (LLR-Mem), the R memory (R-Mem), and the T
register (T-Reg). The LLR-Mem is used for storing the initial and
updated LLR values for each bit of a codeword. For LDPC codes
with M × N submatrices, where each submatrix is a Z × Z circulant
matrix, the LLR-Mem is organized such that Z LLR values are stored
in the same memory word and there are N words in the memory.
Each memory word has Z ×W bits, where W is the bit width for each
LLR. The R-Mem in the CNP is used to store the information for
regenerating the Rm,n values. Because of the min-sum algorithm, the
check node messages can be stored in a compressed manner. For each
row m, only the first minimum, the second minimum, the position of
the first minimum, and the sign bits for all Qm,n values associated
with row m are stored in the R-Mem. The R-Mem has M words
in total. The T-Reg in the CNP is used to store the information for
regenerating the new check node messages R′

m,n for the current layer.
The T-Reg has the same organization as one memory word in the
R-Mem. As none of the memory structures in our decoder depends
on the K value, the memory system is very flexible in supporting
any K ≥ 1 value.
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Fig. 2. Scalable LDPC decoder architecture for supporting high-weight
circulant matrices.

The decoding data flow is based on the block-serial decoding algo-
rithm described in Section II-B. During the first scan, Z LLR values
L[Z W − 1 : 0] (the word length of each LLR value is W bits) are
loaded from the LLR-Mem (one memory word at each clock cycle).
And, then, the LLR values are passed to K permuters to produce K
permuted LLR values Pj [Z W − 1 : 0], j = 0, 1, . . . , K − 1. Each
signal Pj [Z W − 1 : 0] is sliced into Z subwords, which are passed
to Z CNP units. The check node data computation takes place in the
CNP units (see, Fig. 3). There are Z instances of such CNP units,
where each CNP unit is responsible for processing one check row.
For each row m, there are K columns (n0, n1, . . . , nK−1) having
“1” in the current nonzero circulant submatrix. In each CNP unit,
the K variable-to-check node messages Qm,n j from bit n j to check
node m, where j = 0, 1, . . . , K −1, are computed simultaneously as

Qm,n j = Ln j − Rm,n j , j = 0, 1, . . . , K − 1 (2)

where Rm,n j is the old check node message. Because the R values
are stored in a compressed way in the R-Mem, we need to regenerate
the R values by using a R-Gen unit. Let Am and Bm denote the first
minimum (“Min 0”) and the second minimum (“Min 1”) for row m.
Let P OSm denote the position of the first minimum. Then, each
Rm,n j value is generated as

|Rm,n j | =
{

0.75 × Bm, if n j = P OSm
0.75 × Am , otherwise

(3)

sign(Rm,n j ) =
∏

j∈Nm\n j

sign(Qm, j ). (4)

Next, the Qm,n0 , Qm,n1 , …, and Qm,nK−1 values are compared
against T Am and T Bm read from the T-Reg, where T Am and T Bm
are the first minimum and second minimum temporary variables,
which are initialized to the maximum positive values. The new two
minimum values T A′

m and T B ′
m are written to the T-Reg as T Am

and T Bm . The index of the first minimum Q value (P OSm) and
sign bits for all Q values are also updated in T-Reg.

During the second-scan, the LLR values are updated. The R’-Gen
unit gets values from the T-Reg and generates the most recent check
node messages for row m as

|R′
m,n j

| =
{

0.75 × T Bm, if n j = P OSm
0.75 × T Am, otherwise

(5)
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Fig. 3. Efficient implementation of the CNP unit.

sign(R′
m,n j

) =
∏

j∈Nm\n j

sign(Qm, j ). (6)

At the same time, the R-Gen unit gets values from the
R-Mem and generates the old K check node messages
Rm,n0 , Rm,n1 , . . . , Rm,nK−1 for row m based on (3-4). Then, K delta
values are computed as follows:

Dm,n j = R′
m,n j

− Rm,n j , j = 0, 1, . . . , K − 1. (7)

Next, the delta values associated with the same shift
value S j are concatenated and are passed to permuters j ′.
After permutation, for each column n, K permuted delta
values Dm j ,n are obtained. Note that we only need one set of
permuters which are time-shared between the first-scan process
and the second-scan process to save area. For example, in
Fig. 2, permuter j can be time shared with permuter j ′.
Therefore, K permuters would be required in this architecture.
If using this shared architecture, in the first-scan, permuters take
inputs from the LLR-Mem and produce outputs to CNPs, while in
the second-scan they take inputs from CNPs and produce outputs
to adders for updating LLRs. To support different submatrix sizes,
the permuter needs to be flexible. In this brief, we adopt the flexible
permuter proposed in [4].

After the delta values are permuted, the new LLR values are
generated by adding the permuted delta values to the old LLR values
as

L ′
n = Ln +

K−1∑

j=0

Dm j ,n (8)

where Dm j ,n is the j th delta value related to column n. The new LLR
values are then written back to the LLR-Mem. After the second-scan,
the contents of the T-Reg are written to the R-Mem overwriting the
values for the current layer.
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This decoding process will be performed for all M layers and
for multiple iterations. The data path of the decoder scales up as the
circulant weight K increases, but the latency in terms of clock cycles
remains constant as K increases. The architecture of the min-finder
unit will change with the K value. Fig. 4 shows the block diagram
of the min-finder for K = 2. This circuit takes four inputs: the first
minimum T A, the second minimum T B, and two Q values (Q0, Q1).
The circuit generates two outputs: the new first minimum T A′, and
the new second minimum T B ′. As shown in Fig. 4, the min-finder
unit consists of five comparison (CMP) units and four multiplexors.
The CMP unit compares the two input data X and Y , and generates
the minimum of X and Y : M = min(X, Y ), and the sign of X − Y :
C = sign(X −Y ). This min-finder for K = 2 has a critical path delay
of one adder delay plus some multiplexor delays. Fig. 5 shows the
block diagram of the min-finder for K = 3. The critical path of the
min-finder for K = 3 is the sum of an adder delay, a combinational
logic delay, and a multiplexor delay. Note that the min-finder for
K = 3 shown in Fig. 5 can be generalized for any other K values.

With this architecture, the decoding throughput can be expressed
as follows:

Throughput = N × Z × Rate × fclk

(2 × E + M × �) × Iter
(9)

where M and N are the number of the block rows and block columns
in H, respectively, Z is the size of the submatrix, Rate is the code
rate, E is the total number of nonzero submatrices in H, Iter is the
iteration number, and � is the pipeline delay in the data path for
processing a layer of a parity check matrix. A typical pipeline delay
is around 2 clock cycles. Note that the throughput is independent of
the K value because we process each circulant submatrix as a unit.

IV. CASE STUDIES

A. CMMB LDPC Decoder Design

We have implemented a high-throughput LDPC decoder for the
CMMB standard using the proposed architecture with Z = 256 and
K = 2. The CMMB LDPC codes have two code rates of 1/2 and
3/4. The two codes have the same block length of 9216 bits. The
parity check matrix H is an array of 18 × 36 circulant submatrices
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TABLE I
CMMB LDPC DECODER COMPARISON

[13] [15] [14]
This
brief

Matrix Kernel Size 256×256 256×256 128×128 256×256

Technology (nm) 90 130 130 65

Clock Frequency
(MHz) 431 83.3 200 600

Scaled Clock
Frequencya (MHz) 596 166.6 400 600

Core Area (mm2) 4.4 7.59 4.75 3.9

Scaled Areab

(mm2) 2.3 1.9 1.19 3.9

Throughput (15
Iterations, rate 3/4)

342 Mb/s 90 Mb/s 243.8
Mb/s

1.1 Gb/s

Scaled
Throughputa 474 Mb/s 180 Mb/s

487.6
Mb/s 1.1 Gb/s

Area Metric =
Scaled Area

Scaled Throughput

( μm2

Mb/s )

4.9 10.5 2.44 3.5

Frequency and throughput scaling factors are (feature size/65 nm) [18].
Area scaling factor is (65 nm/feature size)2 [18].

for the rate 1/2 code, and an array of 9 × 36 circulant submatrices
for the rate 3/4 code. Each nonzero submatrix is either a 256 × 256
cyclic-shifted identity matrix (K = 1), or a superposition of two
cyclic-shifted identity matrices of dimension 256 × 256 (K = 2).

In our implementation, the channel input LLR is represented with
6 bit signed numbers with 2 fractional bits. The word lengths of
the R value and the LLR value are 6 bits and 7 bits, respectively.
The decoder has been described using Verilog, synthesized using
Synopsys Design Compiler, and placed and routed using Cadence
SoC Encounter for a 1.0 V TSMC 65nm CMOS technology. The
maximum clock frequency is 600 MHz based on the post-layout tim-
ing analysis. The maximum throughput is 1.1 Gb/s with 15 iterations.

Table I compares the VLSI implementation results of the
proposed decoder with existing CMMB LDPC decoders from
[13]– [15]. In the comparison, we scaled the area, clock fre-
quency, and throughput of these decoders to a common
65-nm technology based on the technology scaling rule [18]. To
compare the hardware efficiency, we define an area metric as
(Scaled Area/Scaled Throughput). After technology scaling, we can
see that [13] can achieve a throughput of 474 Mb/s (15 iter.) with a
core area of 2.3 mm2, [15] can achieve a throughput of 180 Mb/s
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(15 iter.) with a core area of 1.9 mm2, and [14] can achieve a
throughput of 487.6 Mb/s (15 iter.) with a core area of 1.19 mm2.
In comparison, our decoder can achieve a high throughput of
1.1 Gb/s (15 iter.) with a core area of 3.9 mm2. Compared with
existing solutions, our decoder achieves higher throughput and good
area-to-throughput performance. It should be noted that the decoder
in [14] was implemented based on a smaller matrix kernel size of
128 × 128, whereas all the other decoders were designed based on a
larger matrix kernel size of 256 × 256.

B. DVB-S2 LDPC Decoder Design

We have designed an LDPC decoder for DVB-S2 standard. As
the submatrix size of the DVB-S2 LDPC code is very large (up
to 360), we modified the proposed LDPC decoder architecture to
support scalable parallelism. We fold the decoder so that a layer is
split into a number of sections, where the APP messages are passing
from sections to sections within a layer. We have implemented an
eightfold decoder. The decoder has been synthesized for a 1.0 V
TSMC 65-nm CMOS technology. The core area is 8.5 mm2 and the
throughput at 30 iterations is 210 Mb/s. We compare our decoder with
the state-of-the-art DVB-S2 LDPC decoder from [8]. The decoder
from [8] has a maximum throughput of 180 Mb/s with a core area
of 6.03 mm2 (65 nm). The throughput performance and the area
efficiency, measured with (Area/Throughput), of our general decoder
are comparable to those of the specialized decoder from [8]. The
proposed decoder is more flexible to handle more different types of
matrices in a unified and efficient way.

V. CONCLUSION

We presented a novel layered decoder architecture to
support QC-LDPC codes with weight-K circulant submatrices.
We successfully resolved the APP LLR updating conflicts
by using a novel block-serial decoding architecture. The
proposed LDPC architecture is more scalable than the traditional
solution in terms of circulant weight.
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