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VLSI Architecture for Real-Time HD1080p
View Synthesis Engine

Ying-Rung Horng, Yu-Cheng Tseng, Student Member, IEEE, and Tian-Sheuan Chang, Senior Member, IEEE

Abstract—This paper presents a real-time HD1080p view
synthesis engine based on the reference algorithm from 3-D video
coding team by solving high computational complexity and high
memory cost problems. For the computational complexity, we
propose the bilinear interpolation to simplify the hole filling
process, and the Z scaling method with floating-point format
to reduce the cost of homography calculation. For the memory
cost, we propose the frame-level pipelining to reduce the require-
ment of warped depth maps, and the column-order warping
method to remove the Z-buffer in occlusion handling. With
the 90 nm complementary metal-oxide-semiconductor technology,
our view synthesis engine can archive the throughput of 32.4 f/s
for HD1080p videos with the gate count of 268.5 K and the
internal memory of 69.4 kbytes. The experimental result shows
our implementation has the similar synthesis quality as the
original reference algorithm.

Index Terms—3-D video coding, view synthesis, VLSI design.

I. Introduction

W
ITH FAST development and popularity of 3-D displays

and 3-D television (TV) systems, view synthesis en-

gine becomes one of the most important components to synthe-

size single or multiple virtual-view videos in the stereoscopic

TV or the free-viewpoint television [1], [2].

A common approach for view synthesis engine is the depth-

image-based rendering (DIBR) algorithm [3]–[9]. The DIBR

algorithm is based on the 3-D warping, which warps a video

to another view according to depth maps. With single-view

input, the DIBR algorithm suffers from large occluded holes in

synthesized view. The hole size can be decreased by the depth

smoothing methods [4]–[7], and then the holes can be filled by

the interpolation method with depth and gradient information

[5]. On the contrary, the DIBR algorithm with multiview inputs

has smaller native holes because they could be recovered by

other views. Thus, the remained holes are easier to be patched.
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The DIBR algorithms with multiview inputs could be clas-

sified into the one-step warping and the two-step warping

as depicted in Fig. 1. The one-step warping directly warps

the reference textures to the virtual texture according to the

reference depth maps, while the two-step warping first warps

the reference depth maps to the virtual depth map, and then

uses it to generate the virtual texture. Rogmans et al. [10] and

Morvan [11] show that the two-step warping could perform

better because the sampling precision is higher in the virtual

view. Moreover, the round-off sampling errors could be further

eliminated by filtering the virtual depth map [12].

Based on the two-step warping, the 3-D video coding

team of the ISO/IEC MPEG developed the high-quality view

synthesis reference software (VSRS) algorithm [13], which

consists of preprocessing, depth and texture warping, and hole

filling. The VSRS algorithm can support the view synthesis for

any arbitrary target view using the basic inputs of two refer-

ence depth maps and videos captured by misaligned cameras.

This function can be directly extended to support the multiview

synthesis. However, for the high definition (HD) video, such

as 1280 × 720 (HD720p) or 1920 × 1080 (HD1080p), the

complexity of VSRS algorithm is also dramatically increased.

Therefore, to satisfy the demands of real-time processing of

HD video, a very large scale integration (VLSI) hardware

implementation is necessary.

In previous research, Fukushima et al. [14] developed a

free-viewpoint rendering system using ray-space by central

processing unit programming to reach the throughput of 12 f/s

for 420 × 320 video. By graphics processing unit program-

ming, Zitnick et al. [15] implemented a high-quality software

renderer to support the processing of 5 f/s for 1024 × 768

video, and Rogmans et al. [10], [16] implemented a stereo-

based view synthesis system to achieve more than 50 f/s for

450 × 375 video. In VLSI implementation, Chen et al. [17]

proposed a DIBR hardware accelerator to reach the throughput

of 25 f/s for 720 × 576 stereoscopic video.

However, the VSRS algorithm suffers from the high com-

putational complexity and high memory cost in each step.

The previous paper [18] has tried to reduce the memory

cost of homography matrices by the linear interpolation ap-

proximation (LIA) method. But the following problems still

need to be addressed. First, the cost of operators is increased

significantly due to fractional and large bit-width numbers in

the preprocessing step. Second, a large memory is demanded

to store temporarily warped depth maps due to the camera

rotation in the depth warping step. Third, a large Z-buffer

1051-8215/$26.00 c© 2011 IEEE
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Fig. 1. DIBR algorithm. (a) With one-step warping. (b) With two-step
warping.

is also needed to store current front depths for occlusion

handling. Finally, the complicated hole filling step has to

be iteratively processed on the whole frame by inpainting

method.

To solve the above problems, we propose hardware-efficient

algorithms with a hierarchical pipelining architecture. In the

hardware-efficient algorithms, we propose a simple bilinear

interpolation to replace the complicated hole filling, a Z scal-

ing method to reduce the cost of operators, and the column-

order warping method to remove the Z-buffer. The hierarchical

pipelining adopts the frame-level pipelining to reduce the

memory cost of warped depth maps, and then the column-level

pipelining with a data packing method to increase the external

access efficiency. The final implementation can support the

real-time processing of HD1080p video and has similar quality

as the original VSRS.

The rest of this paper is organized as follows. First, Sec-

tion II describes the VSRS algorithm and its design challenges.

Then, Section III proposes the hardware-efficient algorithms,

and Section IV presents our hierarchical pipelining architec-

ture. With the proposed algorithms and architecture, Section V

demonstrates our implementation result and synthesis perfor-

mance. Finally, Section VI concludes this paper.

II. Analysis of VSRS

A. VSRS Software

Fig. 2 shows the VSRS algorithm flow that consists of

the preprocessing, depth forward warping, texture reverse

warping, and hole filling. The first three steps are separately

applied to the left-view and right-view, and the last one is

applied only to the virtual-view. The detail of each step is

described as follows.

1) Preprocessing: The preprocessing loads the camera

parameters to calculate the homography matrices for the

depth forward warping and the texture reverse warping. The

homograph matrix H is a 3-by-3 matrix formed by

H =

⎡

⎣

h00 h10 h20

h01 h11 h21

h02 h12 h22

⎤

⎦ . (1)

In the next warping processes, it can be used to find the

Fig. 2. Algorithm flow of VSRS.

Fig. 3. Homography matrices for different depth levels.

warped position between views by
⎡

⎣

udst

vdst

1

⎤

⎦ = H (d)

⎡

⎣

usrc

vsrc

1

⎤

⎦ (2)

where (usrc, vsrc) is in the source view, and (udst , vdst) is the

warped position in the destination view. Note that different

depth levels need different homography matrices as shown in

Fig. 3. Thus, the homography matrix in (2) has the argument

of d, which is the depth level of the source position (usrc, vsrc).

The warping direction in the VSRS algorithm includes the

left-to-virtual and right-to-virtual for the depth forward warp-

ing, and their inverse directions for the texture reverse warping

as shown in Fig. 4. Therefore, the associated homography

matrices HLV , HVL, HRV , and HVR need to be calculated.

The following steps derive the homography matrices, HLV

and HVL, which can be applied to HRV and HVR as well.

First, the Z transform converts the depth level to the depth

value by

Z = 1

/(

d

255

(

1

Zmin

−
1

Zmax

)

+
1

Zmax

)

(3)

where d is the depth level in the depth map and Z is the

depth value. In addition, Zmin and Zmax are the minimum and
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Fig. 4. Concept of 3-D warping.

maximum depth values in a scene. With the depth value Z, a

pair of pixels between views can be calculated by

(

uV vV 1
)T

=
sL

sV

PV P−1
L

(

uL vL 1
)T

(4)

where PV and PL are projection matrices for projecting the

object point (X, Y, Z) to the pixels (uV , vV ) and (uL, vL),

respectively. The terms of sL and sV are the scale factors

that are related to the depth value Z and the translation

element Tz.

The projection matrix calculation finds four pairs of pixels

between the left-view and the virtual-view by (4). Then, these

four pairs can be substituted into (2) to form an 8 × 8 linear

system as follows:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

uL,1 vL,1 1 0 0 0 −uV,1uL,1 −uV,1vL,1

0 0 0 uL,1 vL,1 1 −vV,1uL,1 −vV,1vL,1

uL,2 vL,2 1 0 0 0 −uV,2uL,2 −uV,2vL,2

0 0 0 uL,2 vL,2 1 −vV,2uL,2 −vV,2vL,2

uL,3 vL,3 1 0 0 0 −uV,3uL,3 −uV,3vL,3

0 0 0 uL,3 vL,3 1 −vV,3uL,3 −vV,3vL,3

uL,4 vL,4 1 0 0 0 −uV,4uL,4 −uV,4vL,4

0 0 0 uL,4 vL,4 1 −vV,4uL,4 −vV,4vL,4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

uV,1

vV,1

uV,2

vV,2

uV,3

vV,3

uV,4

vV,4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

where h22 is equal to 1. To solve the linear system for HLV ,

the homography matrix calculation in the VSRS algorithm

adopts the function cvFindHomography in the OpenCV library

[19]. Finally, the inverse matrix of HLV is calculated as HVL.

The above steps need to be performed for each depth level,

and 256 homography matrices for each warping direction are

calculated.

2) Depth Forward Warping: For the depth forward warp-

ing in Fig. 2, it warps the input depth maps DL and DR,

respectively, to the warped depth maps DVL and DVR in the

virtual-view. In this process, the warped position (uV , vV ) in

the virtual-view DVL can be acquired using (2) for each pixel

(uL, vL) in DL. Then the depth value d at (uL, vL) is copied to

DVL. After pixel-by-pixel warping, the whole warped depth

Fig. 5. Blended images. (a) Without hole dilation. (b) With hole dilation.

map DVL is synthesized. The same steps are also used to warp

DR to DVR.

Since the depth maps DL and DR may have noise and the

warping process may induce sampling alias, the warped depth

maps DVL and DVR usually suffer from small noisy holes.

Therefore, a 3 × 3 median filtering is applied to remove them

[12], [20], [21].

3) Texture Reverse Warping: For the texture reverse warp-

ing in Fig. 2, it warps the reference textures L and R,

respectively, to the virtual textures VL and VR according to the

warped depth maps DVL and DVR. This process computes the

warped position (uL, vL) in L for each pixel (uV , vV ) in VL,

and then copies the reference texture in L to VL to synthesize

the texture of virtual-view VL. In addition, the corresponding

hole map is labeled for the positions without any texture. The

same steps are also applied to warp R to VR.

Then, the marked hole regions in the hole map are expanded

by the hole dilation to avoid the synthesis artifacts as shown

in Fig. 5. With the original and dilated hole maps, the two

warped textures VL and VR are combined into a new texture V

by a blending process according to the truth Table in Table I.

In this table, the holes in the cases 1 and 2 are visible by two

reference-views, and thus can be filled by a linear interpolation

with the factor α associated with camera translation vector. In

cases 3 to 6, those holes are only visible by one view, and can

only be filled by the non-hole pixel VL(u, v) or VR(u, v). In

the last case 7, this position is invisible from any view, and

thus is handled by the successive hole filling process.

4) Hole Filling: For the remaining holes, the VSRS

algorithm provides the advanced inpainting method [22] in

the 3-D warping mode. The advanced inpainting method is

performed on the whole frame iteratively to diffuse the non-

hole pixels to holes. Then, the final virtual-view texture V is

synthesized completely.

B. Straightforward Architecture

Fig. 6 shows a straightforward hardware architecture for the

VSRS algorithm. In which, the two reference-view textures L,

R, and their depth maps DL, DR are stored in the external

memory [i.e., dynamic random access memory (DRAM)].

Corresponding to the VSRS algorithm flow in Fig. 2, the

preprocessing first calculates the homography matrices H

for the forward warping and the reverse warping. To save

execution time, this preprocessing is only needed when the

camera configuration is changed. Then, the forward warping
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TABLE I

Truth Table for the Blending Process

Case Hole Map Before Dilation Hole Map After Dilation Value for V (u, v)

VL(u, v) VR(u, v) VL(u, v) VR(u, v)

1 1 1 1 1 (1 − α) VL(u, v)+αVR(u, v )

2 1 1 0 0 (1 − α)VL(u, v)+αVR(u, v )

3 1 1 1 0 VL(u, v)

4 1 1 0 1 VR(u, v)

5 1 0 x x VL(u, v)

6 0 1 x x VR(u, v)

7 0 0 x x 0

0 = hole, 1 = non-hole, x = do not care

Fig. 6. Straightforward architecture.

generates the warped depth maps DVL and DVR, and the depth

filtering applies a 3 × 3 median filtering to reduce their noise.

According to DVL and DVR, the reverse warping renders

the two virtual-view textures VL and VR using the reference

textures L and R. At the same time, the corresponding hole

maps are generated and dilated for the blending. With the

warped textures and the hole maps, the blending process

combines VL and VR to synthesize a new texture V. Finally,

the hole filling adopts the inpainting technique to fill the

remaining holes, and writes the synthesized result V to the

external memory.

C. Design Challenges

In the above straightforward architecture, the implementa-

tion of view synthesis engine suffers from the following design

challenges.

1) High Computational Complexity in Preprocessing: The

preprocessing has to perform matrix multiplication and solve

an 8-by-8 linear system, which requires adders, multipliers,

and dividers. Moreover, these computations are in fractions,

and all values have high dynamic range, as shown in Table II.

It leads to high logic cost for all operators, especially for

divider.

2) Large Reorder Buffer for Warped Depth Map: In the

forward warping, the warped depth maps DVL and DVR

require large memory space as a reorder buffer between the

forward warping and the filtering as shown in Fig. 7(a). In

which, the depth map DL is warped in a raster-scan order

to DVL, and thus a rectangle in DL would be warped to a

trapezoid in DVL due to camera rotation. However, the next

3 × 3 median filtering should be performed in DVL row by

TABLE II

Z Scaling Method for High Dynamic Range Parameters

Before Z Scaling Scalar Factor After Z Scaling

Sequence Zmax Zmin Zmax Zmin

Ballet 42 130 1 42 130

Breakdancers 44 120 1 44 120

BookArrival 23.345 54.471 1 23.345 54.471

Lovebird1 1560.122 156012.2 1/1024 1.523 152.355

Akko&Kayo 2342.249 12491.99 1/64 36.597 195.187

Newspaper 2715.182 9050.605 1/64 42.424 141.415

ChampagneTower 2281.358 7045.261 1/32 71.292 220.164

Kendo 448.2512 11206.28 1/64 7.003 175.098

Fig. 7. Depth map warping from DL to DVL. (a) Reorder buffer for DVL.
(b) Example in the sequence Ballet (1024 × 768).

row. Thus, the reorder buffer is necessary but with large size.

For example in Fig. 7(b), the size of reorder buffers would be

1024 × 39 × 2 bytes, i.e., 79.9 kbytes, for two-view warping.

3) Large Z-Buffer for Occlusion Handling: In addition,

the forward warping requires a large Z-buffer for occlusion

handling [23]. For example, each pixel in the reference depth

map DL is warped to DVL in the forward warping. However,

some pixels in DL will be warped to identical positions in

DVL. For this condition, the most front pixel (i.e., pixel with

the smallest depth value) should occlude and overwrite other

pixels (i.e., pixels with larger depth value). Thus, a Z-buffer is

required to temporarily record the currently most front pixels

in the warped depth map to handle occlusion. Therefore, the

size of Z-buffer is proportional to the sequence-dependent

vertical and horizontal disparity ranges. For example of Ballet,

the vertical and horizontal disparity ranges are 197 and 55.
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TABLE III

Quality of the Proposed Bilinear Interpolation in Different Window Sizes

Quality of Y-PSNR (dB)

Window Size Ballet Breakdancers BookArrival Lovebird1 Newspaper Kendo

5 × 3 33.18638 33.06250 36.41172 31.80200 30.67576 33.00001

9 × 5 33.20828 33.16606 36.37078 31.80157 30.67691 32.99998

13 × 7 33.21609 33.17187 36.35280 31.80039 30.67858 32.99997

17 × 9 33.21837 33.16193 36.34878 31.79952 30.67945 32.99996

21 × 11 33.22026 33.14299 36.34814 31.79897 30.67974 32.99996

Thus, the size of Z-buffer is 197×55×2 bytes, i.e., 21.7 kbytes,

for two views.

4) Complicated Hole Filling: The hole filling in the

VSRS suffers from high computational complexity because the

inpainting method is processed on the whole frame iteratively.

Therefore, it is not suitable for hardware implementation, and

a hardware-friendly hole filling method is demanded.

In summary, the straightforward architecture requires high

memory cost due to a large reorder buffer and a large Z-

buffer in the forward warping. It also costs high computational

complexity due to the large bit-width in the preprocessing and

the complicated hole filling method. To solve above problems,

the following two sections present the proposed methods in the

algorithm-level and architecture-level.

III. Proposed Hardware-Efficient Algorithm

This section proposes a hardware-friendly hole filling

method to reduce the complexity, and the column-order warp-

ing method to remove the large Z-buffer.

A. Simple Hole Filling Method

To improve the hole filling, Müller et al. [24] used the depth

information to recognize the background and extrapolate its

texture to holes, and Oh et al. [25] proposed a depth-based

inpainting method which also fills holes with background

according to the depth information. However, the required

depth information from DVL and DVR should be preserved

until the final step, and thus the additional memories for depth

maps are necessary.

This paper proposes the bilinear interpolation that is a

hardware-friendly hole filling method, and does not require

depth information. It performs a 2-D low-pass filter with the

geometric distance weighting on holes as shown in Fig. 8. In

the window, texture pixels are multiplied by the interpolation

weightings and masked by the hole map to generate a new

pixel. Then, the new pixel can be used for the interpolation of

other holes.

Note that the window size is related to the size of hole

region, and affects the filling quality as well as internal mem-

ory cost. Larger window could cover more available pixels

with texture but may involve more noising texture. Table III

compares the filling quality by the Y-peak signal-to-noise

ratio (PSNR), which is the PSNR between the synthesized

frame and the golden captured frame for luma channel Y

only, under different window sizes in the test sequences of

Table VI. In which, Ballet has larger holes, and thus its

Fig. 8. Proposed bilinear interpolation method for the hole filling step.
(a) Texture. (b) Interpolation weighting. (c) Hole map.

quality becomes better when the window size increases. The

sequences BookArrival, LoveBird1, and Kendo have smaller

holes, and thus the quality is slightly degraded when the

window size increases. Thus, we select 9 × 5 in this paper

for average quality.

B. Column-Order Warping

As mentioned in Section II, the Z-buffer for occlusion

handling needs a large memory space in the forward warping.

To reduce the Z-buffer, Morvan [11] proposed the occlusion-

compatible scanning order which warps non-rectified images

based on the epipolar geometry as shown in Fig. 9(a). In

which, e and e′ are the epipoles, and the epipolar lines pass

through the epipoles. In the corresponding image planes of

Fig. 9(b), the occlusion-compatible scanning order method

warps depth pixels along the epipolar lines. Note that in the

reference view, the warping order should be left-to-right for the

left-side of e′, and vice for the other side. In our design, only

one warping direction is applied because the angle between

cameras is usually small and the epipole does not appear in

the image planes.

With the occlusion-compatible scanning order method, the

Z-buffer can be removed. However, the data access is a

problem. In general, the required source data is stored in the

external DRAM by the way of the same image rows in the

same DRAM rows. But the occlusion-compatible scanning

order method should access the pixels along the epipolar lines

as shown in Fig. 10(a). These different row accesses would

lead to high DRAM row miss.

An approach to avoid the DRAM row miss is the row-

order method that performs the warping process row by

row, instead of epipolar line by epipolar line, as shown in

Fig. 10(b). However, it will violate the original warping order.

For example, the original method warps the six pixels in the

order of 1, 2, 3, 4, 5, 6 as shown in Fig. 10(a). On the contrary,
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TABLE IV

Hardware Cost Comparison of the Largest Divider

Bit Width of Bit Width of Hardware
Dividend Divisor Cost at 200 MHz Reduction (%)

(int./exp.+frac.) (int./exp.+frac.) (Gate Count)

Original 48 + 11 29 + 0 80.1 K 100

Z scaling 39 + 11 20 + 0 44.7 K 55.8
(pipelined div.)

Z scaling 9 + 23 9 + 23 2.9 K 3.3
+IEEE 754 (sequential div. with 26 3.3

cycles)

TABLE V

Analysis of Continuous Access in a Column

Ballet Breakdancers BookArrival Lovebird1 Newspaper ChampagneTower Kendo

Column height 768 768 768 768 768 960 768

L-V, R-V 5 − 4 3 − 4 5 − 4 3 − 4 10 − 8 7 − 8 8 − 6 5 − 6 3 − 5 6 − 5 37 − 38 39 − 37 1 − 2 3 − 2

Max. length 102 143 187 194 365 505 359 341 447 574 960 960 533 470

Max. trans. count 147 156 133 140 125 125 131 148 131 117 238 166 149 113

Fig. 9. (a) Epipolar geometry. (b) Concept of occlusion-compatible scanning
order method.

Fig. 10. Warping order in the forward warping process. (a) Original method.
(b) Row-order method. (c) Column-order method. The numbers refer to the
positions of example pixels.

the row-order method warps them in the order of 3, 2, 6, 1,

5, 4. However, the warping orders of 3, 2, 1 and 6, 5, 4 on

the two epipolar lines are different from the original orders

of 1, 2, 3 and 4, 5, 6, respectively. This will result in the

incorrect warped depth maps as shown in Fig. 11(a) because

of foreground pixels replaced by background ones.

To cope with above problem, we propose the column-order

method that warps the six pixels in the order of 1, 2, 4, 3,

Fig. 11. Warped depth maps. (a) With row-order method. (b) With column-
order method.

5, 6, as shown in Fig. 10(c). For the two epipolar lines, their

warping orders are 1, 2, 3 and 4, 5, 6, which are identical

to the original method. Thus, our warped depth map will be

correct as shown in Fig. 11(b). Note that the proposed column-

order warping method is suitable for the horizontal camera

configuration. For the vertical camera configuration, we should

adopt the row-order method.

With the proposed column-order method, one image column

is stored in one DRAM row to reduce the overheads of row

miss. For maximizing the row-miss reduction, the size of

DRAM row should be more than the size of image column. To

sum up, by the proposed column-order warping, the Z-buffer

could be removed with the least DRAM row miss, and the

warped depth map has no quality degradation.

IV. Proposed Architecture

With the above proposed hardware-friendly algorithms, this

section proposes an architecture design for the view synthesis

engine. The overall architecture with the proposed hierarchical

pipelining is presented first. Then the critical components are

described individually.

A. Hierarchical Pipelining

Fig. 12 shows the proposed hierarchical pipelining archi-

tecture consisting of frame level and column level. The frame
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TABLE VI

Test Sequences

MSR: Microsoft research [14]
HHI: Fraunhofer Heinrich-Hertz-Institut [30]
ETRI: Electronics and Telecommunications Research Institute
GIST: Gwangju Institute of Science and Technology

Fig. 12. Proposed hierarchical pipelining architecture.

level is a two stage pipelining. The first stage consists of

preprocessing and forward warping, while the second stage

consists of depth filtering, reverse warping, blending, and

hole filling. Fig. 13(a) shows the schedule of the frame-level

pipelining. When the first stage is processing on the frame i,

the second stage is processing on the frame i − 1. Between

the two stages, the warped depth maps DVL and DVR are

stored in the external memory, instead of the internal memory

to reduce the internal memory cost.

The second hierarchical level in each frame level stage

is column level. With the proposed column-order warping

method in Section III, each process is performed column

by column, and the depth maps and the textures are con-

figured by the way of one image column on one DRAM

row. Fig. 13(b) and (c) shows the schedule of column-level

pipelining for the first and second stages in the frame-level,

respectively. Note that all the processes from forward warping

Fig. 13. Schedule of proposed architecture. (a) Frame level pipelining.
(b) First stage in column level pipelining. (c) Second stage in column level
pipelining.

to blending are first performed on left-view and then on right-

view. In addition, the processes associated with textures are

applied for the three channels Y, U, V simultaneously.

The detailed schedule of the column-level pipelining in

Fig. 13(b) and (c) is presented with the architecture of Fig. 12

as follows. In the first stage of frame-level pipelining, the

preprocessing first computes homography matrices for the

current frame, and the warped depth maps DVL and DVR are

initialized at the same time as shown in Fig. 13(b). For higher

data access efficiency, this initialization can be assigned to

a data memory access controller. Then, the forward warping

reads the depth maps DL, DR from external memory in the

Read stage, and performs the warping process in the Perform

stage, and writes the warped depth maps DVL, DVR back

to external memory in the Write stage. In the second stage

of frame-level pipelining, the depth filtering and the hole

filtering read the warped depth maps DVL, DVR in the Read

stage, and performs median filtering in the Perform stage.

With the filtered depth maps, the reverse warping then collects

the warping indexes in the Create Index stage, and reads the

texture column L, R from external memory in the Read stage,

and finally sends the warping virtual-view VL, VR to the next

component in the Send stage. Finally, the blending and hole
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Fig. 14. Architecture of preprocessing component.

filling components generate the final results V, and write them

to the external memory.

For the bus access in the schedule, we applied the round-

robin policy for the request arbitration. The write request of

forward warping and the read request of reverse warping have

higher priority because the two accesses are irregular and are

raised for higher counts.

B. Preprocessing Component

Fig. 14 illustrates the proposed preprocessing component

that calculates the homography matrices HLV and HRV for the

forward warping, and HVL and HVR for the reverse warping.

In the architecture, the “Z Transform” first converts the depth

level d to depth value Z by (3). Then, the “Projection Matrix”

combines the camera parameters to form the projection matri-

ces PL, PV , and PR. With a specific depth value and the pro-

jection matrices, the “Projection Transform” reads four pixels

src to calculate their corresponding pixels dst in another view

by (4). Finally, the “Homography Calculation” uses the four

corresponding pairs to solve a homography matrix, and stores

it into the homography table for the forward warping and

the reverse warping. The corresponding inverse homography

matrix is calculated by exchanging dst and src, and reusing

the same “Homograph Calculation” to save hardware cost.

The design problems in this component are the fractional

computation and the complicated “Homography Calculation.”

To solve the high dynamic range fractional computation, we

propose a Z scaling method that decreases the dynamic range

of Zmax and Zmin by a proper scale factor. This method will

work properly because the related homography matrix could

be scaled without changing the warping relation of src and dst

in (2). The scale factor can be computed by

ScaleFactor = min
{

1, 1
/

2
⌈log2 max{|Zmin|,|Zmax|}⌉−8

}

. (6)

With the Z scaling method, Zmin and Zmax are restricted in an

8-bit value for the integer part. The proposed Z scaling method

could significantly reduce the hardware cost of operators,

especially for adders and subtractors. In addition, the IEEE 754

floating-point format is further applied to dividers. Table IV

shows that the area of divider could be reduced to 3.3% of

original one. The experimental result in Section V shows that

the Z scaling method has a negligible impact to the synthesis

quality.

For the complicated “Homography Calculation,” a

hardware-friendly algorithm is demanded to solve the linear

system. A general method is matrix decomposition, such as

Fig. 15. Required iteration counts in Gaussian-Seidel method.

singular value decomposition, which can be accelerated by

the systolic array architecture [26] and the processor-based

architecture, called coordinate rotation digital computer [27],

[28]. In this paper, we adopt the Gaussian-Seidel method [29]

since its sequential computation requires less hardware cost

and can easily control the precision of solution by iteration

count. The iteration count is set as 20 to meet demands of all

depth levels as shown in Fig. 15.

For the homography table in Fig. 14, we apply the LIA

method [18] to reduce the elements of homography table from

256 to 8. With the Z scaling method, a homography matrix

needs 154 × 2 bits for Hbase and Hinc to interpolate the finer

one. Note that the memories of HVR and HVL are doubled

to support the ping-pong mechanism of the two frame-level

pipelining stages. Thus, the total memory cost for homography

table is 154 × 2 × 8 × 6 bits, i.e., 14.8 kbytes.

C. Forward and Reverse Warping Components

The forward warping component in Fig. 16(a) uses the depth

value from DL and DR to calculate the warped position (udst ,

vdst), and warps the depth value of DL and DR, respectively,

to DVL and DVR. On the contrary, the reverse warping com-

ponent in Fig. 16(b) uses the depth value from DVL and DVR

to calculate the warped positions, and warps the texture of L

and R to VL and VR. In these two components, the “WarpSet,”

“Linear Interpolation,” and “Matrix Multiplication” are used

to calculate the warped position.

In these two component designs, the major issue is their

external memory access. The two components access the

external memory according to the warped positions. However,

the successive warped positions are not at the same image

column. Thus, the accesses would cross multiple rows in

external memory, and the access efficiency is low due to only

partial data available in each transmission.

To improve the access efficiency, we propose data packing

method that could collect the accesses on an identical memory

row into consequent transmissions. The data packing method

is implemented as the data packing module and the packing

buffer in Fig. 16. Fig. 17 shows the proposed method in the

reverse warping as an example. First, in the Create Index stage,

the data packing module creates the index table according to

the DVL, which consists of the leading address and the length

of each texture segment. Then, in the Read stage, the data

packing module fetches the textures L segment by segment,

and stores them in the input buffer with marks in the valid
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TABLE VII

Comparison of Average PSNR for Ten Frames

Sequence Camera No.
of L, V, R

Frame
No.

Original
VSRS 3 5
(dB)

Proposed
Algorithm
(dB)

Proposed
Implementation
(dB)

Ballet 5, 4, 3 90–99 33.081 33.208 33.372

Breakdancers 5, 4, 3 81–90 32.984 33.166 33.121

BookArrival 10, 8, 7 0–9 36.385 36.371 36.499

Lovebird1 5, 6, 8 0–9 31.791 31.802 31.800

Newspaper 3, 5, 6 0–9 30.683 30.677 30.778

ChampagneTower 37, 38, 39 0–9 33.367 33.367 33.361

Kendo 1, 2, 3 0–9 33.000 33.000 33.250

� PSNR (to
VSRS−3−5)

0.000 0.043 0.127

Fig. 16. Architecture of (a) forward warping and (b) reverse warping.

table. If the length of a texture segment is more than 64-bit,

additional one transmission will be issued. Finally, in the Send

stage, the information of input buffer and the valid table would

be sent to the reorder buffer in the next blending process.

The same flow can also be applied to the forward warping for

writing the warped depth maps DVL, DVR to external memory.

Table V analyzes the continuous access in different test

sequences where L-V refers to the selected left-view and target

virtual-view and R-V refers to the selected right-view and tar-

get virtual-view. The maximum length of continuous access is

equal to the column height, and thus the len in the index table

requires 11 bits for HD1080p video. In this table, the maxi-

mum transmission count means the practical count to transmit

a whole column through a 64-bit bus. Therefore, we select

256 for the sizes of index table, valid table, and I/O buffers.

D. Filtering Components

The filtering components in Fig. 12 includes the depth filter-

ing, hole filtering, hole dilation, and hole filling components.

Fig. 17. Proposed data packing method in reverse warping with blending.

Fig. 18. Architecture of circular FIFO in filtering components. (a) Depth
filtering. (b) Hole filtering and dilation. (c) Hole filling.

For these filtering components, we propose the circular first-in

first-out (FIFO) architecture as shown in Fig. 18 to reuse data

in the internal memory. The proposed architecture consists of

a computational module and a circular FIFO buffer, which has

a register array and several column memories. Each filtering

component is presented as follows.

Fig. 18(a) shows the circular FIFO buffer for depth filtering.

In which, the depth pixel is pushed into the circular FIFO

buffer and moves along the arrow direction cycle by cycle.

Only the depth pixels in the register array are used by the me-



1338 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 9, SEPTEMBER 2011

TABLE VIII

Performance of Our Implementation

Technology process UMC 90 nm CMOS

Clock frequency (Hz) 200 M

External bus (bit) 64

Equivalent gate count 268.5 K
(excluding internal memory)

Internal memory 69.3 kbytes

Sequence Ballet Breakdancers BookArrival Lovebird1

Frame size (pixel) 1024 × 768 1024 × 768 1024 × 768 1024 × 768

Execution time (cycles/frame) 2 599 876 2 497 127 2 266 644 2 262 138

Frame rate (f/s) 76 80 88 88

Throughput (pixel/s) 59.76 M 62.91 M 69.20 M 69.20 M

Bandwidth usage (%) 60.77 61.92 60.81 61.90

Sequence Newspaper ChampagneTower Kendo

Frame size (pixel) 1024 × 768 1280 × 960 1024 × 768

Execution time (cycle/frame) 2 265 499 3 450 755 2 225 373

Frame rate (f/s) 88 57 89

Throughput (pixel/s) 69.20 M 70.04 M 69.99 M

Bandwidth usage (%) 58.85 58.38 58.02

Fig. 19. Synthesis result where the top textures are original result of VSRS
and the bottom textures are our implementation result. (a) Ballet. (b) Break-

Dancers. (c) Book Arrival. (d) Love bird1. (e) Newspaper. (f) Champagne

Tower. (g) Kendo.

dian filtering, which is implemented by multiple comparator-

trees to select the median depth value. Fig. 18(b) shows the

cascaded circular buffer for the hole filtering and the hole

dilation. The value of 1 is pushed into the circular FIFO if

the input depth pixel is zero and is identified as a hole. To

aid this identification, DVL and DVR in the external memory

should be initially reset to zero as shown in the schedule of

Fig. 13(b). The hole filtering is implemented by adders and a

comparator. If the summation of 3 × 3 holes is more than 5,

the filtered hole flag would be 1. In addition, the hole dilation

is implemented by a simple Boolean function. In Fig. 18(c),

the hole filling generates new texture for holes. The output of

bilinear interpolation module is sent to the memory of middle

column, Coulumn i + 2 because the output is used by the

process for other holes.

To sum up, these filtering components takes advantage

of the circular FIFO architecture to cooperate with other

components in the column-level pipelining, and well reuse the

data in the internal memories for column-based process.

E. Blending Component

The blending component first fills the textures VL and VR

into reorder buffers according to the input buffer and valid

table in the reverse warping component as shown in Fig. 17

Then, the blending component uses the textures in the reorder

buffers and hole information to blend the two columns to a

new one by the truth table in Table I. Then, the final remained

holes are handled by the hole filling component mentioned

above.

V. Experimental Results

A. Synthesis Performance

Table VI lists the test sequences which are provided

by various research institutes [14], [30], [31]. The corre-

sponding depth maps are provided by the same research

institutes or estimated by the reference software DERS 4.9

[32].

Table VII compares the synthesis performance in the

average of PSNR for ten frames, which is computed us-

ing the captured virtual-view and the synthesized one. The

synthesis performance shows that our proposed hardware-

friendly algorithm and implementation have the slight dif-

ference of 0.043 dB and 0.127 dB, respectively. In addition,

the corresponding synthesized results are demonstrated in

Fig. 19.

B. Implementation Result

The proposed architecture has been implemented by Verilog

and synthesized by Synopsys Design Compiler (DC) tool with

the 90 nm CMOS technology process. Our view synthesis

engine can support the frame size of HD1080p at most under
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TABLE IX

Comparison Between Our Design and the Straightforward Architecture

Straightforward Architecture Our Design

Computation Homography (PRE)
Inpainting (HF)

256×256-bit
Irregular

Homography (PRE)
Bilinear inter. (HF)

8 × 154-bit
hardware-friendly

Memory cost (kbytes) Homo. table (PRE)
Input buf. (FW)
Reorder buf. (FW)
Z-buf. (FW)
FIFO (depth median)
FIFO (hole median)
FIFO (hole dilation)

Reorder buf. (BLD)
FIFO (HF)
Output buf. (HF)
Total

32.8
8.2
149.8
21.7
4.4
0.5
0.5

4.4
7.1
2.2
231.6

Homo. table (PRE)
Input buf. (FW)
Output buf. (FW)
Index table (FW)
FIFO (depth median)
FIFO (hole median)
FIFO (hole dilation)
Input buf. (RW)
Index table (RW)
Valid table (RW)
Reorder buf. (BLD)
FIFO (HF)
Output buf. (HF)
Total

14.8
8.2
2.2
4.2
4.4
0.5
0.5
14.5
5.2
1.3
4.4
7.1
2.2
69.3

Required external bandwidth
(Mbytes/frame)

Two depth maps
Three textures
Total

4.15
9.33
13.48

(25.3%)

Six depth maps
Three textures
Total

Simulation

12.44
9.33
21.77

(40.8%)

(61.9%)

PRE: preprocessing; FW: forward warping; RW: reverse warping; BLD: blending; HF: hole filling.

TABLE X

Comparison of Hardware Cost and Synthesis Quality with Other Implementations

Chen [17] Lin [18] Our Design

Technology process TSMC 180 nm UMC 90 nm UMC 90 nm

Algorithm Depth pre-filtering
3-D image warping

Homography only
Based on VSRS 3.0

VSRS 3.5

Homography entry
count × bit width

– 2 × 118-bit 8 × 154-bit

Clock frequency 80 MHz 200 MHz 200 MHz

Hardware cost
(including memory)

162 K gate counts 30.7 K gate counts 765.2 K gate counts

Memory cost 9.26 kbytes 0.24 kbytes 69.3 kbytes

Throughput 20.7 Mpixels/s
(25 f/s at SDTV)

– 67.1 Mpixels/s
(32.4 f/s at HD1080p)

Synthesis quality
(compared algorithm)

N.A. −0.0059 dB
(VSRS 3.0)

+0.127 dB
(VSRS 3.5)

the 200-MHz clock frequency. Table VIII lists its performance

analyzed by the DC tool. In which, with gate-level simulation,

our design reaches different throughputs and bandwidth usages

for various sequences because the external access is content-

dependent and addressed by the pixel’s depth value. The

external access is controlled by the data packing module. If the

data packing module’s buffer is full, the associated computing

modules should stop until the data packing module can receive

new access tasks. In average, our view synthesis engine could

achieve the throughput of 67.1 Mpixels/s, i.e., 32.4 f/s for

HD1080p video. In addition, the external bandwidth usage is

about 58–61%.

Table IX further lists the detailed hardware cost, and com-

pares it with the straightforward architecture. For the compu-

tation, our design could significantly reduce the homography

entries by the LIA method [18] and our proposed Z scaling

method in the preprocessing. In addition, the irregular inpait-

ing is replaced by the hardware-friendly bilinear interpolation

for the hole filling. For the memory cost, our design could

decrease the memory cost to 30% because the large reorder

buffer for warped depth maps and the large Z-buffer for

occlusion handling have been saved. Although our frame-level

pipelining technique results in higher external bandwidth, the

simulation bandwidth is affordable.

Table X compares our design with the other implemen-

tations, in which, Chen’s design [17] applies the different

algorithm and has lower throughput. Lin’s design [18] only im-

plements the homography calculation and has slightly quality

degradation. In summary, our proposed view synthesis engine

could achieve the real-time processing for HD1080p resolution

as well as low hardware cost.

VI. Conclusion

This paper presented a low cost high throughput view

synthesis engine based on VSRS with the proposed hardware

friendly algorithms and efficient implementations. We reduced

the computational complexity by adopting the bilinear inter-

polation for the hole filling, and the Z scaling method with the

floating-point format for the homograph calculation. The mem-

ory cost was also reduced by removing the Z-buffer with the

column-order warping method, and saving the reorder buffer
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by the frame-level pipelining. The final implementation can

deliver the synthesis results with slightly quality degradation,

and support the real-time processing of HD1080p video with

the gate count of 268.5 K and the memory cost of 69.3 kbytes.

Further extension to support stereoscopic view synthesis can

be easily achieved by duplicating the proposed design.
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