
Linköping Studies in Science and Technology.
Dissertation No. 425

VLSI Architectures and Arithmetic
Operations with Application to
the Fermat Number Transform

Lars-Inge Alfredsson

Department of Electrical Engineering
Linköping University, S-581 83 Linköping, Sweden

Linköping 1996

ISBN 91-7871-694-2 ISSN 0345-7524

Printed in Sweden by LJ Foto & Montage/VTT-Grafiska, Vimmerby 1996

To my wife

Anneli

and to our children

Michaela, Sebastian, Jonathan, and Antonia

Abstract

Theproperties of arithmetic operations in Fermat integer quotient ringsZ�m��,
where m � �t, are investigated. The arithmetic operations considered are
mainly those involved in the computation of the Fermat number transform.
We consider somewaysof representing the binary coded integers in such rings
and investigate VLSI architectures for arithmetic operations, with respect to
the different element representations. The VLSI architectures are mutually
compared with respect to area (A) and time (T) complexity and area-time per-
formance (AT �). The VLSI model chosen is a linear switch-level RC model.

In the polar representation, the nonzero elements of a field are represented by
the powers of a primitive element of the field. In the thesis we particularly in-
vestigate the properties of arithmetic operations and their corresponding VLSI
architectures with respect to the polar representation of the elements of Fer-
mat prime fields. Some new results regarding the applicability of the Fermat
number transform when using the polar representation are also presented.

i

ii

Acknowledgements

My time as a PhD student has come to an end. I have really enjoyed teach-
ing, studying, and doing research, which have been my main duties during
these years. One of the main reasons why I wanted to join the Data Transmis-
sion group was the friendly and inspiring atmosphere that was — and still is
— prevalent among the people in the group. I would like to thank all mem-
bers of the Data Transmission group for providing this friendly and inspiring
atmosphere.

I particularly would like to thank my supervisor, Professor Thomas Ericson,
for giving me the opportunity to join the Data Transmission group. He has
been an excellent guide on my tour into the world of science and hehas always
supported my work with a proper balance between friendly encouragements
and educating directions.
I also appreciate the fruitfuldiscussions withProfessor StefanDodunekov, Pro-
fessor Christer Svensson, and Dr. Edoardo Mastrovito.

Finally, I would like to thank my wonderful family, to whom I dedicate this
thesis. The seemingly never-ending process of writing the thesis has come to
an end. From now on, I will spend a lot more time with You!

Linköping, March 1996

Lasse Alfredsson

iii

iv

There are certain privileges of a writer,
the benefit whereof, I hope, there will be no reason to doubt;

Particularly, that where I am not understood, it shall be concluded,
that something very useful and profound is couched underneath.

– Jonathan Swift
(Tale of a Tub, preface 1704)

Not that the story need to be long,
but it will take a long while to make it short.

– Henry David Thoreau
(Letter, 16 Nov. 1867.)

v

vi

Contents

1 Introduction 1

2 Binary Arithmetic in the Fermat Integer Quotient Ring 3

2.1 The Integer Quotient Ring � 3

2.2 The Number Theoretic Transform � � � � � � � � � � � � � � � � 4

2.2.1 Suitable Integer Rings � � � � � � � � � � � � � � � � � � � 6

2.3 The Fermat Number Transform � � � � � � � � � � � � � � � � � � 10

2.3.1 Fermat Numbers � 10

2.3.2 The Transform Kernel � � � � � � � � � � � � � � � � � � � 12

2.3.3 Butterfly Computations � � � � � � � � � � � � � � � � � � 16

2.4 Element Representation � 23

3 Applications 25

3.1 Convolution and Correlation of Real Integer Sequences � � � 26

3.2 Decoding of Reed-Solomon Codes � � � � � � � � � � � � � � � � 30

vii

viii Contents

4 The VLSI Model 33

4.1 Introduction � 34

4.2 Complexity and Performance � � � � � � � � � � � � � � � � � � � 36

4.2.1 The Delay Model � 36

4.2.2 Area and Time Complexities � � � � � � � � � � � � � � � 38

4.3 Basic CMOS Building Blocks � � � � � � � � � � � � � � � � � � � 42

4.3.1 The Inverter and the Transmission Gate � � � � � � � � � 42

4.3.2 The Two-Input Multiplexer � � � � � � � � � � � � � � � � 44

4.3.3 Two-Input Gates � 44

4.3.4 The Single-Bit Adder � � � � � � � � � � � � � � � � � � � 47

4.3.5 The Register � 51

4.3.6 Table of Complexity Parameters � � � � � � � � � � � � � 55

4.4 Implementing the Fermat Number Transform � � � � � � � � � 57

5 The Normal Binary Coded Representation 59

5.1 Architectures for Arithmetic Operations � � � � � � � � � � � � � 59

5.1.1 Modulus Reduction � 60

5.1.2 Negation � 68

5.1.3 Addition and Subtraction � � � � � � � � � � � � � � � � � 72

5.1.4 Multiplication by Powers of 2 � � � � � � � � � � � � � � 77

5.1.5 General Multiplication � � � � � � � � � � � � � � � � � � 81

5.1.6 Exponentiation of the Transform Kernel � � � � � � � � � 84

5.2 Summary � 87

6 The Diminished–1 Representation 89

6.1 Linearly Transformed Representations � � � � � � � � � � � � � � 89

Contents ix

6.1.1 Arithmetic Operations � � � � � � � � � � � � � � � � � � � 90

6.2 The Use of a Zero Indicator � 93

6.3 The Diminished–1 Representation � � � � � � � � � � � � � � � � 98

6.3.1 Code Translation � 98

6.3.2 Modulus Reduction � 106

6.3.3 Negation � 106

6.3.4 Addition and Subtraction � � � � � � � � � � � � � � � � � 108

6.3.5 Multiplication by Powers of 2 � � � � � � � � � � � � � � 122

6.3.6 General Multiplication � � � � � � � � � � � � � � � � � � 128

6.3.7 Exponentiation of the Transform Kernel � � � � � � � � � 152

6.4 Summary � 152

7 The Polar Representation 155

7.1 Introduction � 155

7.2 Arithmetic Operations � 156

7.2.1 Discrete Exponentiation � � � � � � � � � � � � � � � � � � 157

7.2.2 The Discrete Logarithm � � � � � � � � � � � � � � � � � � 157

7.2.3 Modulus Reduction � 159

7.2.4 Negation � 159

7.2.5 Addition and Subtraction � � � � � � � � � � � � � � � � � 160

7.2.6 General Multiplication � � � � � � � � � � � � � � � � � � 161

7.2.7 Multiplication by Powers of � � � � � � � � � � � � � � � 162

7.3 Zech’s Logarithm � 165

7.4 Properties of the Dm Matrix � 167

7.4.1 Discrete Exponentiation � � � � � � � � � � � � � � � � � � 173

x Contents

7.4.2 The Discrete Logarithm � � � � � � � � � � � � � � � � � � 177

7.4.3 Zech’s Logarithm � 179

7.5 The Mirror SequenceMm � 182

7.5.1 Discrete Exponentiation Using a Look-Up Table � � � � 183

7.5.2 The Discrete Logarithm Using a Look-Up Table � � � � 183

7.5.3 The Mirror Properties ofMm � � � � � � � � � � � � � � � 185

7.5.4 Finding the Unique Distinct Positions inMm � � � � � � 189

7.5.5 Addressing the Look-Up Table for Discrete Logarithm 195

7.6 Architectures for Arithmetic Operations � � � � � � � � � � � � � 197

7.6.1 Discrete Exponentiation � � � � � � � � � � � � � � � � � � 197

7.6.2 The Discrete Logarithm � � � � � � � � � � � � � � � � � � 205

7.6.3 Negation � 206

7.6.4 Addition � 208

7.6.5 General multiplication � � � � � � � � � � � � � � � � � � 219

7.6.6 Multiplication by powers of � � � � � � � � � � � � � � � 223

7.7 Summary � 231

8 Comparisons Between Element Representations 233

8.1 Arithmetic Operations � 233

8.1.1 Modulus Reduction � 233

8.1.2 Code Translation � 234

8.1.3 Negation � 235

8.1.4 Addition � 236

8.1.5 General Multiplication � � � � � � � � � � � � � � � � � � 238

8.1.6 Multiplication by Powers of � � � � � � � � � � � � � � � 239

Contents xi

8.1.7 Butterfly Computations � � � � � � � � � � � � � � � � � � 242

8.2 Other element representations � � � � � � � � � � � � � � � � � � 246

9 Conclusions 249

A Proofs of Some Theorems 251

A.1 Proof of Theorem 2.1 � 251

A.2 Proof of Theorem 2.3 � 253

A.3 Proof of Theorem 2.5 � 254

B A Table of Some Primes 257

C Further Properties of Zech’s Logarithms 261

Bibliography 269

xii Contents

Chapter 1

Introduction

In 1972 Rader [77] proposed transforms in the ring of integers modulo a Mer-
senne or a Fermat number (�n � � and �m � �� m � �t � �� �� �� �� � � �, respec-
tively) to compute error-free convolutions of real integer sequences. Later,
Agarwal and Burrus [2] showed that for some transform lengths the radix-2
Fermat number transform can be implemented using only addition, subtrac-
tion, and bit shifting, i.e. without using multiplication. This transform was
shown to be faster than the conventional fast Fourier transform over the com-
plex field.

There are also other applications of the Fermat number transform. Justesen
[54] was one of the first to consider Reed-Solomon codes over the finite field
of integers modulo a Fermat prime. He stated that the decoding complexity of
such codes can be reduced if the Fermat number transform is used to evaluate
the syndromes and error magnitudes. This was further investigated by Reed
et al. [82] and others.

The special attributes of the Fermat number transform have led several re-
searchers to consider the VLSI (Very Large Scale Integration) implementation
of arithmetic operations in the ring of integers modulo a Fermat number.
These operations are traditionally implemented using binary logic circuits,
which means that the elements of the ring have a binary coded form of rep-
resentation. The �m � � binary coded elements of the ring of integers modulo
a Fermat number can be represented using m � � bits. We thus get numer-
ous ways of representing the elements of the ring. The complexity and per-

1

2 Chapter 1. Introduction

formance of architectures for arithmetic operations depend inter alia on the
representation chosen.

The most known representations are the ones proposed by McClellan [65] and
Leibowitz [58]. Their coding schemes are linear coordinate transformations
of the normal binary coded representation of the elements in the ring. Using
their representations, operations like addition, multiplication by two, and the
code translation canbe carried out fairly easy in VLSI. Also, for some relatively
small transform lengths, the transform multiplications by powers of the trans-
form kernel can be carried out as binary shifts. This is a well known property
of the Fermat number transform. One of the main disadvantages of using Mc-
Clellan’s or Leibowitz’ element representation is that for most other possible
transform lengths, the resulting transform computation involves general mul-
tiplications (by powers of the transform kernel). Nevertheless, Leibowitz’ so
called diminished–1 representation is used by most people who consider the
VLSI implementation of the Fermat number transform.

In this thesis we investigate various ways of representing the binary coded el-
ements of the ring of integers modulo a Fermat number. For each element rep-
resentation considered, the properties of the arithmetic operations involved in
the computation of the Fermatnumber transformare thoroughly investigated.
Some other (arithmetic) operations are also considered. We also investigate
VLSI architectures for the arithmetic operations. Some architectures are pre-
viously known and some are new. We show how each of these architectures is
derived from its associated analytical expression for the arithmetic operation
in question.

One of our main goals is to find a representation that makes it possible to com-
pute the Fermatnumber transformwith favourable area-time performance for
all possible transform lengths. In particular, we focus on the arithmetic op-
erations obtained when using the polar representation of the elements of Fer-
mat prime fields. In the polar representation, the elements of a field are rep-
resented by powers of some primitive element of the field.

Chapter 2

Binary Arithmetic in the Fermat
Integer Quotient Ring

In this chapter we give a formal introduction to the number theoretic trans-
form in general and the Fermat number transform in particular. The chap-
ter contains several known results from the area of number theory. We also
consider some fast Fourier transform algorithms for implementing the Fermat
number transform. For each algorithm, we find out which arithmetic opera-
tions are needed and the complexity of computing the transform. Thepurpose
of the survey is to get our work into perspective. The chapter is concluded by
presenting some aspects of representing the binary coded integers of the Fer-
mat integer quotient ring.

2.1 The Integer Quotient Ring

A ring is an algebraic system consisting of a set of elements together with ad-
dition, subtraction, and multiplication. The result of any of these arithmetic
operations is always an element of the original set. It may also be possible to
divide in a ring. Then the multiplicative inverse of the divisor must exist in the
ring.

A natural example of a ring is Z, the ring of integers; for a� b � Z, we have
a � b� a � b� a � b � Z. Denote by Zq the quotient ring of integers modulo an
integer q: It consists of the set f�� �� �� � � � � q � �g of integers and the result of
every arithmetic operation is reduced modulo q. Thus, an integer c maps into
Zq as the remainder r of c divided by q. If we have c � r� dq for some integer

3

4 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

d, then c and r are congruent modulo q. The notation for such a congruence is

c � r (mod q)�

The multiplicative inverse of an element ofZq exists if and only if the element
is relatively prime to the modulus q.� If q is a prime number, then every non-
zero element of Zq has a multiplicative inverse and thus division becomes a
general operation in the ring. ThenZq is called a field.� For a detailed math-
ematical survey on the theory of rings and fields, see for example Lidl and
Niederreiter [60] or Herstein [50].�

In this thesis we investigate VLSI architectures for arithmetic operations in the
integer quotient ringZq, where q is a Fermat number. Even though the devel-
opment of multiple-valued logic has progressed over the years [29] it is still
a difficult problem to design q-valued logic circuits for large q. Therefore, we
restrict ourselves to representations of the integers modulo q as binary coded
symbols and use binary logic circuits in the VLSI architectures for the arith-
metic operations inZq.

2.2 The Number Theoretic Transform

Before going into details about the Fermat number transform, we give the de-
finition of the number theoretic transform in an arbitrary integer quotient ring
Zq. We also discuss which moduli q are most suitable, with respect to the com-
plexity of computing the number theoretic transform. The computation of the
number theoretic transform(NTT) involves integer ring arithmetic operations.
The NTT is a DFT-like (discrete Fourier transform) transform which is com-
puted in the ring of integers modulo some integer:

Definition 2.1 In the ring Zq of integers modulo a positive integer
q � pn�� pn�� � � � pnkk the number theoretic transform of the sequence x � fxngN��n�� of
elements xn �Zq is a sequence X � fXkgN��k�� , Xk � Zq, given by

�If a �Zq and q are relatively prime, then we have � � ab � dq � ab (mod q) where b and
d are integers. The integer b mod q is then referred to as the multiplicative inverse of a under
multiplication modulo q.

�Thus, a field is a ring in which it is also possible to divide.
�The quotient ringZq is denoted byZ��q�and Jq in [60] and [50] respectively. The notation

Zq, which we conveniently use in this thesis, is very common in many other books on abstract
algebra and number theory.

2.2. The Number Theoretic Transform 5

Xk
�
�

N��X
n��

xn�
kn (mod q)� k � �� �� � � � � N � � � (2.1)

where � is any element with order N inZq.

The factors p�� p�� � � � � pk of q are distinct primes.

Remark: Let � and q be relatively prime positive integers. Then, the least pos-
itive integer N such that �N � � 	mod q
 is called the order of � modulo
q. We denote the order of � modulo q by ordq �. Thus, for the transform
kernel � we get ordq � � N . Sometimes, � is said to be a primitiveN th root
of unity.

Because we have ordq � � N , the product kn in the exponent of � in (2.1) is
calculated modulo N . It is easy to show that the NTT, as well as the DFT, pos-
sesses the cyclic convolution property, i.e. the transform of a cyclic convolu-
tion of two sequences is equal to the product of their transforms. There are
also other properties of the DFT that have their counterparts in the NTT. The
inverse number theoretic transform is given by

xn
�
� N��

N��X
k��

Xk�
�kn (mod q)� n � �� �� � � � � N � �� (2.2)

where N�� is the multiplicative inverse of N modulo q, i.e. the least positive
integer M for which N �M � � 	mod q
. Such an inverse exists if and only
if gcd	N� q
 � �. The factor ��kn in (2.2) is congruent to �N�kn modN mod q.
Therefore, (2.2) involves multiplication by positive powers of � modulo q.

It is sometimes convenient to use the multiplicative inverse ��� of � modulo
q instead of � as the transform kernel of the inverse NTT.� If there exists an
integer � with order N modulo q, then its inverse ��� � �N�� 	mod q
 also
exists.

Thus, we can say that a number theoretic transform of lengthN and its inverse
transform exist in Zq if there is an integer � with order N modulo q and N
has a multiplicative inverse modulo q. The following theorem may be useful
when determining the possible lengths of an invertible transform in an integer
quotient ring:

�We have ��kn �
�
���

�kn
.

6 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

Theorem 2.1 There exists an invertible NTT of length N in Zq if and only if
N j 	pi � �
 for every prime pi that divides q.

Proof: See Section A.1 of Appendix A. �

Thus, the theorem says that the transform length N must satisfy

N j gcd	p� � �� p� � �� � � � � pk � �
� (2.3)

where q � pn�� pn�� � � � pnkk . In particular, if q � p is a prime, then every nonzero
element of the prime field Zp has a multiplicative inverse and there exists an
NTT of every length N that divides p� �.

2.2.1 Suitable Integer Rings

There exist infinitely many number theoretic transforms. The modulus q �
pn�� pn�� � � � pnkk should be chosen in a suitable way with respect to the complexity
and performance of the architectures for the binary coded integer arithmetic
operations modulo q, and with respect to the possible NTT lengths that will
be obtained. Multiplication by powers of the transform kernel � is usually the
most complex arithmetic operation involved in the computation of the NTT.
Therefore, the efficiency of a VLSI implementation of an NTT is often largely
determined by the efficiency by which such multiplications can be carried out.

The direct computation of an NTT of length N requires in the order ofN� mul-
tiplications and N	N � �
 additions. If the transform length is composite the
NTT canbedecomposed into several transformsof smaller sizes which may be
computed using some fast Fourier transform (FFT) algorithm [17, Ch. 4]. The
FFT algorithm is most efficiently computed if the transform is a single-radix
transform with a small radix, i.e. if the transform length can be expressed as a
power of a small integer. For example, ifN � rb, for some r and b, the NTT can
be computed using a radix-r FFT algorithm. Such an algorithm requires in the
order of k	r��
N logr N multiplications and 	r��
N logr N additions, where
k depends on N and the choice of � [33, 35]. Hence, the complexity of com-
puting the NTT can be significantly reduced by choosing a suitable transform
length and using an FFT algorithm. From (2.3) it follows that it is the modulus
that determines the possible transform lengths.

From a VLSI implementation point of view, the reduction modulo q of a binary
coded integer is simplest to perform when q is close to a power of two or when
the binary coded representation of q contains few ones. The modulus reduc-
tion inZ�m is very simple and straightforward, but since 2 is a prime factor of

2.2. The Number Theoretic Transform 7

q � �m the maximum possible NTT length in any ring of size �m is 1. The same
conclusion holds for every even modulus q. Integer quotient rings with even
modulus are therefore not interesting from an NTT application point of view.

Any odd natural number q can be written on the form q � a � rm � � for some
natural numbers a� r, and m, where r does not divide a. When q is a prime,
we see from (2.3) that the possible transform lengths are the ones that divide
a � rm. Therefore, the maximum radix-r transform length in the prime field
Za�rm�� is rm. Because a radix-r transform of length N � rb involves in the
order of 	r � �
N logr N multiplications and additions, the transform is most
efficiently computed if N is highly composite, i.e. r is small.

Chevillat gives a table [33, Tab. II] of 8-bit to 16-bit moduli whose associated
integer quotient rings each contains a single-radix transform of lengthN � ��.
Some of these moduli are composite, but most of them are prime numbers.
The modulus should be chosen such that the modulus reduction is not a very
complex operation. As an example we considerZq with a prime modulus q �
�
���, for which q � � � � � ��. This is one of Chevillat’s numbers. The maxi-
mum transform length of a single-radix NTT inZ���	
 is �� � �
���. However,
because the normal binary representation of q � �
��� is ����������������,
the reduction modulo q may not be as simply performed as when q can be rep-
resented by much fewer ones or when it is closer to a power of two.

We mentioned above that multiplication by powers of the transform kernel
should be carried out as simply as possible. The complexity of such a mul-
tiplication depends inter alia on the kernel chosen. However, in an arbitrary
integer quotient ring there may not exist a suitable kernel for which this com-
plexity is low. In general, even if there exist single-radix transforms of great
lengths in an integer ring, it is not certain that a transform multiplication can
be computed using a procedure that is simpler than general multiplication.

Mersenne numbers

A set of integers of particular interest is the set of Mersenne numbers. These
numbers are of the form�m��, wherem � �� �� �� � � �. We denote such numbers
byMm. The NTT in a Mersenne integer quotient ringZMm is usually called the
Mersenne number transform. One of the first to consider Mersenne number
transforms was Rader in 1972 [77]. Arithmetic operations are easily carried
out in ZMm if the elements are represented as normal binary coded m-bit in-
tegers, because then the complexity of performing the operations equals the
complexity of one’s-complement arithmetic: Because �m � � 	mod �m � �
,
the modulus reduction is equivalent to the procedure for handling overflow
in one’s-complement arithmetic.

8 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

m Mm � �m � � Mm � � � �	�m�� � �

3 7 � � �
5 31 � � � � �
7 127 � � �� � �

13 8 191 � � �� � � � � � ��
17 131 071 � � � � � � �� � ���
19 524 287 � � �� � � � �
 � ��
31 2 147 483 647 � � �� � � � �� � �� � ��� � ���
Table 2.1: The first 7 Mersenne prime numbers.

There is, however, no general fast algorithm for the computation of the Mer-
senne number transform. Letm � �k where � is a prime number. Then ��� �
divides ��k��. This is easily shown by using the relation xk�� � 	x��
	xk���
xk���� � ��x��
 for x � �� which gives ��k�� � 	����
	���k�������k����� � ��
����
, and thus we get 	����
 j 	��k��
. Ifm � �k is even then ���� � � is a
prime factor ofMm which, from (2.3), implies that the transform length divides
2. Thus, a transformof meaningful length canonly be obtained whenm is odd.
Furthermore, ifMm � �m� � is prime thenmmust also be prime, i.e. k equals
1 in the previous factorisation of ��k��. The converse, however, is not always
true� for example ����� � ���� � �� ��
 is not a prime number. This shows,
by applying (2.3) to the prime factorisation ofMm, that the possible lengths of
the NTT inZMm are relatively small whenm is odd and Mm is composite.

When Mm is prime the NTT length must divide Mm � � � �m � �. The third
column of Table 2.1 shows the prime factorisations of Mm � � for the first 7
Mersenne numbers. We see that for largeMm the numberMm�� is not highly
composite. Therefore, there may not exist any efficient FFT-type algorithm to
compute transforms of great lengths in ZMm. Properties of Mersenne num-
ber transforms and some applications are further discussed in Chapter 6.3 of
Blahut [17] and by Rader [77].

Numbers of the form �n � �m � �

The final set of numbers to be considered here are prime numbers of the form
q � �n��m��, where � � m � n. Several of these numbers can also be found
in the set of Chevillat numbers. In 1976, Pollard [73] stated that such numbers
are good choices as integer ring moduli.

2.2. The Number Theoretic Transform 9

The normal binary representation of the n-bit modulus q � �n � �m � � is

n bitsz �� �
� � � � � �� �z �
n�m ones

� � � � � �� �z �
m�� zeros

��

i.e. a block of n �m ones followed by a block of m � � zeros and a one in the
least significant bit position. It is quite easy to perform the modulus reduc-
tion in VLSI when the modulus has this form and if the integer to be reduced
is less than �n. Because �n � �m � � � � 	mod �n � �m � �
 we get �n � �m �
�� 	mod �n � �m ��
. Therefore, when the n�mmost significant bits of an
integer not greater than �n � � are all ones, the modulus reduction is carried
out by changing these bits to zero and subtract one (1) from the resulting bi-
nary coded integer. When the integer to be reduced is greater than �n � �, the
modulus reduction procedure is just slightly more complicated.

Example: n � �� m � � � q � �
 � �� � � � ���.
Modulus reduction ��� � �� 	mod ���
:

� � � � � � � � � ���
� � � �
� � � � � � � � � ��

� � � �

� � � � � � � � � ��

In Section 5.1.1 we show how subtraction by one can be carried out in VLSI in
a simple way.

For prime moduli q, the possible transform lengths divide q� � � �m	�n�m �
�
,which implies that there exist radix-2 NTTs of length N � �b, where b 	 m,
in the corresponding prime fieldsZq. In Table B.1 of Appendix B we present
the factorisations of q�� together with n, m, and q for all primes q of the form
q � �n��m�� where � � m � n 	 ��. These primes were found by computer
search. In order to obtain a transform of great length, m should be large. On
the other hand, in order to make efficient use of the n-bit representation of the
integers inZq, m should be as small as possible (m � �). The best choice of m
with respect to n may differ, depending on the NTT application in question.

We have not found any general structure of the prime factorisations of com-
posite moduli q � �n � �m � � � �m	�n�m � �
 � �. However, it may be
profitable to consider subsets of this set of moduli for which the NTT in the
corresponding integer rings possesses some of the desirable properties. Such

10 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

a subset may, for example, consist of moduli for which n�m is constant. Prop-
erties of the NTT inZq can then be examined separately in each subset.

We see in Table B.1 of Appendix B that there are several prime moduli for
which n � m is small. A report on primes of the form k � �m � � was pub-
lished by Robinson in 1958 [83]. In [83] he also presented a table of all such
primes for k � ��� and m � ���. Liu et al. [62] considered primes of the form
�m	�m � �
 � �, i.e. for n � �m, for some values of m. Number theoretic trans-
forms in the integer ring modulo �m	�m � �
 � � have also been considered
by Dubois and Venetsanopoulos [38, 39]. Some other researchers have inves-
tigated properties of moduli of the form � � �m � �, i.e. for n �m � �, see for
example Golomb [47] and Golomb et al. [48]. In [48] the authors discuss how
to perform arithmetic operations inZ���m��.

The above-mentioned numbers are all special cases of numbers of the form
q�p���n� q�p���n� � � �� qn�� � 	qpn� �
�	qn� �
 for some integers q, p, and n.
In a recent article by Dimitrov et al. [37], the authors define number theoretic
transforms in integer quotient rings with such moduli for q � �, p � �� �, and
�, and for some appropriate values of n.

In the present thesis we consider moduli q � �m	�n�m��
�� for n�m � �, i.e
moduli of the form q � �m � �. For m equal to a power of two, such numbers
are called Fermat numbers.

2.3 The Fermat Number Transform

2.3.1 Fermat Numbers

In this section we study number theoretic transforms in integer quotient rings
with moduli of the form �m � � for some m.

Theorem 2.2 If �m � � is a prime then m is a power of two.

Proof: (From [42, pp. 23–24]) Suppose m has an odd factor k, say m � nk.
Using the factorisation xk�� � 	x��
	xk���xk���xk���� � ��x��x��
 for x �
�n we get �m�� � �nk�� � 	�n��
	�n�k�����n�k�����n�k����� � ����n��n��
,
which apparently is composite. The only numbers that have no odd factor are
the powers of two. �

2.3. The Fermat Number Transform 11

We have shown that �m � � is not a prime when m is not a power of two, but
for which m � �t do we get a prime? The number

Ft
�
� �m � �� m

�
� �t�

where t � N, is defined as the tth Fermat number.� Fermat observed that the
first five such numbers are all prime:

F� � � � � � ��
F� � �� � � � ��
F� � �� � � � ���
F� � �
 � � � ����
F� � ��	 � � � �� ����

Fermat expressed his belief that every Ft is a prime, but admitted that he had
no proof.

From Fermat’s little theorem [84, Th. 5.3] it follows that if p is a prime and a
is a positive integer, then ap � a 	mod p
, that is p j 	ap � a
. 	 In general, if
a is a positive integer and q is a composite positive integer that divides aq� a,
then q is usually called a pseudoprime to the base a. One of the reasons for Fer-
mat’s statement that every Ft is a prime may have been that in fact all Fermat
numbers are either primes or pseudoprimes.

We see that for every Fermat number Ft � ��
t
� �, where t � N, the relation

Ft j 	�Ft � �
 holds [93, Exerc. 2]: For any positive integer t we have t�� 	 �t,

and thus �t�� j ��t . Consequently, we have 	��
t�� � �
 j 	���t � �
 � �Ft�� � �.

Because ��
t�� � � � 	��

t
� �
	��

t � �
 we get Ft � 	��
t
� �
 j 	�Ft�� � �
 and

hence Ft j 	�Ft � �
.

Therefore, all composite Fermat numbers Ft are pseudoprimes to the base �.
When trying to find the factors of composite Fermat numbers, the following
theorem is of good use:

�Henceforth, whenever the number �m � � appears in the thesis we always mean the Fer-
mat number Ft, i.e. we implicitly assumem � �t for some natural number t.

�Even the ancient Chinese had a test for primality which is similar to Fermat’s little the-
orem. The test said that an integer p is a prime if and only if p j ��p � ��. By Fermat’s
little theorem we know that the test is correct when p is an odd prime, but the converse
is not always true. For example, the ancient Chinese did not discover that the smallest
composite integer that passes their test is ��� � �� � ��. It can easily be verified that
���� � � �mod ���� and thus ��� j ������ ��.

12 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

Theorem 2.3 Every prime divisor of the Fermat number Ft � ��
t
� �, where t � �,

is of the form k � �t�� � �, for some natural number k.

Proof: See Section A.2 of Appendix A. The proof involves Euler’s theorem
and the concept of quadratic residues. �

Thus, every prime divisor of Ft is congruent to 1 modulo �t�� for t � �. Actu-
ally, because the product of twonumbers of the form k�n�� is also of this form,
any divisor of Ft is congruent to 1 modulo �t�� for t � �. Lucas [36, pp. 376–
379] was the first to prove that every prime factor of Ft is of the form k ��t����.
Prior to Lukas’ proof Euler showed that � � �
 � � � ��� is a factor of F�. The
complete factorisations of F� and F	 are

F� � 	� � �
 � �
	� � �� ��
 � �
 � �
� Euler 1732

F	 � 	�� � � � �� � �
 � �
	� � �� � ��� � �

� ��
 � �
 � �
� Landry 1880

To this day, no Fermat prime greater than F� has been found. Since the days of
Euler, finding the prime factors of composite Fermat numbers or proving that
certain Fermat number are composite have been two of the most famous prob-
lems in number theory. In 1958, Robinson presented a list [83, Table 2] of all
known prime factors of composite Fermat numbers together with the dates of
discovery. Using today’s powerful computing tools still more prime factors
have been found. In [28, page lxxxviii], Brillhart et al. published a table of all
factors of composite Fermat numbers known in 1988. To the author’s knowl-
edge, the largest Fermat number with known factorisation is F�� � ��

��
� �,

which was factored by Brent and Morain in 1988 using the elliptic curve
method [24], [25]. The ninth Fermat numberF� was factored by A. K. Lenstra,
H. W. Lenstra Jr., M. S. Manasse, and J. M. Pollard in 1990 by means of the
number field sieve [59]. The complete factorisation of F�� is still not known.
The largest Fermat number with a known factor is F���
�. It is divisible by
� � ����
� � �.

2.3.2 The Transform Kernel

Thenumber theoretic transform in the Fermat integer quotient ringZFt is often
referred to as the Fermat number transform (FNT). A great advantage of the
FNT is that the possible transform lengths are all highly composite. As shown
in Section 2.3.1, a composite Fermat number Ft can be factorised into prime

2.3. The Fermat Number Transform 13

powers as

Ft � 	k��
t�� � �
n�	k��

t�� � �
n� � � � 	kl�t�� � �
nl �

for some k�� k�� � � � � kl and n�� n�� � � � � nl. Let �
�k be a common factor of k�� k��

� � � � kl for some �k.
 Equation (2.3) then implies that there exist radix-2 trans-

forms inZFt. The transform length N must divide �t�
�k��. Furthermore, when

Ft is prime the possible lengths N divide Ft � � � ��
t
. Thus, the radix-2 FNT

inZFt is of length

N � �b �

��
�

� 	 b 	 t� �k � � � Ft is composite

� 	 b 	 m 	� �t
 � Ft is prime
� (2.4)

Because the FNT length N is a power of two the transform can be computed
using a fast and efficient algorithm. Using the radix-2 Cooley-Tukey FFT algo-
rithm [35], a transform of length N � �b in a Fermat integer quotient ringZFt

can be computed using only 	N��
 log�N multiplications and N log�N addi-
tions modulo Ft. Since elements of the sequence that is to be transformed are
multiplied by powers of the kernel �, the complexity of computing the trans-
form depends strongly on the choice of �.

Using binary arithmetic, multiplication by apowerof two canbe implemented
in VLSI as binary shifts. We see by the congruence

� � 	��
� � ��m (mod �m � �)

that the integer 2 has order �m � �t�� modulo �m � � and hence can be used
as the kernel of an FNT of length �m. Then, all multiplications involved in
the transform computation can be carried out as binary shifts. Equation (2.4)

implies that N must divide �t�
�k�� when Ft is composite, i.e. for t � �. In par-

ticular it can be verified that �k is zero for F�, F	, and F
, i.e. the ki’s in the fac-
torisations of these numbers are all odd (see page 12 and [28, page lxxxviii]).
Thus for F�, F	 and F
 the maximum transform length is �t�� � �m.

A suitable kernel of a �m-length transform is an integer that has 2 as its square.
Such an integer exists if the congruence x� � � 	mod Ft
 has a solution. By
the definition of quadratic residues in Section A.2, the integer 2 is then called
a quadratic residue modulo Ft. The least positive solution x to the mentioned
congruence is often denoted

p
� in the literature. The following theorem says

that there really exists such a solution x.

�In general, we have gcd�k�� k�� � � � � kl� � k� � �
�k for some k� and 	k, but here we are only

interested in the cases when the transform length is a power of two.

14 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

Theorem 2.4 The integer 2 is a quadratic residue modulo each Fermat number Ft for
t � �.

Proof: From the proof of Theorem 2.3, given in Section A.2, we know that the
integer 2 is a quadratic residue modulo every odd prime factor pi of the Fermat
numberFt � pn�� pn�� � � � pnkk for t � �. Then, 2 is also a quadratic residue modulo
pnii (see for example Stewart, [95, Prop. A.13]). By Proposition A.10 of [95] we
then get that the integer 2 is a quadratic residue modulo Ft for t � �. �

The square of the element
p
� can be expressed in the following way:�p

�
	�

� � � 	��
 � � � 	��
 � �� � �m � �
m
� 	�� � �� � � �m

�

�

�
m
�
��

	�
m
�
� � 	��
� � �	�� � �m

�

�

�

�
m
� 	�

m
� � �

��
	mod �m � �
�

and thus we get

p
� � �

m
� 	�

m
� � �
 � �

�m
� � �

�m
� (mod �m � �)�

Powers of
p
� can be written as

�p
�
	n

�

��
�

�
n
� � n even

�
n��
�

p
� � �

�m��n��
� � �

�m��n��
� 	mod �m � �
� n odd

� (2.5)

which means that multiplication by powers of
p
� can be implemented in VLSI

as binary shifts when the exponent n is even, and two binary shifts and one
addition when the exponent is odd. This is the reason why the element

p
� is

practically always used as the kernel of the FNT of length �m inZ�m��. It can
easily be shown that the order of

p
� modulo Ft is �m for t � � [2, App. C].

Because we have �m � �m � Nmax form � �, the kernel
p
�will yield the max-

imum length FNT inZF�. The same kernel will also yield the maximum length
FNT inZFt for t � �� �, and 7. However, in several applications the transform
length �m is still relatively small. In general, one-dimensional prime field
FNTs of length greater than �m require nontrivial multiplications. For a maxi-
mum length FNT (N � �m) in a Fermat prime field, the transform kernel must
be a primitive element.

2.3. The Fermat Number Transform 15

t m � �t Ft � � � �m N for � � � N for � �
p
� N for � � 	

0 1 2 2 — —
1 2 4 4 — 4
2 4 16 8 16 16
3 8 256 16 32 256
4 16 �� ��� 32 64 65 536
5 32 4 294 967 296 64 128 —
6 64 �	�
 ���� ���� 128 256 —

Table 2.2: Some parameters for the FNT. The boldfaced numbers are the maximum
obtainable transform lengths. The kernel 	 is any primitive element modulo Ft.

Every primitive element of a prime fieldZp has maximum order p�� modulo
p.
 In Chapter 7 we find use of the following property:

Theorem 2.5 The integer 3 is a primitive element of each Fermat prime field ZFt

where t � �.

Proof: See Appendix A.3. �

Remark: Cunningham (see [36, page 199]) noted that for t � �, the integers
�� �� �� �� ��� and 12 are all primitive elements of the field of integers
modulo a Fermat prime Ft for t � �.

By Theorem 2.5 the maximum length FNT in a Fermat prime field can be com-
puted using the primitive element 3 as transform kernel. Table 2.2 shows the
relations between some kernels and their corresponding FNT lengths for the
seven first Fermat numbers.

For each primitive element 	 �Z�m��, where �m�� is a prime, we have 	�m �

		�m�b
�
b � � 	mod �m � �
. Because the order of the element 	�m�b modulo

�m � � equals �b, it may be chosen as the kernel of an FNT of arbitrary length
N � �b for � 	 b 	 m. This is further discussed in Section 7.2.7.

As previously mentioned, we would like to calculate the radix-2 FNT with
as low complexity and high performance as possible for every such transform

	In general, if � and q �
 are relatively prime integers such that ordq � � ��q�, where �
denotes Euler’s totient function, then � is called a primitive root modulo q.

16 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

lengthN � �b. Hence, we would like its approximatelyN log�N additions to-
gether with its 	N��
 log�N multiplications by powers of the kernel to be car-
ried out as simply as possible. In the present section we do not go into detail
about what we mean by ’simple’. Complexity issues are further discussed in
Chapter 4.

One purpose of our work is to find suitable ways of representing the binary
coded integers ofZ�m��, in order to simplify the arithmetic operations (espe-
cially multiplication by powers of the transform kernel) involved in the com-
putation of the FNT of every possible length N � �b. We are particularly in-
terested in the rings for which �m � � is a prime, i.e. the Fermat prime fields.

2.3.3 Butterfly Computations

The Radix-2 Decimation-In-Time Algorithm

We mentioned above that the FNT of length N � �b can be computed using
a radix-2 FFT algorithm. When using the well known decimation-in-time algo-
rithm, which is due to Cooley and Tukey [35], the FNT of the form in (2.1) is
first split into two parts as follows.�

Xk �
N��X
n��

xn�
kn �
X
n even

xn�
kn �
X
n odd

xn�
kn

�

N����X
r��

x�r �
kr
N�� � �k �

N����X
r��

x�r�� �
kr
N��

� Gk � �k �Hk 	mod Ft
� k � �� �� � � � � N � ��

where Gk and Hk are the N��-point FNTs of the sequences fx�rgN����r�� and

fx�r��gN����r�� , respectively. The order of the kernel�N��
�
� �� modulo Ft isN��.

Because �N�� � �� 	mod Ft
we have �k�N�� � ��k 	mod Ft
 and thus the
FNT can be expressed as

Xk � Gk � �k �Hk 	mod Ft

Xk�N�� � Gk � �k �Hk 	mod Ft
�

The derivation of the decimation-in-time FFT algorithm can be found in most books on
digital signal processing, e.g. [74, Ch. 9.3.3].

2.3. The Fermat Number Transform 17

�r

�

�

Figure 2.1: Butterfly of a radix-2 decimation-in-time FFT.

for k � �� �� � � � � N�� � �. The name decimation-in-time is due to the dec-
imation of xn by a factor of 2. A repeated decimation of the sequences fx�rg
and fx�r��gwill result in fourN��-point FNTs after the second step, eightN��-
point FNTs after the third step and so on, until we end up inN�� 2-point FNTs
after step log�N��. Thus, the computation of the FNT of lengthN � �b may be
carried out in log�N stages, where each stage consists ofN�� 2-point FNTs [74,
Fig. 9.14]. Hence, the FNT can be computed as 	N��
 log�N � 	N��
b FNTs of
length 2. Figure 2.1 illustrates how such a basic 2-point FNT is computed. Be-
cause of the flow graph symmetry of the 2-point transform, it is usually called
a butterfly. The two output signals from the decimation-in-time butterfly of
Figure 2.1 are

 � � � �r
 	mod Ft

� � � � �r
 	mod Ft
�

for some r and where � and
 are the butterfly inputs. Because each butterfly
involves two additions and one multiplication, the total number of additions
modulo Ft equals N log�N and the total number of multiplications modulo Ft

equals 	N��
 log�N , as we have previously indicated.��

When the FFT algorithm is used for computing the ordinary DFT, the real and
imaginary parts of the factors �r � e�j��r�N , which are often called the twiddle
factors, are usually stored in a table. This yields the fastest algorithm, to the
cost of a look-up table. Concerning the FNT, by choosing a suitable kernel for
the transform it may not be necessary to store the different powers of the ker-
nel modulo Ft. For example, for � �

p
� andN � �m � �t�� multiplication by

powers of � can be carried out as two binary shifts and one addition, as men-
tioned in connection with (2.5). For such kernels the b-bit exponents r may be

��Subtraction is regarded as addition, because it can be carried out by adding the minuend
to the negated subtrahend (see Section 5.1.3).

18 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

�

�r

�

Figure 2.2: Butterfly of a radix-2 decimation-in-frequency FFT.

generated by some control logic for small transform lengths [101]. For larger
transform lengths, the exponents are preferably stored in a table [90]. How-
ever, if there is no suitable kernel � for which multiplication by powers of �
can be carried out simpler than the procedure for general multiplication, then
we may still want a table of the twiddle factors involved in the computation
of the transform.

The Radix-2 Decimation-In-Frequency Algorithm

When using the decimation-in-time FFT algorithm, the input sequence must
appear in a bit-reversed order [74, Ch. 9.3.3]. The transformed sequence is,
however, obtained in natural order. Using the radix-2 decimation-in-frequency
FFT algorithm, we have the opposite situation. Then the input occurs in the
right order while the output is obtained in bit-reversed order. The decimation-
in-frequency algorithm is obtained by repeatedly divide the transform into
two transforms, one which depends on the first half of the sequence and the
other depending on the second half of the sequence. This algorithm is due to
Gentleman and Sande [45].

As for the decimation-in-time algorithm, the decimation-in-frequency algo-
rithm also divides theN -length transform into log�N stages ofN�� butterflies.
Figure 2.2 shows the butterfly for the decimation-in-frequency algorithm.

For the butterfly input variables � and
, we have the output variables

 � � �
 	mod Ft

and

� � 	� �

�r 	mod Ft
�

for some r.

2.3. The Fermat Number Transform 19

The computations in both the decimation-in-time and decimation-in-frequen-
cy algorithms are done in place, which means that the same memory locations
that hold the N elements of the sequence fxng can be used to store the results
of the butterfly computations at each of the log�N stages. Also, both algo-
rithms involve 	N��
 log�N butterfly operations, each consisting of one mul-
tiplication by a twiddle factor and two additions. The two algorithms can be
arranged such that both the input and output sequences are maintained in
natural order. However, the resulting algorithms are no longer in-place algo-
rithms, which implies that additional memory is required.

Remark: Because of the similarity between the FNT and its inverse transform,
they can be computed using the same FFT algorithm. The two trans-
forms differ only in the factor ��N and the sign of the exponent of �.

Radix-4 Algorithms

If b � log�N is even we haveN � �b�� and thus the transformcan be computed
using a radix-4 FFT algorithm. Such an algorithm can be obtained by repeat-
edly dividing the input sequence into four parts in a manner that is similar
to the procedure for deriving a radix-2 algorithm [74, Ch. 9.3.4]. The radix-4
FFT algorithm consists of b�� stages of N�� butterflies. The four outputs, say

��
��
�, and
�, of a decimation-in-time butterfly can be expressed in matrix
form as

�
BB

�

�

�

�

�
CCA �

�
BB

� � � �
� �N�� 	�N��
� 	�N��
�

� 	�N��
� 	�N��
� 	�N��
	

� 	�N��
� 	�N��
	 	�N��
�

�
CCA
�
BB

����
�r��
��r��
��r��

�
CCA 	mod Ft
�

for some r and where ��� ��� ��, and �� and the four butterfly input data. Be-
cause the order of �N�� modulo Ft is 4 we get the congruences 	�N��
� �
	�N��
	 � �� 	mod Ft
, 	�N��
� � ��N�� 	mod Ft
, 	�N��
� � � 	mod Ft
,
and 	�N��
� � �N�� 	mod Ft
. In order to reduce the number of additions,
the butterfly is usually derived from the following factorised twiddle-factor
matrix:

�
BB

� � � �
� �N�� ��N�� ��N��

� ��N�� ��N�� �	N��

� ��N�� �	N�� ��N��

�
CCA �

20 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

��

��

��

��

�

�

�

�

�r

��r �N��

��r

Figure 2.3: Butterfly of a radix-4 decimation-in-time FFT.

�

�
BB

� � � �
� � � �N��

� � �� �
� � � ��N��

�
CCA
�
BB

� � � �
� � �� �
� � � �
� � � ��

�
CCA 	mod Ft
�

A radix-4 decimation-in-time butterfly is shown in Figure 2.3. The two-stage
structure of the butterfly is due to the factorisation of the twiddle-factor ma-
trix. Note that the input is in bit-reversed order, because then the computa-
tions can be carried out in place.

For the ordinary DFT, which has kernel � � e�j���N , we have �N�� � �j (see
[74, Eq. 9.3.44]).

Let � � �N�� 	mod Ft
. It can be proved that for prime Ft � �, the four in-
congruent solutions to the congruence �� � � 	mod Ft
 are �� and ��m��

modulo Ft. By Theorem 8.8 in [84] there are
	�
 � � incongruent integers of
order 4 modulo a prime Ft. Obviously, the integers

�� � �m�� 	mod Ft

�� � ��m�� � ��m�� 	mod Ft

are these two incongruent integers. In particular, we see that for the FNTs of
length N � �m and N � �m and with kernels � � � and � � p� 	mod Ft
,
respectively, we have � � �N�� � �m�� 	mod Ft
.

We showed earlier that for composite Ft, the maximum radix-2 FNT length
is at least �m � �t��. �� Because the order of 2 modulo Ft is �m � �t�� it

��For most compositeFt with at least one factor known, the maximum length is exactly �m.

2.3. The Fermat Number Transform 21

follows that for all transform lengths N � �b, where � 	 b 	 t � �, we have
ordFt �

�m�N � N . Therefore, for every such transform length there exists a ker-
nel which is a power of two.

Hence, by choosing a suitable kernel �, the radix-4 butterfly multiplication by
�N�� can simply be carried out as some binary shifts modulo Ft for every Fer-
mat number Ft and every possible transform length in ZFt. Therefore, using
three general multiplications and eight additions modulo Ft per butterfly, a
radix-4 FNT can be computed using � � 	N��
 � log�N � 	�N��
 log�N mul-
tiplications and � � 	N��
 � log�N � N log�N additions modulo Ft.

Compared with the radix-2 FNT algorithm, the radix-4 algorithm requires 25%
less multiplications but the same number of additions, i.e. we get the same
complexity reduction as is obtained for the “ordinary” radix-4 DFT (see [74,
Ch. 9.3.4]).

By using appropriate decimating procedures, it is also possible to define fast
algorithms for radix-r transforms for r � �. These algorithms are quite simi-
lar to the radix-2 and radix-4 algorithms, and they do not result in a significant
reduction of the number of arithmetic operations. Therefore, they are not con-
sidered here.

The Split-Radix Algorithm

The split-radix algorithm, which is due to Duhamel and Hollman [40], [41], is
presently the most efficient radix-2 FFT algorithm. Thedecimation-in-frequen-
cy algorithm is derived by using a radix-2 decomposition of the even-indexed
terms and a radix-4 decomposition of the odd-indexed terms. In the first stage,
the even-indexed terms are inputs to a radix-2 transformof lengthN�� and the
odd-indexed terms are again decomposed into two sequences of length N��,
which becomes the inputs of two radix-4 transforms. The even-indexed terms
are given by

X�k �
N����X
n��

xn � xn�N��

�
��kn 	mod Ft
�

for k � �� �� � � � � N�� � � and the two radix-4 transforms are given by

X�k�� �
N����X
n��

�

xn � xn�N��

�
� �N��

xn�N�� � xn��N��

��
�n��kn

and

X�k�� �
N����X
n��

�

xn � xn�N��

�� �N��

xn�N�� � xn��N��

��
��n��kn�

22 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

��

��

�

�

��

��

��

��
�N��

�n

��n

Figure 2.4: Butterfly of a split-radix decimation-in-frequency FFT.

for k � �� �� �� � � � � N��� � and where both congruences are reduced modulo
Ft. As shown on page 21, in ZFt the factor �N�� equals some power of two.
Thus, using a binary coded element representation, multiplication by �N�� can
be carried out as binary shifts modulo Ft. Figure 2.4 shows a butterfly of a
split-radix decimation-in-frequency FFT.

In the first stage of the algorithm, the input variables ��� ��� ��, and �� are
xn� xn�N��� xn�N��, and xn��N��, respectively, for some n. The output variables
�� and �� are used to calculate some of the even-indexed terms of the trans-
formed sequence, and
� and
� are used to calculate the terms with odd in-
dices of the forms �k � � and �k � �, respectively, for some k.

Because the split-radix algorithm is a kind of mixture of a radix-2 and a radix-4
FFT, it does not progress stage by stage. Therefore, the indexing will be more
complicated compared with for example a fixed-radix FFT algorithm. It has
been shown that a split-radix FFT can be computed using in the order of
	N��
 log�N multiplications and N log�N additions for great transform
lengths N (see for example Proakis et al. [75, Ch. 2.14] or Skodras and Con-
stantinides [94]).

As seen above, the only arithmetic operations that are involved in the compu-
tation of the FNT and its inverse transform are addition, subtraction (i.e. nega-
tion followed by addition), multiplication by powers of the transform kernel,
and multiplication by powers of two modulo Ft. In this thesis we mainly fo-
cus on these arithmetic operations and others that may be needed in connec-
tion with the transformcomputation. Examples of such operations are general
multiplication, the discrete logarithm, and exponentiation modulo Ft. We do
not care about which FFT algorithm is used (radix-2, radix-4, split-radix, or

2.4. Element Representation 23

Integer Normal binary
coded repr.

�m 1000 � � � 000
�m � � 0111 � � � 111
�m � � 0111 � � � 110
�m � � 0111 � � � 101

� �
� �
� �
3 0000 � � � 011
2 0000 � � � 010
1 0000 � � � 001
0 0000 � � � 000

Table 2.3: The normal binary coded integer representation.

any other). We are only interested in the arithmetic operations involved in the
computation of the transform.

2.4 Element Representation

We mentioned in Section 2.1 that we represent the elements of the Fermat in-
teger quotient ringsZ�m�� as binary coded integers and use binary logic circuits
in the VLSI architectures for the arithmetic operations inZ�m��. It is clear that
m�� bit positions are needed to represent the �m�� elements ofZ�m��. Thus,
there are

�m�� � 	�m�� � �
 � 	�m�� � �
 � � � 	�m � �
 � �m� �z �
�m�� factors

�
�m���

	�m � �
�

different ways of representing these elements. The very well known normal
binary coded representation of integers is illustrated in Table 2.3.

This representation, however, may not be the best one with respect to the com-
plexity and performance of the VLSI architectures for arithmetic operations in
Z�m��. Depending on how complexity and performancearedefined, it may re-
quire a great effort to find the ’optimum’ representation among the
�m����	�m � �
� possible ones, e.g. there are about � � ���� ways to represent
the 5-bit binary coded integers of Z����. We therefore choose to restrict our-

24 Chapter 2. Binary Arithmetic in the Fermat Integer Quotient Ring

selves to consider a subset of representations that can be expressed as elemen-
tary functions of the normal binary coded representation.

The first form of representation considered is the normal binary coded repre-
sentation. In Chapter 5 we study VLSI architectures for arithmetic operations
using this representation. Linear coordinate transformations of the normal bi-
nary coded representation and the corresponding VLSI architectures are con-
sidered in Chapter 6. Finally, in Chapter 7 we particularly focus on the polar
representation, which can be regarded as a nonlinear coordinate transforma-
tion of the normal binary coded representation.

Chapter 3

Applications

The Fermat number transform (FNT) is one of the most useful and powerful
number theoretic transforms. As mentioned in Chapter 1, in the beginning of
the 1970’s the interesting properties of the FNT attracted several researches. In
this chapter we describe some of the main applications of the FNT. In particu-
lar, we consider digital convolution and correlation in Fermat integer quotient
rings and Reed-Solomon codes over Fermat prime fields.

There are also other applications of the FNT. Siu and Constantinides [87] have
shown that the number of multiplications required to compute the discrete
Fourier transform can be reduced by using number theoretic transforms. In
[88] they particularly consider the FNT for reducing the complexity of com-
puting the discrete Fourier transform. Truong et al. [102] later considered the
computation of the discrete Fourier transform using the FNT in a quadratic
residue Fermat number system. Several other researchers have also studied
the computation of the discrete Fourier transform using number theoretic
transforms.

Boussakta and Holt have shown that the discrete Hartley transform can be
calculated using the FNT [20, 21]. In [22], the same authors showed how to
compute the Walsh-Hadamard transform using the FNT and vice versa. Two
decades ago, Rader [78] discussed number theoretic transforms for use in a
block-mode image filtering scheme. A microprocessor-based architecture for
block-mode image filters using the FNT was later implemented in VLSI by
Shakaff et al. [90].

25

26 Chapter 3. Applications

Boussakta et al. [23] showed that the FNT of periodic data has a regular struc-
ture with many transform components equal to zero. Any small imperfection
in the periodic data significantly changes the high regularity of its FNT. As a
consequence of the results in [23], the authors conclude that the FNT is highly
applicable in areas like for example the detection of errors in maskmaking for
integrated circuit design and defect detection in industrial inspection. They
also suggest applications for image compression and data storage, where only
the nonzero elements of the FNT of periodic data need to be stored together
with their locations.

3.1 Convolution and Correlation of Real Integer

Sequences

Discrete convolution and correlation are two very common operations in dig-
ital signal processing (see for example Blahut [17]). The cyclic convolution of
two sequences fxngN��n�� and fhngN��n�� is given by the sum

yn �
N��X
k��

xkhn�k �modN� � n � �� �� � � � � N � � (3.1)

Correlation and convolution are computationally equivalent. The cross-corre-
lation of two sequences fxng and fhng is obtained by convolving fxng with
fh�ng.
Like the discrete Fourier transform the FNT also has the cyclic convolution
property, i.e. the transform of a cyclic convolution of two sequences is equal
to the product of their transforms. Because the method of computing the con-
volution sum using transform calculations is often faster than the direct com-
putation of the sum, the procedure is sometimes called fast convolution. The
method is particularly efficient when the sequence length is highly composite,
because then some FFT algorithm can be applied to compute the transform.

It is often possible – and sometimes preferable – to let computations in one
algebraic field be carried out in another field, which is then usually called a
surrogate field. Depending on the application in question, this computational
procedure may also apply to rings. A computation of interest where this is
applicable is convolution via transform calculations. Using a computer or a
digital signal processor, these calculations are often carried out in the complex
field C , i.e. the discrete Fourier transform is used. However, if the sequences
that are to be convolved consist of real integers, the convolution can instead be
computed in an integer quotient ring Zq, for some suitable modulus q [2].

3.1. Convolution and Correlation of Real Integer Sequences 27

There are some advantages of computing the transforms in Zq rather than in
the complex field: A complex multiplication requires several real multiplica-
tions while a multiplication inZq is a single and often simpler operation (inte-
ger multiplication). The computation precision is also improved since compu-
tations in a finite ring are exact. Another very important consequence of the
simplified arithmetic is that, depending on q, the complexity and performance
of the hardware implementation of a transform in Zq can be smaller than the
complexity and performance of the corresponding implemented transform in
C .

The modulus q must be chosen such that every element xn, hn, and yn, for n �
�� �� � � � � N ��, is contained in the ringZq. Because of the congruence relation
modulo q in the ringZq, negative integers are represented as positive integers,
in accordance with the congruence �x � q � x 	mod q
.

In the following example we illustrate how discrete cyclic convolution of real
integers can be computed in an integer quotient ring.

Example 3.1 If the convolution of two positive real integer sequences x and h
are to be carried out in the surrogate field Zq, then the greatest integer in the
convolution sum must be less than the modulus q, i.e. q must not exceed the
dynamic rangeof yn (andxn andhn). Forx � f�� ��� �� �g andh � f
� �� �� ��g,
by (3.1) we can compute the convolution y � f���� ��
� ���� ���g. The prime
modulus q � ��� � �
 � � is greater than the maximum value of y. Conse-
quently, this convolution can be carried out in Z����. Furthermore, because
the sequences involved have length 4, which divides ��� � � � ���, the con-
volution y can be obtained by using FNT calculations inZ����.

Because the order of the integer 16 is 4 modulo �
 � �, it can be chosen as the
kernel � of an FNT of length N � �. Thus, the 4-point FNT of x is

Xk �
�X

n��

xn��
kn mod � (mod 257) � k � �� �� �� �

with a similar relation for the transform of h. Using matrix notations we have

�
BB

X�

X�

X�

X�

�
CCA �

�
BB

� � � �
� �� ��� ���
� ��� � ���
� ��� ��� ��

�
CCA
�
BB

�
��
�
�

�
CCA �

�
BB

��
��

���
���

�
CCA 	mod ���

28 Chapter 3. Applications

and �
BB

H�

H�

H�

H�

�
CCA �

�
BB

��
��
�

���

�
CCA 	mod ���
�

Each component Yk of the FNT of y is then obtained by multiplying Xk byHk

modulo 257, which gives�
BB

Y�
Y�
Y�
Y�

�
CCA �

�
BB

��
���
���
��

�
CCA 	mod ���
�

Regarding the inverse transform we need to know N�� and ���. From the
congruences � � �
� � � 	mod ���
 and �� � ��� � � 	mod ���
 we get
N�� � ��� � �
� 	mod ���
 and ��� � ���� � ��� 	mod ���
, respectively.
Hence, the inverse transform is�
BB

y�
y�
y�
y�

�
CCA � �
� �

�
BB

� � � �
� ��� ��� ��
� ��� � ���
� �� ��� ���

�
CCA
�
BB

��
���
���
��

�
CCA �

�
BB

���
��

���
���

�
CCA 	mod ���
�

which agrees with the convolution y obtained when using the conventional
convolution sum in (3.1). �

Let x be the input sequence of a linear time-invariant system with impulse
response h. Let A be the dynamic range of xn, i.e. we have j xn j 	 A for
n � �� �� � � � � N � �. If xn can take on negative numbers, the convolution sum
yields

j yn j 	 A

N��X
k��

j hk j 	 q � �

�
�

and thus

A 	 q � �

�
PN��

k�� j hk j
�

If A is also the dynamic range of hn and the computations are carried out in
Z�m��, we get j hk j 	 A, q � �m � �, and N � �b. Thus, we have

A 	
r

�m � � � �

� � �b � �
m�b��

�

3.1. Convolution and Correlation of Real Integer Sequences 29

b m
2 4 8 16 32 64

1 1 2 8 128 ��� ���

2 0 1 4 64 ��� ���

3 – 1 4 64 ��� ���

4 – 0 2 32 ��� ���

5 – – 2 32 ��� ���

6 – – 1 16 ��� ��

7 – – 1 16 ��� ��

8 – – 0 8 – ��

9 – – – 8 – –
10 – – – 4 – –
11 – – – 4 – –
12 – – – 2 – –
13 – – – 2 – –
14 – – – 1 – –
15 – – – 1 – –
16 – – – 0 – –

Table 3.1: The dynamic range of xn and hn, for which the corresponding sequences
are of lengthN � �b. InZ�m�� we have � 	 b 	 m form � �� �� �� �� and 16,
and �b 	 �m form � �� and m � ��.

which implies that the maximum dynamic range is

A � b�m�b��� c�

i.e. the greatest integer less than or equal to ��m�b�����. Table 3.1 shows the dy-
namic range of xn and hn for some values ofm and b. Because of the relatively
poor dynamic range for small m, digital filtering of real integer sequences is
generally considered to be applicable primarily for m � ��.

A common situation in filtering applications is the filtering of a relatively long
sequence by an FIR filter of much shorter length. This involves a linear con-
volution of great length which can be impractical to compute. There exist,
however, two well known techniques that simplify the computation of great-
length linear convolutions: Using the overlap-add method or the overlap-save
method, the longer sequence is sectioned into shorter length subsequences that
are cyclically convolved with the impulse response [79, Ch. 2.25]. Truong et
al. [103, 107] have devised a general overlap-save method for filters of arbi-
trary length using the Fermat number transform.

30 Chapter 3. Applications

An important application of the cyclic convolution property is multiplication
of (large) integers. Let u and v be two m-bit normal binary coded integers, i.e.
u �
Pm��

n�� un�n and v �
Pm��

n�� vn�n where un� vn � Z�. The procedure for
multiplying u by v is equivalent to the convolution 	u
 v
n. The direct con-
volution requires in the order of m� bit operations. If m is a power of 2, this
complexity can be reduced to approximatelymlog� � bit operations by using the
Karatsuba-Ofman algorithm [55], [4, Ch. 2.6].

The most efficient algorithm for multiplication of large m-bit integers, where
m is a power of two, is due to Schönhage and Strassen [86]. The algorithm
multiplies twom-bit normal binary coded integers u and v, wherem � �t. The
output is the 	m� �
-bit product of u and v modulo the Fermat number Ft �
�m � �. The product is computed using the FNT inZFs for s � 	t� �
�� if t is
odd and for s � 	t��
�� if t is even. The algorithm, which requires in the order
of m � log�m � log�	log�m
 bit operations , is described in English by Aho et al.
in [4, Ch. 7.5].

3.2 Decoding of Reed-Solomon Codes

Denote by GF 	q
 an algebraic finite field of order q.� The Galois field Fourier
transform (GFT) can be regarded as a generalisation of the well known discrete
Fourier transform. TheGFT of the vector v � 	v�� v�� v�� � � � � vN��
overGF 	q

is the vectorV � 	V�� V�� V�� � � � � VN��
, where

Vj �
N��X
i��

vi�
ij � j � �� �� � � � � N � ��

The transform kernel � is an element of GF 	qn
 of order N , where N divides
qn� � for some positive integer n, see for example Blahut [16, Def. 8.1.1]. The
inverse GFT of V is given by

vi � N��
N��X
j��

Vj�
�ij � i � �� �� � � � � N � ��

where the multiplicative inverse N�� is computed modulo the characteristic p
of the field GF 	q
. Each transform component Vj is an element of GF 	qn
.

�The only finite field we have considered so far is the prime fieldGF �p�, where p is a prime
number. Because the setZp � f
� �� �� � � � � p � �g of integers modulo the prime p forms the
prime field GF �p� under addition and multiplication modulo p, the prime field of order p is
often denotedZp.

3.2. Decoding of Reed-Solomon Codes 31

Let C � 	C�� C�� C�� � � � � CN��
 be the GFT of a Reed-Solomon codeword c �
	c�� c�� c�� � � � � cN��
 of length N . For Reed-Solomon codes the exponent n in
the GFT computation equals one, i.e. the transform kernel � is an element of

GF 	q
. The codeword polynomial c	x
 �
PN��

i�� cix
i, which is associated with

the codeword c, has �t consecutive powers of � as its roots, where t is the num-
ber of errors that can be corrected by the code. Thus, we have

c	�u�l
 �

N��X
i��

ci	�
u�l
i � Cu�l �mod N� � �

for some u and l � �� �� � � � � �t � �. Consequently, each cyclically contiguous
transform component Cu�l �mod N� equals zero. This property may be used to
construct Reed-Solomon codes in the transformdomain: The encoder first sets
�t consecutive� components ofC equal to zero. The remainingK � N��t po-
sitions of C are filled with message symbols. Next, the resulting transform is
inverted to produce the desired codeword c. Depending on the choice of q,N ,
and K , this procedure may yield a computational complexity that is smaller
than the complexity of the ’direct’ computation of the codeword, i.e. by means
of polynomial multiplication in the time domain.

The decoding procedure at the receiver’s end may also take place in the trans-
form domain (see Blahut [16, Ch. 8–9]). The receiver first computes the GFT
vectorR from the received vector r � c�e, where e is an error vector of length
N . In the transform domain we have the relation R � C � E. The transmit-
ted codeword c can be obtained as the inverse GFT of C � R � E. When
the encoding take place in the transform domain, the message symbols may
be obtained directly fromC. Because the encoder has set �t consecutive posi-
tions of C equal to zero, E equals R in these positions. The �t corresponding
components of R are called the syndromes of r. If not more than t errors have
occurred, the remaining N � �t unknown components of E can be recursively
computed from the syndromes using for example the Berlekamp-Massey al-
gorithm.

When q is a Fermat prime and n equals one, the FNT in the prime field ZFt;
t � �� �� �� � is obtained as a special case of the GFT. Justesen [54] was among
the first researchers to consider Reed-Solomon codes over Fermatprimefields.
He stated that the decoding complexity of such codes can be reduced if the
FNT is used to calculate the syndromes.

Reed, one of the originators of the Reed-Solomon codes, have coauthored sev-
eral articles concerning fast decoding of Reed-Solomon codes using the FNT.

�Or cyclically contiguous.

32 Chapter 3. Applications

For example, in [80], Reed et al. show how to use the FNT and continued frac-
tions in the decoding procedure. In [82], Reed et al. conclude that adecoder for
Reed-Solomon codes of length �t�� over GF 	Ft
 using an FNT is simpler than
corresponding decoders for a code of length �t�� using a GFT in GF 	�t
. Liu
et al. [63] considered Reed-Solomon codes over GF 	F�
 for use in space com-
munication applications. In a recent article by Shiozaki et al. [91], the authors
consider a Reed-Solomon code as a special case of a redundant residue poly-
nomial code. They present a fast algorithm for decoding Reed-Solomon codes
over GF 	Ft
 using the FNT and the Euclidean algorithm.

Chapter 4

The VLSI Model

We use complementary metal-oxide-semiconductor (CMOS) circuits in the
VLSI architectures presented in this thesis. The CMOS technology offers high
packing density, high yield, wide noise margin, low power dissipation, and
low cost. Because of these attractive properties, CMOS has become one of the
most important VLSI technologies of today (see for example Weste and Esh-
raghian [113, Ch. 1]). The VLSI model adopted in this thesis (and defined in
the present chapter) is only valid for CMOS and nMOS circuits.

In integer quotient rings, all arithmetic operations involve modulus reduction.
When performing modulus reduction of a binary coded integer, the value in
each bit position of the reduced binary coded integer may depend on the value
in every bit position of the original binary coded integer. Therefore, depend-
ing on the modulus, bit-serial architectures are often impracticable for arith-
metic operations in integer quotient rings. This particularly applies to integer
arithmetic operations modulo a Fermat number �m � �. Most of the architec-
tures presented in the subsequent chapters are based on bit-parallel transmis-
sion and processing of thedata. Themain exceptions are the bit-serial/parallel
multipliers in Sections 5.1.5, 6.3.6, and 7.6.6 and the bit-serial multipliers in
Sections 7.6.5 and 7.6.6.

33

34 Chapter 4. The VLSI Model

4.1 Introduction

In the VLSI circuit design process it is important to consider aspects like floor-
planning and interconnections. These aspects play a major role when mini-
mising parameters like clock skew, noise, and power dissipation (see the book
of Bakoglu [14]). Over the years, two of the main goals for integrated circuit
designers have been to minimise the area and maximise the performance of
the implemented circuits. During the last years, there has also been an in-
creasing interest in low-power digital CMOS design, see Chandrakasan et al.
[30, 31] and Liu [61]. One reason for this is the increasing number of portable
equipment requiring low power. Another reason is that the scaling of digital
CMOS circuits results in a higher power consumption.

In Chapters 5, 6, and 7 we investigate different architectures for arithmetic op-
erations. These architectures are mutually compared mainly with respect to
their area complexity and time performance. The chip area occupied by the
corresponding implemented circuit is denoted by A and the time required to
perform the operation is denoted by T . In order to take both chip area and
computation time into account, we also consider the area-time performance
AT � of each architecture. The AT � performance is a cost function to be min-
imised. Thompson [100] is one of the originators of this area-timeperformance
measure. In his paper of 1979 [100] Thompson proposed a VLSI model of com-
putations. Based on this model, he derived a lower boundN� on theAT � per-
formance of computing the discrete Fourier transform of length N , i.e AT � �
�	N�
 for such a computation.� Brent and Kung [26] also did some basic
works on VLSImodels and complexity. Theyderived the lower boundAT �� �
�	N���
, for � 	 	 	 �, on the performance ofN -bit binary multiplication. A
survey of computational algorithms and their VLSI implementation is given
by Ullman [104]. For example, in Chapter 2 of [104], Ullman gives an intro-
duction to the area of AT � performance.

As indicated above, two very important steps in the VLSI design process are
floorplanning and the routing of interconnections and communication paths.
Interconnections usually occupy a large part of the chip, typically more than
fifty percent of the total chip area. The placement of the different modules of
the chip is crucial to the interconnection delay. Thewire lengths betweenmod-
ules and within each module should be as small as possible in order to get a
small interconnection delay.

�By a�m� � O �b�m�� (or “a�m� is O �b�m��”) we mean that, for increasing m, the function
a�m� does not grow faster than the function b�m�. The notation a�m� � � �b�m�� (or “a�m� is
� �b�m��”) is used to bound the growth rate of a�m� from below. The notations O and � are
conventionally used in the area of VLSI complexity, see for example Ullman [104].

4.1. Introduction 35

The choice of VLSI model differ between researchers. The modelling of the
chip area is quite uncontroversial. The main difference lays in the modelling
of the interconnection delay. The time for a signal to propagate along a wire
of length l is usually modelled as either O 	�
 (synchronous model), O 	log l

(capacitive model), O 	l
 (transmission line model), or O 	l�
 (RC model), see
Bilardi et al. [15] and Bakoglu [14, Ch. 5-6]. The capacitive model, adopted
by for example Thompson, is appropriate for short wires and the RC model
for long wires. It is, however, common to divide long wires into shorter sub-
sections using repeaters (buffers). These repeaters have the effect of reducing
the interconnection delay fromO 	l�
 toO 	l
, see for example Bakoglu [14, Ch.
5.4.2].

Because device dimensions are getting smaller and chips are getting larger, the
lengths of on-chip wires are increasing. Therefore, the interconnection delay
is more and more becoming a major factor when determining the overall cir-
cuit performance. In this thesis we assume that interconnection delays within
each module areO 	�
, i.e we adopt the synchronous model. For large systems,
the synchronous model gives a gross simplification of the true interconnection
delay. Because in general the architectures studied here do not involve global
routing (interconnections betweenmodules on the chip) our delay estimations
should not, however, considerably deviate from the true intramodular delays.

If we go a couple of steps further in the design process and consider the imple-
mented circuit, then it is simpler to estimate the delays caused by the wiring.
It is also simple to estimate the true interconnection delay after the floorplan-
ning and routing steps of the design process. One way of estimating the aver-
age lengths of the chip interconnections is to partition the circuit design into
different sections and calculate the number of connections between the sec-
tions. The average lengths can then be modelled by using Rent’s rule, which
is described by, for example, Bakoglu [14, Ch. 9.8.1].

Adopting the synchronous model for the interconnection delays does not
mean that we disregard the wiring effects. Our effort is to design architectures
with a high degree of regularity and with wires only connecting neighbouring
gates.

In general, the architectures presented in this thesis do not contain logic cir-
cuits for generating control signals. For example, every clock signal is assumed
to be available wherever needed and without any clock skew involved.

The phrase “low power” can be found in many current publication titles. Sev-
eral aspects of low power digital CMOS design can be found in the recently
published PhD thesis by Liu [61]. For example, in his thesis Liu considers low

36 Chapter 4. The VLSI Model

power CMOS device design, low power circuit and system techniques, and
power estimations in digital CMOS VLSI chips.

In this thesis, we do not give estimates of the power dissipated by the investi-
gated circuits. However, with a low-power design strategy in mind, we often
follow the guidelines suggested by Liu [61] and others when choosing clock-
ing strategy and combinational logic circuits.

4.2 Complexity and Performance

4.2.1 The Delay Model

Over the years, the linear switch-level RC model for CMOS transistors has
been adopted by many researchers when investigating the timing properties
of digital VLSI circuits. We refer to the articles by Ousterhout [70] and Rubin-
stein et al. [85], and Chapter 1 in Mead’s and Conway’s book [66]. A linear
switched RC model for the nMOS transistor is shown in Figure 4.1.

For the sake of simplicity, all nMOS and pMOS transistors are modelled to
have the same characteristics, e.g. they have equal size and the pull-down and
pull-up times of the nMOS and pMOS transistors, respectively, are the same.
TheRC model for the pMOS transistor is similar to the nMOS transistor model
in Figure 4.1. When a transistor is off, the switch is open and the transistor acts
only as a capacitive load to the rest of the circuit. The variables Cg,Cd, Cs, and
R� are the gate, drain, and source capacitances, and the channel resistance, re-
spectively.

A consequence of modelling the non-linear MOS transistors of a circuit as lin-
ear switchedRC circuits is that the estimated circuit delays aremore or less er-
roneous. A circumstance which is often neglected is the fact that the transistor
capacitances and the channel resistance are actually functions of voltage. In-
accuracies in delay computations may also occur because of the difficulties in
including input waveform effects. Nevertheless, for most RC models the de-
lay estimations do not deviate more than 20 percent from SPICE simulations,
see the articles by Ousterhout [70], Sundblad and Svensson [96], and Heden-
stierna and Jeppson [49].

In this thesis we adopt the Penfield-Rubenstein model [85] in which the input
voltages are modelled as step waveforms and transistors are modelled as the
transistor in Figure 4.1. The delay calculation of a circuit is based on Elmore’s

4.2. Complexity and Performance 37

D

(b)

S

Cg

Cs

Cd

(a)

R�

G

D

S

G

VG � �

Figure 4.1: Model of an nMOS transistor. (a) Symbolic description. (b) A switched
linear RC model of the transistor. The transistor is switched on when the gate
voltage VG is high.

delay model for an RC tree without side branches, i.e. an RC chain [43], [85].
For example, the Elmore delay Td from the input to the output of theRC chain
in Figure 4.2 equals

Td �
�X

i��

�
iX

j��

Rj

�
Ci

� R�C� � 	R� �R�
C� � 	R� �R� �R�
C� � 	R� �R� �R� �R�
C��

i.e. each capacitor contributes to the delay as the product of the capacitance and the
total resistance between the capacitor and the signal source (or ground)�. The delay
is defined as the time from the 50-percent level of the input signal waveform
to the 50-percent level of the output signal waveform.

Without considering wire capacitances, the capacitive loads in different nodes
of most of today’s digital CMOS combinational logic circuits are dominated
by gate capacitances [113, Ch. 4.3.4], [49]. The main reason for this is that the
number of gates connected to a node is often several times greater than the
number of drains and sources connected to the node. Furthermore, according
to Weste and Eshraghian [113, Ch. 4.3.4] and others, the gate capacitance is

�Each capacitor is assumed to be charged (or discharged) through all resistors between the
capacitor and the signal source (ground).

38 Chapter 4. The VLSI Model

R�

C� C�C�C�

R� R� R�

Figure 4.2: An RC chain.

typically several times greater than the drain and source capacitances. Due to
these facts and in order to obtain a measure of time complexity on a simple
form, we generally disregard the effects of the drain and source capacitances
on the delays. Thus, the only capacitances and resistances that are involved
in our delay computations are gate capacitances and transistor channel resis-
tances, respectively.

4.2.2 Area and Time Complexities

Denote by A the chip area occupied by an implemented circuit. Because the
CMOS technology changes so fast, it is essential to have a measure of the chip
area that is technology-independent. The area complexities of the architec-
tures considered in this thesis are given in terms of the sizes of the architec-
tures.

Definition 4.1 The size of an architecture is the number of CMOS transistors that
form the architecture and is denoted by C.

Consequently, with equally sized transistors the chip area A occupied by the
implemented circuit, not including the wire area, is proportional to C. If the
total circuit area is to be determined, the circuit interconnections must also be
considered. Even though the area occupied by these interconnections is not
considered here, we still strive to design modular and regular architectures
in order to reduce the interconnection area and simplify the interconnection
work.

The clock frequency of a circuit is related to the length of its critical path. The
critical path is the longest path along which signals are pulling up and pulling
down circuit transistors, or propagating through them, during one clock inter-
val. The critical path usually starts and ends with a clocked latch or flip-flop.
Thus, the minimum clock cycle time of a circuit is proportional to the length of

4.2. Complexity and Performance 39

its critical path. Suppose the circuit needs m clock cycles to perform its oper-
ation. Then, the computation time is proportional to m times the critical path
length.

When determining the critical path, we use the same strategy as the one used
in the timing verification program Crystal, which is described by Ousterhout
in [70]. The circuit to be examined is decomposed into chains of transistors
called stages. A stage runs from the supply voltage source or ground through
a number of transistors to the gate inputs of some other transistors.

Definition 4.2 Let s denote a certain stage of a circuit and let Ts denote the delay of
that stage. Then, the lengthLs of stage s is the ratio of Ts and the time constantR�Cg,
i.e.

Ls �
Td

R�Cg
�

where R� and Cg are the linearised MOS transistor channel resistance and gate ca-
pacitance, respectively.

The delay of a stage is calculated as Elmore’s delay of the RC chain model of
the stage. The critical path through a circuit is formed by an ordered set of
stages, where each stage gives a separate contribution to the total circuit delay.

Definition 4.3 The lengthL
CP

of the critical path (CP) equals the sum of the lengths
of the stages that forms the critical path.

One of the transistors in each stage is called the trigger. The trigger is the last
transistor to turn on in a stage.

Consider, as an example, the circuit in Figure 4.3. This circuit has no relevance,
except for being an example. The CP through the circuit is the ordered set
fs�� s�� s�� s�g of stages. These stages, which become active for in � �, are
signified by dotted lines in the figure. TheRC circuits in the bottom of the fig-
ure correspond to the equivalent RC models of the four stages s�� s�� s�, and
s�. The total delay Td of the circuit is approximately equal to the sum

Td � T�� T� � T� � T� � R� � �Cg � �R� � �Cg �R�Cg � 	R� �R�
 � nCg� (4.1)

where T�� T�� T�, and T� are the delay contributions of the stages s�� s�� s�, and
s�, respectively and where n is the fan-out of the circuit, i.e. the number of tran-
sistor gates that are driven by the circuit output signal. The trigger of stage
s��s��s� is the transistor in the end of stage s��s��s�, respectively. By Defini-
tions 4.2 and 4.3, the length of the CP through the circuit in Figure 4.3 equals
LCP � Td�R�Cg.

40 Chapter 4. The VLSI Model

s�

�R�

�Cg

s�

out

Vdd Vdd

R�

s�

s�

in

s�

s�

R�

R�

�Cg

s�

R�

Cg nCg

s�

R� �R�

nCg

Figure 4.3: An example of a circuit (the one within the dashed box) that has CP
length LCP � �r� � � � n	r� � �
 and size C � �. Here, the output load is
strictly capacitive; n is the circuit fan-out. The RC equivalent circuits of the
stages s�, s�, s�, and s� are shown in the bottom of the figure.

Definition 4.4 We define the normalised resistance r of a resistor with resistance
R as the ratio

r �
R

R�
�

where R� is the linearised MOS transistor channel resistance.

By letting R� � r�R� and R� � r�R� we get, from (4.1), the CP length LCP �
�r� � � � n	r� � �
 for the circuit in Figure 4.3. Hence, the time from the ris-
ing/falling of the input signal to the rising/falling of the output signal is pro-
portional to LCP � �r� � � � n	r� � �
. We also note that the circuit has size
C � �, because it comprises 8 transistors.� The area-time performance AT � of
the circuit is proportional to CL�

CP
� � � 	�r� � � � n	r� � �

�.

�In this example we do not consider the area of the two resistors R� and R�.

4.2. Complexity and Performance 41

The architectures of this thesis mainly comprise basic building blocks like in-
verters, transmission gates, 2-input gates, adder elements, and registers. In
the following Section 4.3 we present the sizes and time performances of such
CMOS logic circuits, with respect to the adopted delay model. The size of an
architecture was defined above as the number of nMOS and pMOS transistors
that form the circuit. We describe the time performance of an architecture in
terms of its fan-in, internal CP length, and output normalised resistance:

Definition 4.5

1. The fan-in f of a circuit is the number of transistor gates of the circuit that are
driven by the circuit input signal.

2. An internal stage of a circuit is a stage whose associatedRC model does not de-
pend on how the circuit is connected to other circuits. The internal CP length
L
CP

is the sum of the lengths of the internal stages.

3. The output normalised resistance r is the total normalised resistance from
the circuit output node back to the supply voltage source (or ground).

The length of the CP is used as a measure of time performance. When char-
acterising the CP through a circuit, it is partitioned into three parts, in accor-
dance with Definition 4.5-1, 2, and 3:

1. The first part of the CP is the input stage of the circuit. The delay of the in-
put stage depends on the total capacitance ninCg at the input node, where nin is
the fan-out of the preceding circuit that has this input stage as its output stage.
Henceforth, we describe the input stage of a circuit in terms of its contribution
to nin, i.e. we only state the fan-in f of the circuit.
For example, the fan-in of the circuit in Figure 4.3, whose input stage is s�,

equals 2.

2. The second part of the CP is the set of internal stages, which is described
by the internal CP length.
For example, the internal stages of the circuit in Figure 4.3 are s� and s�. Their

respective lengths equal � � � � � and � � � � �. Hence, the internal CP length
of the circuit equals � � � � �.

3. The third part of the CP is the output stage. The output normalised resis-
tance determines, together with the subsequent resistive and capacitive loads
of the output stage, the length of the stage. The circuit contribution to this
length is described in terms of its output normalised resistance.
For example, the output stage of the circuit in Figure 4.3 is s� and its output

normalised resistance equals r� � �.

42 Chapter 4. The VLSI Model

Remark: There are architectures in Chapters 5, 6, and 7 for which the delays
of some stages are proportional tom, wherem is the exponent of 2 in the
Fermat number �m � �. These delays are generally due to the fact that
single logic gates or inverters are driving large capacitive loads. For ex-
ample, if a logic gate with output normalised resistance r is driving m
logic gates, each with fan-in equal to f , the delay of that stage is pro-
portional to its length r � fm. The traditional way of reducing the delay
of a stage with a large capacitive load is to properly buffer the stage by
using a number of cascaded drivers (inverters) of gradually increasing
size. Then, the resulting total delay can be bounded to be proportional
to logm, see Mead an Conway [66, Sec. 1.5]. Note, however, that regard-
ing the architectures in Chapters 5, 6, and 7, we generally do not consider the
problem of driving large capacitive loads.

4.3 Basic CMOS Building Blocks

In this section wederive the sizes, fan-ins, internal CP lengths, and output nor-
malised resistances of the inverter, the transmission gate, the two-input multi-
plexer, two-input gates, the single-bit adder, and the register (D flip-flop), with
respect to the VLSI model defined in the previous section. In Section 4.3.6,
these parameters are all listed in a table.

4.3.1 The Inverter and the Transmission Gate

The Inverter

Because the CMOS inverter comprises two MOS transistors, its size equals
Cinv � �. The inverter is shown in Figure 4.4. When the inverter input sig-
nal changes from high to low, the stages marked by the dashed lines in Fig-
ure 4.4(b) are activated. For a low-to-high input signal transition, the stages
marked by the dotted lines are activated. Because the two possible input
stages, as well as the two output stages, are actually equivalent, the inverter
contribution to the CP is simply its fan-in, which equals finv � �, and its output
normalised resistance rinv � �. There is no internal stage.

In Figure 4.4(c), nin is the total number of transistor gate inputs that are con-
nected to the inverter input node and n is the fan-out of the inverter. Further-
more, rin is the output normalised resistance of the circuit prior to the inverter.

4.3. Basic CMOS Building Blocks 43

Input stage

Output stage

(b)(a)

Vdd

(c)

ninCg

R�

rinR�

nCg

Figure 4.4: A CMOS inverter. (a) Symbolic description. (b) Schematic description.
The CP is formed either by the dotted or the dashed stages. (c) SimpleRC equiv-
alents of the stages.

The Transmission Gate

The transmission gate has the same size CTG � � as the inverter. Figure 4.5
shows how the transmission gate is formed by an nMOS and a pMOS tran-
sistor in parallel. The dotted path in Figure 4.5(b) is the output stage of the
CP. This stage is also the output stage of a preceding circuit whose output sig-
nal is the input signal of the transmission gate. The stage runs through one
of the transmission gate transistors. Therefore, the output normalised resis-
tance equals r

TG
� rprior � �, where rprior is the output normalised resistance

of the mentioned circuit prior to the transmission gate. Note that because the
transmission gate is not connected to the supply voltage source or ground, its
equivalent pass transistor resistor is a series resistor (andnot aThevenin equiv-
alent resistor).

If one of the transistors of the transmission gate is the trigger of the output
stage, then the stage that ends up in the gate input of this transistor also be-
longs to the CP; it becomes the input stage. Then, the fan-in fTG equals the
fan-in of the trigger,� i.e. we have fTG � �. Otherwise, the fan-in equals zero.
Like the inverter, the transmission gate has no internal stage.

�In accordance with Definition 4.5-1, by the fan-in of the trigger we mean the number of
gates of a circuit that are driven by the signal on the gate of the trigger.

44 Chapter 4. The VLSI Model

(a)

S

S

(b)

S

S

Figure 4.5: A transmission gate. (a) Symbolic description. (b) Schematic descrip-
tion. The dotted line is the output stage of the transmission gate.

4.3.2 The Two-Input Multiplexer

The two-input multiplexer is simply constructed using two transmission
gates, as shown in Figure 4.6.

Because the multiplexer comprises two transmission gates, each of size 2, the
total size of the two-input multiplexer equals CMUX � �. Like the output stage
of the transmission gate, the multiplexer output stage (s� in Figure 4.6) is also
the output stage of another circuit. Hence, the output normalised resistance of
the multiplexer equals rMUX � rprior � �, where rprior is the output normalised
resistance of the circuit prior to the multiplexer.

Furthermore, if the transmission gate transistor of stage s� is the trigger of
stage s�, stage s� also belongs to the CP. Then, the multiplexer fan-in equals
fMUX � �, because the control signal S in stage s� controls two of the multi-
plexer transistors.� If s� does not belong to the CP, the multiplexer has no in-
put stage and thus its fan-in equals zero. The internal CP length equals zero.

4.3.3 Two-Input Gates

NAND/NOR Gates

Schematic descriptions of the 2-input NAND and NOR gates are given in Fig-
ures 4.7(a�) and (b�) respectively. The NAND and NOR gates have equal size

�If S controls the trigger of the output stage, the fan-in fMUX also equals two.

4.3. Basic CMOS Building Blocks 45

(a) (b)

s�

s�

S

S

S

0

1

S

D�

D�

D�

D�

Figure 4.6: A two-input multiplexer. (a) Symbolic description. (b) Schematic de-
scription. The dotted lines show the two stages of the CP when the signal S � �
opens the trigger of stage s�.

C
NAND�NOR

� �. With respect to the switch-level transistor model, the gate de-
lays are also the same. The RC equivalents of the NAND and NOR gates are
given in Figure 4.7(c). In the worst case delay, D� is the input signal of the trig-
ger of stage s�. Because each of the input signals controls the switching of two
transistors, the fan-in equals f

NAND�NOR
� � for both the NAND gate and the

NOR gate. We also get the same output normalised resistance r
NAND�NOR

� �
for both gates. The NAND and NOR gates have no internal stage.

In a more realistic transistor model, the NAND gate is often preferable to the
NOR gate. For example, if the gates are designed to have symmetric switch-
ing, the area occupied by the NAND gate is smaller than the area required for
the NOR gate, see Uyemura [106, Ch. 6.5.3]. Conversely, for transistors of the
same size, the rise-time and fall-time asymmetry is greater for the NOR gate
than for the NAND gate.

AND/OR Gates

Two-input AND gates and OR gates are usually designed as NAND gates
and NOR gates, respectively, each followed by an inverter. Thus, AND gates
and OR gates have size C

AND�OR
� �. The fan-in f

AND�OR
equals the fan-in

f
NAND�NOR

� � of the NAND (and NOR) gate and the output normalised re-

46 Chapter 4. The VLSI Model

(b�) (b�)

(a�)

Vdd

s�

s�

n
D�
Cg

(a�)

Vdd

D�
s�

s�

(c)

s� s�

D� D�

D�

D�

D�

D�

nCg

r
D�
R�

D�

D�

D�

D�

�R�

D�

Figure 4.7: Two-input NANDand NOR gates. (a) A NANDgate. (b) A NOR gate.
(c)RC equivalents of the CP stages when there are no side branches or extended
branches. The NAND gate and the NOR gate have similar CP stages, see the
dotted lines in (a�) and (b�).

4.3. Basic CMOS Building Blocks 47

sistance r
AND�OR

of the AND and OR gates equals the normalised resistance
rinv � � of the inverter. The internal CP length L

AND�OR
equals the product

of the output normalised resistance of the NAND (and NOR) gate and the in-
verter fan-in, i.e. we have L

AND�OR
� r

NAND�NOR
finv � � � � � �.

XOR/XNOR Gates

The XOR gate can be designed in several ways. For example, a transmission
gate-based XOR gate can be built with as few as six transistors [113, Fig. 8.11].
However, it may be rather difficult to track down CPs of circuits that contain
such XOR gates. Therefore, we instead consider the realisation shown in Fig-
ure 4.8(b), which has size CXOR � ��. This gate contains more transistors than
the transmission gate-based XOR gate, but it is quite easy to find the stages of
its CP.

There are eight different stages in the XOR gate in Figure 4.8. Which ones
will be activated depends on the input signals D� and D� and their last val-
ues. Among the 16 different transitions of the input signals that may occur,
the one from 	D�� D�
 � 	�� �
 to 	D�� D�
 � 	�� �
 activates the stages s�, s�,
and s� in the listed order. These stages, which are signified by the dotted lines
in Figure 4.8(b), form a CP through the XOR gate.	

The fan-in of the XOR gate equals fXOR � � and the normalised resistance of
the output stage s� equals r

XOR
� �. The RC equivalent of the internal stage

s� of the CP through the XOR gate is shown in Figure 4.8(c). The length LXOR
of stage s� equals 2.

The two-input XNOR gate can be constructed by interchanging the connec-
tions of
 and its binary inverse (i.e. its one’s complement)
 in the rightmost
part of the circuit in Figure 4.8(b). Consequently, the XNOR gate have the
same size and delay characteristics as the XOR gate.

4.3.4 The Single-Bit Adder

Addition is a fundamental operation in all arithmetic processes. There are
many ways to implement an m-bit binary adder. In general, it consists of a
some single-bit full adder elements. A parallel m-bit adder can be formed by
cascadingm such adder element. Figure 4.9 shows the Karnaugh maps for the
sum output � and carry output c of the full adder element. The adder has three

�There are also other stages of the XOR gate whose lengths sum up to the length of the CP
chosen.

48 Chapter 4. The VLSI Model

�

�
�Cg

�

(a)

(c)

s�

R�
Vdd

�

Vdd Vdd

�

�

s�

s�

(b)

�

s�

s�

Figure 4.8: A static two-input XOR gate. (a) Symbolic description. (b) Schematic
description. The dotted lines show the three stages of a possible CP through the
gate. (c) RC equivalent circuit of the internal stage s� of the CP.

inputs; the signals � and
 and the carry input cin. According to the Karnaugh
maps, the carry and sum outputs of the full adder element can be expressed
as the Boolean expressions

c � �
 � cin	� �

 (4.2)

� � � �
 � cin� (4.3)

respectively. The symbol � denotes the XOR function, i.e. addition modulo
2. Figure 4.10(a) shows the symbolic description of the single-bit full adder
element.

There are various ways of implementing the full adder element. Here, we use
the conventional static full adder element shown in Figure 4.10(b), which is
based on the carry output Boolean function given by (4.2) and the sum output
Boolean function

� � �
cin � c	� �
 � cin
�

which is obtained by rewriting (4.3). The delays of this adder element can eas-
ily be estimated when using the adopted switch-level RC delay model. An-
other advantage is that the adder outputs are driven by inverters. However,

4.3. Basic CMOS Building Blocks 49

00 11 1001 00 11 1001

0

1

0 1

0 0

0 0 1 0

0 1 1 11

0

� c

cin cin

�
 �

1

0 1

1

Figure 4.9: Karnaugh maps of the sum output � and carry output c of the full adder
element.

compared with dynamic adders it has at least one disadvantage: From an in-
vestigation of various adder elements, Liu and Svensson [61, Paper 5] con-
clude that the power consumption of the static adder in Figure 4.10(b) is typ-
ically two to three times greater than the power consumption of dynamic full
adder elements. The size of the chosen full adder, which equals CFA � ��, is
comparable to the sizes of most other dynamic and static full adder elements.

There are 64 different input signal transitions of the adder element that may
occur. From a CP search point of view, however, most of them are ruled out.
Yuan and Svensson [109] propose two principles of determining the number
of significant transitions. Firstly, the start stage of each transition should in-
clude as many transistors as possible. Secondly, the final stage should have as
few transistors in parallel as possible. Using these principles, the number of
interesting input transitions are reduced to 14 [109, Fig. 5]. When investigat-
ing these transitions, we have found that they all give rise to paths of the same
lengths.

For example, one such CP is obtained when the input signals change from
	��
� cin
 � 	�� �� �
 to 	��
� cin
 � 	�� �� �
. If this transition occurs synchro-
nously for the three adder inputs, the CP from the input to the sum output is
equal to the set fs�� s�� s�� s	g of stages, see the dotted lines in Figure 4.10(b).
The internal signal c opens the trigger of stage s�. Moreover, the CP from the
input to the carry output is equivalent to the set fs�� s�� s�g. If � opens the trig-
ger of stage s�, then s� is replaced by s
 in the above sets of stages. However,
because both
 and � drive eight of the full adder transistors, the fan-in of the
trigger of stage s� will still be the same; f� � f
 � �.

If the trigger of stage s� is the transistor with gate input signal cin, i.e. if cin ap-
pears at the adder input later than the moment when the end node of stage s�

50 Chapter 4. The VLSI Model

FA

�

cin

�

�

�

�
 cin

�
 cin

�

�

cin

cin

�

(a)

(b)

�

c

s�

s�

s�

s�

s	

s

s�

s�

c

s

Vdd

Vdd

Vdd

Vdd

c

�

cin

cin

Figure 4.10: The single-bit binary full adder element. (a)Symbolic description.
(b) Schematic description. The dotted and the dashed lines are stages that form
the different CPs of the adder element.

4.3. Basic CMOS Building Blocks 51

is fully charged, then stage s� is included in the input-to-sum CP. This situa-
tion typically occurs in parallel adders, for which the CP is usually the carry
chain through the full adder elements. Then, the CP from the carry input to
the carry output is the set fs�� s
� s�g, for which only one of the two parallel
transistors (controlled by � and
) in stage s
 is switched on. Because the carry
input cin is connected to the gates of six transistors of the full adder, the fan-in
of the trigger of stage s� (and of the trigger of stage s
) equals f� � �. Using
the switch-level RC model, we obtain the lengths L� � � �� � �, L� � � �� � �,
and L
 � � � � � � of the internal stages s�, s�, and s
, respectively.

From the above reasoning we get that the full adder fan-ins equal f
FA�signal

� �
and fFA�carry � �, with respect to the signal and carry input nodes, respectively.
When the CP through the full adder leads to the sum output, the internal CP
length equals LFA�sum � L� � L� � � � � � �� and when it leads to the carry
output, the internal CP length equals LFA�carry � L� � L
 � �. In both cases we
get the same output normalised resistance rFA � �.

If one of the inputs, say the carry input, of the full adder element is always
equal to zero, a half adder may be used instead of a full adder. Then, the sum
and carry outputs of the half adder are the Boolean functions � � � �
 and
c � �
, respectively. These functions may be directly implemented using one
XOR gate for the sum output and one AND gate for the carry output, where
the latter gate is realised as a NAND gate followed by an inverter.

The half adder element is depicted in Figure 4.11. The size of this half adder
equals CHA � CXOR � CNAND � Cinv � �� � � � � � ��. Its CP delay parameters
are shown in the bottom of the figure.

4.3.5 The Register

As for many other CMOS circuits, there are several ways of designing a reg-
ister. Here, we consider the dynamic true single-phase clock master-slave D
flip-flop depicted in Figure 4.12. This positive edge-trigged flip-flop is an ex-
tended version of a precharged inverting D flip-flop suggested by Yuan et al.
[108]. The size of theflip-flop in Figure 4.12, which equals Creg � ��, is less than
the sizes of ordinary static D flip-flops. Also, Liu and Svensson [61, Ch. 3.3],
[99] found that the power consumption of this flip-flop is less than the power
consumption of other known static and dynamic master-slave D flip-flops.

The flip-flop in Figure 4.12 has an asynchronous reset input. In some circuits,
one may need settable registers and when using a plain bit-serial shift register
there is no need for settable or resettable registers. There are also other types of

52 Chapter 4. The VLSI Model

� Internal length, input to carry output: LHA�carry � rNANDfinv � �

� Internal length, input to sum output: LHA�sum � LXOR � �

� Normalised resistance of the carry output stage: rHA�carry � rinv � �

� Normalised resistance of the sum output stage: rHA�sum � rXOR � �

� Total fan-in: fHA � fNAND � fXOR � �

c

�

�

LXOR � �

finv � �

fXOR � �

rXOR � �

fNAND � �

rinv � �
rNAND � �

Figure 4.11: A half adder element, realised using one NAND gate, one XOR gate,
and one inverter.

registers and D flip-flops. We make the following assumptions regarding the
register elements (and D flip-flops) in the architectures considered in Chap-
ters 5, 6, and 7:

� Every register element (and D flip-flop) has the same size and delay pa-
rameters as the D flip-flop in Figure 4.12.

� Data is fed from the output of one register through a block of combina-
tional logic to the input of another register during one clock cycle. Con-
sequently, each CP starts with the output stages of the first register and
ends with the input stages of the destined register.

� The register input data obeys the setup and hold time constraints of the
register.

� The clock signal clk of a register is the output signal of an inverter that
only drives this particular register clock input. The delay time of any

4.3. Basic CMOS Building Blocks 53

DD Q

Q

R

(b)

Vdd

s� s	

s�

s

s

s�

s�

s�

s�
clk

D

(a)

Q

R

clk

D D

Figure 4.12: A resettable register, realised as a dynamic, true single-phase clock, pos-
itive edge-trigged master-slave D flip-flop. The register is reset for R � �.
(a) Symbolic descriptions. (b) Schematic description.

54 Chapter 4. The VLSI Model

Stage si Stage length Li

s� � � � � �
s� � � � � �
s� � � � � �
s	 � � � � �
s
 � � � � �
s
 � � � � �
s� � � � � �

Table 4.1: Lengths of the internal stages of the register in Figure 4.12.

stages ahead of the clock input stages s� and s� are not included in the
total delay of the register.

� In a particular CMOS system, the various architectures for arithmetic op-
erations all share the same registers for storing the input data and they
share the same registers for storing the output data. Therefore, the input
and output registers are generally not considered when deriving the to-
tal size of an investigated architecture. In some architectures, like archi-
tectures for serial/parallel multiplication, the input data are loaded into
registers which are used throughout the whole execution time (during
several clock cycles). An output register may also be used in a similar
manner, for example as a feedback shift register. The size of every regis-
ter involved in the computation in this way is included in the total size
of an architecture.

The D flip-flop stages that are included in the CP are marked with dotted (sig-
nal stages) and dashed (clock stages) lines in Figure 4.12. The CP stages s�� s��
� � � � s� in the figure are activated when an output (input) signal of the CP start
(end) register changes from low to high. The output stages of the start register
are the stages s� (due to clock rising), s�, and s�. The input stages of the end
register are s�, s�, s	, s
, s
, and s�.

The lengths of the register stages are tabulated in Table 4.1. The total internal
length of the start register equals the sum Lreg�out � �� � � � of the lengths of
stages s� and s�. The total internal length of the end register equals the sum
Lreg�in � ��������� � �� of the lengths of stages s�, s	, s
, s
, and s�. Hence,
the register contribution to the total CP length equals Lreg � Lreg�out�Lreg�in �
��. The fan-in freg of the register and its output normalised resistance rreg of
the output stage s� both equal 2.

4.3. Basic CMOS Building Blocks 55

4.3.6 Table of Complexity Parameters

In Table 4.2 we have listed the complexity parameters of the circuits that
have been analysed in the previous Sections 4.3.1 to 4.3.5. For each circuit
we state its size C, fan-in f , internal CP length L , and its output normalised
resistance r.

56 Chapter 4. The VLSI Model

CMOS circuit Size Fan-in Internal CP Output norm.
C f length L resistance r

Inverter 2 2 — 1
Transmission gate
 2 1(0) — rprior� �
2-input Multiplexer
 4 2(0) — rprior� �
2-input NAND and 4 2 — 2
NOR gates
2-input AND and 6 2 4 1
OR gates
2-input XOR and 12 4 2 2
XNOR gates
Full adder element 28 1
� Signal input to 8 12

sum output
� Signal input to 8 8

carry output
� Carry input to 6 12

sum output
� Carry input to 6 8

carry output
Half adder element 18 6
� Signal input to 2 2

sum output
� Signal input to 4 1

carry output
(Shift) Register, 16 16+6= 22
D flip-flop
� Input path 2 16
� Output path 6 2

�If a transmission gate transistor is the trigger of the output stage, then the fan-in equals
1 for the transmission gate and 2 for the multiplexer. If not, the fan-in equals zero in both
cases and only the output stage contributes to the CP. The normalised resistance rprior equals
the output normalised resistance of the circuit that is prior to the transmission gate (or
multiplexer).

Table 4.2: The sizes, fan-ins, internal CP lengths, and output normalised resistances
of some frequently used CMOS circuits.

4.4. Implementing the Fermat Number Transform 57

4.4 Implementing the Fermat Number Transform

In the previous chapters, we have mentioned several advantages of number
theoretic transforms in general and the Fermat number transform in particu-
lar. For example, digital convolution of real integer sequences can be imple-
mented using Fermat number transforms for which multiplication by powers
of the transform kernel can be carried out as binary shifts (rotations). Also, no
round-off errors occur during the computations, because the arithmetic oper-
ations involved are carried out in a finite ring or field.

As mentioned in Section 2.3.2 the Fermat number transform, whose length is
a power of two, can be computed using a suitable fast Fourier transform algo-
rithm. In Section 2.3.3 we considered the conventional radix-2, radix-4, and
split-radix algorithms, in which the transform additions and multiplications
are partitioned into so called butterfly computations. These algorithms exploit
different degrees of parallelism.

Since the publication in 1976 of McClellan’s [65] hardware implementation of
a Fermat number transform, several Fermat number transform architectures
have appeared in the literature. Truong et al. [103, 107] considered the imple-
mentation of fast digital filtering using a generalised overlap-savemethod and
a parallel pipelined Fermat number transform architecture.

Based on the work of Truong et al., Towers et al. [101] designed a cascadable
nMOS VLSI circuit for fast convolution, involving a pipelined Fermat number
transformer.

Shakaff et al. [90] investigate the practical aspects of using the Fermat number
transform as a block-mode image filtering tool on small microprocessor based
systems. Their transform architecture is based on a gate array implementation
of the butterfly computational unit.

Several aspects and techniques for implementing the Fermat number trans-
form in (nMOS) VLSI are investigated in the theses by Pajayakrit [71, Ch. 4–]
and Shakaff [89].

Finally, we also would like to mention the recent paper by Benaissa et al. [13],
in which the authors present a CMOS VLSI design of a high-speed Fermat
number transform-based convolver/correlator. The VLSI chip comprises a
complete 64-point pipeline transformer that can be used for both the forward
and the inverse Fermat number transform.

58 Chapter 4. The VLSI Model

In all the above papers, except the one by McClellan, the authors have adopted
the diminished–1 representation of the elements in Fermat integer quotient
rings. The diminished–1 representation is thoroughly investigated in Chap-
ter 6.

As mentioned before, we are primarily interested in the arithmetic operations
required to compute the Fermatnumber transform. Architectures for the com-
plete transform or the transform butterflies are not further considered in this
thesis.

Chapter 5

The Normal Binary Coded
Representation

We only consider element representations that can be expressed as simple el-
ementary functions of the normal binary coded (NBC) representation. In the
present chapter, we study integer arithmetic operations modulo �m � � with
respect to the NBC representation itself.

5.1 Architectures for Arithmetic Operations

We are mainly interested in VLSI architectures for the arithmetic operations
that may be involved in the computation of the Fermat number transform and
its inverse transform. Therefore,we consider architectures for modulus reduc-
tion, negation, addition, subtraction, multiplication by powers of 2, general
multiplication, and exponentiation, with respect to a binary coded represen-
tation of the integers ofZ�m��. All these operations may not be involved in the
computation of the Fermat number transform, but for completeness they are
still considered. For example, general multiplication can be avoided using a
suitable transform kernel, see Section 2.3.2. We do not consider division, be-
cause it is not needed when computing the Fermat number transform and it
is not a general operation in every Fermat integer quotient ring.

The architectures for some of the arithmetic operations considered in the the-
sis are based on architectures for operations on ordinary two’s complement
binary coded numbers. There is a wide variety of VLSI designs available for
these operations. For example, an adder circuit can be implemented in sev-

59

60 Chapter 5. The Normal Binary Coded Representation

eral ways. It can be a carry ripple adder, a carry select adder, a carry save
adder, a carry look-ahead adder, a conditional-sum adder, or some other type
of adder [113, Ch. 8.2.1]. All architectures in Chapters 5, 6, and 7 are not op-
timal with respect to chip area, computation time, or area-time performance.
We primarily consider architectures that canbe mutually compared in order to
decide which form of element representation is most advantageous, with respect
to some area and/or time complexity of the resulting architectures. Thus, for
a certain element representation and a certain arithmetic operation there may
exist architectures that have better area-time performance than the one (or the
ones) presented here.

Henceforth, most of the architectures presented are valid for arithmetic oper-
ations in the Fermat integer quotient ring Z����, i.e. for m � �. However, in
general the architectures are regular in such a way that they can easily be ex-
panded (or contracted) to become applicable in any ringZ�m��, where m is a
power of two. The only exceptions are the architectures in Chapter 7. They
are based on the polar representation and are applicable only whenZ�m�� is a
field, i.e. for m � �� �� �� �� ��.

The �m �� binary coded integers ofZ�m�� are represented as 	m��
-bit NBC
numbers. Therefore, by a congruence a � b 	mod �m � �
 we generally con-
sider a to be the least nonnegative 	m� �
-bit residue of b modulo �m � �.

5.1.1 Modulus Reduction

It is important that the reduction modulo �m � � is carried out as simply and
fast as possible, because it is involved in all arithmetic operations in Z�m��.
For some operations, the modulus reduction may be included in the overall
computation.

Let � be an n-bit normal binary coded integer. This integer � � �n���n�� �
�n���n�� � � � � � ��� � ��, where �i � Z� for � 	 i 	 n � �, may also be

represented by the n-bit binary vector ��n��� �
� 	�n��� �n��� � � � � ��� ��
�. The

notation ��n��� is occasionally used also for the integer �.�

The residue of an 	m��
-bit integer � � �m 	mod �m��
 is simply calculated
by first changing the one (1) in themost significant bit position �m of� to a zero
and then subtracting a one from the modified number, i.e. � � �m�m���m��� �
��m��� � �m � ��m��� � � 	mod �m � �
. In a hardware realisation, a simple
way to subtract 1 from the binary codedm-bit positive integer ��m��� is to add

�This is illustrated, for n � m � �, in Table 2.3 of Section 2.4.

5.1. Architectures for Arithmetic Operations 61

the two’s complement of 1 to the integer;

� � ��m��� � � 	mod �m � �

� � � � 	mod �m
�

where �
�
� ��m���� 	�m� �
. It follows by (4.2) and (4.3) that the carry output

ci�� and the sum output �i of a binary full adder element can be expressed as
the Boolean functions

ci�� � �i
i � ci	�i �
i

�i � �i �
i � ci

respectively, where �i and
i are the adder input signals and ci is the carry in-
put signal. By letting
 � �m� �, i.e. let
i � � for � 	 i 	 m� �, the carry and
the sum output functions reduce to

ci�� � �i � ci (5.1)

�i � �i � ci� (5.2)

respectively. Hence, we get � � cm�m � �m���m�� � � � � � ��� � ��, where cm
and �i� � 	 i 	 m� � are given in (5.2) and (5.2), respectively.

The full adder elements can be connected in different ways. We consider two
types of two-operandparallel adders, which are basedon how the internal car-
ries between the adder elements are generated. One of the adder types is the
carry ripple (or ripple carry) adder, for which the carryoutput of each full adder
element is connected to the carry input of the subsequent full adder element
(the one in the next higher-order bit position). The second adder type is the
carry look-ahead adder, for which the internal carry signals are precomputed.
The carry look-ahead adder is usually faster than the carry ripple adder, but
the penalty paid for this is a greater area complexity, see for example Weste
and Eshraghian [113, Ch. 8.2.1] or Hwang [52, Ch. 3].

A Carry Ripple-Based Architecture

Figure 5.1 shows an architecture that performs the modulus reduction � � �
	mod �� � �
 using essentially a simplified carry ripple adder followed by

two-input multiplexers. The multiplexers, which are formed by the transmis-
sion gate pairs at the outputs, let either � (if � 	 �m) or � (if � � �m) pass to
the output. The signal h and its inverse control the multiplexers. The output
residue is the 	m��
-bit normal binary coded integer � � �m�m��m���m���
� � �� ��� � ��. The architecture is based on the following algorithm:

62 Chapter 5. The Normal Binary Coded Representation

1. If � 	 � 	 �m (h � �), then let � � �

2. If �m � � 	 � 	 �m�� � � (h � �), then let � � 	�� ��m���
,
where ��m��� � ��m��� � �.

The carry signals are realised using a chain of OR gates. The Boolean function
h � �mcm is used to indicate whether � is greater than �m. We assume that � is
always an 	m��
-bit integer, i.e. the maximum reducible overflow is �m����.

The architecture in Figure 5.1 for reduction modulo �m � � comprises m � �
OR gates, m��XNOR gates, one NAND gate,m�� two-input multiplexers,�

and two inverters. Using the size parameters of Table 4.2, the size�of this ar-
chitecture equals

Cmod�� � 	m� �
	C
OR

� C
XNOR

 � C
NAND

� 	m� �
C
MUX

� �Cinv
� 	m� �
	� � ��
 � � � �	m� �
 � � � �
� ��m� �� (5.3)

The critical path�(CP) through the circuit is the path from �� to h together with
the path from �m�� to �m��, as signified by the dotted lines in the figure. The
fan-in,�with respect to the ��-input node, equals

fmod�� � finv � fOR � fXNOR � � � � � � � ��

The output normalised resistance�equals

rmod�� � rm�� � ��

where rm�� is the total normalised resistance from the �m��-input node to the
supply voltage source, i.e. the output normalised resistance of the preceding
circuit.

Regarding rmod��, the length of the output stage, which is the dotted path from
�m�� to �m�� in Figure 5.1, actually equals rm��	fOR�fXNOR
�	rm����
nm�� ,
where nm�� is the fan-out seen from the �m��-output node. However, because
the �m��-input node is fully charged when the output multiplexer opens,
we do not include the former part of the expression. Thus, only the term
	rm����
nm�� contributes to the length of the output path and hence the out-
put normalised resistance rmod�� equals rm����. The internal CP length of the

�For the sake of simplicity, the single inverter of the output circuitry in bit position m is
regarded as a transmission gate.

�The size, critical path, fan-in, and output normalised resistance of an architecture was de-
fined in Section 4.2.2.

5.1. Architectures for Arithmetic Operations 63

h

�� �� �� �� ��

���� �� �� ��

� � � 	mod �� � �

�� �� �� �� ��

���� ��
�� ��

�� �� �� ��

c�

Figure 5.1: A carry ripple-type circuit for reduction modulo �m��, where ��m��� �
��m����� 	mod �m
 andm � �. If � � �m (overflow) then h � �, otherwise
h � �. The two dotted lines indicate the set of stages that form the critical path
through the circuit.

64 Chapter 5. The Normal Binary Coded Representation

circuit equals

LCP�mod�� � 	m� �
LOR � 	m� �
rOR	fOR � fXNOR
 � rORfNAND
� rNAND 	�m� � � finv
 � rinv � �	m� �

� 	m� �
 � � � 	m� �
 � � � 	� � �
 � � � �
��	�m � � � �
 � � � �	m� �

� ��m � ��

The circuit parameters forming LCP�mod�� are obtained from Table 4.2.

In some situations, themodulus reduction may directly succeed operations for
which the signal �m�� appears on its input node after the time when the inter-
nal carry signal cm�� appears on its node in the carry chain. See for example
the adder architecture of Figure 5.7. Then, the modulus reduction circuit con-
tribution to the total CP length may be much smaller than LCP�mod��.

In Chapter 4 we mentioned that, with respect to size and time performance,
NAND and NOR gates are preferable to AND and OR gates, respectively. Ac-
cordingly, it may seem advantageous to realise the carry chain using a chain
of alternating NAND and NOR gates instead of a chain of OR gates. We have
designed such an architecture. The size of that architecture equals ��m � �,
which is slightly less than the size Cmod�� � ��m � � of the OR-type architec-
ture in Figure 5.1. However, the internal CP length of the NAND/NOR-type
architecture equals ��m � ��, which is greater than the corresponding length
LCP�mod�� � ��m � � of the architecture in Figure 5.1. The increase of the first
term by �m (from ��m to ��m) equals the difference between the contributions
	LOR � rOR	fOR � fXNOR

m � 	� � � � �
m � ��m and r

NAND�NOR
	f
NAND�NOR

�
fXNOR
m � 	� � �
m � ��m to the CP lengths of the OR-type and the NAND/
NOR-type architectures, respectively. Thus, for each bit position, the increase
of the CP length (by 6) due to the doubling of the normalised resistance in a
stage (when exchanging an OR gate for a NAND or NOR gate) is greater than
the decrease of the length (by 4) due to the elimination of the internal length
LOR of the OR gate.

A Carry Look-Ahead-Based Architecture

In Figure 5.2 we present a carry look-ahead-type circuit for modulus reduc-
tion. Here, the carry signals are generated in parallel using the tree of NAND
and NOR gates that precedes the row of XNOR gates in the figure. The struc-
ture of this simplified and distributed carry look-ahead tree is similar to the
structure of Brent and Kung’s carry look-ahead tree [27].

5.1. Architectures for Arithmetic Operations 65

The depth of the tree is log� m and there are m � �i NAND or NOR gates in
level i of the tree, starting with i � � for the input level. Thus, there are a total
of

log� m��X
i��

	m� �i
 � m	log� m� �
 � �

such gates in the tree, distributed such that the NOR gates are only in the even
numbered levels of the tree and the NAND gates are only in the odd numbered
levels. Also, there are �i inverters in level i of the tree, which means that the
total number of inverters in the tree is m��. Hence, the size of the carry look-
ahead-type modulus reduction circuit in Figure 5.2 equals

Cmod�� � 	m	log� m� �
 � �
C
NAND�NOR

�mCinv
�	m� �
C

XNOR
� C

NAND
� 	m� �
C

MUX

� 	m	log� m� �
 � �
 � � �m � � � 	m� �
 � �� � � � 	m� �
 � �
� �m � log� m� ��m� (5.4)

The CP through the circuit is the set of stages along the two dotted lines in the
figure.� The fan-in of the circuit equals

fmod�� � fXNOR � �fNOR � � � � � � � �

and its output normalised resistance rmod�� equals

rmod�� � rmod�� � rm�� � ��

Thus the architectures in Figures 5.1 and 5.2 have equal fan-in and output nor-
malised resistance. The internal CP length of the carry look-ahead-type archi-
tectures equals

LCP�mod�� � 	log� m� �
r
NAND�NOR

	f
NOR�NAND

� finv
 � rNANDfNAND
� rNAND	�m� � � finv
 � rinv � �	m� �

� 	log� m� �
 � �	� � �
 � � � �
��	�m� � � �
 � � � �	m� �

� �m� � log� m� ��

As mentioned above, in some situations the CP may enter the circuit via the
�m��-input node. In such a situation, the carry ripple-type architecture in Fig-
ure 5.1 is preferable to the carry ripple-type architecture in Figure 5.2, because
the path from the �m�� input to the last carry signal cm is shorter in the former
case than in the latter case. Regarding the architecture in Figure 5.2, we would
like to mention the following:

�Actually, the CP output stage is any of the stages from a 	i-input node to the correspond-
ing
i-output node, where
 � i � m� �.

66 Chapter 5. The Normal Binary Coded Representation

h

�� �� �� �� ��

���� �� �� ��

�� �� �� ��

c�

Figure 5.2: A carry look-ahead-type circuit for reduction modulo �m � �, where
m � �. The two dotted lines signify the set of stages that form the critical path
through the circuit.

1. With respect to both area and time complexity, NAND and NOR gates
are preferable to OR gates in the carry look-ahead tree. The difference in
complexity is, however, not significant.

2. The placement of the row of m�� inverters in the last level of the carry
look-ahead tree differs, depending on whether log� m is odd or even.
The inverters can be omitted if the subsequent row of m�� XNOR gates
is exchanged for a row of XOR gates.

3. A disadvantage of the carry look-ahead tree may be its relatively long
internal wires.

Regarding the architectures in both Figure 5.1 and Figure 5.2, for largem there
may be a problem for the NAND gate and the inverter (whose output signals
are h and h, respectively) to each drive �	m � �
 multiplexer transistors. The

5.1. Architectures for Arithmetic Operations 67

delay of a stage with a large capacitive load can be significantly reduced by
using properly sized drivers. Such drivers are, however, not used here.

Our comparison betweendifferent architectureswith respect to their area-time
performance is made under the assumption that the architectures are both pre-
ceded and followed by a parallel register. Then, using the architecture in Fig-
ure 5.1 or the one in Figure 5.2, the time T to perform the modulus reduction
operation is proportional to the lengths

Lmod�� � Lreg � rregfmod��� LCP�mod�� � rmod��freg

� �� � � � � � ��m � � � � � �
� ��m � ��

Lmod�� � Lreg � rregfmod��� LCP�mod�� � rmod��freg

� �� � � � � � �m� � log� m� � � � � �
� �m � � log�m� ���

respectively, where rmod�� � rmod�� � rreg � � � �. Using the size paramaters
Cmod�� and Cmod�� in (5.3) and (5.4), respectively, and the above lengths Lmod��

and Lmod��, the area-time performances AT � of these modulus reduction cir-
cuits are proportional to the products

CL�
mod��

�
� Cmod��	Lmod��

� � 	��m� �
	��m � ��
�

� O

m�

�
CL�

mod��
�
� Cmod��	Lmod��

� � 	�m log� m� ��m
	�m � � log�m� ��
�

� O

m� log� m

�
�

respectively. The sizes, CP lengths, and AT � performances of the above two
circuits for modulus reduction are plotted in Figure 5.3. We see that the size
Cmod�� of the carry look-ahead-type architecture in Figure 5.2 is greater than
the size Cmod�� of the carry ripple-type architecture in Figure 5.1. On the other
hand, for the CP lengths of the architectures we have the reverse relation. The
ratio of the CP lengths Lmod�� and Lmod�� converges relatively fast to ��� with
growing m. We conclude that, with respect to the time complexities and the
AT � performances, the architecture in Figure 5.2 is preferable to the architec-
ture in Figure 5.1.

68 Chapter 5. The Normal Binary Coded Representation

Cmod��Cmod��

Lmod��Lmod��

CL�
mod��CL�
mod��

2 4 8 16 32 64 128256

���

���

���
Area complexity

m

S
iz

e,
C

2 4 8 16 32 64 128256

���

���

Time complexity

m

C
P

le
n
g
th

,L

2 4 8 16 32 64 128 256

��	

��

����

Area-time performance

m

CL
�

Figure 5.3: Sizes, CP lengths, and AT � performances of the two modulus re-
duction architectures. The parameters are plotted versus m for m �
�� �� �� ��� ��� ��� ���� ���. The lines connecting the parameter values are
plotted only to clearly illustrate how the complexity parameters grow with m.

5.1.2 Negation

Let � be an 	m� �
-bit NBC integer. Then we have

� � �� � 	�m�� � �
� � � � � �m � �

� � � � 	mod �m � �
� (5.5)

where � � 	�m� �m��� � � � � ��� ��
� is the one’s complement of � � 	�m� �m���
� � � � ��� ��
�. Adding 3 to � seems to be a simple operation, but we also would
like to performthemodulus reduction in the same computation step. We there-
fore expand � as

� � �m�
m � ��m��� � ��m��� � �m � ��m��� � �m � � 	mod �m � �

5.1. Architectures for Arithmetic Operations 69

where, by Definition 2.4, ��m��� � 	�m��� �m��� � � � � ��� ��
� � �m���m�� �
�m���m�� � � � �� ��� � ��. Hence, (5.5) can be written as

� � �� � ��m��� � �m � � � �

� �	
 � �
 � �� � �m 	mod �m � �
�

where
 � �m���m����m���m��� � � �������� is an 	m��
-bit binary coded

integer for which
i � �i��� � 	 i 	 m � �. Let �
�
�
 � �, where � � �.

This sum can be computed using a simplified 	m � �
-bit parallel adder. By
(4.3) and (4.2) the sum output and the carry output of the adder element in bit
position i are the Boolean functions �i � �i�
i� ci and ci�� � �i
i� ci	�i�
i

respectively, where � 	 i 	 m � �. We have
i � �i�� for � 	 i 	 m � �,
�i � � for � 	 i 	 m� �, �� � �, and c� � �. Hence, the sum and carry output
functions simplifies to

�i �
i � ci � �i�� � ci

ci�� �
ici � �i��ci

respectively, for i � �� �� � � � � m � �. We identify these functions as the sum
and carry outputs of the half adder element, see Section 4.3.4 (Figure 4.11).

From the above it follows that the desired integer� equals the 	m��
-bit NBC
integer� � 	�m� �m��� �m��� � � � � ��� ��� ��
�. We obtain the bit values �m and
�� as Boolean functions of the carry signal cm�� and the input signals �m and
��. There are four situations that have to be handled:

1. If � � �, then � � �m��, �� � �, and �m � �.
Let �m � cm�� � � and �� � �� � �.

2. If � � �, then � � �m��, �� � �, and �m � �.
Let �m � cm�� � � and �� � �� � �.

3. If � 	 � 	 �m � �, then � 	 � 	 �m�� � �, �� is arbitrary, and �m � �.
Let �m � cm�� � � and �� � ��.

4. If � � �m � �� 	mod �m � �
, then � � �m��, �� � �, and �m � �.
Let �m � cm�� � � and �� � �� � �.

These special cases yield the Karnaugh maps for �m and �� in Figure 5.4. The
respective Boolean functions are

�m � cm���� � cm�� � ���

�� � �m � cm���� � �m � 	cm����
 �

70 Chapter 5. The Normal Binary Coded Representation

0

00

1

X

0 1 11 1

0

1

0

00

1

01 11 1

0

1

0 0

X X 1X XX

00

0

0 0

�m

cm���� cm����

�m

(a) �m (b) ��

Figure 5.4: Karnaugh maps for the output variables �m and �� of the negation cir-
cuit. X = “don’t care”. (a) �m � cm����. (b) �� � �m � cm����.

Figure 5.5 shows a realisation inZ���� of the negation circuit. As seen in the
figure, the above-mentioned simplified parallel adder consists of a row of half
adder elements, each comprising one AND gate and one XOR gate. In order
to generate the signal cm��, the carry output of the half adder in the most sig-
nificant bit position is inverted. The inversion is realised by exchanging the
half adder AND gate for a NAND gate.

The size of the architecture in Figure 5.5 equals

Cneg � 	m� �
Cinv � 	m� �
CHA � CXOR � �CNAND � CNOR
� �	m� �
 � ��	m� �
 � �� � � � � � �

� ��m � ���

The CP of the architecture is the dotted path from the �� input along the carry
chain to cm�� and finally through two NAND gates to ��. Hence, the fan-in of
the architecture equals

fneg � finv � �

and its output normalised resistance equals

rneg � r
NAND

� ��

The length LCP�neg of the internal CP equals

LCP�neg � rinv	finv � fHA
 � 	m� �
	LHA�carry � rHA�carryfHA

� rNAND	fNOR � fNAND � fNAND

� � � 	� � �
 � 	m� �
	� � � � �
 � � � 	� � � � �

� ��m� ���

The negater in Figure 5.5 is a carry ripple type of architecture. The AND-gate
carry chain can be exchanged for a chain of alternating NAND and NOR gates,

5.1. Architectures for Arithmetic Operations 71

HAHA

�� �� �� �� ��

���� �� �� ��

� � �� 	mod �� � �

�� �� �� �� ��

���� �� �� ��

����

c�

��

CP

Figure 5.5: Negation modulo �m � �� m � �.

� � �� � �� � �m � �� 	mod �m � �
, where � � 	��m��� � ��
�� � �.

72 Chapter 5. The Normal Binary Coded Representation

resembling the modification of the OR-gate carry chain of the modulus reduc-
tion circuit in Figure 5.1. Such a modification slightly reduces the size of the
architecture, but the CP length will, however, increase. This was also the case
for the circuit in Figure 5.1.

It is possible to design a carry look-ahead type of architecture for NBC nega-
tion. The carry look-ahead part of such a circuit may be similar to the carry
look-ahead part of the modulus reduction architecture in Figure 5.2. The dif-
ference in area-time performance between that carry look-ahead negater and
the architecture in Figure 5.5 is in the same order as the difference in area-time
performance between the architecture in Figure 5.2 and the one in Figure 5.1.

When the negater in Figure 5.5 is preceded and followed by parallel registers,
its total CP length equals

Lneg � Lreg � rregfneg � LCP�neg � rnegfreg

� �� � � � � � ��m� �� � � � �
� ��m � ���

which means that the area-time performance AT � of the suggested negater is
proportional to

CL�
neg

�
� Cneg	Lneg

� � 	��m � ��
	��m � ��
� � O

m�

�
�

In Section 8.1.3 we compare the complexity parameters of the above negater
with the complexity parameters of other negation circuits.

5.1.3 Addition and Subtraction

Addition

We consider the addition � � � �
 	mod �m � �
, where the 	m � �
-bit
NBC integers � and
 are elements of Z�m��, i.e. we have � 	 ��
 	 �m. In
order to simplify the arithmetic operation, we expand the above addition in
the following way.

Let �
�
� ��m��� �
�m���. This sum can be obtained by using an m-bit parallel

carry ripple adder. We write � on the form � � cm�m��m���m����m���m���
� � � � ��, where cm is the carry output of the full adder element in bit posi-
tion m � � and �i is the sum output of the adder element in bit position i for
� 	 i 	 m � �. Because the first carry input signal is always equal to zero,
the adder element in the least significant bit position may be implemented as
a half adder.

5.1. Architectures for Arithmetic Operations 73

Furthermore, let �
�
� ��m�����m��. This is the same type of addition as the one

that resulted in the carry ripple-type modulus reduction circuit of Figure 5.1 in
Section 5.1.1. With �i being the input of a simplified adder element of the type
described in Section 5.1.1, the corresponding output is �i. We denote by gm
the carry output from the simplified adder element in the most significant bit
position. Finally, we need a binary control signal, say h, that lets either ��m���

or ��m��� pass to the adder output. Thus, we define h �Z� such that ��m��� �
h��m��� � 	�� h
��m���, i.e. �i � h�i � h�i for � 	 i 	 m� �.

With regard to the above definitions, we consider the following seven special
cases of input signal combinations.

1. If � �
 � �, then 	�m�
m
 � 	�� �
� 	cm� g
 � 	�� �
.

Let h � �� �m � �� ��m��� � ��m���.

2. If � � �� � 	
 	 �m � � or � 	 � 	 �m � ��
 � �,
then 	�m�
m
 � 	�� �
� 	cm� g
 � 	�� �
.

Let h � �� �m � �� ��m��� � ��m���.

3. If � � ��
 � �m or � � �m�
 � �,
then 	�m�
m
 � 	�� �
 or 	�� �
� 	cm� g
 � 	�� �
.

Let h � �� �m � �� ��m��� � ��m���.

4. If � 	 ��
 	 �m � � and � � �m,
then 	�m�
m
 � 	�� �
� 	cm� g
 � 	�� �
.

Let h � �� �m � �� ��m��� � ��m���.

5. If � 	 ��
 	 �m � � and � � �m,
then 	�m�
m
 � 	�� �
� 	cm� g
 � 	�� �
.

Let h � �� �m � �� ��m��� � ��m���.

6. If � 	 � 	 �m � ��
 � �m or � � �m� � 	
 	 �m � �,
then 	�m�
m
 � 	�� �
 or 	�� �
� 	cm� g
 � 	�� �
.

Let h � �� �m � �� ��m��� � ��m���.

7. If � �
 � �m, then 	�m�
m
 � 	�� �
� 	cm� g
 � 	�� �
.

Let h � �� �m � �� ��m��� � ��m���.

74 Chapter 5. The Normal Binary Coded Representation

01

11

10

00

0100 11 10

cmgm

�m
m�m
m

01

0

01

1000

1

1

0

0

0

01

11

10

00

0100 11 10

1

cmgm

0 10

XX

X

X X

XX

X X

X X X

X X

(a) h (b) �m

Figure 5.6: Karnaugh maps of the Boolean function h and �m.

(a) h � �m
m � gm	cm � �m �
m
. (b) �m � h � �m
m cm.

Thebinary control signal h and the output bit�m canbe expressedas aBoolean
functions of the variables �m,
m, cm, and gm. From the Karnaugh map in Fig-
ure 5.6(a) we derive the Boolean function

h � �m
m � gm	cm � �m �
m
 � �m
m � gm � cm	�m �
m
�

By writing h on this formwe see that it can be realised using four NAND gates,
one inverter, and one XOR gate. The Boolean function

�m � 	cm � 	�m �
m

 � gm

is derived from the Karnaugh map in Figure 5.6(b). However, by comparing
the Karnaugh maps in Figure 5.6(a) and (b), we see that the map for �m is the
inverse of the map for h, except in the positions 	�m�
m� cm� gm
 � 	�� �� �� �

and 	�� �� �� �
. Therefore, the function �m can also be expressed as

�m � h � cm�m
m � h� cm	�m �
m
�

Because the inverse of the term cm	�m �
m
 is a part of the expression for h, we
consequently only need one inverter and one NOR gate to generate �m from
the gates producing the signal h.

Figure 5.7 shows an adder architecture whose structure is based on the above
reasoning. The sum � � ��m��� �
�m��� is computed using an ordinary m-bit
parallel carry ripple adder. This part of the architecture may be replaced by a
carry look-ahead adder, if desirable. The gates in the leftmost dashed box in

5.1. Architectures for Arithmetic Operations 75

FA HAFA FA

�
�

��

�
�
��� ������ ��

�� ������ ��

��� ��
� ��
� ��
�

� � � �
 	mod �� � �

��
�

�� ������

�� ������

��������

c�

h

g�

P�

P�

Figure 5.7: A circuit performing the addition � � ��
 	mod �m��
 form � �.
The dotted paths P� and P� form the CP through the circuit. The gates within
the rightmost dashed box performs the modulus reduction. This part of the ar-
chitecture can also be found in Figure 5.1. The gates within the leftmost dashed
box generate the output bit �m and the control signal h.

76 Chapter 5. The Normal Binary Coded Representation

Figure 5.7 generate the control signal h and the output bit �m. The gates in the
rightmost dashed box in the figure generate the m least significant bits of the
output binary coded integer � by subtracting, if necessary, one (1) from ��m���

modulo �m.

As a result of a timing analysis based on the RC delay model described in
Chapter 4, we found that the dotted paths marked by P� and P� form the CP
through the adder architecture. The fan-in fadd of the architecture equals the
fan-in of the half adder, i.e. we get

fadd � f
HA

� ��

The internal length LCP�add through the adder equals the length of path P�, i.e.

LCP�add � LHA�carry � 	m� �
rFAfFA�carry � 	m� �
LFA�carry

�LFA�sum � rFA	fXNOR � fOR
 � LOR � 	rOR � rNAND
fNAND
� r

NAND
	�m� f

NOR
� finv
 � rinv � �m

� � � 	m� �
 � � � 	m� �
 � � � �� � � � 	� � �
 � � � 	� � �
 � �
��	�m � � � �
 � �m

� ��m � ���

Them two-input multiplexers at the circuit output are opened simultaneously
by the control signal h and its inverse signal. The maximum normalised re-
sistance of the stage that runs through the multiplexer at bit position i equals
rXNOR �� � � for � 	 i 	 m� � and rHA�sum �� � � for i � �. Therefore, the CP
output stage is any of the stages associated with the m least significant bits of
� and thus, the output normalised resistance of the adder equals

radd � ��

The size of the addition circuit equals

Cadd � 	m� �
	CFA � COR � CXNOR
 � CHA �mCMUX � �CNAND � �CNOR � �Cinv
� 	m� �
	�� � � � ��
 � �� �m � � � � � � � � � � � � � �
� ��m � ��

Assuming that � and
 are outputs of 	m � �
-bit parallel register and that �
is also stored in such a register, we get the total CP length

Ladd � Lreg � rregfadd � LCP�add � raddfreg

� �� � � � � � ��m � �� � � � �
� ��m� ��� (5.6)

5.1. Architectures for Arithmetic Operations 77

The area-time performance of the circuit is proportional to

CL�
add

�
� Cadd	Ladd

� � 	��m � �
	��m� ��
� � O

m�

�
�

Subtraction

The most straightforward method of performing subtraction is to first negate
the subtrahend and then add it to the minuend, i.e.

� � � �
 � � � 	�

 	mod �m � �
�

Subtraction can thus be realised using the architectures of Figures 5.5 and 5.7.

5.1.4 Multiplication by Powers of 2

Multiplication of an NBC number by two is easily carried out as a binary shift
of the number. Because the modulus reduction operation is not so straightfor-
ward and we use an 	m � �
-bit representation of the binary coded integers
ofZ�m��, multiplication by an arbitrary power of two is preferably carried out
as repeated multiplication by two. The modulus reduction is carried out after
every single shift, i.e. according to the congruence

�n� � �

�n��� mod �m � �

�
	mod �m � �
�

Multiplication by 2

Figure 5.8 shows an architecture for computing � � �� 	mod �m��
, where
m � �. The modulus reduction part of the circuit may for example be the ar-
chitecture in Figure 5.1 or the one in Figure 5.2. Here, due to its favourable
AT � performance, we only consider the carry look-ahead-type architecture in
Figure 5.2.

The input to the residue circuit is �� � �m���m � �m���m�� � � � �� ���� � ���
when � 	 � 	 �m � �, and �� � �� � �m � � � 	��� � � � ���
� 	mod �m � �

when� equals �m. This is easily implemented using simplified two-input mul-
tiplexers prior to the reduction circuit, as shown in Figure 5.8. Hence, the com-
plete circuit has size

Cmult� � Cinv � 	m� �
	CTG � �
 � Cmod��

� �m � log� m� ��m � ��

78 Chapter 5. The Normal Binary Coded Representation

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

Reduction modulo �� � �

Vdd VddVdd

� � �� 	mod �� � �

Figure 5.8: Multiplication by two; � � �� 	mod �m � �
 for � � Z�m��, where
m � �.

The CP is formed by the two dotted paths in the figure. Because the fan-in of
the reduction circuit in Figure 5.2, with respect to its least significant bit posi-
tion, equals fNOR � finv � �, the total fan-in of the architecture in Figure 5.8,
with respect to the �m-input node, equals

fmult� � finv �m� � � � � m� ��

The output normalised resistance of the architecture is

rmult� � rmod�� � r� � ��

where r� equals the normalised resistance from the ��-input node to the sup-
ply voltage source (or ground). The internal CP length equals

5.1. Architectures for Arithmetic Operations 79

LCP�mult� � rinv � �	m� �
 � 	r� � �
fmod�� � LCP�mod��

� �	m� �
 � �	r� � �
 � �m� � log� m� �

� �	m� log� m� r�
 � ���

If the input � is obtained from parallel register and� is stored in a similar reg-
ister, then r� � rreg � � and the total CP length equals

Lmult� � Lreg � rregfmult� � LCP�mult� � rmult�freg

� �� � �	m� �
 � �	m� log� m� �
 � �� � 	� � �
 � �
� ��m� � log� m� ��� (5.7)

The AT � performance of the architecture in Figure 5.8 is proportional to the
product

CL�
mult�

�
� Cmult�	Lmult�

�

� 	�m � log� m� ��m� �
 	��m� � log� m� ��
�

� O

m� log� m

�
�

The row of transmission gates and pMOS transistors at the input of the multi-
plication-by-2 circuit in Figure 5.8 may be exchanged for a row of m � � OR
gates. The OR gate in bit position i, for � 	 i 	 m��, would have �m and �i as
its input signals. If such a row of OR gates is used, the fan-in and the output
normalised resistance of the circuit are reduced to 	m� �
fOR � �	m� �
 and
r
OR

�� � �, respectively. The total CP length Lmult� decreases by 30 but the cir-
cuit size increases by �m��. With respect to the AT � performance, the row of
OR gates is preferable to the row of transmission-gates-and-pMOS-transistors
only for m 	 ��. For m � ��, the circuit in Figure 5.8 has better area-time per-
formance, compared with an architecture with a row of OR gates at the input.

Multiplication by �n

Multiplication by powers of two can be carried out by using a feedback cou-
pled multiplication-by-2 circuit with a parallel register in the feedback loop. A
block diagram of such a circuit is shown in Figure 5.9. Here, themultiplication-
by-2 block is the circuit in Figure 5.8.

For � � Z�m�� and n � N, the arithmetic operation � � �n� 	mod �m � �

is carried out by first, during an initial clock cycle, loading � into the parallel
register and then run the circuit for an appropriate number of clock cycles. Be-
cause the the integer 2 has order �m � �t�� modulo �m � � (see Section 2.3.2)

we have � � �n
�t	
� 	mod �m � �
, where t � log� m. Thus, only the t � �

80 Chapter 5. The Normal Binary Coded Representation

least significant bits of n have to be considered. This implies that the desired
product �n� mod �m � � is present at the circuit output after n�t� clock cycles
(not counting the initial clock cycle for loading the feedback register with �).

The chip area A occupied by the circuit in Figure 5.8 is proportional to

Cmult�n � Cmult� � 	m� �
Creg � �m � log� m� ��m� ���

The internal CP of the circuit is the feedback path from the output of the reg-
ister element in the most significant bit position, through the multiply-by-2
circuit, to the input of any of the other register elements. Assuming that the
output �n� mod �m � � is stored in an 	m � �
-bit parallel register, the length
of the internal CP equals

LCP�mult�n � Lreg � rregfmult� � LCP�mult� � rmult� � �freg
� �� � � � 	m� �
 � �	m� log� m� �
 � �� � 	� � �
 � � � �
� ��m � � log� m� ���

After n�t��� clock cycles, including one clock cycle for initiating the feedback
register, the result is shifted out to the output register. Hence, the time T re-
quired to perform the entire operation is proportional to

Lmult�n � 	n�t� � �
LCP�mult�n � 	n�t� � �
	��m � � log� m� ��
�

where � 	 n�t� 	 �m� �, and the area-time performance AT � of the multiply-
by-�n architecture is proportional to the product Cmult�n	Lmult�n
�.

Note that, because we have n�t� � nt�t � nt���t�� � � � � � n� � nt �m� n�t���,
we can write

� � �n
�t	
� � 	�m
nt�n

�t��	
� � 	��
nt�n

�t��	
� 	mod �m � �
� (5.8)

Hence, �n� mod �m � � can be computed by first running the feedback multi-
plication-by-two circuit n�t��� clock cycles. Then, if nt � � the desired product
� � �n� 	mod �m � �
 is present at the circuit output and if nt � � the re-
sult must be negated to obtain �. The area-time performance of the resulting
circuit, which consequently also comprises a negater, is smaller (but not sig-
nificantly smaller) than the area-time performance of the circuit in Figure 5.9.

It is also possible to design a strictly parallel architecture that performs multi-
plication by powers of two in one clock cycle. The structure of such an archi-
tecture would be similar to the structure of a barrel shifter. Such an architecture
is considered in Chapter 6 but, however, not in the present chapter.

5.1. Architectures for Arithmetic Operations 81

m� �-bit parallel register

Mult. by 2 (Figure 5.8)

��� ���� � � � � �n
�t	
� 	mod �m � �

Figure 5.9: Block diagram for multiplication by powers of two.

5.1.5 General Multiplication

An overview of some well known approaches to the binary multiplication
problem can be found for example in Hwang [52, Ch. 5] and Weste and Esh-
raghian [113, Ch. 8.2.7]. In principle, there are three types of architectures for
general multipliers, namely the serial-type, the serial/parallel-type, and the
parallel-type architecture. Factors like form of data transmission, circuit area
and computation time requirements, potential for pipelining (to increase the
clock frequency), and power dissipation constraints may govern the choice
of architecture type. For multiplication in an integer quotient ring, a serial/
parallel or strictly parallel architecture is generally preferable to a serial ar-
chitecture, inter alia with respect to the complexity of performing the mod-
ulus reduction operation. This issue was briefly discussed in the beginning of
Chapter 4.

Independently of the type of architecture, multiplication of NBC integers is
generally performed as sequential addition of partial products. For the multi-
plicand � �

Pm
i�� �i�

i and the multiplier
 �
Pm

i��
i�
i, where as usual �i�
i �

Z�, we get the product

� � � �
 �
mX
i��

i	�
i�
 	mod �m � �
�

82 Chapter 5. The Normal Binary Coded Representation

A common approach when designing a fast multiplier is to find a way to
quickly sum up all the partial products. The serial/parallel multiplier, which
is also known as the shift-and-add multiplier, is one of the most well known
multipliers. It successively adds the partial products together using one feed-
back parallel adder. In each clock interval, a partial product �i� mod �m � �
is calculated as � � 	�i���
 mod �m � �, i.e. using repeated multiplication by 2
modulo �m � �.

A block diagram for a serial/parallel multiplier over Z�m�� is shown in Fig-
ure 5.10. The parallel-input multiplicand � and the serial-input multiplier

are initially loaded into the registers R� and SR, respectively. The register R�

is initiated with the all-zero word. These initiations are carried out during one
clock cycle. After the following i clock cycles, the 	m� �
-bit parallel register
R� contains the partial product �i� mod �m � �. Each output bit from register
R� is fed both to one of the inputs of a two-input AND gate and to the input
of the multiplication-by-2 circuit. The bit-serial output
i of the shift register
SR is connected to the second input of each of these m��AND gates, making
the fan-out of the shift register equal to 	m � �
fAND . Hence, the value of the
least significant bit of SR controls, in each clock interval, whether the all-zero
word (for
i � �) or the partial product in R� (for
i � �) is to be added to the
contents of R�.

The CP of the serial/parallel multiplier architecture in Figure 5.10 is the path
from the output of shift register SR through an AND gate, the parallel adder,
and into one of the registers elements in R�.� Using the carry ripple-type adder
in Figure 5.7, the length of this CP equals

LCP�mult � Lreg � rreg � 	m� �
fAND � LAND
� rANDfadd � LCP�add � raddfreg

� �� � �	m� �
� � � � � � ��m � �� � � � �
� ��m � ���

After m � � clock cycles, the product � � � �
 	mod �m � �
 is obtained in
register R�. An initial clock cycle is required for loading the registers with their
initial values and an extra clock cycle is required to shift� fromregister R� into
an output register (not shown in the figure). Hence, the total computation time
T is proportional to

Lmult � 	m� �
LCP�mult � ��m� � ���m � ����

�If the adder architecture in Figure 5.7 is adopted here, the CP ends in the register element
in the next most significant bit position (m � �) of the parallel register R�.

5.1. Architectures for Arithmetic Operations 83

SR

m
m��
�
�

0

R�

R�

000

Mult. by 2 mod Ft

�
�� mod Ft
��� mod Ft
...

�����
����

Addition modulo Ft

�m �m�� �� ��

Row of AND gates

� � � �
 	mod �m � �

Figure 5.10: The block diagram for a serial/parallel multiplier. The product � � � �

	mod Ft
, where Ft � �m � �, is generated and stored in register R� after

m�� clock cycles. The initial contents of the registers R� and R� are � and the
all-zero word, respectively, and the shift register SR is initiated with
. These
initial values are shown in the respective registers in the figure.

84 Chapter 5. The Normal Binary Coded Representation

Using the multiplication-by-two circuit in Figure 5.8, the chip areaA occupied
by the circuit in Figure 5.10 is proportional to its size

Cmult � Cmult� � �	m� �
Creg � 	m� �
CAND � Cadd
� �m � log� m� ��m � � � �	m� �
�� � 	m� �
 � � � ��m� �

� �m � log� m� ���m � ���

The area and/or time complexities of the serial/parallel multiplier may be re-
duced by for example replacing the parallel carry ripple-type adder with an
adder that has better area-time performance. For standard binary serial/
parallel multiplication of binary coded two’s complement numbers, the effi-
ciency of computing the sum of partial products may be speeded up by adopt-
ing a different multiplication scheme, see for example Chapter 5 in Hwang’s
book on computer arithmetic [52]. However, using the NBC representation of
the integers ofZ�m��, it seems as if none of these schemes yields a serial/paral-
lel architecture whose area-time performance is significantly improved, com-
pared to the area-time performance of the serial/parallel multiplier in Figure
5.10. The area-time performanceAT � of the latter multiplier is proportional to

CL�
mult

�
� Lmult	Cmult

� � O

m� log� m

�
�

Remark: We have not investigated the properties of any bit-parallel architec-
ture for NBC multiplication inZ�m��. However, a promising candidate
for such an architecture is a modified version of the pipelined array mul-
tiplier suggested by Benaissa et al. [11, Fig. 4]. Their multiplier is based
on an NBC representation of both the multiplier and the multiplicand.
Because this multiplier is basically a diminished–1 multiplier, its proper-
ties are investigated in Section 6.3.6 (see page 138). A block diagram of
the multiplier is shown in Figure 6.21.

5.1.6 Exponentiation of the Transform Kernel

Consider the exponentiation

� � �n 	mod �m � �
� (5.9)

where � �Z�m�� and the exponent n is an integer. Because the order of every
element of Z�m�� divides
	�m � �
, where
 is Euler’s totient function,	 the

�See Corollary 8.1.1 in Rosen’s book [84]. The totient function ���m � �� equals �m in the
Fermat prime fields, i.e. for m � �� �� �� �� �
.

5.1. Architectures for Arithmetic Operations 85

only part of the exponent n that has to be considered is n mod
	�m � �
. In
particular, when � is the transform kernel �, the order of � modulo �m � �
equals the transform lengthN � �b for some integer b (see (2.4) in Section 2.3.2).
Therefore, when computing powers of the transform kernel, we use the expo-
nent n mod N .

There exist several algorithms for integer exponentiation. Probably the most
well knownmethod is the so called binary method, which is described by Knuth
in [56, Ch. 4.6.3]. It is based on the NBC extension of the exponent n. The r-bit
NBC integer n can be written on the form

n � nr���
r�� � nr���

r�� � � � � � n�� � n� 	mod q
�

where r
�
� blog� 	n mod q
c � �,
 n�� � � � � nr�� � Z�, and q �
	�m � �
 (for

arbitrary � � Z�m��) or q � N (for � � �). Consequently, the congruence in
(5.9) can be written as

� �
��

� � �
	�nr��
� �nr���� �nr�� � � ��n�	� �n���

�n
 	mod �m � �
�

In the binary method, the right-hand side of this congruence is evaluated us-
ing repeated squaring and multiplication. Hence, depending on n, r�� squar-
ings and at most the same number of multiplications are required to perform
the exponentiation. In a conventional circuit for exponentiation we use a full-
width exponent representation, i.e. we have r � blog� 	
	�m��
��
c�� in the
general case
 (for arbitrary nonzero � �Z�m��) and r � blog� 	N � �
c�� � b
for � � �. The multiplications required to perform the exponentiation are
general multiplications. For some choices of base �, these multiplications may
be carried out in a simpler way, but such simplified multiplications are not
considered here.

Zuras [115] discusses how tofind the fastestway to square (andmultiply) large
integers in software: Denote by Tmult and Tsquare the computation times for
general multiplication and squaring, respectively. Because squaring is a spe-
cial case of multiplying, we trivially have Tsquare 	 Tmult. There is no known
algorithm for exponentiation that is significantly faster than general multipli-
cation. From the equation

A �B �
	A�B
� � 	A�B
�

�

it follows that a multiplication can be carried out as two squarings, three ad-
ditions, and one multiplication by ���. Assuming that addition and multipli-
cation by ��� takes at mostO 	m
 time (see for example (5.6) and (5.7)), where

�For x � R, the expression bxc denotes the greatest integer less than or equal to x.
	When �m � � is prime we get r � m.

86 Chapter 5. The Normal Binary Coded Representation

m is the operand word bit length, we thus get

Tmult 	 �Tsquare �O 	m
 �

Hence, as stated by Zuras, even though someone may discover an algorithm
for squaring that is faster than any existing multiply algorithm, any squaring
algorithm can be used to construct a multiply algorithm that is not more than
a constant slower than the squaring algorithm. Regarding the NBC represen-
tation of the elements ofZ�m�� we do not consider any specially designed ar-
chitecture for squaring. Squarings are performed as general multiplications,
which means that exponentiation requires at most �	r � �
 multiplications,
where r � blog� 	
	�m��
� �
c�� for arbitrary nonzero � �Z�m�� and r � b
for � � �. Hence, using the NBC representation and the binary method as de-
scribed above, exponentiation inZ�m�� can be performed in O 	�	r � �
Lmult

time.

Alternative methods of performing integer exponentiation are described for
example in Chapter 4.6.3 in Knuth’s book [56] and inZuras’ paper [115]. Bocha-
rova and Kudryashov [18], [19] investigate exponentiation schemes based on
different source codes. Gollmann et al. [46] consider exponentiation based on
a signed-digit representation of the exponent. See also the articles on integer
exponentiation in the reference list in Gollmann’s paper [46]. Compared with
the binary method, most other algorithms for integer exponentiation reduce
the number of true multiplications, often by processing several bits of the bi-
nary (or signed-digit) representation of the exponent at a time, which for some
algorithms is done to the cost of a precomputed look-up table. The number
of squarings are approximately the same for most algorithms. In the present
chapter we only consider the above binary method.

In Section 2.3.2 we showed that for some sequence lengths N there exist suit-
able choices of the kernel � for which the different powers of the kernel are
easily calculated. For example, for the combinations 	N� �
 � 	�m� �
 and
	N� �
 � 	�m�

p
�
, multiplication by a power of � can be simply carried out

as binary shifts in the former case and a pair of binary shifts and one addition
in the latter case.

For transforms of arbitrary lengths, the powers of the transform kernel are
either directly calculated when needed or precomputed and stored in a mem-
ory (look-up table) from which they are read when needed. For the direct cal-
culations, weuse the above binarymethod for exponentiation. When thepow-
ers of � are precomputed, the exponentiations are suitably carried out as re-
peated multiplication by �, i.e. �� � � � �� �� � �� � �� �� � �� � �� � � �. We do
not consider the complexity of these precomputations.

5.2. Summary 87

In Fermat prime fields, i.e. inZ�m�� form � �� �� �� �� ��, there are more ways
of performing exponentiation. For example, in Section 7.2.1 wedescribe meth-
ods of performing exponentiation with respect to the polar representation.

5.2 Summary

In Table 5.1 we have summarised the sizes, the fan-ins, the internal and to-
tal CP lengths, the output normalised resistances, and the area-time perfor-
mancesAT � of the architectures in the present chapter. Note that the modulus
reduction operation is included in the other four operations.

88 Chapter 5. The Normal Binary Coded Representation

O
p
eratio

n
F
ig

u
re

S
u
b
scrip

t
n
am

e
S
izeC

F
an

-in

f

In
tern

al
C

P
len

g
thL

in
t

M
o
d
u
lu

s
red

u
ctio

n
5.1

m
o
d
,1

��m
�
�

8

��m
�
�

5.2
m

o
d
,2

�m
�log
�
m
�
��m

8

�m
�
�
log
�
m
�
�

N
eg

atio
n

5.5
n
eg

��m
�
��

2

��m
�
��

A
d
d
itio

n
5.7

ad
d

��m
�
�

6

��m
�
��

���

M
u
lt.

b
y

2
5.8

m
u
lt2

�m
�log
�
m
�
��m
�
�

m
�
�

�	m
�
log
�
m
�
r
�

�
��

M
u
lt.

b
y

�
n

5.9
m

u
lt2n

�m
�log
�
m
�
��m
�
��

—

��m
�
�
log
�
m
�
��

G
en

eral
m

u
lt.

5.10
m

u
lt

�m
�log
�
m
�
���m
�
��

—

��m
�
��

E
x
p
o
n
en

tiatio
n

—
—

��

��

N
o
rm

.
o
u
tp

u
t
res.

r
o

T
o
tal

C
P

len
g
thL

(in
clu

d
in

g
reg

isters)
A

rea-tim
e

p
erf.CL

�

r
m
�
�
�
�

��m
�
��

O
	m
�

r
m
�
�
�
�

�m
�
�
log
�
m
�
��

O
	m
�
log
�
m

2

��m
�
��

O
	m
�

���

3

��m
�
��

O
	m
�

r
�
�
�

��m
�
�
log
�
m
�
��

O
	m
�
log
�
m

—

	n
�t�
�
�
	��m
�
�
log
�
m
�
��

O
	n
�t�
�
�

�m
�
log
�
m �

—

��m
�
�
���m
�
���

O
	m
�
log
�
m

A
t
m

o
st

�	r�
�

m
u
ltip

licatio
n
s

are
req

u
ired

,w
h
ere

r
�
blog
�
	

	�
m

�
�
�
�
c
�
�

o
r

r
�
b

T
a
b
le

5
.1:

T
he

com
plexity

param
eters

of
the

architectu
res

in
the

presen
t
chapter.

Chapter 6

The Diminished–1 Representation

6.1 Linearly Transformed Representations

In this chapter investigate properties of arithmetic operations in Z�m��, with
respect to a linear coordinate transformation of the 	m � �
-bit normal binary
coded (NBC) integers ofZ�m��. In the resulting number system, an NBC inte-
ger
 �Z�m�� is represented by the binary coded integer

T 	

 � k
 � l (mod �m � �), (6.1)

where k� l �Z�m��. The reverse code translation (from T 	

 to
) can be writ-
ten as
 � k��	T 	

� l
 	mod �m��
. Consequently, the reverse code trans-
lation only exists if k has a multiplicative inverse k�� inZ�m��, i.e. if

gcd	k� �m � �
 � ��

Depending on the constants k and l, we obtain various VLSI architectures for
arithmetic operations inZ�m��. Trivially, for k � � and l � � we get the NBC
representation of T 	

 �
 and consequently the architectures considered in
Chapter 5.

Because every translated integer T 	

 is an 	m� �
-bit NBC integer inZ�m��,
reduction modulo �m � � can be performed using the procedure described in
Section 5.1.1 for any k and l. In Section 6.2 we investigate how to choose the
constants k and l so that the modulus reduction operation can be incorporated
into the various arithmetic operations in a straightforward way, i.e. in a way
that minimises the computational complexity of each operation.

89

90 Chapter 6. The Diminished–1 Representation

For the sake of convenience, we occasionally denote a translated NBC integer
T 	

 by �
, i.e. for �
m� �
m��� � � � � �
�� �
� �Z� we have

T 	

�
� �
 � �m�
m � �m���
m�� � � � �� ��
� � �
��

6.1.1 Arithmetic Operations

For arbitrary ��
� k� l �Z�m��, where gcd	k� �m��
 � �, we get the following
arithmetic:

Negation

By (6.1) we get T 	

 � T 	�

 � �l 	mod �m � �
 and thus

T 	�

 � �T 	

 � �l 	mod �m � �
�

By (5.5) we get the congruence�T 	

 � T 	

� � 	mod �m��
, which gives

T 	�

 � T 	

 � � � �l (mod �m � �)� (6.2)

Thus, the integer�
 is represented by T 	

 � � � �l mod �m � �, where T 	

is the one’s complement of the 	m� �
-bit translated NBC integer T 	

.

Addition

T 	� �

 � k	� �

 � l � T 	�
 � T 	

� l 	mod �m � �
� (6.3)

For the sake of simplicity we sometimes use the symbol� to denote addition
between translated symbols.� Hence, we define such an addition as

T 	�
� T 	

�
� T 	� �

 	mod �m � �
� (6.4)

Subtraction

The congruence

T 	� �

 � T 	�
� T 	�

 	mod �m � �
 (6.5)

follows directly from (6.3) and (6.4), i.e. subtraction is performed in the tradi-
tional way by first negating the subtrahendand then adding it to the minuend.

�Chang et al. [32] use the same notation.
Note that the symbol � denotes the logical XOR function whenever it appears in a

Boolean expression.

6.1. Linearly Transformed Representations 91

Multiplication by Powers of 2

We expand T 	�n

 as

T 	�n

 � k�n
 � l � �nl � �nl � �nT 	

� 	�n � �
l (6.6)

�
�n��X
i��

� T 	

 (mod �m � �)� (6.7)

where
P
� denotes the special summation of translated symbols. The special

case of simple multiplication by 2,

T 	�

 � �T 	

� l (mod �m � �)� (6.8)

can also be directly obtained from the addition formula (6.3). The product
�T 	

 is simply obtained by shifting the NBC integer T 	

 one bit to the left.
The translated product T 	�n

 can be calculated in a way that is computation-
ally more efficient than the direct computation of (6.6). We have

T 	�n

 � k�n
 � l

� �	k�n��
 � l
� l

� �T 	�n��

� l 	mod �m � �
� (6.9)

which is simply computed using repeated multiplication by 2 and addition.
The modulus reduction is performed after every multiplication by 2 and ad-
dition of �l.

General Multiplication

T 	� �

 � k�
 � l � kk��	T 	�
� l
k��	T 	

� l
 � l

� k�� 	T 	�
T 	

� l	T 	�
 � T 	

� l

 � l 	mod �m � �
� (6.10)

Because T 	�
 and T 	

 are NBC integers, it is possible to simplify (6.10). By
writing T 	

 on the form T 	

 �

Pm
i�� �
i�

i, where
i � f�� �g, we get

92 Chapter 6. The Diminished–1 Representation

T 	� �

 � k�
 � l � �	k
 � l
� l� � l

� � � T 	

� lk��	k� � l
 � l�k�� � l

� �

mX
i��

�
i�
i � lk��	l � k � T 	�

�

mX
i��

	 �
i�
i� � l
�ml� lk��	l � k � T 	�

� l

�
�

mX
i��

� T 	 �
i�
i�

�
� lk��	l� k � T 	�

 (mod �m � �)� (6.11)

In some applications one may wish to represent either the multiplicand or the
multiplier as an NBC number. For example, constants or the Fermat number
transform coefficients ��kn may just as well be stored in that format. By writ-
ing the NBC multiplier
 on the form
 �

Pm
i��
i�

i we get

T 	� �

 � k�
 � l � k�

mX
i��

i�
i � l

�
mX
i��

	k
i�
i� � l
� l	m� �
 � l �

mX
i��

T 	k
i�
i�
� lm

�
mX
i��

� T 	k
i�
i�
 (mod �m � �)� (6.12)

which apparently has a simpler structure than both (6.10) and (6.11). Appar-
ently, the efficiency of computing (6.10) and (6.11) depends on which values
are assigned to k and l. The multiplication procedure according to (6.12) de-
pends on the value of k, but not l. It is also possible to obtain an expression
for general multiplication which involves l but not k:

T 	� �

 � k�
 � l � 	k� � l

mX
i��

i�
i � l
 � l

�
mX
i��

i�
i	k� � l
� l
 � l

�
mX
i��

i	k�
i� � l
� l

mX
i��

i � l

mX
i��

i�
i � l
 � l

6.2. The Use of a Zero Indicator 93

�
mX
i��

iT 	�
i�
 � l

�
� �

mX
i��

i

�

�
mX
i��

iT 	�
i�
 � l

�
mX
i��

	��
i
�m

�

�
mX
i��

	
iT 	�
i�
 �
il
 �m�m	l� �

�
mX
i��

� 	
iT 	�
i�
 �
il
�m	l� �
 	mod �m � �
� (6.13)

In Section 6.3.6 we consider various multiplication procedureswhich arebased
on the above congruences (6.10), (6.11), (6.12), and (6.13).

Exponentiation

The formula for general exponentiation is

T 	
n
 � k
n � l � k��n 	T 	

� l
n � l 	mod �m � �
� (6.14)

6.2 The Use of a Zero Indicator

Generally speaking, the best choice of k and l in (6.1) yields optimum complex-
ity and performance of the corresponding VLSI architectures for arithmetic
operations. Among the arithmetic operations considered in the previous sec-
tion, the code translation (Equation (6.1)), general multiplication according to
(6.10), (6.11), and (6.12), and exponentiation (Equation (6.14)) are the only ones
involving the constant k. It is involved in these operations in the following
ways:

� Multiplication by k and k��.

� Multiplication by lk�� (or �lk��) and addition by l � k.

� Multiplication by k��n.

These operations are simplest carried out if k � �� k � �l, and k � � re-
spectively. The operations then reduce to multiplication by one (for all equa-
tions involving k) and addition by zero (Equation (6.11)). Hence, we assert

94 Chapter 6. The Diminished–1 Representation

that choosing k � � is the best choice with respect to the simplification of the above
operations.

Now, let us consider the choice of the constant l. We have seen that addition
of translated symbols occurs in several operations (Equations (6.3), (6.5), (6.7),
(6.10), (6.11), (6.12), and (6.13)). We therefore first focus on the sum

T 	�
� T 	

 � T 	� �

 � T 	�
 � T 	

� l (mod �m � �)�

in (6.3). Multiplication by two,

T 	�

 � �T 	

� l (mod �m � �)�

is another operation of special interest, because it is involved in the compu-
tation of general multiplication. Multiplication by two is of course a special
case of addition, but the product �T 	

 is preferably carried out as a binary
shift of T 	

 instead of ordinary addition. We would, however, like to carry
out the addition by�l followed by the reduction modulo �m � � as simply as
possible.

The following 	m��
-bit NBC integers modulo �m �� are the �m elements of
Z�m��:

� �� � � � �� � �m

� �� � � � �� � �m � �
� �� � � � �� � �m � �

...
� �� � � � �� � �
� �� � � � �� � �

It would be very convenient, at least from an implementation point of view,
if �m represents the zero element. Because the NBC integer �m is the only el-
ement ofZ�m�� which has a one in its most significant bit position , it would
then be enough to check in one bit position whether an element is zero. Such
a procedure can be helpful for example when computing sums and products;
addition by zero 	 T 	
 � �
 � T 	

 and multiplication by zero 	 T 	
 � �
 �
T 	�

 are two operations that can be simply carried out in VLSI during a sin-
gle clock interval.

When representing the zero element by the integer �m, the nonzero integers
�� �� �� � � � � �m are consequently represented by the (m-bit) NBC integers of
Z�m. Hence, we can use anm-bit arithmetic for the nonzero elements ofZ�m��,
which from a complexity point of view is preferable to the 	m � �
-bit arith-
metic associated with the NBC representation in Chapter 5.

6.2. The Use of a Zero Indicator 95

Henceforth, the translated element �m is called the zero indicator. Thus, by let-
ting T 	

 � �m represent
 � � we get

l � ��

from (6.1), which is the same value of l that is obtained from the choice of k:

For k � � and k � �l, we get l � ��.
The congruences (6.3) and (6.8) then change to

T 	� �

 � T 	�
 � T 	

 � � (mod �m � �) (6.15)

T 	�

 � �T 	

 � � (mod �m � �)� (6.16)

respectively. It is also interesting to note that, for l � ��, negation (Equa-
tion (6.2)) and general multiplication according to (6.13) simplify to

T 	�

 � T 	

 � � (mod �m � �) (6.17)

T 	� �

 �
mX
i��

� 	
iT 	�
i�
�
i
 	mod �m � �
� (6.18)

respectively. Obviously, the addition by 1 modulo �m �� appears in the three
congruences (6.15), (6.16), and (6.17) (andactually also in the congruence (6.18),
which is formed by m additions of the type in (6.15)).�

For an arbitrary 	m � �
-bit NBC integer �� � �m�� the congruence �� � �� � �
	mod �m � �
 can be simplified as

�� � �� � � � ���m��� � � � ��m�
m

� ���m��� � �� ��m

� ���m��� � ��m 	mod �m � �
� (6.19)

where ���m��� �
�
��m��� ��m��� � � � � ���

	
�
. We thus have

�� �
�

���m���� for ��m � �
���m��� � �� for ��m � �

	mod �m � �
� (6.20)

which can easily be computed using for example a chain of half adders. This
is further discussed in Section 6.3.1. The sum �� may be associated with

�Note that by letting ���l of (6.2) be equal to�l of (6.3), we get l � �� and thus ���l � �
and �l � �.

96 Chapter 6. The Diminished–1 Representation

T 	� �

� T 	�

, or T 	�

 and the addend �� may be associated with T 	�
 �

T 	

� �T 	

, or T 	

 in (6.15), (6.16), or (6.17), respectively.

From the above arguments we conclude that, from a computational complexity point
of view and with respect to the complexity and performance of the VLSI architectures
for arithmetic operations, the best choice of the constants k and l in (6.1) is 	k� l
 �
	����
.

McClellan’s Representation

In 1976, McClellan [65] proposed a way of representing the integers ofZ�m��.

By letting the 	m��
-bit binary coded number T 	

�
� �
 � 	�
m� �
m��� � � � � �
�
�

represent the NBC integer
 �Z�m��, the coding scheme is defined as follows:

If �
m � �, then
 � �.
If �
m � �, then
 � �m���m�� � �m���m�� � � � �� �� (mod �m � �)

�

where

�j �

�
� if �
j � �

�� if �
j � �
�

Thus, McClellan uses binary weightings with �� instead of 0 and 1. The core
of his representation is that the binary coded integer �m represents the integer
0, i.e. he uses �m as a zero indicator. Consequently, all the nonzero elements
have a zero in their most significant bit position and thus it is possible to per-
form m-bit arithmetic operations on these elements.

For a nonzero integer
, for which �
m � �, we have the relation �j � ��
j � �.
Therefore,
 can be expanded as

 � 	��
m�� � �
�m�� � 	��
m�� � �
�m�� � � � �� 	��
� � �
� � 	��
� � �

� �

�
m���

m�� � �
m���
m�� � �
m���

m�� � � � �� �
�� � �
�
�
� �

� ��
�m��� � � (mod �m � �)�

Because �
m equals zeroweget
 � ��
�m����� � ��
�� � �T 	

�� 	mod �m�
�
. It shows that this congruence also holds for the zero element; �T 	�
 � � �
� � �m � � � � � �� � � � �. Hence, the congruence

 � �T 	

 � � (mod �m � �)

holds for every element
 � Z�m��. Because we have ��� � 	�m � �
��� �
�m�� � � 	mod �m � �
 the code translation from
 to T 	

 is performed ac-
cording to the congruence

T 	

 � ���
 � � � 	�m�� � �

 � � 	mod �m � �
�

6.2. The Use of a Zero Indicator 97

We thus get McClellan’s element representation by choosing k � �m���� and
l � �� in (6.1).

Leibowitz’ Representation

Also in 1976, Leibowitz [58] presented another way of representing the inte-
gers ofZ�m��. In his article, he mentions that McClellan’s element representa-
tion belongs to the set of element translations of the form

T 	

 � k
 � � 	mod �m � �
� k� k�� �Z�m���

which all give the same simplified binary arithmetic modulo �m � �. How-
ever, this is true only for operations like negation (Equation (6.2)), addition
(Equation (6.3)), multiplication by two (Equation (6.8)), and general multipli-
cation according to (6.12). The integer k is not involved in any of these op-
erations. Leibowitz claimed that that the choice k � � will give the simplest
code translation. Then,
 is simply obtained from T 	

 by adding 1 to T 	

modulo �m � �. The reverse operation is carried out by diminishing
 by 1
modulo �m ��. Owing to this fact, Leibowitz calls his element representation
the diminished–1 representation.

The diminished–1 representation has been adopted in most published archi-
tectures since 1976. As indicated above, the two main reasons for that should
be the utilisation of the element �m as a zero indicator (l � ��), and the sim-
plified element translation (k � �). A very common application to Fermat
integer quotient ring computations is the computation of the Fermat number
transform of lengths �m and �m, for which the transform kernel � is prefer-
ably chosen as 2 and

p
�, respectively.� Then it is possible to compute the Fer-

mat number transform using bit shifts and additions but no general multipli-
cation or exponentiation. Hence, no operation involving k is needed to compute
such a transform. If the translation from the normal binary representation to
the diminished–1 representation and vice versa must take place, then, as as-
serted above, k � � is the best choice.

�See Section 2.3.2.

98 Chapter 6. The Diminished–1 Representation

6.3 The Diminished–1 Representation

6.3.1 Code Translation

Obviously, the code translation from the NBC integer
 �Z�m�� to the dimin-
ished–1 integer T 	

 �
 � � 	mod �m � �
 and the reverse translation
 �
T 	

 � � 	mod �m � �
 only involve subtraction by one and addition by one
modulo �m � �, respectively.

NBC to Diminished–1 Representation

The forward translation T 	

�
� �
 �
 � � 	mod �m � �
, where � 	
 	 �m,

can quite easily be carried out using a simplified parallel adder. As in Sec-

tion 5.1.1, we first compute the sum �
�
�
�m��� � 	�m � �
 � 	cm� �m��� �m���

� � � � ��� ��
�, where cm is the carry output from the most significant bit po-
sition of the adder and �i is the adder sum output in bit position i, for i �
�� �� � � � � m� �. With one of the adder input signals in bit position i high and
the second input signal equal to
i we get, in accordance with (5.2) and (5.2),
the carry and sum outputs

ci�� �
i � ci

�i �
i � ci�

respectively. The first carry input c� equals zero. In order to determine the
desired sum �
, three cases have to be considered:

1. If
 � �, then let �
m � cm � � and �
�m��� � ��m��� � 	�m � �
 � �,
i.e. �
i � � for � 	 i 	 m� �.

2. If � 	
 	 �m � �, then let �
m � cm � � and �
�m��� � ��m���.

3. If
 � �m, then let �
m � cm � � and �
�m��� � ��m���.

From these three cases we form the two Karnaugh maps in Figure 6.1 for the
bit values of �
. According to the maps, for � 	 i 	 m�� the Boolean functions
for �
m and �
i can be expressed as

�
m �
m � cm

�
i �
m � cm�i�

6.3. The Diminished–1 Representation 99

0

X

1

0

1

0

00

1

0 1 11 1

0

1

0

X X 1

X X

0

0

m

cm
mcm

�i

(a) �
m (b) �
i for � 	 i 	 m� �

1

0

Figure 6.1: Karnaugh maps for the bit values �
i of �
. X = “don’t care”.
(a) �
m �
m � cm �
m � cm. (b) �
i �
m � cm�i.

respectively. The sum � may be computed using either a carry ripple or a carry
look-ahead type of architecture. In the previous chapter we concluded that,
due to its favourableAT � performance, the carry look-ahead-type architecture
in Figure 5.2 is preferable to the carry ripple-type architecture in Figure 5.1.
We have designed a carry look-ahead type of architecture for the computa-
tion of T 	

 (i.e. �
) from
. The architecture, which is shown in Figure 6.2,
is similar to the architecture in Figure 5.2. The row of combined AND–NOR

gates at the output generates the one’s complement �
�m��� of the NBC inte-
ger �
�m���, i.e. the gate in bit position i generates the signal �
i �
m � cm�i.
A schematic description of such a gate is shown in the bottom of Figure 6.2.
The gate has size CAND�NOR � �, fan-in fAND�NOR � �, and output normalised
resistance rAND�NOR � �. It has no internal stage. The output array of inverters
generates the desired output �
�m���.

The total size of the ’NBC-to-diminished–1’ architecture in Figure 6.2 equals�

CNBC�Dim � 	m	log� m� �
 � �
C
NAND�NOR

� 	m� �
	Cinv � CXNOR

� C

NOR
�m	C

AND�NOR
� Cinv

� 	m	log� m� �
 � �
 � � � 	m� �
	� � ��
 � � �m	� � �

� �m � log� m� �m� ��

The CP is the dotted path from the
�-input node through the circuit and to
the �
�-output node. The fan-in and the output normalised resistance of the
architecture, with respect to this CP, equal

fNBC�Dim � fmod�� � �

rNBC�Dim � rAND�NOR � ��

�Compare the derivation of this expression with the derivation of Cmod�� in (5.4).

100 Chapter 6. The Diminished–1 Representation

�
�
�
�
�

�
��
� �
� �
� �
�

�� �� �� ��

�
�
�
�
�

�
��
� �
� �
� �
�

�
 �
 � � 	mod �� � �

�

Vdd

c� �i

�
i �
m � cm�i

c�

c�

�

�

�i

�i

�
i
AND–NOR

AND–NOR AND–NOR AND–NOR AND–NOR

Figure 6.2: An architecture performing the code translation from the NBC to the
diminished–1 representation (from
 to T 	

 � �
). The dotted line indicates
the CP through the circuit. The bottom part of the figure shows how each com-
bined AND–NOR gate is designed.

6.3. The Diminished–1 Representation 101

respectively, and the internal CP length equals

LCP�NBC�Dim � 	log� m� �
r
NAND�NOR

	f
NOR�NAND

� finv

� rNAND	fNOR �mfAND�NOR
 � rAND�NORfinv

� 	log� m� �
 � �	� � �
 � �	� � �m
 � � � �
� �m� � log� m�

As in Chapter 5, when determining the AT � performance of the architecture,
we assume that it is both preceded and followed by 	m � �
-bit parallel reg-
isters. Therefore, the time T required to evaluate the congruence �
 �
 � �
	mod �m � �
 is proportional to

LNBC�Dim � Lreg � rregfNBC�Dim � LCP�NBC�Dim � rNBC�Dimfreg

� �� � � � � � �m� � log� m� �

� �m � � log� m� ���

which implies that the AT � performance of the circuit is proportional to the
product

CL�
NBC�Dim

�
� CNBC�Dim	LNBC�Dim

�

� 	�m � log� m� �m� �
	�m� � log� m� ��
� � O

m� log� m

�
�

This product is less than the area-time product CL�
mod�� of the modulus reduc-

tion circuit in Figure 5.2.

An alternative procedure for performing the subtraction �
 �
 � �
	mod �m � �
, for
 � 	
m�
m��� � � � �
��
�
� �
m�m �
�m���, is the fol-

lowing:

1. If � 	
 	 �m � �, i.e. if
m � � and � 	
�m��� 	 �m�� � �, then let

�
�
�
�m��� � � � �m �
�m��� � 	��
m��� � � � �
��
�
� 	mod �m � �
.

The diminished–1 integer �
 is obtained by reducing � modulo �m � �.

2. If
 � �m, i.e. if
m � � and
�m��� � �, then let �
�
�
 � � � �m � � �

	�� �� � � � � �� �
�. The diminished–1 integer �
 equals �.

In case 1, � can be obtained from
 simply by inverting its most significant bit

m. By letting � be the input of a modulus reduction circuit, for example the
one in Figure 5.1 or the one in Figure 5.2, we get the desired integer �
 as the
output of the circuit. In case 2, � can be obtained by inverting allbits of
. Even
though this � is the desired �
, we avoid an unnecessarily complex control logic

102 Chapter 6. The Diminished–1 Representation

m
m��
m��
�
�

�
m���
m �
m�� �
� �
�

�
 � � 	mod �m � �

�����m���m���m

Figure 6.3: An alternative architecture for performing the code translation from the
NBC integer
 to the diminished–1 coded integer T 	

 � �
 �
 � �
	mod �m � �
 using a modulus reduction circuit.

by letting � pass through the modulus reduction circuit also in case 2. Still, it
is the procedure in case 1 that determines the overall time performance of the
operation. Figure 6.3 shows an architecture that generates the binary coded
diminished–1 integer �
 from the NBC integer
 using the above procedures in
cases 1 and 2.

It may be convenient to utilise a modulus reduction circuit to perform the code
translation but, however, both the size and the total CP length of such an archi-
tecture are greater than the corresponding parameters of an architecture that
is specially designed for the operation. For example, if the modulus reduction
part of the circuit in Figure 6.3 is the carry look-ahead-type architecture in Fig-
ure 5.2, its total size equals Cmod���mCOR � Cinv � �m log� m���m�� and its
total CP length (including the delay contribution of one input and one output
register) equalsLreg�rreg	mfOR�finv
�LOR�rORfmod���LCP�mod���rmod��freg �
��m � � log� m � ��. These two complexity parameters should be compared
with the smaller size CNBC�Dim and the smaller CP length LNBC�Dim , respectively,
of the architecture in Figure 6.2.

In his paper of 1976Leibowitz [58] suggests that the code translation should be
carried out as an ordinary diminished–1 addition (see Section 6.3.4) of
 and

6.3. The Diminished–1 Representation 103

the NBC integer �m � �.� This is a good solution if the diminished–1 adder
is readily available and if the time requirements for the code translation are
fulfilled. However, at least from a time performance point of view, a special-
purpose architecture like the one in Figure 6.2 is preferable to a general-pur-
pose architecture (like the diminished–1 adder).

Diminished–1 to NBC Representation

Leibowitz [58] described how to perform the translation from a binary coded
diminished–1 integer T 	

 (� �
) to an NBC integer
 by adding �
m to �
�m���.
Thus, we have

 � �
 � � � �
�m��� � � � �
m � �
�m��� � �
m 	mod �m � �
�

This operation, which in hardware does not require any modulus reduction,
can be performed using a row of half adder elements. Consider an m-bit par-
allel carry ripple adder with input signals � and
. In bit position i, where
� 	 i 	 m� �, the signal input bits are �i � � and �
i �Z�, which implies that,
by (4.2) and (4.3), the carry and sum outputs are equal to

ci�� � ci�
i

i � ci � �
i�

respectively. Because these functions are also the respective carry and sum
outputs of the half adder element (see the end of Section 4.3.4), the parallel
adder may be formed by a row of half adder elements, where the first carry
input c� equals �
m. An architecture that performs the diminished–1-to-NBC
coordinate transformation using the above procedure is shown in Figure 6.4.
The size of this architecture equals

CDim�NBC � mCHA � Cinv
� ��m� ��

The CP runs from the �
m-input node through the inverter and the chain of cas-
caded half adder elements. Denote by ns and nc the fan-out with respect to the

m��-output node and the
m-output node, respectively. IfLHA�sum�rHA�sumns �
���ns � LHA�carry �rHA�carrync � ��nc, i.e if ns � nc����, the CP runs from the
input to the sum output
m�� of the half adder element in the most significant
bit position. Otherwise, the CP runs to the carry output
m. The former path
is the one most likely to belong to the CP.	 Therefore, the fan-in, the output

�We have
 � � � � � � � �m � � � � � � � ��m � �� �mod �m � ��.
�For example, if ns � nc, the CP runs from the input of the half adder element to its carry

output only if nc � �.

104 Chapter 6. The Diminished–1 Representation

HA HAHA HA

�
� �
� �
� �
� �
�

�
�
�
�
�

 � �
 � � 	mod �� � �

�
� �
� �
� �
� �
�

�
�
�
�
�

Figure 6.4: A simple architecture for performing the code translation from the bi-
nary coded diminished–1 integer T 	

 � �
 to the NBC integer
 � �
 � �
	mod �� � �
.

normalised resistance, and the internal CP length of the circuit equal

fDim�NBC � finv � ��

rDim�NBC � rHA�sum � ��

L
CP�Dim�NBC

� rinvfHA � 	m� �
	L
HA�carry

� r
HA�carry

fHA
 � LHA�sum

� � � 	m� �
	� � �
 � �

� ��m� ��

respectively. When the input and the output of the coordinate transformation
circuit in Figure 6.4 are each connected to an 	m��
-bit register, the time T to
perform its operation is proportional to the total CP length

6.3. The Diminished–1 Representation 105

C
NBC�DimCDim�NBC

L
NBC�DimLDim�NBC

CL�
NBC�DimCL�
Dim�NBC

� � � �� �� �� ������

���

���

���
Area complexity

m

S
iz

e,
C

� � � �� �� �� ��� ���
���
��	

��

����

Area-time performance

m

CL
�

� � � �� �� �� ������

���

���

Time complexity

m

C
P

le
n
g
th

,L

Figure 6.5: The sizes, CP lengths, and AT � performances of the code translation
architectures. The parameters are plotted versus m for
m � �� �� �� ��� ��� ��� ���� ���.

LDim�NBC � Lreg � rregfDim�NBC � LCP�Dim�NBC � rDim�NBCfreg

� �� � � � � � ��m � � � � � �
� ��m � ���

Hence, the area-time performance AT � of this circuit is proportional to

CL�
Dim�NBC

�
� C

Dim�NBC
	L

Dim�NBC

� � 	��m � �
	��m � ��
�

� O

m�

�
�

The row of half adder elements in Figure 6.4 is a carry ripple type of archi-
tecture. Other classes of architectures, like the parallel carry look-ahead (half)
adder, are not considered here.

In Figure 6.5 we have plotted the sizes, total CP lengths, and area-time per-
formances of the architectures in Figure 6.2 and Figure 6.4. When comparing

106 Chapter 6. The Diminished–1 Representation

these parameters we see that

CNBC�Dim � CDim�NBC �
CNBC�Dim � CDim�NBC �

for m � � and m � �.
for m � �.

LNBC�Dim � LDim�NBC �
LNBC�Dim � LDim�NBC �

for m � � and m � �.
for m � �.

CL�
NBC�Dim

� CL�
Dim�NBC

� for all m.

6.3.2 Modulus Reduction

Because the diminished–1 integers are represented by the NBC integers in
Z�m��, the residue modulo �m�� of an 	m��
-bit binary coded diminished–1
integer can be computed using any of the modulus reduction circuits in Sec-
tion 5.1.1. However, one of the nice properties of the diminished–1 represen-
tation is that it yields arithmetic operations for which the modulus reductions
together with the arithmetic operations can be carried out in a more straightfor-
ward way than what is possible when using the ordinary NBC representation.
This is demonstrated in the following sections.

6.3.3 Negation

By letting l � �� in (6.2) we get

T 	�

 � T 	

 � � (mod �m � �)� (6.21)

This congruence was also considered in (6.17). The computational complexity

of computing T 	

 � � mod �m � � may seem to be in the same order as the
complexity of performing the code translation from the diminished–1 integer
T 	

 � Z�m�� to the NBC integer
 � T 	

 � � 	mod �m � �
. However, by
expanding (6.21) as

T 	�

 � 	� � �
m
�
m � �
�m��� � �

� �
�m��� � �
m �

�
�
�m��� if �
m � �
�
 � �m if �
m � �

(mod �m � �)�

where �
 � T 	

, it shows to be quite easy to implement. The negative of a
nonzero integer
 (for which �
m � �) is simply derived by inverting its m least

6.3. The Diminished–1 Representation 107

�
� �
� �
� �
� �
�

��� ��� ��� ��� ���

�� � T 	�

 	mod �� � �

�
� �
� �
� �
� �
�

��� ��� ��� ��� ���

Figure 6.6: Negation modulo �� � �. Here, we have �
 � T 	

 and T 	�

 � ��.

significant bits. For the zero element we have the relation T 	��
 � T 	�
 � �m,
which means that the symbolT 	�
 stays unmodified. For the 	m��
-bit binary
integer T 	

 � 	�
m� �
m��� � � � � �
�
� we thus have

T 	�

 � �� � 	 ��m� ��m��� � � � � ���
��

where the Boolean function for ��i equals

��i �

�
�
i � �
m � �
i � �
m� for i � �� �� � � � � m� �
�
m� for i � m

�

Figure 6.6 shows an architecture that realises such a negation, using a row of
NOR gates. This simple circuit is generally used for negation of diminished–1
numbers, see for example Pajayakrit [71, Ch. 3.4], Benaissa et al. [11, Fig. 8],
and Sunder et al. [97, Fig. 3].

108 Chapter 6. The Diminished–1 Representation

The CP through the negater circuit is the path from the �
m-input node through
one of the NOR gates to the circuit output. The fan-in and the output nor-
malised resistance, with respect to this path, equal

fdimneg � nm �mfNOR � nm � �m

rdimneg � rNOR � ��

respectively, wherenm is the negater fan-outwith respect to the ��m node. Note
that the delay of the input stage will be excessively long if bothm and the nor-
malised resistance of the input stage are large. One way of reducing this delay
is to properly buffer the circuit input stage, i.e. by using drivers in the stage.
However, as mentioned before, such a buffering is not considered here. There-
fore, the chip area A occupied by the negater circuit in Figure 6.6 is propor-
tional to its size

Cdimneg � mCNOR � �m�

There is no internal CP of the architecture. When the negater input is taken
from an 	m� �
-bit parallel register and the output is stored in a similar reg-
ister, we get nm � freg � �. Then, the negation time T is proportional to the
total CP length

Ldimneg � Lreg � rregfdimneg � rdimnegfreg � �m� ���

Hence, the product AT � is proportional to

CL�
dimneg

�
� Cdimneg	Ldimneg

� � O
m�
�
�

6.3.4 Addition and Subtraction

In Section 6.2 (Equations (6.3) and (6.15)) we showed that the choice l � �� in
(6.1) yields

T 	� �

 � T 	�
 � T 	

 � � (mod �m � �) (6.22)

For � 	 T 	�
� T 	

 	 �m, we expand this equation as

��
�
� T 	� �

 � ���m��� � �
�m��� � ��m � �
m � �

�

������
�����

��� � 	mod �m � �
� if 	 ��m� �
m
 � 	�� �

�� 	mod �m � �
� if 	 ��m� �
m
 � f	�� �
 � 	�� �
g

��� � � �m 	mod �m � �
� if 	 ��m� �
m
 � 	�� �

�

6.3. The Diminished–1 Representation 109

where �� � T 	�
� �
 � T 	

, and ��
�
� ���m��� � �
�m���. The three cases in the

above equation are handled in the following way:

1. �� � �� � � (mod �m � �):

Using the congruence �� � ��m�m � ���m��� � ���m��� � ��m (mod �m � �)
we get

�� � ���m��� � � � ��m � ���m��� � ��m 	mod �m � �

2. �� � �� (mod �m � �):

In this case we have either ���m��� � � or �
�m��� � �, which implies
��m � �. Therefore, no modulus reduction is needed. We let

�� � 	 ��m� ���m���
 � 	�� ���m���
.

3. �� � �� � � � �m (mod �m � �):

In this case we have ���m��� � �
�m��� � �, which gives �� � �.
Therefore, let

�� � 	 ��m� ���m���
 � 	�� ���m���
.

A Carry Look-Ahead Adder

For a bit-parallel transmission of both �� and �
, the sum �� � ���m��� � �
�m���

may be calculated using an m-bit parallel adder. In the above case 1, the sup-

plementary addition by ��m may be carried out by letting the carry in c� in the

least significant bit position be equal to ��m. The bit value ��m must then be gen-
erated by a carry look-ahead circuit. In cases 2 and 3, the initial carry in c�
equals zero. Hence, c� can be generated according to the Boolean function

c� � ��m � �
m � ��m � 	��m � �
m
 � ��m� (6.23)

The most significant bit ��m of the output �� must be generated separately. Let

cm denote the final carry of the addition ���m��� � �
�m��� � c�. Table 6.1 shows

the possible states of ��m� �
m� ��m� c�� cm, and the resulting sum ��. We see that

��m is high only for 	 ��m� �
m
 � 	�� �
 and for 	c�� cm
 � 	�� �
, which means
that it can be described as the Boolean function

��m � ��m � �
m � c� � cm � ��m � �
m � c� � cm�

110 Chapter 6. The Diminished–1 Representation

Case ��m �
m ��m c� cm �� ��m

1 0 0 0 1 0 � � � 	 �m � � 0
0 1 1 �m 1
1 0 1 � � � 	 �m � � 0

2 0/1 1/0 0 0 0 � � � 	 �m � � 0
3 1 1 0 0 0 �m 1

Table 6.1: The possible states of some variables involved in the computation of
�� � T 	� �

 (see also Figure 6.7).

Figure 6.7 shows one possible architecture of a diminished–1 carry look-ahead
adder. The carry-in of the carry look-ahead block equals zero. The adder has
about the same structure as McClellan’s adder [65, Fig. 7]. However, because
of an incorrect gating of the carry cm, McClellan’s adder gives an erroneous

output when ��m equals one (the third line of Table 6.1). On the other hand,
the gating is correctly realised for the carry look-ahead adder in Figure 8 of
[65].

Benaissa et al. [11] and others also use an adder that is based on the adder in
Figure 6.7. However, in Figure 9 of [11], the authors use AND and OR gates
to form the output bit ��m, in contrast to the NAND gates used in Figure 6.7.
Pajayakrit [71, Fig. 3.3] also considers an adder whose architecture slightly dif-
fers from the one presented in [11]. In Pajayakrit’s adder, there is an AND gate

that has ��m (which by Pajayakrit is named D) as one of its input signals. This
signal is exchanged for c� in Benaissa’s adder. Using the RC model adopted
in this thesis, it can easily be verified that when c� is chosen as input signal to

the AND gate, the internal delay from the ��m-output node of the carry look-
ahead circuit to the c� carry input node of the parallel adder is less than the

corresponding delay if ��m is chosen as the input signal of the AND gate.

Remark: Pajayakrit’s adder is actually a corrected version of the adder con-
sidered by Towers et al. [101, Fig. 9]. In Towers’ adder, which is based
on McClellan’s adder, the carry-in signal c� was improperly formed as

the Boolean function c� � ��m�
m��m instead of the correct one given by
(6.23).

When comparing the adder architectures described above we find that the
adder in Figure 6.7 is preferable to the others, with respect to correctness and
both area and time complexity. So far, we have not considered the choice of

6.3. The Diminished–1 Representation 111

��m ��m����� ��� ���

�
m�� �
� �
� �
�

��m ��m�� ��� ��� ���

�
m �����������m ��m��

c�

��m

cm

�� � T 	� �

 	mod �m � �

m-bit parallel adder

Carry
look-ahead
logic

��m ��m����� ������ �
� �
��
��
m���
m

Figure 6.7: Diminished–1 addition modulo �m � �: �� � T 	�
 and �
 � T 	

.

112 Chapter 6. The Diminished–1 Representation

adder type for the m-bit adder in Figure 6.7 (the one whose inputs are ���m���,
�
�m���, and c�). If this adder is implemented as a carry look-ahead type of
adder, like for example McClellan’s adder [65, Fig. 8], we presumably obtain
a faster diminished–1 adder than if it is implemented as a carry ripple type of
adder. However, the chip area occupied by an adder is generally larger for the
carry look-ahead adder than for the carry ripple adder.

In order to get fair comparisons between the bit-parallel carry ripple-type
NBC adder in Figure 5.7 and the bit-parallel adders in this section, the paral-
lel diminished–1 adders considered here are all plain carry ripple-type adders.
As mentioned in the beginning of Section 5.1, we primarily consider architec-
tures that can be mutually compared in order to decide which form of element
representation is most advantageous, with respect to chip area, computation
time, and area-time performance. Therefore, we generally compare architec-
tures of the same type, but with respect to different element representations,
rather than try to find the most area-time efficient architecture for a certain el-
ement representation.

Hence, the bit-parallel m-bit carry ripple adder in Figure 6.7 simply consists
of a row of m cascaded full adder elements. Consequently, the total size of the
entire diminished–1 adder equals

Cdimadd�� � mCFA � CCLA � �C
NAND�NOR

� COR � CCLA � ��m� ��� (6.24)

where the complexity CCLA of the carry look-ahead logic depends on how it is
implemented. It is well known that the output carry c�i�� from a full adder ele-

ment in bit position i, whose input signals are ��i, �
i, and c�i, may be expressed
as the Boolean function

c�i�� � gi � pic
�
i� (6.25)

where gi � ��i�
i and pi � ��i��
i are called the carry generate and propagate func-

tions, respectively. For the diminished–1 adder we have ��m � c�m. Therefore,
by expanding (6.25) for i � m� � we get

��m � c�m � gm�� � pm��gm�� � pm��pm��gm�� � � � �
� pm��pm�� � � � p�g� � pm��pm�� � � � p�c��� (6.26)

However, the addend pm��pm�� � � � p�c�� of (6.26) can be excluded here, because
for the circuit in Figure 6.7 we have c�� � �. The resulting Boolean function
can efficiently be evaluated using the carry look-ahead tree in Figure 6.8. This
architecture for generating only one carry signal is also suggested by Yuan

�For the diminished–1 adder in Figure 6.7, we denote by c�

i the input carry signal in bit
position i of the carry look-ahead circuit. We do this in order to distinguish it from the corre-
sponding carry signal ci of the parallel adder in the bottom part of the figure.

6.3. The Diminished–1 Representation 113

�
�

�
�

�
�

�
m��

���

���

���

��m��

��� E

g�p

O�E E�Og�p O

g�p

O

O

E

g�p

g�p

g�p

�
�

�
m��

��m��
��m

g�p

O

E

��i
�
i

pi � ��i � �
i

gi � ��i�
i

p�

p�

g�

g�

p��

p��

g��

g��

p � p�p��

g � g�� � p��g�

p � p� � p��

g � g��	p�� � g�

Levels: � � log� mlog� m� �

Figure 6.8: A carry look-ahead tree that generates the carry signal ��m � c�m. Each
g�p cell has an inverted carry propagate and an inverted carry generate as out-
put signals. The odd and even levels of the tree consist of the O cells and the
E cells, respectively. The output functions of the three cells are displayed in the
top-rightmost part of the figure.

et al. [110, Fig. 4]. Furthermore, it is essentially a modified version of Brent
and Kung’s [27] well known carry look-ahead tree.

As seen in Figure 6.8, the g�p cells generate the inverted initial carry propa-
gate and generate signals pi and gi, respectively, for � 	 i 	 m � �. Consider
the tree subsequent to the array of g�p cells. This tree has log� m levels. By
subsequently numbering the levels from 1 to log� m (from left to right for the
tree in Figure 6.8), we deduce that the odd indexed levels of the tree are formed
only by O cells and the even indexed levels are formed only by E cells. Con-
sequently, the end cell is either an E cell or an O cell, depending on whether
log� m is even or odd, respectively. Note that in the former case, the g out-

put signal of the end cell must be inverted to form the desired carry signal ��m.
Henceforth, wedo not consider this extra inverter needed for even log� m. The

114 Chapter 6. The Diminished–1 Representation

Cell Size Input Fan-in Output norm. res.

g�p 8 ��i��
i 4 2

O 10 p��g��g�� 2 2

p�� 4

E 10 p��g��g�� 2 2

p�� 4

Table 6.2: The sizes, fan-ins, and output normalised resistances of the g�p, O, and
E cells of Figure 6.8. We use the cell names as subscripts of the complexity pa-
rameters, e.g. rg�p � �, f

E�p�� � �, and C
E�O

� C
E
� C

O
� ��.

input and output signals of the g�p, O, and E cells are displayed in the top-
rightmost part of Figure 6.8.

Each g�p cell consists of one NAND gate and one NOR gate. The E cell con-
sists of one NAND gate and one combined AND–NOR gate (see Figure 6.2).
The complexity parameters of the latter gate are given on page 99. Also, a
schematic description of the gate is given in Figure 6.2. The O cell consists of
one NOR gate and one gate which has a similar structure and the same com-
plexity parameters as the AND–NOR gate. Recently, Wei and Thompson [112]
derived an AT � optimal parallel carry look-ahead adder based on Brent and
Kung’s carry look-ahead tree. Two of their basic cells which they use to im-
plement the parallel carry computation are equivalent to the E and O cells in
Figure 6.8: Their ’black ba’ cell [112, Fig. 3(a)] is equivalent to our E cell and
their ’black bb’ cell [112, Fig. 3(b)] is equivalent to ourO cell. The sizes, the fan-
ins and the output normalised resistances of the cells in Figure 6.8 are given
in Table 6.2.

The binary carry look-ahead tree in Figure 6.8 comprisesmg�p cells and �m��
E and O cells. Hence, the size C

CLA
of the tree equals

CCLA � mCg�p � 	�m� �
C
E�O

� �m� ��	�m � �
 � ��m� ��� (6.27)

The values of Cg�p and C
E�O

are taken from Table 6.2. By combining (6.27) and
(6.24), we get the total size

Cdimadd�� � ��m� ��

of the diminished–1 adder of Figure 6.7. The fan-in f
CLA

of the carry look-
ahead tree equals fg�p � �. The output normalised resistance equals rCLA �
r
E�O

� �.

6.3. The Diminished–1 Representation 115

Regarding the E and O cells, because the respective p��- and p��-inputs have

the largest fan-ins, the CP is the path from either the ��m�� node or the �
m��

node through the carry look-ahead tree to ��m and onwards through them-bit
parallel adder to the ��m output. With respect to this CP, the fan-in, the output
normalised resistance, and the internal CP length equal

fdimadd�� � f
FA�signal

� fg�p � � � � � ��

rdimadd�� � rNAND � �

LCP�dimadd�� � rg�pf
O�p��

� 	log� m� �
r
O�E

f
E�p���O�p��

� r
E�O

f
NAND

� rNOR	fNOR � fFA�carry
 �mLFA�carry

�	m� �
rFAfFA�carry � 	rFA � rNAND
fNAND
� � � � � 	log� m� �
� � � � � � � � �	� � �
 � �m

�	m� �
 � � � � � 	� � �
 � �
� ��m � � log� m� ���

A Carry Ripple Adder

The NBC adder of Figure 5.7 in Section 5.1.3 is a carry ripple type of adder. In
Figure 6.9 we present an equally comparable diminished–1 carry ripple adder.

We have �� � ���m��� � �
�m���. In the carry look-ahead adder of Figure 6.7, for

case 1 (see page 109) the addend ��m is added to the sum ���m��� by letting ��m
be the carry input signal of the parallel adder. In contrast, the carry input sig-
nal of the parallel adder in Figure 6.9 is always equal to zero. Therefore, it is
sufficient to use a half adder element in the least significant bit position of the

adder. Furthermore, the addition of ���m��� by ��m is carried out by multiplex-

ing either the sum ���m��� (for ��m � � in case 1) or ���m����� (for ��m � � in case

1) to the output. The addition of ���m��� by 1 is carried out by the row of half
adder elements in the figure, in accordance with the circuit in Figure 6.4 for
code translation from the diminished–1 representation to the NBC represen-
tation. Here, because one of the inputs of the half adder element in the least
significant bit position equals zero, the adder element can be simplified to an
inverter (see Figure 6.9).

Let �
 � ���m��� � �, where �� � ���m��� � �
�m��� as before. For all three cases
described in the beginning of Section 6.3.4, we introduce a Boolean function f

to control which of �
�m��� (for f � �) or ���m��� (for f � �) should be passed
to the output ���m���. The most significant bit ��m is generated separately. In

116 Chapter 6. The Diminished–1 Representation

FAFA FA HA

HA HA HA

�
� �
� �
� �
�

��� ��� ��� ��� ���

�
������������� ���

�� � T 	� �

 	mod �� � �

������������

���

f

�
�

�
� �
� �
� �
��
� ������������ ���

��� ��� ��� ��� ���

Add-by-one

circuit

2/1 multi-
plexers

�
��
��
��
�

P�

P�

Figure 6.9: A carry ripple architecture for diminished–1 addition modulo ����. The
paths P� and P� form the CP through the circuit.

6.3. The Diminished–1 Representation 117

Case ��m �
m ��m �
m f ��m

1 0 0 0 0 0 0
1 1

1 0 1 0
2 0/1 1/0 0 0/1 1 0
3 1 1 0 0 1 1

Table 6.3: Properties of some variables of the addition circuit of Figure 6.9. The
Boolean functions f and ��m depend on the other variables.

Table 6.3 we have listed the possible values of ��m� �
m� ��m� �
m� f� and ��m for
the three above-mentioned cases. By using Karnaugh maps for f and ��m we
obtain the minimised Boolean functions

f � ��m � �
m � ��m

��m � �
m��m � ��m �
 � �
m��m � ��m �
�

These functions are formed by the logic gates in the leftmost part of Figure 6.9.
By comparison with the adder in Figure 6.7, the size of the adder in Figure 6.9
is reduced by �m� �� to

Cdimadd�� � 	m� �
C
FA

�mC
HA

�mC
MUX

� �C
OR

� �C
NAND

� �Cinv � ��m � ��

Also, as expected when comparing a carry ripple adder with a carry look-
ahead adder, the internal CP length is greater for the carry ripple adder: The
CP through the adder is formed by the two paths labelled P� and P� in Fig-
ure 6.9. Hence, for this adder we get the fan-in, output normalised resistance,
and internal CP length

fdimadd�� � fHA � �

rdimadd�� � rHA�sum � � � �

LCP�dimadd�� � LHA�carry � rHA�carryfFA�carry � 	m� �
LFA�carry

�	m� �
r
FA
f
FA�carry

� r
FA
f
OR

�LOR � rOR	�m� finv
 � �mrinv

� � � � � �	m� �
 � �	m� �
 � � � � � 	�m� �
 � �m

� ��m�

respectively.

118 Chapter 6. The Diminished–1 Representation

Carry Look-Ahead versus Carry Ripple Adder

In order to take all three delay parameters, i.e. the fan-in, the internal CP
length, and the output normalised resistance, of each adder into account we
assume as before that the adders are both preceded and followed by registers.
Then, the computation times (T) of the carry look-ahead adder in Figure 6.7
and the carry ripple adder in Figure 6.9 are equal to

Ldimadd�� � Lreg � rregfdimadd��� LCP�dimadd�� � rdimadd��freg

� �� � � � �� � ��m� � log� m� �� � � � �
� ��m� � log� m� ��

Ldimadd�� � Lreg � rregfdimadd��� LCP�dimadd�� � rdimadd��freg

� �� � � � � � ��m � � � �
� ��m� ��� (6.28)

respectively. Apparently, the carry look-ahead adder is faster than the carry
ripple adder. By combining the size and the total CP length (including reg-
isters) of each adder, we find that the AT � performance of the two adders is
proportional to

CL�
dimadd��

�
� Cdimadd��	Ldimadd��

� � 	��m � ��
	��m � � log� m� ��
�

� O

m�

�
CL�

dimadd��
�
� Cdimadd��	Ldimadd��

� � 	��m � �
	��m� ��
�

� O

m�

�
�

respectively. The sizes, total CP lengths, and CL� products of the two adders
are plotted versus m in Figure 6.10. We see that the values of the complexity
parameters do not differ much between the adders. However, for all m the
size of the carry look-ahead adder is slightly greater than the size of the carry
ripple adder. Form � ��, the total CP length Ldimadd�� of the carry look-ahead
adder is less than the total CP length Ldimadd�� of the carry ripple adder. For
m 	 � we have Ldimadd�� � Ldimadd��.

With respect to theAT � performance, the carry look-ahead adder is preferable
to the carry ripple adder for m � ��, but the carry ripple adder is preferable
for m 	 ��.

6.3. The Diminished–1 Representation 119

Cdimadd��Cdimadd��

Ldimadd��Ldimadd��

CL�
dimadd��CL�
dimadd��

� � � �� �� �� ������
���

���

Time complexity

m

C
P

le
n
g
th

,L

� � � �� �� �� ��� ���
��	

��

����

Area-time performance

m

CL
�

� � � �� �� �� ������
���

���

���

Area complexity

m

S
iz

e,
C

Figure 6.10: The sizes, CP lengths, and AT � performances of the two
diminished–1 adders. The parameters are plotted versus m for
m � �� �� �� ��� ��� ��� ���� ���.

A Bit-Serial Adder

The chip area required to perform an arithmetic operation is usually smaller
for bit-serial architectures than for bit-parallel architectures. Another advan-
tage of bit-serial architectures is that they can be clocked with a higher clock
frequency, i.e. they have a higher throughput. However, it is not certain that
the total time required to perform an operation is smaller for a bit-serial archi-
tecture than for a bit-parallel architecture.

The bit-serial carry-save adder of Figure 6.11 adds the two binary coded num-

bers �� and �
. Here, we assume that the binary digits of �� and �
 are fed into the
adder element with the least significant bits first. Each digit of the sum �� �
	� � � � ���� ���� ���
� is either directly stored in a shift register or first manipulated
in some way, for example to form the sum �� � � (according to diminished–1

120 Chapter 6. The Diminished–1 Representation

addition), before it is stored. In any case, assuming that ��i and �
i are the out-
puts from two (shift) registers, the internal CP length of the bit-serial adder can
not be less than the length of the path from the input register through the full
adder element (from the signal input to the sum output) to an output register.
This minimal CP length equals

LCP�seradd�min
�
� Lreg � rregfFA�signal

� L
FA�sum

� r
FA
freg

� �� � � � � � �� � � � �
� ���

It takes at least m � � clock cycles before the desired diminished–1 sum �� �
�
 � � mod �m � � is present at the adder output, whether it is in bit-serial or
bit-parallel form. Hence, the total computation time is proportional to to the
length Lseradd�min, for which we have

Lseradd�min � 	m� �
LCP�seradd�min � ��	m � �
�

This length is also greater than the total CP lengths Ldimadd�� and Ldimadd�� of
the carry look-ahead adder and the carry ripple adder, respectively. We assert
that from an AT � performance point of view, when comparing the bit-serial
adder with the carry look-ahead and carry ripple adders, the bit serial adder
is not competitive. The bit-serial adder is not further considered here.

Other Adders

In addition to the adders described above, we would like to mention some
other diminished–1 adders that have been presented in the literature. In this
thesis, we do not consider the complexity or performance of these adders.

Firstly, because we let the adder block of the diminished–1 adder in Figure 6.7
be a carry ripple adder, the complete adder architecture is not a true carry look-
ahead adder. McClellan [65, Fig. 8], however, implements this adder part of
the circuit using length-4 arithmetic logic units and carry look-ahead logic
blocks.

Secondly, Towers et al. [101, Fig. 10] and Pajayakrit [71, Fig. 3.4] propose a true
carry look-ahead diminished–1 adder that is based on McClellan’s adder [65,
Fig. 8]. They forward the generate and propagate signals obtained in the carry
look-ahead block (see Figure 6.7) to an array of 4-bit carry look-ahead units,
which in turn is followed by an array of XOR gates forming the sum output.
The resulting adder is implemented in nMOS technology. The authors state
that their carry look-ahead scheme “seemed to be the best in terms of area and
speed”.

6.3. The Diminished–1 Representation 121

FA

D

Reset

���

���

���

�
�

�
�

�
�

��� ������

c�
c�
c�

Figure 6.11: The adder part of a diminished–1 bit-serial adder.

Thirdly, Morikawa et al. [68] have implemented a three-input diminished–1
adder, i.e. an adder that adds three numbers at a time. Their adder is based
on the three-input carry-save adder presented by Hwang [52, Ch. 4.2]. Re-
cently, Benaissa et al. [13, Fig. 5] presented a VLSI design of a Fermat number
transform using three-input adders. Benaissa’s adder is an improved version
of Morikawa’s adder.

Subtraction

In the end of Section 5.1.3 we wrote that subtraction is simplest carried out by
first negating the subtrahend and then adding the result to the minuend. This
should also be the most straightforward procedure for diminished–1 subtrac-
tion. Thus, subtraction can be performed using the negation architecture in
Figure 6.6 and any of the two-input adders described in the present section.

122 Chapter 6. The Diminished–1 Representation

6.3.5 Multiplication by Powers of 2

Multiplication by 2

Multiplication by two is simply performed in VLSI when using the dimin-
ished–1 representation. By letting
 � � in (6.22), we get

��
�
� T 	��
 � ��� � �

�
�
���m � ��m��

	
�m � ����m��� � � � ����m��� � ���m � ��m��

�

���
��

� � �� � � � � � � �� � �m � ��� if �� � �m (i.e. if � � �)

����m��� � ��m��� if � 	 �� 	 �m � �

� 	 ��m� ��m��� � � � � ���� ���
� 	mod �m � �
�

where ��m � ��m and ��i � ��i�� for i � �� �� � � � � m � � holds for all elements
�� �Z�m��. For �� � �m we get ��� � � and for � 	 �� 	 �m�� we get ��� � ��m��.
Hence, the binary digits of �� are formed as

����
���

��� � ��m � ��m�� � ��m � ��m��

��i � ��i��� � 	 i 	 m� �

��m � ��m

Figure 6.12 showsanarchitecture for multiplication by 2. TheCP of this simple

architecture is the path from the ��m-input node to the ���-output node. With
respect to this CP, the size of the circuit, its fan-in, and its output normalised
resistance equal

Cdimmult� � CNOR � �

fdimmult� � nm � fNOR � nm � �

rdimmult� � rNOR � ��

respectively, wherenm is the circuit fan-outwith respect to the ��m-output node.
There is no internal stage. If nm is (much) greater than 2, the circuit perfor-
mance can be improved by connecting the ��m-output to a simple driver (two
cascaded inverters). Then, nm � finv � � and thus the fan-in fdimmult� equals 6.

6.3. The Diminished–1 Representation 123

���
���

��m����m����m

�����������m����m

���
���

��m����m����m

�����������m����m

�� � T 	��
 	mod �m � �

Figure 6.12: Diminished–1 multiplication by 2 modulo �m � �

The total CP length of the multiplication-by-2 circuit in Figure 6.12, including
registers
, equals

Ldimmult� � Lreg � rregfdimmult�� rdimmult�freg

� �� � �	� � �
 � � � � � ���

Hence, the area-time performance is proportional to the product

CL�
dimmult� � � � ��� � �����

	Thus, we have nm � rreg � �.

124 Chapter 6. The Diminished–1 Representation

��������m����m����m����m

Figure 6.13: A feedback shift register for repeated multiplication by 2.

Multiplication by �n

Some computations, like for example bit-serial/parallel multiplication, in-
volve repeated multiplication by 2. Repeated multiplication by 2 may be con-
veniently implemented as a feedback shift register with a NOR gate in the
feedback loop, as shown in Figure 6.13. This circuit is based on the circuit in
Figure 6.12.

The feedback shift register is initially loaded with ��. After k clock cycles, the
contents of the register (including the single register element holding the most

significant bit) equals T 	�k�

�
� ��	k
 � 	��m� ��m��� � � � � ���� ���
� 	mod �m � �
.

As concluded in Section 5.1.4 (page 80), for t � log� m only the t� � least sig-
nificant bits of the exponent n have to be considered when computing T 	�n�
.�

Hence, at most k � n�t� clock cycles are required to compute T 	�n�
 using the
circuit in Figure 6.13.

Furthermore, in Section 5.1.4 we also concluded from (5.8) that it is enough to

first compute ��	n�t���
 � T 	�n
�t��	

�
 	mod �m � �
 and then, if and only if

nt � �, negate ��	n�t���
 to obtain the desired result.�� Diminished–1 negation
is performed by inverting the m least significant bits of the register contents
��	n�t���
. If nt equals zero or ��m equals one, the negation does not take place.
Let �� � T 	�n�
 	mod �m � �
. The binary digit ��i is obtained from the Kar-
naugh map in Figure 6.14 as the Boolean function

��i � ��i ��mnt � ��i	��m � nt
 � ��mnt � ��i� (6.29)

Because ord�m��� � �m � �t�� it is enough to consider n
t� � n mod �m.
��By (5.8) we get T ��n	� � T ��n

�t���

� �mod �m � �� if nt �
 and T ��n	� � T ���n
�t���

�
�mod �m � �� if nt � �.

6.3. The Diminished–1 Representation 125

0

00

1

0 1 11 1

0

1 X1 X

0

0

��mnt

��i

��i

0

0

Figure 6.14: Karnaugh map for the output bit ��i of �� for � 	 i 	 m� �.
X = “don’t care”.

where ��i is the contents in bit position i of the feedback register. Figure 6.15
shows an architecture that performs the operation �� � T 	�n�
 	mod �m � �

using repeated multiplication by 2 according to the above procedure. The con-
trol logic is not included in the figure. According to the Karnaugh map in
Figure 6.14, ��i can also be formed by other Boolean functions, depending on
which values are assigned to the “don’t cares”. However, the function in (6.29)
results in the most efficient realisation (the array of XOR gates), with respect
to the area-time performance.

The size of the architecture in Figure 6.15 equals

Cseq�mult�n � 	m� �
Creg �mC
XOR

� C
NOR

� C
AND

� Cinv
� ��m � ��

The internal CP during the shift operation is the feedback path P� from the reg-

ister holding ��m�� through the NOR gate to the register in the least significant
bit position. This path has length

LCP�seq�mult�n � Lreg � rreg	fXOR � f
NOR

 � r
NOR

freg � ���

During an initial clock cycle, �� is loaded into the shift register. After the n�t���

subsequent clock cycles, the shift register contains the diminished–1 integer

T 	�n
�t��	

. An extra clock cycle is then required to shift this result through the
array of XOR gates to the output. Assuming that �� is directly stored in a reg-
ister, the length of this final output path (which is named P� in Figure 6.15)
equals

LP� � Lreg � rreg	fXOR � fNOR
 � LXOR � rXORfreg � ���

which is slightly greater than the length LCP�seq�mult�n of the internal critical
path P�. Therefore, by letting the clock interval beproportional toLP� , the time

126 Chapter 6. The Diminished–1 Representation

��m ��m�� ��m�� ��� �����m��

nt

��� �����m����m����m����m

P�

P�

P�

Figure 6.15: An architecture for diminished–1 multiplication by a power of 2.

T required to perform the multiplication by �n modulo �m �� is proportional
to

Lseq�mult�n � 	n�t��� � �
LP� � ��	n�t��� � �
�

Because � 	 n�t��� 	 �t � � � m � �, the maximum multiplication time is
proportional to ��	m � �
. When the circuit in Figure 6.15 is followed by a
register, the length LP� of path P� of the figure equals

LP� � Lreg � rreg	freg � finv
 � rinvfAND � LAND

� rAND �mfXOR � LXOR � rXORfreg

� �m� ���

Therefore, forLseq�mult�n � LP� , i.e. forn�t��� � d	�m���
�����e � dm���e��,
the computation time T is proportional to LP� and hence, for n�t��� �
dm���e � � the computation time is proportional to Lseq�mult�n. The AT � per-
formance of the circuit is proportional to the product

CL�
seq�mult�n

�
�

�

����������
���������

Cseq�mult�n	LP�

� � 	��m� �
	�m � ��
�

� O 	m�
 �
for � 	 n�t��� � dm���e � �

Cseq�mult�n	Lseq�mult�n
� � 	��m � �
	��n�t��� � ��
�

� O
m	n�t���
�
�
�

for dm���e � � 	 n�t��� 	 m� �

6.3. The Diminished–1 Representation 127

Note that for a nonzero integer �, its corresponding diminished–1 integer �� is

an element ofZ�m, i.e. we have ��m � �. Because the odd Fermat number �m��
is not divisible by 2, for n � N every integer �n� mod �m � � is also a nonzero
integer. Thus, for all such nonzero numbers � we get ��m � �, where �� �
T 	�n�
 	mod �m � �
, and hence the NOR gate in the feedback path can be
replaced by an inverter. Also, for � 	 i 	 m � �, each output bit ��i of the

circuit is then formed by the Boolean function ��i � nt � ��i,. The procedure
for repeated multiplication by 2 using only a feedback shift register with an
inverter in the feedback loop was originally described by Leibowitz [58].

Multiplication Using a Modified Barrel Shifter

In 1982, Truong et al. [103] proposed a method of computing multiplication
by a power of two using a modified Barrel shifter. To the author’s knowledge,
Truong’s multiplication method (or modified versions of the method) is used
by most people when implementing diminished–1 multiplication by powers
of two. For example, Pajayakrit [71, Ch. 3.6] and Towers et al. [101, Sec. 11.1.3]
propose an nMOS architecture which comprises two modified Barrel (circular)
shifters. This architecture works forboth negative and positive exponentsn, in
order to be applicable in the computation of the inverse Fermat number trans-
form as well as the forward transform.

One of the shifters is a diminished–1 left shifter, which is used for positive ex-
ponents. The second diminished–1 shifter is used when the exponent is neg-
ative. This shifter shifts the input to the right. The shifters are controlled by a
decoder. Figure 6.16 shows a block diagram for such a multiplier overZ�m��.
The signal ctrl in the figure controls which of the shifters is to be activated.

If the exponent is always nonnegative (or nonpositive), i.e. we have �� �
T 	�n

�t	
�
 	mod �m � �
 (or �� � T 	��n

�t	
�
 	mod �m � �
), then it is suffi-

cient to use only one modified Barrel shifter. Figure 6.17(a) shows a block di-
agram of Truong’s modified Barrel (left) shifter together with a decoder. The
decoder has t � � inputs and, consequently, �t�� � �m outputs. Hence, the
size of the shifter isO 	m � �m
. The modified Barrel shifter differs from an or-
dinary Barrel shifter only in the wirings of its transistors. An architecture of
a transmission-gate based modified Barrel shifter overZ���� is presented in a
paper by Shakaff et al. [90, Fig. 6].

In Figure 6.17(b), we present a block diagram of a multiplier for which the
size of the decoder is half the size of the decoder in Truong’s architecture. The
decoder has the t-bit NBC number n�t��� as its input and it has �t � m out-
puts. Therefore, the size of the Barrel shifter isO 	m �m
, i.e. half the size of the
shifter needed in Truong’s architecture. The output of the reduced-size shifter

128 Chapter 6. The Diminished–1 Representation

Decoder

Modified

Barrel

left

shifter

Modified

Barrel

right

shifter

n

��

ctrl

1 of m 1 of m

��

Figure 6.16: A diminished–1 multiplier of a power of two modulo �m � � (from [71,
Fig. 3.8] but using our notations). The signal ctrl controls whether the input �
is to be shifted to the left (for a positive exponent) or to the right (for a negative
exponent). The output �� equals �� � T 	��n�
, where n � N.

equals �� � T 	�n
�t��	

�
 	mod �m � �
 (we assume that the exponent is posi-

tive). Ifnt equals one, ���t��� is inverted to form thedesired result �� � T 	�n�
 �
T 	��n�t��	

�
 	mod �m � �
. If nt equals zero, �� is passed unchanged to the
output. The inversion is carried out by a row of XOR gates, as in Figure 6.15.

The decoder can be implemented in several ways, see for instance Weste and
Eshraghian [113, Ch. 8.3.1.1.3]. The choice of implementation may for exam-
ple be governed by speed requirements, power dissipation constraints, and
chip size constraints. In this section, we do not give any further details about
the complexities and performances of the Barrel-shifter type of architectures
in Figures 6.16 and 6.17.

6.3.6 General Multiplication

Several algorithms and architectures for diminished–1 general multiplication
have appeared in the literature. To our knowledge, only bit-serial/parallel
and bit-parallel architectures are suggested by the originators of these archi-
tectures.

6.3. The Diminished–1 Representation 129

Decoder

Modified

Barrel

left

shifter

n�t���

��

nt1 of m

����

Array of XOR gates

Decoder

Modified

Barrel

left

shifter

n�t���

��

1 of �m

��

(a)

(b)

Figure 6.17: Diminished–1 multiplication of a positive power of two modulo �m��,
using one shifter. (a) Truong’s modified Barrel shifter of size m� �m bits. The
output equals �� � T 	�n�
 	mod �m � �
. (b) A modified Barrel shifter of
size m�m bits, followed by an array of XOR gates. For the output ���m��� we

have ��i � ��i�nt, where � 	 i 	 m�� and �� � T 	�n
�t��	

�
 	mod �m��
.

130 Chapter 6. The Diminished–1 Representation

6.3.6.1 Bit-Parallel Architectures

Leibowitz [58] was the first to present some procedures for general multipli-
cation. He briefly considers three procedures,�� which are based on how the
multiplicand and the multiplier are represented:

1. The multiplicand and the multiplier are both diminished–1 numbers.

2. The multiplicand and the multiplier are both NBC numbers.

3. Themultiplicand is anNBC number and the multiplier is a diminished–1
number, or vice versa.

The third multiplication procedure is generally used only for bit-serial/paral-
lel multiplication. In the literature, we have not found any architecture for bit-
parallel diminished–1 general multiplication that is based on such a procedure.
In this section we give an analytical description of the above multiplication
procedures 1 and 2, beginning with the first procedure. For nonzero factors

� and
, i.e for the diminished–1 numbers � 	 ��� �
 	 �m � �, the product in
(6.10) can be written as

T 	� �

 � ���m����
�m��� � 	���m��� � �
�m��� � �
� �

� ���m����
�m��� � �� � �

� �m
m��X
i��

��m�i�
i � ���m��� � �

� ��� � ���m��� � � 	mod �m � �
� (6.30)

where ��
�
� ���m��� � �
�m��� � � � ���m��� � �
�m��� 	mod �m � �
 and where

�� � ���m����
�m���� �� is a �m-bit NBC integer and �� �
Pm��

i��
��m�i�i is an m-bit

NBC integer. Therefore, we have��� � � � 	�m � �
� ���m��� � � � ���m��� � �

	mod �m � �
, where ���m��� is the one’s complement of ���m��� and hence
(6.30) can be expressed as

T 	� �

 � ���m��� � ���m��� � �

� ���m��� � ���m��� 	mod �m � �
� (6.31)

Hence, the above procedure 1 involves one ordinary 	m�m
-bit generalmulti-
plication, one ordinary �m-bit addition, and two diminished–1 additions (see
Example 12 in Leibowitz’ paper [58]).

��Leibowitz did not formulate any algorithm for diminished–1 general multiplication. He
only sketched the main steps of the proposed multiplication procedures and presented two
examples.

6.3. The Diminished–1 Representation 131

Sunder’s Parallel Multiplier

An 	m�m
-bit multiplication can be carried out using a conventional (Braun)
bit-parallel multiplier array, see for instance Weste and Eshraghian [113, Ch.
8.2.7.1 (Figures 8.36 and 8.37)] or Hwang [52, Ch. 6.1 (Fig. 6.3)]. Sunder et
al. [97] recently proposed an architecture for diminished–1 general multipli-
cation based on the above procedure (Equation (6.30). They modified the con-

ventional array multiplier such that the addition of ���m����
�m��� by the non-
reduced sum �� is performed in the multiplier array. Thus, following the nota-
tions above, the output of the array is the 	�m � �
-bit NBC integer

�� � ���m����
�m��� � ���m��� � �
�m��� � �

� �m
mX
i��

��m�i�
i � ���m����

rather than just the �m-bit NBC integer ���m����
�m���. Here, we consequently

let �� �
Pm

i��
��m�i�

i (compare this 	m� �
-bit �� with the m-bit �� used in (6.30)

and (6.31)). By (5.5) we get ��� � �� � � 	mod �m � �
, which implies that
T 	� �

 can be written as

T 	� �

 � �� � � � ���m��� � 	�� � �
 � �

� ���m��� � 	�� � �
 	mod �m � �
�

The addend ���� can be obtained using the procedure for diminished–1 nega-

tion. Figure 6.18 shows the modified multiplier array. The addends ���m��� and
�
�m��� are added to the sum of partial products in the first row of the array. The
addition by one is carried by the rightmost column of half adder elements.��

A block diagram of Sunder’s bit-parallel diminished–1 pipelined multiplier is
shown in Figure 6.19. The output from the diminished–1 adder of the architec-

ture is the sum �� � ���m���� 	����
 	mod �m��
, where �� and �� are defined
as above. The desired product T 	� �

 equals �� only for nonzero inputs, i.e. for

��
 �� �. When either � or
 (or both) equals zero, we have ��m � � (�� � �m)
and �
m � � (�
 � �m), respectively, and T 	� �

 � �m 	mod �m � �
. How-
ever, when only one of � and
 equals zero, the adder output �� of Figure 6.19
is nonzero. The correct output is formed by a row of inverters and NOR gates,
see Figure 2 in Sunder’s paper [97]. Sunder names this circuit the output con-
troller.

For � 	 i 	 m� �, the output bit in position i can be expressed as the Boolean

function 	 ��m � �
m
 � ��i, i.e. its value can be generated using one inverter and

��Compare with the equivalent add-by-one circuit in Figure 6.4.

132 Chapter 6. The Diminished–1 Representation

(d)

FA FA FAFA

FA�FA�FA�

FA�

FA�

HA

FA�

FA�

HA

HA�

FA�

FA� HAHA�

FA�

FA�

HA

HA�

FA�

FA�

(a)

FA

�
i ��i

�
�
HA

��m��

�
j

FA

��i

�
j

(b) (c)

1�����m�� ��m�� ��m��

�
�

�
�

�
�

�
m��

���

���

��m��

��m��

��m���m�����m�����m�����m
����
�����m�������m�������m�������m�

CP

sumsumsum
carry carry carry

FA� HA� FA�

Figure 6.18: A modified 	m�m
-bit multiplier (from Sunder et al. [97, Fig. 1]).
(a) The multiplier array. The dotted line is the CP through the array.
(b), (c), and (d): The FA�, HA�, and FA� cells, respectively.

6.3. The Diminished–1 Representation 133

Modified
m�m
multiplier

Negater

Diminished–1
CLA adder

O
u
tp

u
t

co
n
tr

o
ll
er

���m���

�
�m���

��m

�
m

DD

R� R�

R� R�

���m���

��

�� � �

���m���

��m

T 	� �

Figure 6.19: A block diagram of a modified 	m�m
-bit diminished–1multiplier over
Z�m�� (essentially from Sunder et al. [97, Fig. 4]).

one NOR gate. The Boolean function ��m � �
m is evaluated separately. Sun-
der assigns the value of this function to the most significant bit of the output
T 	� �

. However, when the modulus �m�� is composite, there exist products
of nonzero integers ofZ�m�� that are congruent to zero modulo �m��. If such
a situation occurs, the most significant bit of the product T 	� �

 should not

be formed by the Boolean function ��m � �
m. The correct Boolean function is
��m��
m� ��m, i.e. only an extra OR gate is needed to form the true output (see
Figure 6.19).

Let CSunder�array denote the size of Sunder’s 	m�m
-bit array multiplier of Fig-
ure 6.18. Then we have

CSunder�array � 	m� �
�CFA� � 	m� �
CHA� �m	CFA� � CFA � CHA

� ��m� � ��m � ���

where CFA� � CFA � CAND � ��, CFA� � CFA� � ��, CHA� � CHA � CAND � ��,
CFA � ��, and CHA � �� are the sizes of the FA�, FA�, HA�, FA, and HA cells,

134 Chapter 6. The Diminished–1 Representation

respectively. The registers labelled R� in Figure 6.19 arem-bit parallel registers
and the ones labelled R� are 	m � �
-bit parallel registers. The D cells are D
flip-flops (single-bit registers). Hence, the total chip area A occupied by the
bit-parallel multiplier in Figure 6.19 is proportional to its size

CSunder�mult � CSunder�array� 	�m� �	m� �
 � �
Creg
� Cdimneg � Cdimadd��� Cout�ctrl � �COR

� ��m� � ���m �
��

where Cout�ctrl � m	CNOR�Cinv
 � �m is the size of the output controller. We as-
sume that the diminished–1 adder in Figure 6.19 is the carry look-ahead adder
of Figure 6.7.

The CP through Sunder’s array multiplier is the dotted path in Figure 6.18

from the ��m��-input node to the ���m-output node. With the inputs taken di-
rectly from registers, the minimum clock cycle time of the complete multiplier
in Figure 6.19 is proportional to the length

LCP�Sunder�array � Lreg � rreg	mfAND � fFA�carry
 � LAND � rANDfFA�signal

�mLFA�sum � 	m� �
rFAfFA�carry � rFAfHA � LHA�carry

� r
HA�carry

f
FA�carry

�mL
FA�carry

� 	m� �
r
FA
f
FA�carry

� rFAfreg

� ��m� ���

of this path.

Remark: The carry input fan-in f
FA�carry

of a full adder element (the one in Fig-
ure 4.10) is less than its signal input fan-in fFA�signal . Therefore, in order
to minimise the overall propagation delay, we assume that the sum out-
put of the full adder element in each FA� cell is fed to the carry input of
the full adder element in the subsequent FA� cell. Then the CP passes
through the full adder element of each FA� cell from the carry input to
the sum output. The smallest propagation delay through a FA� cell is ob-

tained when the ��i-input signal is connected to the carry input of the full
adder element.

The desired product T 	� �

 is obtained in an output register after three clock
cycles. Hence, the total multiplication time T is proportional to

LSunder�mult � �LCP�Sunder�array � ���m � ����

which implies that the area-time performance AT � is proportional to

CL�
Sunder�mult

�
� CSunder�mult	LSunder�mult

�

� 	��m� � ���m �
�
	���m � ���
� � O

m�

�
�

6.3. The Diminished–1 Representation 135

Ashur’s Parallel Multiplier

Quite recently, Ashur et al. [10] presented an architecture for bit-parallel di-
minished–1 multiplication that is based on Sunder’s architecture in Figure
6.19. They obtain a smaller area-time performance for their architecture inter
alia by including the negation step in the array multiplier. Below, we analyti-
cally describe how Ashur’s algorithm works: For nonzero NBC factors � and

, i.e for the diminished–1 numbers � 	 ��� �
 	 �m��, the general multiplica-

tion T 	� �

 � ���m����
�m���� ���m���� �
�m��� 	mod �m��
 can be expanded
as

T 	� �

 � ���m����
�m��� � ���m��� � �
�m��� � �m	�m � �
 � �m	�m � �

� �m
mX
i��

��m�i�
i � ���m��� � �m	�m � �

� ��� � ���m��� � � 	mod �m � �
� (6.32)

where
�� � ���m����
�m��� � �
�m��� � �m	�m � �
 (6.33)

is a 	�m��
-bit NBC integer and �� �
Pm��

i��
��m�i�i is an 	m��
-bit NBC integer.

Again, by (5.5) we get ��� � �� � � 	mod �m � �
. Using this congruence and
the congruence �m	�m � �
 � �	�� � �
 � � 	mod �m � �
, (6.32) can be
written as

T 	� �

 � ���m��� � �� � �� (6.34)

Figure 6.20 shows a block diagram of Ashur’s diminished–1 multiplier. Ashur
et al. have modified Sunder’s array multiplier (the one in Figure 6.18) in the
following way: The rightmost column of half adder elements, which performs
an addition by one, is excluded. Instead, the addition by �m	�m��
 in (6.33) is
carried out by exchanging the half adder elements in the leftmost column for
full adder elements (i.e. exchange the HA� cells for FA� cells) and let each re-
dundant full adder input be equal to one. The so far grounded input of the left-
most full adder element in the bottom row of Sunder’s array multiplier should
now also be equal to one.

Furthermore, the resulting m full adder elements in the bottom row of the ar-
ray forms an m-bit carry ripple adder. The output of this adder is the 	m��
-

bit integer ��, which is defined above. The output �� can be formed by the sum
�� � �� � ��, where in turn the m-bit integer �� � 	��m��� ��m��� ��m��� � � � � ���
� is
formedby the carryoutputs and them-bit integer �� � 	��m� ��m��� ��m��� � � � � ���
�
is formed by the sum outputs of the row of full adder elements prior to the
carry ripple adder (see Figure 6.20). Hence, (6.34) can be further expanded as

136 Chapter 6. The Diminished–1 Representation

FA FA FAFA

FA�FA�FA�

FA�

FA�

FA�

FA�

FA�

FA�

FA�

FA�

FA�

FA�

�����m�� ��m�� ��m��

�
�

�
�

�
�

�
m��

��

���

���

��m��

CP

FA�

FA�

FA�

1

��
��m����m����m��

Diminished–1
CLA adder

R�

T 	� �

R�

Output
controller

D

��m�
m

�
 ��

��

��m����m����m��

�	�

�	m��
�	m��

�	m

�
m�� �
m�� �
�
��m�� ��m�� ��m�� ��

�
m

Figure 6.20: A block diagram of a modified m � m diminished–1 multiplier over
Z�m��, based on Sunder’s multiplier (from Ashur et al. [10, Fig. 1]). The dotted
line is the CP through the array multiplier.

6.3. The Diminished–1 Representation 137

T 	� �

 � ���m��� � ��� �� � �

� ���m��� � 	�m�� � �
 � 	��� ��
 � �

� ���m��� � 	�m � �
 � ��� 	�m � �
� �� � �

� ���m��� � ��� �� � � 	mod �m � �
� (6.35)

The addends �� and �� are formed by the row of inverters below the array mul-
tiplier in Figure 6.20. Carry-save adders are preferably used when more than
two numbers are to be added together. For example, array multipliers (like the
ones described in the present section) generally comprise rows of carry-save
adders that perform the summation of the partial products. The final addition
is performed using a carry ripple or carry look-ahead adder.

Ashur et al. efficiently adds the m-bit addends ���m���, ��, and �� in (6.35) by
using a carry save adder. These three addends are the inputs of the carry-
save adder which is subsequent to the row of inverters in Figure 6.20. Let

�� � ���m��� � �� � �� � �c � ��, where the 	m � �
-bit integer �c �
Pm

i�� �ci�
i �Pm��

i�� �ci�i��cm 	mod �m��
 and the m-bit integer �� �
Pm��

i�� ��i�i are formed
by the carry outputs �ci and sum outputs ��i, respectively, of the carry-save
adder. Hence, (6.35) can be written as the diminished–1 sum

T 	� �

 � ��� � 	mod �m � �
 � �c� �� � �

�
m��X
i��

�ci�
i � 	� � �cm
 � �� � �

� �
� �� 	mod �m � �
� (6.36)

where �
 �
Pm��

i�� �ci�i � �cm is an m bit integer, i.e. we have

�
 �
m��X
i��

�
i�
i� where

�
�
� � �cm�
�
i � �ci� for � 	 i 	 m� �

The addition by �cm is thus carried out by inverting the most significant carry
output �cm of the carry-save adder and feeding it into the vacant least signifi-

cant bit position of the register that holds �
. For consistency, we have intro-
duced our notations for Ashur’s multiplier in Figure 6.20. As for Sunder’s
multiplier in Figure 6.19, we have modified the output controller in order to
obtain the correct output when ��
 j 	�m��
 and T 	� �

 � �m 	mod �m��

(i.e. when �
 � � 	mod �m � �
).

The chip area A occupied by Ashur’s multiplier is proportional to its size

CAshur�mult � m	CFA� � 	m� �
CFA� � �Cinv � CFA
 � 	�m� �
Creg
� Cdimadd��� Cout�ctrl� �COR � Cinv

� ��m� �
�m � ��

138 Chapter 6. The Diminished–1 Representation

The CP through the array multiplier (see the dotted line in Figure 6.20) de-
termines the maximum clock frequency. The maximum clock frequency is in-
versely proportional to the CP length��

LCP�Ashur�array � Lreg � rreg	mfAND � fFA�carry
 � LAND � rANDfFA�signal

�	m� �
	LFA�sum � rFAfFA�carry
 � LFA�carry

� rFAfinv � rinvfFA�signal � LFA�sum � rFAfreg

� ��m � ��

Because Ashur’s multiplier computes the product T 	� �

 in only two clock
cycles, the total computation time T is proportional to

LAshur�mult � �LCP�Ashur�array � ��m� ���

and the AT � performance is proportional to the product

CL�
Ashur�mult

�
� CAshur�mult	LAshur�mult

�

� 	��m� �
�m� ��
	��m � ���
� � O
m�
�
�

Benaissa’s Parallel Multiplier

Regarding the second of Leibowitz’ multiplication procedures (see page 130),
the diminished–1 product T 	� �

 can be written as

T 	� �

 � �
 � �

� �m
mX
i��

�m�i�
i � ��m��� � �

� ��m��� � � � � 	mod �m � �
�

where � � �
 is a 	�m��
-bit NBC integer and � �
Pm

i�� �m�i�i is an 	m��
-
bit NBC integer.�� By (5.5) we get �� � � � � 	mod �m � �
 and therefore
T 	� �

 can be formed by the diminished–1 sum

T 	� �

 � ��m��� � 	�� �
 � �

� ��m��� � 	�� �
 	mod �m � �
�

where �� � equals diminished–1 negation of �.

Benaissa et al. [11] have implemented a bit-parallel multiplier which is based
on this multiplication procedure. Figure 6.21 shows a block diagram of their

��The CP starts with the output path of a register.
��Leibowitz [58], however, erroneously stated that� is anm-bit NBC integer. The procedure

described in his article gives an incorrect answer for 	 � � � �m.

6.3. The Diminished–1 Representation 139

pipelined multiplier. The translation blocks translate the inputs �� and �
 to �
and
, respectively, which are multiplied in the array multiplier. The realisa-
tion of the translation blocks are shown in Figure 6.4 of Section 6.3.1. Benaissa
et al. use a standard 	m��
� 	m��
-bit square-version array multiplier, see
Benaissa et al. [11, Fig. 6] or Weste and Eshraghian [113, Fig. 8.37], which com-
prisesm��� full adder elements,m�� half adder elements, and 	m��
� AND
gates. Hence, the size of the this array multiplier equals

CBenaissa�array � 	m� � �
C
FA

� 	m� �
C
HA

� 	m� �
�C
AND

� ��m� � ��m� ��

which is slightly less than the size CSunder�array of Sunder’s array multiplier in
Figure 6.18. Using the same types ofm-bit parallel registers R� and 	m��
-bit
registers R� and the same type of carry look-ahead adder as in Figure 6.19, the
size of the complete multiplier of Figure 6.21 equals

CBenaissa�p�mult � CBenaissa�array� 	�m� �	m� �

Creg
� Cdimneg � Cdimadd��� �CDim�NBC � �C

OR

� ��m� � ���m � ���

The CP of the array multiplier is similar to the CP of Sunder’s array multi-
plier in Figure 6.18. It runs from a register output into the AND gate in the
top-leftmost position of the array and then diagonally through the array of
full adder elements and finally to the left along the bottom carry-chain row
to the register holding the most significant output bit ��m. The length of this
CP equals

LCP�Benaissa�array � Lreg � rreg � 	m� �
f
AND

� L
AND

� r
AND

f
HA

�LHA�sum � rHA�sumfFA�carry � 	m� �
LFA�sum

�	m� �
rFAfFA�carry � rFAfHA � LHA�carry

� r
HA�carry

f
FA�carry

� 	m� �
	L
FA�carry

� r
FA
f
FA�carry

�LFA�sum � rFAfreg

� ��m � ���

The product T 	� �

 is obtained in the output register subsequent to the dimin-
ished–1 adder after four clock cycles. Hence, the time T required to multiply
using Benaissa’s array multiplier architecture is proportional to

LBenaissa�p�mult � �LCP�Benaissa�array � ���m � ����

which means that the AT � performance of the multiplier is proportional to the
product

CL�
Benaissa�p�mult

�
� CBenaissa�p�mult	LBenaissa�p�mult

�

� 	��m� � ���m � ��
	���m � ���
� � O

m�

�
�

140 Chapter 6. The Diminished–1 Representation

Standard

�m�����m���

multiplier

Negater

Diminished–1

CLA adder

��

�

R� R�

R� R�

��m���

�

�� �

T 	� �

Translation

Translation R�

R�

�

Figure 6.21: A block diagram of Benaissa’s [11, Fig. 4] diminished–1 pipelined array
multiplier.

Remark: If the multiplier (or the multiplicand) is available as an NBC number
� (or
), one of the translation circuits in Figure 6.21 can be excluded.
This reduces the total size CBenaissa�p�mult. If both the multiplier and the
multiplicand are NBC numbers, the translation part and the two input
registers (R�) can be excluded. Consequently, the initial clock cycle is
then excluded. This reduces the total computation time as well as the
total circuit size. Note also that a simple additional modification of the
multiplier (in Figure 6.21), makes it applicable for general multiplication
with respect to the NBC symbol representation.

6.3.6.2 Bit-Serial/Parallel Multipliers

Probably the most frequently used diminished–1 multiplier is the bit-serial/
parallel multiplier.�� In general, serial/parallel multipliers are known to oc-

��The multiplication scheme adopted is often referred to as the iterative shift-and-add
technique.

6.3. The Diminished–1 Representation 141

cupy less chip area than the corresponding parallel multipliers, but to the cost
of a poorer time performance.

Several algorithms for serial/parallel diminished–1 multiplication have ap-
peared in the literature. They mainly differ in how the multiplicand and the
multiplier are represented and which initial values have to be computed. The
registers needed in the corresponding architectures are loaded with the ini-
tially computed values.

Chang’s Serial/Parallel Multiplier

Chang et al. [32] were among the first to publish a VLSI implementation of a
serial/parallel diminished–1 general multiplier. It is based on a diminished–1
representation of the multiplicand and an NBC representation of the multi-

plier. Let �� and �
 be the multiplicand and the multiplier, respectively, in their
diminished–1 form of representation. The multiplication algorithm is valid

only for ��
 �� �, i.e. for ��� �
 �� �m. Situations where either � or
 (or both)
equals zero are handled separately. The algorithm of Chang et al. is based on
the following expansion of T 	� �

 (here, we use our notations):

T 	� �

 � �
 � � � �

mX
i��

i�
i � �

�
mX
i��

i	�
i� � �
 �

mX
i��

i � � �m�m

�
�

mX
i��

iT 	�
i�
 �m

�
� 	�m � � �D
 � �

�

�
mX
i��

�
iT 	�
i�

�
�D 	mod �m � �
� (6.37)

where D
�
� m �Pm

i��
i and where
P
� and � denote diminished–1 addition.

Because
 � Z�m�� we get D � Zm��, which is represented as an m-bit NBC
integer.

Chang et al. [32, Fig. 1] presented a simple architecture which computes (6.37)
using an recursive shift-and-add technique, where the modulus reduction is
simultaneously carried out during each recursion. Thus, (6.37) can be ex-
pressed on the recursive form

P 	i� �
 � P 	i
�
iT 	�
i�
 	mod �m � �
� for � 	 i 	 m�

where P 	�
 � D. For i � m we then get P 	m � �
 � T 	� �

. Chang et al.
present a slightly modified algorithm to compute the desired product

142 Chapter 6. The Diminished–1 Representation

T 	� �

 in m�� clock cycles. The algorithm, however, suffers principally from
two drawbacks. Firstly, the multiplier
 needs to be translated from its dimin-
ished–1 representation to its NBC representation. Secondly, an initial compu-
tation of D must be performed before the shift-and-add procedure can begin.

A simplified block diagram of a general diminished–1 general multiplier,
based on Chang’s multiplier and an MC68000 microprocessor, can be found
in Shakaff’s PhD. thesis [89, Fig. 3.21(a)]. Shakaff concludes that the main dis-
advantage of the above multiplication procedure is the need to compute the
initial value D. He instead proposes the multiplier by Benaissa et al. [12] as
a competitive alternative. Benaissa’s multiplier, which needs no precomputa-
tions, is presented below.

Benaissa’s Serial/Parallel Multipliers

For the diminished–1 representation, the parameters k and l in (6.1) are equal
to 1 and��, respectively. Hence, the diminished–1 form of the general multi-
plication formula in (6.13) is

T 	� �

 �
mX
i��

� 	
iT 	�
i�
�
i
 �

mX
i��

� 	
iT 	�
i�
 �
i�

m
 	mod �m � �
� (6.38)

The multiplication algorithm suggested by Benaissa et al. [12] is based on this
congruence. In their formulation of T 	� �

 they have omitted the term
i�m.
They express the product as

P
�
iT 	�i�
 (see [12, Eq. (6)]) and only mention

that for
i � �, the addend is set equal to the diminished–1 zero (i.e. the inte-
ger �m). The correct expression for T 	� �

, however, is given in (6.38). The
congruence (6.38) can be expressed on the recursive form

P 	i� �
 � P 	i
� 	
iT 	�
i�
 �
i�

m
 	mod �m � �
� for � 	 i 	 m�

where the initial value P 	�
 equals �m (diminished–1 zero). Moreover, for
i � m we have P 	m� �
 � T 	� �

.
A block diagram of Benaissa’s multiplier is shown in Figure 6.22. The control
signals are not shown in the figure. The registers R�, R�, and R� are all m � �
bits wide.

During an initial clock cycle, �� is loaded into register R� and the translated
integer
 � �
 � � 	mod �m � �
 is loaded into register R�. Also, the 	m� �
-
bit integer �m is loaded into R�. After the subsequent clock cycles, R� con-
tains T 	��
, T 	���
, T 	���
, etc. We assume that the output T 	� �

 is directly
stored in an 	m � �
-bit parallel register. The CP is the dotted path in Fig-
ure 6.22, from the output of the shift register R� through on an AND gate and

6.3. The Diminished–1 Representation 143

CP

Diminished–1

CLA adder

T 	� �

��

�

R�

Translation

msb lsB

i
R�

R�

P 	i

P 	i� �

Row of m AND gates

Figure 6.22: A block diagram of Benaissa’s diminished–1 serial/parallel multiplier
(essentially from Benaissa et al. [12, Fig. 1]).

144 Chapter 6. The Diminished–1 Representation

the carry look-ahead adder to the input of the parallel register R�. The length
LCP�Benaissa�s�p�mult of this path equals

LCP�Benaissa�s�p�mult � Lreg � rreg � 	m� �
fAND � LAND � rANDfdimadd��

�Ldimadd��� rdimadd�� � �freg
� ��m� � log� m� ����

The initial clock cycle is followed bym�� clock cycles, during which the par-
tial products are computed and recursively added together. Hence, the total
computation time T is proportional to

LBenaissa�s�p�mult � 	m� �
LCP�Benaissa�s�p�mult

� ��m� � �m log� m� ���m � �� log� m� ����

The desired product P 	i� �
 � T 	� �

 is shifted into an output parallel reg-
ister during the final clock cycle. In order to make a fair comparison with the
parallel diminished–1 multipliers described above, we again assume that the
diminished–1 adder in Figure 6.22 is the carry look-ahead adder of Figure 6.7.
Then, the chip areaA occupied by the multiplier in Figure 6.22 is proportional
to its size

CBenaissa�s�p�mult � �	m� �
Creg � CDim�NBC �mCAND
��C

NAND�NOR
� Cinv � Cdimadd��

� ���m � ���

Hence, the area-time performance AT � of the multiplier is proportional to

CL�
Benaissa�s�p�mult

�
� CBenaissa�s�p�mult	LBenaissa�s�p�mult

�

� 	���m� ��

�	��m� � �m log� m� ���m � �� log� m� ���
�

� O

m�

�
�

If the multiplier in the multiplication operation is available as an NBC number

, the translation circuit in Figure 6.22 can be excluded. This reduces the total
size of the multiplier architecture, but the computation time is not changed.

In their paper, Benaissa et al. [12, Ch. 3.2] also describes a procedure for dimin-
ished–1 multiplication which is a slight modification of the above procedure.
The procedure is based on (6.38), but it uses �
 as multiplier instead of
. This
eliminates the need for the code translation from �
 to
 � �
�� 	mod �m��
.
For nonzero
 we can write 	
m�
m���
m��� � � � �
��
��
�
� � 	�� �
m��� �
m���

6.3. The Diminished–1 Representation 145

� � � � �
�� �
�� �
� � �
�. Benaissa et al. state that
 can be replaced by �
 in (6.38)
by letting the least significant bit of the multiplier take on the value �
� � �.
Actually, this can easily be analytically formulated by expanding (6.38) in the
following way:

T 	� �

 �
mX
i��

� 	
iT 	�
i�
 �
i�

m

�
m��X
i��

� 	�
iT 	�
i�
 � �
i�

m
 � 	�
� � �
T 	�
 � 	�� 	�
� � �

�m � �

�
m��X
i��

� 	�
iT 	�
i�
 � �
i�

m
 � T 	�
 � �

�
m��X
i��

� 	�
iT 	�
i�
 � �
i�

m
� T 	�
 	mod �m � �
� (6.39)

which can be expressed on the recursive form

P 	i� �
 � P 	i
� 	�
iT 	�
i�
 � �
i�

m
 	mod �m � �
� for � 	 i 	 m� ��

where P 	�
 � T 	�
 � ��. We thus have P 	m
 � T 	� �

. Figure 6.23 shows the
modified multiplier by Benaissa et al. It is a modified version of the multiplier
in Figure 6.22. During an initial clock cycle, �
 is loaded into register R� and
�� is loaded into both register R� and R�. After the subsequent m clock cycles,
register R� will contain the product P 	m
 � T 	� �

. An additional clock pulse

shifts the product to an output register. If � � � (��m � �) or
 � � (�
m � �),
the output controller sets the correct output T 	� �

 � �m (see page 131)�	.

The chip areaA occupied by Benaissa’s modified multiplier is proportional to
its size

CBenaissa�s�p�mult�� � �	m� �
Creg �mCAND � �C
NAND�NOR

� �COR
� Cinv � Cdimadd�� � Cout�ctrl

� ���m � ���

The CP of the multiplier is marked by the dotted line in Figure 6.23. It only
slightly differs from the CP of the multiplier in Figure 6.22. The length of the
CP equals

LCP�Benaissa�s�p�mult�� � LCP�Benaissa�s�p�mult� rdimadd��freg

� ��m� � log� m� ����

��Benaissa et al. [12, Fig. 3] use a row of AND gates instead of a row of inverters and NOR
gates.

146 Chapter 6. The Diminished–1 Representation

CP

Diminished–1

CLA adder

T 	� �

��

�
�m���

R�

msb lsB

�
i
R�

R�

P 	i

P 	i� �

Row of m AND gates

��m

�
m

Output

controller

P 	i
�m���P 	i
m

Figure 6.23: A block diagram of Benaissa’s [12, Fig. 3] modified diminished–1
serial/parallel multiplier.

6.3. The Diminished–1 Representation 147

As described above, the modified multiplier needs m�� clock cycles to com-
pute a product, i.e. the same number of clock cycles as was required for the
non-modified multiplier. Hence, the computation time T is proportional to

LBenaissa�s�p�mult�� � 	m� �
LCP�Benaissa�s�p�mult��

� ��m� � �m log� m� ���m � �� log� m� ���

and the product AT � is proportional to

CL�
Benaissa�s�p�mult��

�
� CBenaissa�s�p�mult��	LBenaissa�s�p�mult��

�

� 	���m � ��

�	��m� � �m log� m� ���m � �� log� m� ���
�

� O
m�
�
�

Shyu’s Serial/Parallel Multiplier

The final serial/parallel diminished–1 multiplier to be considered here is the
one suggested by Shyu et al. [92]. Theorem 1 in their paper says that dimin-
ished–1 multiplication can be calculated inZ�m�� as follows:�

T 	� �

 �
�

mX
i��

� T 	�
i�
i�

�
� �� 	mod �m � �
� (6.40)

This congruence can be written on the recursive form

P 	i� �
 � P 	i
� T 	�
i�
i�
 	mod �m � �
� for � 	 i 	 m�

where P 	�
 � �� and for which we have P 	m� �
 � T 	� �

.
Note that this equation can also be derived from the more general expression
in (6.11) by letting k � �l, which is the case for the diminished–1 representa-
tion (k� l
 � 	�� ��
). Because(6.39) and (6.40) are quite similar, the two asso-
ciated architectures have about the same structure. Figure 6.24 shows a mod-
ified version of Shyu’s [92, Fig. 1] multiplier. It is based on the serial/parallel
multiplier proposed by Chang et al. [32]. In Figure 6.24, we have exchanged
most of Shyu’s nMOS pass transistors for transmission gates. We have also
modified their multiplier such that the output product is correct also when ei-
ther of the diminished–1 operands (or both) are equal to �m. Such a situation
is handled inter alia by the “output controller” circuit.

The multiplication algorithm works as follows: During an initial clock pulse,

the 	m � �
-bit registers A and D are loaded with �� and ���m���, respectively,

��Here, we use our notations.

148 Chapter 6. The Diminished–1 Representation

T 	� �

FA FA FAFA

P�

P�

D�

D�

D�

Dm��

Dm

B�

B�

B�

Bm��

Bm

Am Am�� Am�� Am�� A�

Cm Cm�� Cm�� Cm�� C�

Output controller

D

1

1

1

1

0

		m

	�m

Figure 6.24: A modified version of the multiplier proposed by Shyu et al.
[92, Fig. 1]. The paths P� and P� form the CP during one clock cycle.

and the 	m��
-bit registers B and C are loaded with �m����
 and �m����, re-
spectively. Also, the single D flip-flop is loaded with �
m. After the subsequent
m � � clock cycles, the product T 	� �

 has been shifted through the output
controller and into an 	m� �
-bit parallel register. This output register is not
shown in Figure 6.24. The multiplication process is described more in detail
by Shyu et al. [92] and, to some extent, by Chang et al. [32].

The size of the multiplier in Figure 6.24 equals

CShyu�mult � 	�	m� �
 � �	m� �
 � �
Creg �mCFA � C
NAND�NOR

��COR � �Cinv � Cout�ctrl � 	�m� �
CTG �m

� ���m � ����

6.3. The Diminished–1 Representation 149

The CP is formed by the dotted paths P� and P� in the figure. The CP length
equals

LCP�Shyu�mult � Lreg � rreg	finv �mfTG
 � rinv �m	fTG � �

� 	rreg � �
fFA�signal �mLFA�carry � 	m� �
	LFA�carry � rFAfFA�carry

�LFA�sum � 	rFA � �
freg

� ��m � ��

Because the desired diminished–1 product is shifted into the output register
during the last of a total of m� � clock cycles, the computation time T is pro-
portional to

LShyu�mult � 	m� �
LCP�Shyu�mult

� ��m� � ���m � ����

Hence, the area-time performance AT � is proportional to

CL�
Shyu�mult

�
� CShyu�mult	LShyu�mult

�

� 	���m � ���
	��m� � ���m � ���
� � O
m�
�
�

It is possible to obtain yet another algorithm for diminished–1 serial/parallel
multiplication, based on the general expression in (6.12). For k � �, (6.12)
changes to

T 	� �

 �
mX
i��

� T 	
i�
i�
 	mod �m � �
� (6.41)

This formula is also derived by Shyu et al. [92, Theorem 2]. An architecture
for multiplication based on (6.41) is suitably used when the multiplier (
) is
represented on NBC form. The architecture in Figure 6.24 may be modified to
be based on (6.41). However, such an architecture is not considered here.

6.3.6.3 Comparisons

In Table 6.4 we have listed the sizes and the total CP lengths of the dimin-
ished–1 general multipliers presented in the thesis. It is clear that the multi-
plier proposed by Ashur et al. [10] has the smallest size and CP length among
the bit-parallel architectures. It is also clear that the multiplier proposed by
Shyu et al. [92] has the smallest size and CP length among the bit-serial/paral-
lel architectures.

The sizes, total CP lengths, andAT � performances of Ashur’s and Shyu’s mul-
tipliers are plotted versus m, for m � �t; � 	 t 	 �, in Figure 6.25.

150 Chapter 6. The Diminished–1 Representation

M
u
lt
ip

li
er

ty
p
e

S
u
b
sc

ri
p
t
n
am

e
F
ig

u
re

S
iz

e

C

T
o
ta

l
C

P
le

n
g
th

L

B
it
-p

ar
al

le
l

S
u
n
d
er

,m
u
lt

6.
19

��
m

�
�
��
�m
�

�

��
�m
�
��
�

A
sh

u
r,
m

u
lt

6.
20

��
m

�
�

�
m
�
��

��
m
�
��
�

B
en

ai
ss

a,
p
-m

u
lt

6.
21

��
m

�
�
��
�m
�
��

��
�m
�
��
�

B
it
-s

er
ia

l/
p
ar

al
le

l
B
en

ai
ss

a,
s/

p
-m

u
lt

6.
22

��
�m
�
��

��
m
�
�
�m
lo
g �
m
�
��
�m
�
��
lo
g
�
m
�
��
�

B
en

ai
ss

a,
s/

p
-m

u
lt
,2

6.
23

��
�m
�
��

��
m
�
�
�m
lo
g �
m
�
��
�m
�
��
lo
g
�
m
�
��
�

S
h
y
u
,m

u
lt

6.
24

��
�m
�
��
�

��
m
�
�
��
�m
�
��
�

T
a
b
le

6
.4

:
T
he

si
ze

s
an

d
to

ta
l
C

P
le

n
gt

hs
of

th
e

di
m

in
is

he
d–

1
m

u
lt
ip

li
er

ar
ch

it
ec

tu
re

s.
T
he

pr
od

u
ct

CL
�

is

O
	m
�

fo
r

th
e

bi
t-

pa
ra

ll
el

ar
ch

it
ec

tu
re

s
an

d

O
	m
�

fo
r
th

e
bi

t-
se

ri
al

/p
ar

al
le

l
ar

ch
it
ec

tu
re

s.

6.3. The Diminished–1 Representation 151

CAshur�multCShyu�mult

LAshur�multLShyu�mult

CL�
Ashur�multCL�
Shyu�mult

� � � �� �� �� ������
���

���

��	
Time complexity

m

C
P

le
n
g
th

,L

� � � �� �� �� ������
���

���

��	

Area complexity

m

S
iz

e,
C

� � � �� �� �� ��� ���
��

����

����

���	

Area-time performance

m

CL
�

Figure 6.25: The sizes, total CP lengths, and AT � performances of Ashur’s and
Shyu’s diminished–1 multipliers, see Figures 6.20 and 6.24, respectively. The
parameters are plotted versus m � �t for � 	 t 	 �.

From the figure we conclude that, for all m, the size of Ashur’s multiplier is
greater than the size of Shyu’s multiplier. On the other hand, with respect both
to their time performance and their AT � performance, Ashur’s multiplier is
preferable to Shyu’s multiplier.

All in all, we conclude that the sizes, the total CP lengths, and the AT � perfor-
mances of the bit-parallel multipliers are O 	m�
, O 	m
, and O 	m�
, respec-
tively, while the corresponding parameters of the bit-serial multipliers are
O 	m
,O 	m�
, andO 	m�
, respectively. The choice of architecture for general
multiplication inZ�m�� is further discussed in Section 8.1.5.

152 Chapter 6. The Diminished–1 Representation

6.3.7 Exponentiation of the Transform Kernel

For the diminished–1 element representation, the linear coordinate transfor-
mation parameters k and l in (6.1) are equal to 1 and��, respectively. Hence,
by (6.14) we get

T 	
n
 � 	T 	

 � �
n � �

�
n � � 	mod �m � �
�

which is also directly obtained from the generalNBC-to-diminished–1 formula
T 	

 �
 � � 	mod �m � �
. It seems as if the diminished–1 representation
does not provide a procedure for performing exponentiation inZ�m�� which is
computationally simpler than the procedures for performing exponentiation
with respect to the normal binary coded element representation. Therefore,
for the computation of
n mod �m � � we refer to the exponentiation proce-
dures described in Section 5.1.6 of the previous chapter. When the modulus
�m�� is prime, there are some properties of the prime fieldZ�m�� which can be
applied such that exponentiation modulo �m � � can be performed in a sim-
plified way. This is further discussed in Section 7.2.1.

6.4 Summary

The complexity and performance parameters of the architectures considered
in this chapter are listed in Table 6.5. Regarding the parameters for the archi-
tectures for general diminished–1 multiplication, we refer to Table 6.4.

6.4. Summary 153

O
p
eratio

n
F
ig

u
re

S
u
b
scrip

t
n
am

e
S
izeC

F
an

-in

f

In
tern

al
C

P
len

g
thL

C
P

N
B
C

to
d
im

.–1
tran

sl.
6.2

N
B
C

2D
im

�m
log
�
m
�
�m
�
�

8

�m
�
�
log
�
m

D
im

.–1
to

N
B
C

tran
sl.

6.4
D

im
2N

B
C

��m
�
�

2

��m
�
�

N
eg

atio
n

6.6
d
im

n
eg

�m

n
m

�
�m

—
A

d
d
itio

n
(carry

l.-a.)
6.7

d
im

ad
d
,1

��m
�
��

��

��m
�
�
log
�
m
�
��

���

A
d
d
itio

n
(carry

-r.)
6.9

d
im

ad
d
,2

��m
�
�

6

��m

M
u
ltip

licatio
n

b
y

2
6.12

d
im

m
u
lt2

�

n
m

�
�

—
M

u
ltip

licatio
n

b
y

�
n

6.15
seq

,m
u
lt2n

��m
�
�

—
38

(o
r
40)

G
en

eral
m

u
ltip

licatio
n

S
ee

T
ab

le
6.4

N
o
rm

.
o
u
tp

u
t
res.

r
o

T
o
tal

C
P

len
g
thL

(in
clu

d
in

g
reg

isters)
A

rea-tim
e

p
erf.CL

�

�

�m
�
�
log
�
m
�
��

O
	m
�
log
�
m

�

��m
�
��

O
	m
�

�

�m
�
��

O
	m
�

���

�

��m
�
�
log
�
m
�
��

O
	m
�

�

��m
�
��

O
	m
�

�

��

����

—

��	n
�t�
�
�
�
�

(o
r

�m
�
��)

O
	m
�

��

��

T
a
b
le

6
.5:

C
om

plexity
param

eters
of

the
architectu

res
in

the
presen

t
chapter.

154 Chapter 6. The Diminished–1 Representation

Chapter 7

The Polar Representation

In Chapter 6, we considered the diminished–1 representation of the elements
in Fermat integer quotient rings Z�m��. The code translation T 	

 �
 � �
	mod �m � �
, where
 is an NBC integer of Z�m�� and T 	

 is the dimin-

ished–1 representation of
, belongs to the set of linear coordinate transforma-
tions given by (6.1).

There exist many forms of nonlinear coordinate transformations, i.e. mappings
P from the NBC representation of integers
 � Z�m�� to P 	

, where P is a
nonlinear function of
. In this chapter we investigate the properties of one
such form of representation, namely the polar representation.� A restriction of
the polar representation, however, is that it is only applicable in finite fields.

7.1 Introduction

Form � �� �� �� �� �� the Fermat number �m�� is prime and hence the integer
quotient ringZ�m�� is a field. Let 	 be a primitive element of a prime fieldZp,
i.e. an element ofZpwith maximum order p��. It is well known [60, Th. 1.15,
Th. 2.8] that the multiplicative group of nonzero elements ofZp can be formed
by the cyclic group f	�� 	�� � � � � 	p��� 	p��g.� Let the symbol
 be defined by

�In the literature, the polar representation is sometimes referred to as the index representa-
tion, see for example Niederreiter [60, Ch. 10.1] and Rosen [84, Ch. 8.4].

�Actually, for any finite field, its multiplicative group can be formed by its powers of a
primitive element.

155

156 Chapter 7. The Polar Representation

the equation 	
 � �. Then, any integer ofZp can be expressed as some power
of 	.

Definition 7.1 Consider the Fermat prime fieldsZ�m��; m � �� �� �� �� ��. In the
polar representation ofZ�m��, each element (integer)
 � Z�m�� is represented by
its associated power P 	

 of a primitive element 	 of the field.
Accordingly, we have

 � 	P ��� 	mod �m � �
� (7.1)

where

�
P 	

 �Z�m�
 �� �

P 	�
 �
 .

An element in the polar representation is referred to as a polar element.

In the diminished–1 representation, the zero element is represented by the in-
teger T 	�
 � �m, which we called the zero indicator, see Section 6.2. We suitably
use the integer �m as a zero indicator also in the polar representation, i.e. we

have P 	�
 �
 �
� �m. Similar to the diminished–1 representation, by letting all

integers P 	

 be 	m��
-bit normal binary coded integers, the zero representa-
tive P 	�
 is the only integer P 	

 for which its most significant bit equals one.
Situations where one of the operands in an arithmetic operation is the zero el-
ement are handled separately. For nonzero integers
 we have P 	

 � Z�m

and the order of the primitive element 	 modulo �m � � equals �m. Conse-
quently, for nonzero integers
 we can use anm-bit binary arithmetic modulo �m for
the associated exponents P 	

 of 	.

The general properties of arithmetic operations in finite fields, with respect to
the polar representation, are well known. However, the particular properties
of arithmetic operations in Fermat prime fields, with respect to the polar repre-
sentation have not been studied before. An investigation of such properties is
carried out in this chapter. Henceforth, we generally refer toZ�m�� as a Fermat
prime field.

7.2 Arithmetic Operations

Occasionally, we have denoted diminished–1 elements T 	

 by �
. In the polar
representation we conveniently use the same kind of notation, i.e. the
	m� �
-bit polar integer P 	

 is denoted by the normal binary coded integer
�
 � �m�
m � �m���
m�� � � � �� ��
� � �
�.

7.2. Arithmetic Operations 157

In the present section we describe the arithmetic operations involved in the
computation of the Fermat number transform with respect to the polar repre-
sentation. Later, in Section 7.6, we also consider VLSI architectures for some
of these arithmetic operations.

7.2.1 Discrete Exponentiation

The code translation from a polar number P 	

 to its corresponding normal
binary coded number
 is carried out using a discrete exponentiation modulo
�m � �, as given by (7.1). In Section 5.1.6 we considered some procedures for
general exponentiation modulo �m � �. The integer
 � 	P ��� 	mod �m � �

may be computed using any of those procedures. For example, by using the
well known binary method, which is briefly described in Section 5.1.6, expo-
nentiation can be performed usingm�� squarings and at mostm��multipli-
cations modulo �m��. By performing a squaring as a general multiplication,
at most �	m��
 generalmultiplications modulo �m�� of normal binary coded
numbers are required to compute
 from P 	

 in (7.1).

In Section 7.4 we consider a new procedure [5] for discrete exponentiation in
Fermat prime fields using some properties of Zech’s logarithms.

7.2.2 The Discrete Logarithm

By taking the 	-logarithm of both sides of (7.1) we get the congruence

P 	

 � log�
 	mod �m
� (7.2)

which is called the discrete logarithm to the base 	 modulo �m. The problem of
computing (7.2) is generally known as the discrete logarithm problem. In gen-
eral, it is quite hard to compute the discrete logarithm in a large prime fieldZp.
Several algorithms suggested in the literature require O
p

p
�

multiplications
to compute the logarithm.

The Pohlig-Hellman Algorithm

In 1978, Pohlig and Hellman [72] presented an algorithm for computing the
discrete logarithm in Zp which only requires O

log� p
�

multiplications mod-
ulo p. In particular, for Fermat primes p � �m � � their algorithm computes
(7.2) by recursively determining the binary digits �
i ofT 	

 � �
 � 	�
m��� �
m���
�
m��� � � � � �
�
� such that
 � 	�� 	mod �m � �
 holds. The algorithm, which

158 Chapter 7. The Polar Representation

is based on the fact that the order of the primitive element 	 modulo �m � �
equals �m, works as follows (see [72, Sec. III]):

The least significant bit �
� of �
 is determined by raising the nonzero integer

 to the �m��th power and identifying whether the result equals 1 or ��. Let

	�

�
�
 and �	�
 � 	�� 	mod �m � �
. Then we have

	�
�
m�� � 		��
�

m��
� 	���m���

m�����m���
m������������

m���
�
m�� � 		�m��
��

� 	��
��
 �
�

� 	mod �m � �
� if �
� � �
�� 	mod �m � �
� if �
� � �

� (7.3)

Only m� � squarings are required to compute
	�
�
m��

mod �m � �. The digit
�
� is set to either 0 or 1, depending on whether
	�
�

m��
mod �m � � is evalu-

ated to 1 or ��, respectively. Now, let
	�
 �
	�
 � �	�
��
 	mod �m � �
. The
digit �
� can be determined in the same way as above from the congruence

	�
�
m�� � 	���m���

m�����m���
m������������

m�����
m��

� 	��
��� �
�

� 	mod �m � �
� if �
� � �
�� 	mod �m � �
� if �
� � �

� (7.4)

which can be computed using m � � squarings. Next, compute �	�
 � �	�
�

	mod �m ��
 and
	�
 �
	�
 � �	�
��� 	mod �m ��
 and determine �
� from

	�
�

m��
mod �m � �, etc., until the most significant bit �
m�� has been deter-

mined.

In order to determine the digit �
i� � 	 i 	 m � �, one squaring is required
to compute �	i� �
 � �	i� �
� 	mod �m � �
, one multiplication is required
to compute the product
	i
 �
	i � �
 � �	i � �
��� 	mod �m � �
, and m �
i�� squarings are required to compute
	i
m�i�� mod �m � �. Hence, if �	�
 is
precomputed and squarings are performed as multiplications, the algorithm
requires approximately �m �

Pm��
i�� i � m	m � �
�� general multiplications

modulo �m��. Assuming that each multiplication can be carried out using at
mostm additions, the Pohlig-Hellman algorithm requires at mostm�	m��
��
additions modulo �m � �.

New Algorithms

In 1993, we [5] presented a new algorithm for computing the discrete loga-
rithm in Fermat prime fields Z�m��. The algorithm, which is based on some
properties of Zech’s logarithms in Fermat prime fields, requires at most �m��m
additions modulo �m � �.

Recently, we [7] proposed another algorithm for computing the discrete loga-
rithm, which in turn is based on the algorithm in [5]. By using a look-up table

7.2. Arithmetic Operations 159

of size �m��m�m bits, we show how to compute the logarithm using at most
�m � � binary shifts (rotations), one table look-up, and one addition and one
simplified multiplication modulo �m.

Our two algorithms are thoroughly described in Sections 7.4 and 7.5, respec-
tively.

7.2.3 Modulus Reduction

Modulus reduction in the polar representation is a very simple operation.
When
 is nonzero, the least positive residue of �
 modulo �m equals �
�m���,
which is instantaneously obtained from �
. When
 is congruent to zero mod-
ulo �m � � we have �
 � �m.

Because we use an 	m� �
-bit normal binary coded representation of the ex-
ponents �
 of 	, there are only two cases that have to be considered:

Exponent Reduced exponent (mod �m)

�
 �� �m �� P 	
 �� �
 � �
�m���

�
 � �m �� P 	�
 �
 � �m

7.2.4 Negation

Like modulus reduction, negation is also simply carried out in the polar repre-
sentation. Because the order of the primitive element 	 modulo �m�� equals
�m we have 	�

m�� � �� 	mod �m � �
. For �
 � P 	

 and �� � P 	�

 we
therefore get

� � �
 � 	�
m����� �mod �m� � 	 �
 	mod �m � �
�

Hence, because in the polar representation all arithmetic operations are car-
ried out in the exponent of 	, the polar element P 	�

 is obtained from the
congruence

P 	�

 � �� � �m�� � �
 	mod �m
� (7.5)

which, for � 	 �
 	 �m � �, we expand as

�� � �m�� � �
m��	�
m � �m��
 � �
�m���

� �
m���
m � 	� � �
m��
�

m�� � �
�m���

� �
m���
m�� � �
�m��� 	mod �m
� (7.6)

160 Chapter 7. The Polar Representation

For �
 � �m, i.e for
 � �, we let �� � �
 � �m. In Section 7.6.3 we consider a
VLSI architecture for negation based on (7.6).

7.2.5 Addition and Subtraction

Addition

When considering addition in the polar representation we need the following
definition (see for example Conway [34, Ch. 6]).

Definition 7.2 Zech’s logarithm� of the polar element �� is denoted by Z	��
 and de-
fined by the congruence

� � 	
�� � 	Z�

��� 	mod �m � �
�

For nonzero ��
 � Z�m��, let �� � P 	�
 and �
 � P 	

. The function evaluated
whenperforming addition in the polar representation is found in the exponent
of 	 in the congruence

� � � �
 � 	
��	� � 	�����

� 	
���Z	�����
 �mod �m� � 	 �
 	mod �m � �
� (7.7)

i.e. we have
P 	� �

 � �� � �� � Z

�
�
 � ��

	
	mod �m
� (7.8)

where Z is Zech’s logarithm. Using the congruence ��� � 	�m � �
 � �� � �

� ���m��� � � 	mod �m
, where ���m��� is the one’s complement of ���m���, we
rewrite (7.8) as

�� � ���m��� � Z
�
�
 � ���m��� � �

	
	mod �m
� (7.9)

Hence, according to (7.9), addition in the polar representation may be carried
out using two additions and one discrete logarithm modulo �m. The direct

computation of Z	��
, as expressed by the congruence

Z	��
 � log�	� � 	
��
 	mod �m
� (7.10)

requires one discrete exponentiation and one addition modulo �m�� followed
by one discrete logarithm modulo �m, which makes it quite an intricate func-
tion. Some researchers, like for instance Conway [34], Imamura [53], and Hu-
ber [51] have considered different methods of computing Zech’s logarithms

�Zech’s logarithm is also referred to as Jacobi’s logarithm [60, Exc. 2.8].

7.2. Arithmetic Operations 161

in GF 	pn
 in a simplified way. In particular, the researchers consider fields of

characteristic p � �. In order to speed up the computation of Z	��
, the men-
tioned methods all involve the use of look-up tables.

Remark: Theparticular properties of Zech’s logarithms in Fermatprimefields
Z�m�� are investigated in Section 7.3. The main purpose of the investiga-
tion is to find an area-time efficient way of computing Zech’s logarithms
inZ�m��.

The case when either of the addends � and
 (or both) equals zero is handled
separately. For � � ��
 	mod �m��
, where � � � or
 � �, we can simply
do the following:

If � � � (�� � �m)� then let � �
, i.e. let �� � �

If
 � � (�
 � �m)� then let � � �, i.e. let �� � ��

Subtraction

The polar integer P 	� � �
, for which � and � are nonzero integers ofZ�m��,
can be derived by letting
 � �� in (7.7). Then, by (7.8) we get

P 	� � �
 � �� � Z
�
P 	��
 � ��

	
	mod �m
� (7.11)

Consequently, subtraction in the polar representation can be carried out in a
conventional way as a (polar) negation followed by a (polar) addition.

7.2.6 General Multiplication

For nonzero � and
, the product � � �
 	mod �m � �
 can be expanded as

� � �
 � 	
����� �mod �m� � 	 �
 	mod �m � �
� (7.12)

By this congruence we get

P 	�

 � �� � �� � �
 	mod �m
� (7.13)

which is a well known property of the polar representation; general multipli-
cation in a finite field GF 	pn
 turns into addition modulo pn� � when using a
polar representation. When either of the factors � and
 (or both) equals zero,
P 	�

 is set to P 	�
 � �m.

162 Chapter 7. The Polar Representation

7.2.7 Multiplication by Powers of �

The computation of the Fermat number transform of length N involves mul-
tiplication by powers of the transform kernel � of order N . Let � � �n modN

	mod �m � �
, where P 	�
 � ��. Then, by (7.12) and (7.13) it follows that

P 	�n

 � �
 � 	n mod N
�� 	mod �m
� (7.14)

Multiplication by �n

The Fermat number transforms most commonly used are the ones of lengths

N � �m and �m, with transform kernels � � � and � �
p
� � �

�m
� � �

�m
� ,

respectively. The main reason is that, with respect to the diminished–1 and
the NBC representations of the integers ofZ�m��, multiplication by powers of
� can then be carried out as binary shifts (rotations) (see Sections 2.3.2, 5.1.4,
and 6.3.5).

Multiplication by powers of two can be carried out in a simple way in the polar
representation as well. By the congruence 	�

m�� � �� � �m � 	� � 	�
m �
	mZ��� 	mod �m � �
, where 	 is a primitive element ofZ�m��, we get

mZ	�
 � �m�� 	mod �m
� (7.15)

Because m is a power of two;m � �t; t � �� �� �� �� �, by Theorem 3.4 of Rosen
[84] we can rewrite (7.15) as

Z	�
 � �c 	mod �c��
� (7.16)

where c is defined by the equation

�c �
�m

�m
� (7.17)

Consequently, for some integer k we can write

Z	�
 � k�c�� � �c � ���c� (7.18)

where �� � �k��. Because �� is an odd 	t��
-bit normal binary coded integer,
where t � log� m, it follows that k � Zm. Thus, depending of the primitive
element 	 chosen, the corresponding Zech’s logarithm of zero is of the form
given in (7.18) for some k � �� �� �� � � � � m� �.

Theorem 7.1 For each k � Zm there exist �c primitive elements 	 of Z�m�� such
that the equality Z	�
 � 	�k � �
�c holds.

7.2. Arithmetic Operations 163

Theorem 7.1 may also be formulated as follows. The primitive elements of
Z�m�� can be partitioned into m sets, each comprising �c elements, such that
the primitive elements in each set all have the same Zech’s logarithm of zero
on the form given by (7.18).

Proof: Let 	 and �	 be two primitive elements of Z�m��. By Corollary 8.4.1
of Rosen [84] we know that 	u is a primitive element of Z�m�� if and only if
gcd	u� �m
 � �, which is true for all odd integers u. Hence, for some integer
r � Z�m��, �	 can be written on the form �	 � 	�r�� 	mod �m � �
. By (7.10)
we have Z	�
 � log�	� � 	�
 	mod �m
. Suppose that �	 has the same Zech’s
logarithm of zero as 	, i.e. suppose Z	�
 � log��	� � �	�
 	mod �m
. Then it
follows that

	Z��� � �	Z��� � 	��r���Z��� 	mod �m � �

and hencewehaveZ	�
 � 	�r��
Z	�
 	mod �m
, whereZ	�
 � ���c. Because
�m� gcd	�c� �m
 � �m, by [84, Th. 3.4] it follows that �� � 	�r��
�� 	mod �m
.
Consequently, 	 and �	 � 	��r��� 	mod �m � �
 have the same Zech’s log-
arithm of zero only if �r � � 	mod �m
, or equivalently if m is a divisor
of r.

From the above reasoning we conclude that there exist exactly m Zech’s loga-
rithms of zero on the form given by (7.18). By [84, Th. 8.5] we know that there
are
	
	�m � �

 � �m�� primitive roots ofZ�m��. Hence, these primitive ele-
ments can be partitioned into m sets of �m���m � �c elements, which all have
the same Zech’s logarithm of zero. �

For � � � we get �� � Z	�
 and N � �m in (7.14). By Theorem 7.1, there exist
�c primitive elements for which the associated Zech’s logarithms of zero are

all equal to �c (�� � � in (7.18)). Consequently, by appropriately choosing such
an 	, multiplication by a power of two can be computed in the polar represen-
tation as in (7.14), with � � 	�c 	mod �m
, i.e. we get

P 	�n

 � �
 � 	n mod �m
�c 	mod �m
� (7.19)

Let �� � 	n mod �m
�c � n�t��c. This binary coded integer may be computed as
c � m� 	t��
binary shifts of n�t�. However, because the factor n�t� is a 	t��
-
bit NBC integer, no reduction modulo �m is needed for the m-bit NBC integer
n�t��c. The shifts can therefore be carried out instantaneously and hence the

evaluation of (7.19) only requires one addition. Furthermore, since ���c��� � �,

i.e. the c least significant bits of �� are zero, this addition modulo �m simplifies
to a 	t� �
-bit addition of n�t� by the t � � most significant bits of �
. The sum
is reduced modulo �t��. This computational procedure is generalised and fur-
ther explained below.

An Optimal Choice of �

164 Chapter 7. The Polar Representation

The main results in the remainder of the present section (7.2.7) can also be
found in [6]. Because the transform length N is a power of two, i.e. we have
N � �b for � 	 b 	 m, we can write (7.14) as

P 	�n

 � �
 � 	n mod �b
�� � �
 � n�b����� 	mod �m
� (7.20)

By choosing an appropriate kernel �, it is possible to compute P 	�n

 with
a complexity that is smaller than the complexity of performing one general
multiplication followed by one addition modulo �m, i.e. according to the di-
rect computation of (7.20). We showed above that for some bases 	 and for
� � �, P 	�n

 can conveniently be computed using only one addition modulo
�m � �t��. That simple way of computing P 	�n

 is actually a special case of
a general procedure for computing P 	�n

 which only requires one addition
modulo N for all possible transform lengths N � �b inZ�m��.

Theorem 7.2 Let� � 	�m�b 	mod �m��
 andP 	�n

 � �
�n�b����� 	mod �m
,
where 	 is a primitive element of the prime fieldZ�m��, n is a nonnegative integer, and
� 	 b 	 m. Then the order of � modulo �m�� equals �b andP 	�n

 can be computed
using only one b-bit addition modulo �b.

The choice of � � 	�m�b 	mod �m��
 as the kernel of a Fermat number trans-
form of length �b was also considered in Section 2.3.2 (page 15). In the proof
of Theorem 7.2 we need the following notation.

Definition 7.3 Let �� be an m-bit polar integer. By ���i� we denote the NBC integer

which is formed by the m � i most significant bits of �� such that, for � 	 i 	 m, ��

can be written on the form �� � ���i��i � ���i���.

Proof: (Theorem 7.2) The order of the primitive element 	 modulo the prime
�m � � equals
	�m � �
 � �m. By Theorem 8.4 of Rosen [84], for � 	 b 	 m

the order of 	�m�b modulo �m � � equals �m� gcd	�m� �m�b
 � �b. Hence, the
element

� � 	�m�b 	mod �m � �

can be used as the kernel of a Fermat number transform of lengthN � �b. Sim-

ilar to the notation used above, let� �� � n�b������ where we now have
�� � P 	�
 � �m�b. Thus, using this definition of �� we can write

P 	�n

 � �
 � �� 	mod �m
� (7.21)

�For b � t � � we get N � �b � �t�� � �m, which is the order of the transform kernel
� � � used above.

7.3. Zech’s Logarithm 165

where �� � n�b����m�b. Because n�b��� is a b-bit NBC integer, �� is an m-bit NBC

integer for which ���m�b��� � �, i.e. the m � b least significant bits of �� equal
zero. Hence, P 	�n

 in (7.21) can be computed as a b-bit addition modulo �b.
By Definition 7.3 we can write �
 � �
�m�b��

m�b � �
�m�b��� and

P 	�n

�
� �� � ���m�b��

m�b � ���m�b���� (7.22)

where ��
�

���m�b� � �
�m�b� � n�b��� 	mod �b

���m�b��� � �
�m�b���
� (7.23)

Obviously, P 	�n

 canbe computed using only one b-bit addition of �
�m�b� and
n�b��� modulo �b. �

Theorem 7.2 leads immediately to the following corollary.

Corollary 7.1 Consider a Fermat number transform in the prime field Z�m�� and
of arbitrary transform length N � �b, such that � 	 b 	 m. By letting � �
	�m�b 	mod �m��
 be the kernel of the transform, in the polar representation each
transform multiplication by a power of � can be computed using only one addition
modulo �b.

Proof: The proof follows directly from Theorem 7.2. �

7.3 Zech’s Logarithm

In Section 7.2.5 we saw that polar addition involves the evaluation of a Zech’s
logarithm. The computational complexity of polar addition depends heavily
on the complexity of computing the Zech logarithm. Zech’s logarithms arede-
fined in Definition 7.2 (page 160). In this section we investigate some proper-
ties of Zech’s logarithm over Fermat prime fields, with the purpose of finding
an (area-time) efficient way of computing the logarithm.

We mentioned in Section 7.2.5 that some researchers have considered different
methods of computing Zech’s logarithms in finite fields, in particular fields of
characteristic two. To the authors knowledge, their methods all involve the
use of a look-up table. See for example Huber’s [51] technique for comput-
ing Zech’s logarithm in GF 	�n
. He uses a restricted set of elements which,
together with their Zech’s logarithms, are stored in a look-up table. Arbitrary
Zech’s logarithms in the field can then be computed by using this table and

166 Chapter 7. The Polar Representation

some properties of Zech’s logarithms in fields of characteristic two. However,
some of the properties used by Huber for computing Zech’s logarithms do not
apply to prime fields. In this chapter, we present new methods of computing
Zech’s logarithms which only apply to Fermat prime fields.

In Appendix C, we investigate some special properties of Zech’s logarithms
in Fermat prime fields. Using these properties we show that the integers of
Z�m n f�m��g can be partitioned into 	�m � �
�� subsets of six integers each,�

such that the Zech logarithm of any integer of a subset can be computed from
any of the other integers of the set and its Zech’s logarithm. Consequently, a
method of computing Zech’s logarithm could be the following:

Select one integer �� from each subset and store the associated Zech’s loga-

rithms Z	 ��
 in a look-up table (of size 	�m � �
�� �m bits). Given �
, suppose
we want to compute Z	�

.

1. The first step is to find which subset contains �
. We know that the Zech

logarithmZ	 ��
of one of the integers �� of this subset is stored in the table.

Thus, the first step of the method is to find �� and then obtain Z	 ��
 from
the look-up table.

2. The remaining integers of the subset are subsequently computed using
the equations in Theorem C.2 until �
 is found.

3. The desired logarithm Z	�

 is computed using the appropriate equation
in Theorem C.1.

In step 2, at most one addition modulo �m is required to compute, from �� and

Z	 ��
, an arbitrary integer of the subset. In step 3, Z	�

 can also be computed
using at most one addition modulo �m.

There is, however, a major drawback of this procedure for computing Zech’s
logarithms. We have not yet discovered a straightforward way of finding a
simple connection between an arbitrary integer ofZ�m n f�m��g and the asso-
ciated subset to which it belongs. Thus, in the above step 1 we are not able to
find the subset which contains �
, or equivalently, find the associated integer
�� in the table, without searching the whole table. Therefore, the above proce-
dure is not further considered in this section. The properties of the integers
of the mentioned subsets (and their Zech’s logarithms) are thoroughly inves-
tigated in Appendix C.

In the following section we consider properties of Zech’s logarithms which
lead to procedures for computing Zech’s logarithms, either with or without

�However, one of the subsets only contains three integers.

7.4. Properties of the Dm Matrix 167

the use of look-up tables. When using look-up tables, the tables required are
smaller than the table of size 	�m��
���m bits used in the above-mentioned
procedure. The main contents of Sections 7.4 and 7.5 has recently been pre-
sented by the author in [5] and [7].

7.4 Properties of the Dm Matrix

Definition 7.4 Let �
 be a polar integer, i.e. �
 � Z�m � f
g. We define the jth Zech
logarithm of �
 as

Zfjg	�

 � Z

Zfj��g	�

�
� j �Z�

where Zf�g	�

 � �
.

From Definition 7.2 of Zech’s logarithm in Fermat prime fields we have (see
also (C.1) and (C.2) in Appendix C)

Z	�m��
 �
 	mod �m

Z	

 � � 	mod �m
�

which, together with the fact that there exists an integer of Z�m whose Zech
logarithm equals �m��, implies Zfj�k��m���g	�

 � Zfjg	�

. Hence, we have

Zfjg	�

 � Zfj mod�m��g	�

�

In Section 7.2.7 we saw that Z	�
, the Zech logarithm of zero, is involved in
the computation of multiplication by powers of two. As seen below, we ob-
tain several interesting properties of Zech’s logarithms in Fermat prime fields
which are related to Z	�
. Henceforth, each Zech’s logarithm Z	�

 in Z�m��
is generally considered as a jth Zech logarithm of zero, for some j. In Fig-
ure 7.1, we visualise the sequence of jth Zech’s logarithms by drawing lines
from Zfjg	�
 to Zfj��g	�
 for j � �� �� �� �� � � � � ��. From the figure we can de-
rive some special properties of Zech’s logarithms inZ�m��. This is further dis-
cussed in Appendix C.

Theorem 7.3 Let 	 be a primitive element of the Fermat prime field Z�m�� and let
Zfjg	�
 be the jth Zech logarithm of zero. Also, for i� k �Z, let

ai � �i	a� � �
� �

� �ai�� � � 	mod �m � �
� a� �Z�m (7.24)

dk � 	k � �

� 	dk�� � 	� � 	mod �m � �
� (7.25)

168 Chapter 7. The Polar Representation

�

�

�

�

�

�

�

�

�

��

��

��

��

��

�� �
��

�

�

��

�

�	

��

��
��

��

	

�

��

�

�

Figure 7.1: The sequence of Zech’s logarithms Zf�m��g	�
 � Zf�g	�
 � Z	

 � �,
Zf�g	�
 � Z	�
 � ��, Zf�g	�
 � Z	��
 � �, Zf�g	�
 � Z	�
 � ��� � � �,
Zf�mg	�
 � Z	�m��
 �
 	mod �m
, for m � �.

Then we have

	Zfjg��� � j � � 	mod �m � �
 (7.26)

Zfjg	�
 � Zfa
g	�
 � iZ	�

� Zfai��g	�
 � Z	�
 	mod �m
 (7.27)

Zfdkg	�
 � k 	mod �m
 (7.28)

mZ	�
 � �m�� 	mod �m
� (7.29)

Proof: The expansions of ai and dk in (7.24) and (7.25), respectively, follow eas-
ily from the definitions of ai and dk .

7.4. Properties of the Dm Matrix 169

� Equation (7.26): By Definitions 7.2 and 7.4 we get

	Zfjg��� � � � � � � � �� �� �z �
j

�	Zf
g��� � j � � 	mod �m � �
�

� Equation (7.27): By combining (7.26) and (7.24) and using the congru-
ence
� � 	Z��� 	mod �m � �
 we get

	Zfaig��� � ai � �

�
�

	�i	a� � �
 � �
 � � � 	Zfa
g����iZ��� 	mod �m � �

	�ai�� � �
 � � � 	Zfai��g����Z��� 	mod �m � �

�

from which we get (7.27).

� Equation (7.28): By letting j � dk in (7.26) we get

	Zfdkg��� � dk � � � 	k � � � � � 	k 	mod �m � �
�

from which we get (7.28).

� Equation (7.29) was obtained on page 162 (see the congruence leading to
(7.15). It is repeated here only for the sake of completeness.

�

The recursive part of (7.24) is on the same form as diminished–1 multiplication
by two. Therefore, ai can very simply be obtained from ai�� using an m-bit
feedback shift register with an inverter in the feedback loop (see page 127 –
the last paragraph concerning multiplication by 2 – in Section 6.3.5).

Theorem 7.4 Let ai � �i	a� � �
 � � 	mod �m � �
, where i �Zand a� �Z�m.
Then, the sequence � � � � ai��� ai� ai��� � � � is cyclic with period �m, i.e. we have

ai � ai mod�m 	mod �m � �
�

For a� � �m and i �Z, we have ai � a� 	mod �m � �
.

Proof: The cyclic property of the sequence � � � � ai��� ai� ai��� � � � follows sim-
ply from the fact that the order of 2 modulo �m�� equals �m. By letting ai � a�
	mod �m��
 in (7.24) weget a� � �i	a���
�� 	mod �m��
, which implies

	�i � �
	a� � �
 � � 	mod �m � �
�

170 Chapter 7. The Polar Representation

This congruence has the solutions �i � � 	mod �m��
, i.e. i � � 	mod �m
,
and a� � �� � �m 	mod �m � �
. However, because we have a� � Z�m, the
only valid solution is i � � 	mod �m
. Consequently,�

ai �� a� 	mod �m � �
� for �m j� i
ai � a� 	mod �m � �
� for �m j i

�

For k �Zwe have 	k �� � 	mod �m � �
 which, by (7.25), implies dk �� �� �
�m 	mod �m � �
 and thus dk � Z�m. By Theorem 7.4 it follows that when
representing each Zech’s logarithm in Z�m�� on the form given by (7.28), i.e.
as some dkth Zech logarithm of zero, the set

�
Zfdkg	�
 � k �Z�m

�
can be par-

titioned into �c � �m��m distinct cyclic groups. Each subgroup can be gene-
rated using (7.24) and (7.27) and with the knowledge of only Z	�
 andZfa
g	�
,
for some integer a� associated with the group.

The sequence d�� d�� d�� � � � � � d�m�� of indices can be arranged to form a matrix
Dm of size �c � �m, which we define [5, Sec. 2] as

Dm
�
�

�
BBBBB

d� d�c d���c � � � d��m����c

d� d���c d�����c � � � d����m����c

d� d���c d�����c � � � d����m����c

...
...

...
. . .

...
d�c�� d���c�� d���c�� � � � d�m��

�
CCCCCA � (7.30)

where �c � �m��m (see (7.17)). Thus, the matrix Dm is formed such that, by
writing k on the form k � � � ��c, the element dk is in row � and column � of
Dm, where � 	 � 	 �c � � and � 	 � 	 �m � �. Because k is an m-bit NBC
integer, the NBC integer � is in turn formed by the c � m�t�� least significant
bits and the NBC integer � is formed by the t� � most significant bits of k.

Theorem 7.5 The set of �m elements in row � of Dm equals the cyclic group
f�i	a� � �
� � 	mod �m � �
 � i � �� �� � � � � �m� �g, where a� is any
element of the row.

The theorem is simply proved using the following lemma.

Lemma 7.1 Denote by ai ja the integer ai � �i	a� � �
 � � 	mod �m � �
, where

a� � a. Let �� be the multiplicative inverse of �� modulo �m, where �� is defined by the

7.4. Properties of the Dm Matrix 171

Zech logarithm Z	�
 � ���c. Also, let r � Z�m and dk � ai ja
 	mod �m � �
 for
some k, i, and a�. Then we have

dk�r�c � ai�r�� ja
 	mod �m � �
� (7.31)

Proof: It follows from (7.25) that

dk�r�c � 	k�r�c � � � 	dk � �
	dr�c � �
� � 	mod �m � �
�

From the congruence ���� � � 	mod �m
 it follows that �m j 	������
 and hence

�c ��m � �m j 	�c������c
 � 	��Z	�
��c
, which implies �c � ��Z	�
 	mod �m
.
Hence

dr�c � 	r�c � � � 	r��Z��� � � � �r�� � � � ar�� j� 	mod �m � �
�

and consequently

dk�r�c � 	ai ja
 � �
	ar�� j� � �
� � � �i�r��	a� � �
� �

� ai�r�� ja
 	mod �m � �
�

�

In the following proof of Theorem 7.5 we consider row � of Dm, which we de-
note by Dm��.

Proof: (Theorem 7.5) Let dk , where k � �� ��c, be the integer in position � of
Dm��. Then we can write

Dm�� � 	 d� d���c � � � d��������c d����c d��������c � � � d����m����c

� 	 dk���c dk�������c � � � dk��c dk dk��c � � � dk�������c
�

Let dk � ai ja
 	mod �m � �
 for some i � Z�m and a� � Z�m. Because
gcd	��� �m
 � �, the set fai�r�� ja
� r � �� �� � � � � �m� � 	mod �m
g forms the
cyclic group of order �mwhich contains ai ja
 . Hence, by Lemma 7.1 (Equation
(7.31)), Dm�� can be written on the form

	 ai���� ja
 ai�������� ja
 � � � ai��� ja
 ai ja
 ai��� ja
 � � � ai�������� ja

�

where a� is the integer in column ����i mod �m. (Since ai ja
 is in column �, the
integer a� is in column ��r mod �m, where r is obtained from the congruence

i� r�� � � 	mod �m
. Thus, we have r � �����i � ���i 	mod �m
.) �

Henceforth, for each row of Dm, we generally let a� be the element in the first
(leftmost) position of the row. Thus, for the row vector Dm�� we have a� � d�.

172 Chapter 7. The Polar Representation

In particular, in the first row Dm�� of Dm we get a� � d� � � � 	��� � � � ���
�
	mod �m � �
. By (7.24), the remaining elements of the row are a� j� �

	��� � � � ���
�, a� j� � 	��� � � � ���
� � � � �, am�� j� � 	��� � � � ���
�, am j� �
	��� � � � ���
�, am�� j� � 	��� � � � ���
�, am�� j� � 	��� � � � ���
� � � � �, a�m�� j� �
	��� � � � ���
�. Hence, for � 	 i 	 m� �, the NBC integer ai j� is formed by a block
of m� i zeros followed by a block of i ones. For m 	 i 	 �m� �, ai j� is formed by a
block of �m� i ones followed by a block of i�m zeros. Let d be an arbitrary NBC
integer of Dm��. Consequently, for ai j� � e, the subscript i is simply obtained
as

i � e�m� nd� (7.32)

where e� is the least significant bit of e and ne is the number of bits of e which
are equal to e�. For example, form � � we have e � 	��������
� � ai j�, where
i � � � � � � � � and e � 	��������
� � ai j�, where i � � � � � � � ��.

So far, we have not said much about the multiplicative inverse �� of �� mod-

ulo �m. In Table 7.1 we have listed the parameters Z	�
, ��, and �� for m �
�� �� �� ��, with respect to the primitive element 	 � �. By definition, we have

�� � ���� 	mod �m
, where �� is defined by Z	�
 � ���c � log� � 	mod �m
.

Regarding �� we have observed the following property.

Observation 7.1 For m � �� �� �� and 	 � � we can write �� on the form

�� � m� �� 	mod �m
� (7.33)

For m � � we simply have �� � �� � �. We have not been able to show whether

the fact that Observation 7.1 holds can be derived from the definition of �� or
if it is just some kind of coincidence. Anyhow, a consequence of (7.33) of Ob-
servation 7.1 is the following theorem.

Theorem 7.6 For m � �� �� ��, when the primitive element 	 equals 3, the multi-

plicative inverse �� of �� modulo �m can be written on the form

�� � m� � 	mod �m
� (7.34)

Proof: By Observation 7.1, for m � �� �� �� and 	 � � we have �� � m � ��
	mod �m
. The congruence

��	m� ��
 � 	m� ��
	m� �
 � �m

�
m

�
� � �

��

m

�
� � � � 	mod �m

holds for m � 	��
 �� �� ��. Hence, the multiplicative inverse of �� � m � ��
modulo �m equals m� �. �

7.4. Properties of the Dm Matrix 173

m Z	�
 �� ��

2 3 3 3
4 14 7 7
8 48 3 11

16 55296 27 19

Table 7.1: The parameters Z	�
, ��, and �� for m � �� �� �� �� when the primitive
element 	 equals 3.

7.4.1 Discrete Exponentiation

The properties of the matrixDm derived in the previous section can be utilised
to perform exponentiation and compute the discrete logarithm.

Theorem 7.7 Let P 	

 � �
 � Z�m be on the form �
 � � � ��c, where � and � are
c-bit and 	m � c
-bit NBC integers, respectively. Then, the discrete exponentiation

 � 	�� 	mod �m � �
 can be performed by first deriving the integer d�� in position
	�� �
 of Dm and then computing
 � d�� � �.

Proof: For �
 � Z�m,
 is a nonzero integer ofZ�m��. By (7.1), (7.25) and (7.28)
we then have

	�� � � � d�� �
 	mod �m � �
� (7.35)

where �
 � Zfd��g	�
 	mod �m
. From the definition of the matrixDm in (7.30)
we know that for a given �
 � � � ��c, the associated integer d�� is located in
row � and column � of Dm. After finding this integer d�� we get, from (7.35),

 � d�� � �. Because � 	 d�� 	 �m � � we have d�� � � �Z�m��, i.e. no modulus
reduction is needed when computing
 from d�� . �

The computational complexity of performing discrete exponentiation accord-
ing to the procedure described in Theorem 7.7 mainly depends on the com-
plexity of obtaining d�� from �
 � �� ��c.

The discrete exponentiation
 � 	�� 	mod �m � �
 can be computed in the
following way:

1. The first step is to compute d��c . By letting a� � d� � � it follows, from
Lemma 7.1 (Equation (7.31)), that d��c � a��� j� 	mod �m��
. Let i � ���
	mod �m
. The NBC integer ai j� is preferably computed in either of

the following two ways:

174 Chapter 7. The Polar Representation

(a) In the paragraph subsequent to the proof of Theorem 7.5, we de-
scribed how the elements ofDm��, i.e. the top row ofDm, are formed.
Consequently, if � 	 i 	 m � � we let ai j� �

��m�i� ��i�

�
�

and if

m 	 i 	 �m� � we let ai j� �

���m�i� ��i�m�

�
�
.

(b) As mentioned in the paragraph subsequent to the proof of Theorem
7.3, ai j� can simply be recursively computed in i clock cycles using a
feedback shift register of length m and with an inverter in the feed-
back loop. This computational procedure is based on the recursive
form of ai in (7.24).

2. The second step is to recursively compute d�� � d����c from d��c � ai j�.
Thus, we compute d����c from d��c , d����c from d����c , etc., until, after �
steps, d�� � d����c is computed from d������c . In each computation step,
dk is computed from dk�� using the recursive congruence dk � 	dk�� �
	� � 	mod �m � �
 in (7.25).

3. In the third step we compute the desired result
 � d�� � �.

In Figure 7.2 we illustrate which parts of the matrixDm are associated with the
above Steps 1 and 2 of the procedure for performing discrete exponentiation.
The complexity of computing the recursive congruence dk � 	dk�� � 	 � �
	mod �m��
 strongly depends on which primitive element 	 is chosen. By

Theorem 2.5 of Section 2.3.2, the integer 3 is a primitive element of every Fer-
mat prime fieldZ�m��; m � �. If the primitive element 	 equals 3, we get

dk � �dk�� � � � 	�dk�� � �
 � dk�� � �

� 	�dk�� � �
� dk�� 	mod �m � �
� (7.36)

where �dk�� � � 	mod �m � �
 is equivalent to diminished–1 multiplication
by 2 and where � denotes diminished–1 addition. Figure 7.8 in Section 7.6.1
show how to compute (7.36) using a feedback parallel adder.

Remark: Step 2 (computations along a column) may be carried out prior to
Step 1(b) (computations along a row) as follows: Firstly, d� is recursively
computed from d� as in Step 2 using (7.25) (which for 	 � � is equivalent
to (7.36)). Secondly, by letting a� � d�, the integer d�� � ai j� 	mod �m � �

is recursively computed as in Step 1(b) using (7.24).

Theorem 7.8 Let the matrix Dm be written on the form

Dm �

D���

m

��D���
m

�
�

7.4. Properties of the Dm Matrix 175

�

d��� �
 � �� ��c

�Dm �

Step 1

Step 2

a� � �

d��c � ai j� 	mod �m � �
� i � ��� 	mod �m

Figure 7.2: The computation steps for performing discrete exponentiation using
properties of the matrixDm. Equations (7.24) and (7.36) are used in Step 1 and
2, respectively.

where D���
m andD���

m are formed respectively by the m first andm last columns ofDm.

Also, letD���
m denote the matrix obtained when exchanging each (m-bit) integer ofD���

m

for its one’s complement. Then

D���
m � D���

m �

In the proof of Theorem 7.8 we use the following properties: Because the mul-

tiplicative inverse �� of �� modulo �m is odd, it follows that �� is also odd, i.e. we
have �� � �d � � for some nonnegative integer d. Hence, by Theorem 7.4 and
(7.24) we get

ai�m�� ja
 � ai��m�d�m ja
 � ai�m mod�m ja

� �i�m 	a� � �
� � � �m � � � 	�i	a� � �
 � �

� ai ja
 	mod �m � �
� (7.37)

where ai ja
 is the one’s complement of them-bit integer ai ja
 , for any a� �Z�m.

Proof: (Theorem 7.8) Let ai ja
 be the m-bit integer in an arbitrary position of

D���
m . Then, by (7.31) in Lemma 7.1 and the definition of D���

m , ai�m�� ja
 is the

m-bit integer in the corresponding position of D���
m . Because the congruence

in (7.37) holds for every integer ai ja
 of D���
m , we have D���

m � D���
m . �

176 Chapter 7. The Polar Representation

As it is described on page 174, the computation of ai j� from a� � � in Step 1(b)
requires at most �m� � clock cycles. One binary shift (rotation) is performed
during each clock cycle. We have i � ��� 	mod �m
, which implies i 	 �m��.
In consequence of Theorem 7.8, when i � m, ai j� can be obtained in at most
m�� clock cycles: If i � m, let i � j�m for some integer j �Zm. From (7.37),
after j clock cycles we then get ai j� � aj ja
 	mod �m � �
.

Another way of reducing the number of shifts required in Step 1(b) is the fol-
lowing: Let l � �m � i. Because the sequence fai ja
gi	Zis cyclic with pe-
riod �m, we have ai ja
 � a�m�l ja
 � a�l ja
 	mod �m � �
. Hence, for � 	
i mod �m 	 m, ai ja
 can be obtained by rotating the m-bit NBC integer a� ja
 i
bits to the left (in the increased significant bits direction). As before, there is an
inverter in the feedback loop. For m�� 	 i mod �m 	 �m� �, which implies
� 	 l mod �m 	 m � �, ai ja
 � a�l ja
 	mod �m � �
 is obtained by rotating
a� ja
 l bits in the opposite direction (to the right). The bits in the feedback loop
are inverted. This procedure requires either two feedback shift registers or just
one register which can rotate its contents in both directions. In any case, the
maximum number of shifts is m.

We preferably state the computational complexity of an algorithm in terms of
the numberof additions required to performthe algorithm. Here, all additions
are carried out modulo �m � �. We assume that the i binary shifts of Step 1(b)
(where i can be maximised to m��) can be carried out as fast as one addition.
With 	 � �, the above Step 2 requires at most �c � �m��m additions and about
half as many additions in average. Step 3 can be carried out using a simplified
adder.	

Consequently, the algorithm for performing discrete exponentiation described
in this section can be performed using at most �c � � � �m��m � � additions
(modulo �m��). The algorithm requires about �c���� � �m��m�� additions
modulo �m � � in average.

As mentioned in Section 7.2.1, the binary method for discrete exponentiation
requires at most �	m � �
 multiplications. Assuming that a binary multipli-
cation is computed using at most m additions, the binary method requires at
most �m	m��
 additions. The average number of additions required is about
m	m� � �m��
 � m	�m� �
��.

�In Figure 6.4 of Section 6.3.1, we see that addition by one can simply be carried out using
a row ofm cascaded half adder elements.

7.4. Properties of the Dm Matrix 177

7.4.2 The Discrete Logarithm

Theorem 7.9 Let
 be a nonzero integer ofZ�m�� and d�� �
 � �, where �
 � P 	

.
Then, the discrete logarithm �
 � log�
 	mod �m
 can be obtained by first finding
the position 	�� �
 in Dm where d�� is located and then forming �
 as �
 � � � ��c.

Proof: For � 	
 	 �m � �, the integer d�� �
 � � is an element ofZ�m. Then,
by (7.1), (7.25) and (7.28) we have

	�� � � � d�� �
 	mod �m � �
�

where �
 � Zfd��g	�
 � � � ��c 	mod �m
. Also, from the definition of the
matrixDm in (7.30) we know that the integer d�� , which is associated with �
, is
located in row � and column � ofDm. Hence, by finding the position 	�� �
 we
directly obtain the desired discrete logarithm �
. �

By Theorem 7.9, the problem of computing the discrete logarithm �
 � log�

	mod �m
 is equivalent to the problem of finding the position 	�� �
 in Dm

where d�� is located. One way of finding this position is to compute d����, d����,
d����, etc., using (7.36)
 until, for some i, the integer d������c � ai j� 	mod �m � �

of the top rowDm�� ofDm is obtained. As described on page 172, each NBC in-
teger ofDm�� is formed either by a block of zeros followed by a block of ones or
vice versa. Hence, for j � �� �� �� � � �, the recursive computation of d���j from
d���j�� progress until such a binary word is detected. By (7.32), the subscript i
of ai j� equals

i � e�m� ne�

where e� is the least significant bit of ai j� and ne is the number of bits in ai j�
which are equal to e�. Because the integer d������c � ai j� 	mod �m � �
 is in
column � � � of Dm, it follows from Lemma 7.1 (Equation (7.31)) that
i � 	�� �
�� 	mod �m
. Consequently, d�� is in column

� � i���� � � � i�� � � 	mod �m

of Dm. The row position � is obtained from the number of recursions. This
gives the desired discrete logarithm �
 � �� ��c.

The above procedure for computing the discrete logarithm �
 � P 	

 is sum-
marised in the following algorithm.

1. Let d �
 � � and j � �c.

�Or in general Equation (7.25). However, as in Section 7.4.1, by choosing � � � the recur-
sive congruence in (7.25) changes to (7.36).

178 Chapter 7. The Polar Representation

�Dm �

a� � �

Step 2

d��� �
 � �� ��c

� � �� �

d������c � ai j� 	mod �m � �
� � � i�� � � 	mod �m

Figure 7.3: The procedure for computing the discrete logarithm using properties of
the matrix Dm. Equation (7.36) is used in Step 2.

2. If d � Dm��, goto Step 3.
Otherwise, let j � j � �, compute the next d using the recursive con-
gruence in (7.36) (i.e. dnext � 	�d � �
 � d mod �m � �), and goto
Step 2.

3. Let � � j 	mod �c
.
Compute the subscript i � e�m� ne of ai j� � d.

Also, let � � i�� � � 	mod �m
.
Then we have �
 � �� ��c.

In Figure 7.3 we illustrate which elements of the Dm matrix are the computed
in the above algorithm.

The initial value of d is computed in Step 1 using one (simplified) addition. In
Step 2 we assume that the computation of d and the checking whether d is an
element of Dm�� are concurrent operations.
 Then, in total at most �c � � ad-
ditions modulo �m � � are required in Step 2. Finally, assuming that the com-
putational complexity of the derivation of � in Step 3 equals the complexity

	This may be possible only if dnext is computed using a carry ripple diminished–1 adder.

7.4. Properties of the Dm Matrix 179

of performing one addition modulo �m��, the complete algorithm presented
above for computing the discrete logarithm requires at most �c�� � �m��m��
additions modulo �m��. About �m��m�� additions are required on average.

7.4.3 Zech’s Logarithm

Theorem 7.10 Let �� � ��������
c for some integers ��� and ��� . The Zech logarithm of

�� can be obtained by first finding the integer d�� , which is in position 	���� ���
 of Dm,
and then finding the position 	���� ���
 of Dm where d�� � d�� � � is located. Then we

have Z	��
 � ��� � ����c.

Proof: By taking Zech’s logarithm on both sides of (7.28) and letting k � �� we
get

Z	��
 � Zfd����g	�
 	mod �m
� (7.38)

Let d�� � d�� ��. Then, again by (7.28) it follows that Zfd����g	�
 in (7.38) equals

the subscript �
 � ��� � ����c of d�� . Consequently, we have Z	��
 � ��� � ����c

where, by the definition of the matrix Dm in (7.30), 	��� � ���
 is the position in

Dm where d�� � d���� is located. Again by thedefinition ofDm, for �� � ��������
c,

d�� is the integer located in position 	���� ���
 of Dm. �

From Theorem 7.10 it follows that, using properties of the matrixDm, we need
both the procedure in Section 7.4.1 for discrete exponentiation and the pro-
cedure in Section 7.4.2 for the discrete logarithm in order to compute Zech’s
logarithms. This should be compared with the direct computation of the Zech
logarithm, as expressed in (7.10), which also requires one discrete exponenti-
ation and one discrete logarithm (and one addition by one) overZ�m��.

Consequently, in any case we need one discrete exponentiation, one addition
by one, and one discrete logarithm in order to compute a Zech logarithm. The
number of additions modulo �m � � required for performing discrete expo-
nentiation and computing the discrete logarithm are given in the end of Sec-
tions 7.4.1 and 7.4.2. In Table 7.2 we have listed these complexity numbers to-
gether with the resulting number of additions required for computing Zech’s
logarithm. For comparison, we have also listed the number of additions re-
quired when using the binary method for performing exponentiation and
Pohlig-Hellman’s algorithm for computing the discrete logarithm. These al-
gorithms are described in Sections 7.2.1 (and 7.4.1) and 7.2.2.

In Figure 7.4 we have plotted the number of additions modulo �m�� required
to perform discrete exponentiation (“Exp”) and compute the discrete loga-

180 Chapter 7. The Polar Representation

Expmax��
Expmax��

Logmax��

Logmax��

Expav��
Expav��

Logav��
Logav��

� � � ��

���

���

���

(b)

N
u
m

b
er

o
f
ad

d
it
io

n
s

m
� � � ��

���

���

���

(a)
N

u
m

b
er

o
f
ad

d
it
io

n
s

m

Zechav��
Zechav��
Zechmax��
Zechmax��

� � � ��

���

���

���

N
u
m

b
er

o
f
ad

d
it
io

n
s

(c)

m

Figure 7.4: The number of additions modulo �m �� required to perform discrete ex-
ponentiation and compute the discrete logarithm and Zech’s logarithm, with re-
spect to different algorithms (see Table 7.2). The functions are plotted versus m
for m � �� �� �� ��.

7.4. Properties of the Dm Matrix 181

Operation Algorithm Average Maximum

Discrete Algorithm in Sec. 7.4.1 �m

�m
� � �m

�m
� �

expon. The binary method m��m���
�

�m	m� �

Discrete Algorithm in Sec. 7.4.2 �m

�m
� � �m

�m
� �

logarithm Pohlig-Hellman (P-H) m��m���
�

m��m���
�

Zech’s Alg.s in Sec.s 7.4.1 & 7.4.2 �m

�m
� � �m

m
� �

logarithm Binary method & P-H m��	m���m��
�

m��
m���m��
�

Table 7.2: The average and maximum number of additions modulo �m � � required
to perform discrete exponentiation and compute the discrete logarithm and the
Zech logarithm, with respect to the algorithms in Sections 7.4.1 and 7.4.2 and
with respect to the binary method for exponentiation and Pohlig-Hellman’s al-
gorithm for computing the discrete logarithm.

rithm (“Log”) and Zech’s logarithm (“Zech”). The functions plotted are the
ones in Table 7.2. The subscript “1” refers to the algorithms in Sections 7.4.1
and 7.4.2 forperforming exponentiation and computing thediscrete logarithm,
respectively. The subscript “2” refers to the binary method for exponentiation
and to Pohlig-Hellman’s algorithm for computing the discrete logarithm.

Figure 7.4(a) shows the average (“av”) number of additions required in the ex-
ponentiation and discrete logarithm algorithms. Figure 7.4(b) shows the max-
imum (“max”) number of additions required in the algorithms. We see that
in general, the algorithms presented in Sections 7.4.1 and 7.4.2 are superior to
the binary method and Pohlig-Hellman’s algorithm, respectively. However,
for m � �� the binary method requires less additions than the algorithm in
Section 7.4.1.

Figure 7.4(c) shows both the average and maximum number of additions re-
quired to compute Zech’s logarithm when using (“1”) the algorithms in Sec-
tions 7.4.1 and 7.4.2 and (“2”) the binary method and Pohlig-Hellman’s algo-
rithm. Again, we conclude that in general the least number of additions are
required when using the algorithms in Sections 7.4.1 and 7.4.2. However, be-
cause for the number of additions required by the binary method is relatively
small m � �� (see the previous paragraph), the maximum number of addi-
tions required by our algorithms for m � �� is greater than the number of

182 Chapter 7. The Polar Representation

additions required by the binary method together with Pohlig-Hellman’s al-
gorithm.

7.5 The Mirror SequenceMm

From Figure 7.4 we conclude that, for m 	 �, the computational complexi-
ties (in terms of the required number of additions) of performing discrete ex-
ponentiation and computing the discrete logarithm and the Zech logarithm
using the algorithms proposed in the previous section are relatively low. For
m � ��, however, no significant reduction of the computational complexities
are made, compared with conventional algorithms.

The number of additions required when performing a discrete exponentiation
and computing a discrete logarithm is at most about �c � �m��m for each op-
eration. These additions derive in both cases from the recursive computation
of dk from dk�� for some k. The mentioned additions along some column of
the matrixDm can be avoided by using two look-up tables – one for exponen-
tiation and one for the discrete logarithm.

7.5.1 Discrete Exponentiation Using a Look-Up Table

When using a look-up table, we can define an algorithm for performing dis-
crete exponentiation, based on the algorithm proposed in Section 7.4.1 (see
page 174), in the following way.

The table used has size �c�mbits and it contains the integers from the leftmost
column of the matrix Dm: For � 	 � 	 �c � �, location � of the table contains
d�. For �
 � � � ��c � Z�m, the integer
 � � � d�� � 	�� 	mod �m � �
 can be
computed in the following way:

1. Let a� � d�, where d� is obtained from the look-up table at location �.

2. By Lemma 7.1 (Equation (7.31)) we have d�� � d����c � ai jd� 	mod �m�
�
,where i � ��� 	mod �m
. Thus, by loading an m-bit feedback shift
register (which has an inverter in the feedback loop) with d� and rotating
the contents of the register i steps, the resulting contents of the register
equals d�� .

3. The desired result
 � d�� � � is obtained simply by adding a one to d�� .

7.5. The Mirror SequenceMm 183

As described in Section 7.4.1, it is possible to bound the maximum number
of required shifts in the above Step 2 to m � �. Consequently, we can perform
a discrete exponentiation using one table look-up followed by at most m � � binary
shifts and an addition by one. Hence, the complexity of performing a discrete ex-
ponentiation can be considerably reduced, compared with the computational
complexity obtained whenusing the proceduredescribed in Section 7.4.1. This
holds particularly for exponentiation in Z�����, i.e. for m � ��. The reduced
computational complexity is achieved to the cost of the look-up table of size
�m��m�m bits.

7.5.2 The Discrete Logarithm Using a Look-Up Table

When computing a discrete logarithm �
 � log�
 	mod �m
 using the algo-
rithm proposed in Section 7.4.2, the most demanding part of the algorithm is
the procedure for finding the row � of the matrix Dm in which d�� is located.
Depending on
, this procedures may require up to �c � �m��m� � additions
modulo �m � �. However, these additions can be avoided by using a look-up
table.

The look-up table considered here contains a number of m-bit subscripts �k of
d�k . For each c-bit integer �� � Z�c, there is at least one 	m � c
-bit integer �� �
Z�m�c such that �k � �� � ���c is stored in table. In other words, there is at least
one integer d�k in each row (Dm���) ofDm for which its subscript �k is stored in the
table.

Notation 7.1 We denote by �� the set of integers d�k whose respective subscripts �k
form the contents of the look-up table used for computing the discrete logarithm.

A table of minimum size, i.e. whose size equals �c � m bits, where c � m �
log� m� �, is formed in such a way that its associated set �� only contains one
element fromeach row ofDm. Hence, for each row ofDm we preferablywould
like to find one suitable such element d�k that in a simple way maps to a unique
entry of the look-up table. This table, which performs a one-to-one mapping

from d�k to �k, is in a sense some kind of inverse table of the above table used for
performing discrete exponentiation. However, each integer d� stored in the
table for exponentiation originates from some row position � in the leftmost

column ofDm, while the various integers d�k (for which �k is stored in the table)
used here may originate from an arbitrary column position in Dm.

The discrete logarithm �
 � ����c of a nonzero integer
 � 	�� 	mod �m��

can be computed using the look-up table of subscripts �k in the following way:

184 Chapter 7. The Polar Representation

We know that the integer d�� �
 � � is in column � and row � of Dm. Starting
from the integer a� � d�� , we use (7.24) to successively calculate a� jd�� � a� jd�� � � � �,
etc., until after i successions we obtain an integer aijd�� which is an element of
��. The desired logarithm �
 � ����c can now be formed using the associated

table output �k � �� � ���c, which is the subscript of d�k � aijd�� . Because d�� and
d�k are in the same row of Dm we get � � ��. We therefore have

d�k � d���j�c � d�����j��c 	mod �m � �
�

for some integer j, and hence �� � �� j 	mod �m
, i.e. � � ��� j 	mod �m
.
Because we also have d�k � ai jd�� it follows by (7.31) that i � j�� 	mod �m
,

i.e. j � i�� 	mod �m
, where �� is the multiplicative inverse of �� modulo �m.

Consequently, we obtain � � �� � i�� 	mod �m
.

Thus, the above procedure for computing the discrete logarithm �
 � log�

	mod �m
 using a look-up table can be summarised in the following algo-

rithm.

7.5. The Mirror SequenceMm 185

1. Let a� �
 � � and i � �.

2. If ai ja
 � ��, goto Step 3.
Otherwise, let inext � i� �, compute ai ja
 from ai�� ja
 using (7.24),
and goto Step 2.

3. Perform the mapping from d�k � ai ja
 to a table address and

read �k � ��� ���c from the look-up table.

4. Let � � �� and compute � � �� � i�� 	mod �m
.
Then we have �
 � �� ��c.

When using this algorithm to compute the discrete logarithm we need an ad-
dition by one (Step 1), at most �m� � binary shifts (Step 2), one table look-up

(Step 3), and one multiplication by �� and one addition modulo �m (Step 4).
Hence,the computational complexity of computing the discrete logarithm us-
ing the above algorithm is considerably reduced compared with the compu-
tational complexity of the corresponding algorithm described in Section 7.4.2.
A similar reduction in complexity was obtained for exponentiation in Section
7.5.1, again to the cost of a look-up table of size at least� �c �m bits.

In Step 2, we also need to check (at most �m � � times) whether ai ja
 is an
element of ��. The complexity of such a check and the complexity of obtaining
the table address from d�k depend strongly on the binary representation of the
integers of ��. The ideal situation would of course be if the integers of �� were
consecutive numbers. The problem of finding a suitable set �� is considered in
the following sections.

7.5.3 The Mirror Properties ofMm

The set �� of integers d�k from the matrix Dm was introduced in Notation 7.1 of
the previous section. In the remainder of Section 7.5 we consider the problem
of finding a suitable set �� such that the elements of �� can be analytically de-
scribed in a simple way and such that we obtain a straightforward mapping
from each d�k to its associated table entry. The forming of the set �� is based on
the properties of an integer sequenceMm:

For exponentiation, the size of the table used is exactly �c �m bits.

186 Chapter 7. The Polar Representation

Definition 7.5 Let j �Z�m and let �j be equal to the number of the row ofDm which
contains the integer j. We refer to the sequence

Mm � ��� ��� � � � � �j� � � � � ��m���

which has length �m, as the mirror sequence associated with Dm.

From the definition follows that if j � dk for some k � � � ��c then �j � �.
Consequently, each row number � �Z�c of Dm appears �m times inMm. The
following theorem describes the main connection between the subscripts of
the �m integers � of Mm which are all located in the same row of Dm.

Theorem 7.11 Let, for some j � Z�m, the integer �j be an element of the sequence
Mm. Then, for any i �Z, we have

�ai jj � �j �

Proof: For a� � j � Z�m and � � Z�c, it follows by Theorem 7.5 that the �m
integers j, a� jj , a� jj � � � � a�m�� jj form the set of all elements in one of the rows
Dm�� ofDm. Consequently, from Definition 7.5 it follows that any two elements
�g and �h with subscripts g� h � Dm�� are equal. �

Corollary 7.2 For j �Z�m, we have

��m���j � �j (7.39)

��m�����j � ��j (7.40)

Proof: The equalities follow by choosing some appropriate subscripts i in The-
orem 7.11 and then using (7.24).

� For i � m and a� � j we get
am jj � �m	j � �
� � � �m � � � j 	mod �m � �

and hence we have ��m���j � �j .

� For i � m� � and a� � �j we get
am�� j�j � �m��	�j � �
� � � �m�� � �� j 	mod �m � �

and hence we have ��m�����j � ��j .

�

7.5. The Mirror SequenceMm 187

By (7.39) of Corollary 7.2 it follows that the contents of the second half (the el-
ements in positions �m�� to �m��) of the sequenceMm is a mirror image of its
first half (the elements in positions 0 to �m�� � �). Furthermore, (7.40) reveals
another kind of distributed “mirror” property ofMm: It follows from (7.40)
that the sequence ��� ��� ��� �	� � � � � ��m�� (i.e. we take every second element of
Mm, starting from ��) equals the sequence ��m����� ��m����� ��m����� ��m�����
� � � � �� (i.e. we take every consecutive element ofMm, starting from��m���� and
going in the opposite direction). It is mainly because of these and other similar
properties ofMm that we refer toMm as a mirror sequence.

In Figure 7.5 we show the structure of the first half ��� ��� ��� � � � � ��
�� of the
sequenceM
, in which each row number appears m � � times.�� We have
plotted the row numbers versus their respective positions inM
 in the form
of checkerboard plots. The 128 cell columns of the two checkerboard plots are
associated with the 128 first positions (0 to 127) ofM
. In each column (posi-
tion) there is only one cell that is black. The row number � associated with the
black cell in column p equals the element �p ofMm. For example, the black
cells in columns 16 and 17 are located in the cell rows which are numbered 8
and 2, respectively. This implies ��	 � � and ��
 � �.

Figures 7.5(a) and (b) differ only in the ordering of the cell rows. In Figure
7.5(a), where the rows appear in a natural increasing order, the checkerboard
plot does not seem to reveal any particular structure. In Figure 7.5(b), how-
ever, it is quite easy to identify the mirror properties ofMm. The ordering of
the rows of the checkerboard plot in Figure 7.5(b) is based on the following
rule:

1. Consider the positions �� �� �� � � � � �m�� � � inMm.

2. Pick row 0 (zero) as the first row.
Thepositions �� �� �� �� � � � � �m���� in the first half ofMm which contain
zero are now ruled out.

3. Select the row number which is contained in the foremost position of
Mm that is not ruled out. This row is the next row of the checkerboard.

4. All positions inMm which contain the last selected row number are now
ruled out. Repeat from Step 3 until all rows have been selected.

By following this rule, the checkerboard plots ofM�,M
, andM�	 are all of
the same type as the plot in Figure 7.5. In fact, it shows that the sequencesM�,
M
, andM�	 are special cases of amore general class of mirror sequences. The

��This follows from the first “mirror” property (Equation (7.39)).

188 Chapter 7. The Polar Representation

0 16 32 48 64 80 96 112 127

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Position p

R
o
w

n
u
m

b
er

�

(a)

0 16 32 48 64 80 96 112 127

0
1
7
5
2
4
10
8
13
6
12
14
3
11
15
9

Position p

R
o
w

n
u
m

b
er

�

(b)

Figure 7.5: Checkerboard plots of the first half of the sequenceM
.

7.5. The Mirror SequenceMm 189

sequences in this class all have checkerboard plots of the same type as the one
in Figure 7.5(b). Also, the general class, which is not further considered here,
contains one such sequence of length �m for every positive integer m.

7.5.4 Finding the Unique Distinct Positions inMm

From the definition of the mirror sequenceMm we have the following:

The problem of finding one unique matrix element in each row of Dm, as described in
Section 7.5.2, is equivalent to finding �c positions in Mm such that the contents in
these positions are the �c distinct row numbers of Dm which form the set ��.

This set �� of �c distinct row numbers of Dm was introduced in Notation 7.1
(page 184). Note that for m � � and m � �, we have �c � �m��m � �, which
means thatD� andD� are row vectors (i.e.M� andM� only contain the integer
zero). Therefore, the results in the remainder of Section 7.5 is valid only for
m � �. When deriving the set �� we need the following mapping:

Definition 7.6 Let P� � fp�� � � � � pn��g be a set of n integers pj � Z�m for j �
�� �� �� � � � � n� �. The mapping f �i�	P�
 � Pi is defined as

f �i� � P� � fp�� � � � � pn��g �� Pi � �i 	P� � �
 � � �
�
ai jp
� � � � � ai jpn��

�
�

where ai jpj � �i	pj � �
 � � 	mod �m � �
.

Theorem 7.12 Let Pi � f �i�	P�
 an letMP
 denote the set
�
�p
� � � � � �pn��

�
of ele-

ments from the sequence Mm. Then

MPi �MP
 �

where MPi �
n
�ai jp
 � � � � � �ai jpn��

o
.

Proof: By Theorem 7.5, the integers pj and ai jpj are located in the same row of
the matrix Dm. Therefore, from Definition 7.5 it follows that �pj equals �ai jpj .
Hence, for j � �� �� �� � � � � n � �, we have MP
 �

�
�p
 � � � � � �pn��

�
�n

�ai jp
 � � � � � �ai jpn��
o
�MPi . �

Using the above notations, the goal is to find a set �� � f���� ���� � � � � ��n��g of
positions such thatM�� � f�� �� � � � � �c � �g and such that the size n � �c of ��
is preferably equal to �c.

190 Chapter 7. The Polar Representation

Definition 7.7 The ordered set fs�� s� � t� s� � �t� s� � �t� � � � � sn��g of integers
fromZ�m is denoted by fs�� � � � � sn��gt.

Lemma 7.2 Every integer of the set f�� �� � � � � �m�� � �g � Z�m�� maps, by f �i�,

into the set �
�
� f�m��� � � � � �m�� � �g of size �m��.

Proof: First, we have f �m���	�
 � am�� j� � �m��	� � �
 � � � �m�� � �
	mod �m � �
, which is an element of �. For i � �� �� �� � � � � m� �, we then

apply the mapping f �m���i� on the set P� � f�i� � � � � �i�� � �g, which gives the
set Pm���i � �m���i 	P� � �
 � � � f�m�� � �m���i � �� � � � � �m�� � �g�m���i

	mod �m � �
. It is obvious that Pm���i � �. �

Theorem 7.13 Let M�
�
� f��m�� � ��m����� � � � � ��m����g be the set of row num-

bers which is associated with the set � � f�m��� �m�� � �� � � � � �m�� � �g of �m��

positions in Mm. Then, we have

M� � f�� �� � � � � �c � �g �Z�c�

Proof: We prove the theorem by showing that all positions � � Z�m map, via
f �i�, into the set �. We know by (7.39) that the second half of Mm is a mirror
image of its first half. This implies (see the proof of Corollary 7.2)

f �m�

�
�m��� � � � � �m � �

�� � ��� � � � � �m�� � �
�

	mod �m � �
�

From Lemma 7.2 we get that all positions in f�� � � � � �m�� � �g map into �.
Hence, for every � � f�� � � � � �m�� � �gS f�m��� � � � � �m � �g, the row number
�� is contained in M�.

Now, only the �m�� positions of �
�
� f�m��� � � � � �m�� � �g remain. We par-

tition this set into m � � disjoint subsets �i in the following way. Let � �Sm��
i�� �i, such that

�i
�
�

��
�

�i�� f�m���i� � � � � �m���i � �g��i� for � 	 i 	 m� �

�m��� for i � m� �
�

where

�i � ��
i��X
n��

	��
n�� � �n

�
�

	� � �	��
i
�i � �

�
�

�����
����

� � �i � �

�
� if i is even

�i � �

�
� if i is odd

�

7.5. The Mirror SequenceMm 191

For i � �� �� � � � � m��, the set �i contains �m���i elements. The set �m�� only
contains one element. For � 	 i 	 m� �, we have

f �i�m������ 	�i
 � �i�m�����

�i��

�
�m���i� � � � � �m���i � �

�
��i � �

�� �

� 	�m
i
�
�m���i� � � � � �m���i � �

�

�	�m
i�� � 	� � �	��
i
�m�� � �m���i

�
� � 	mod �m � �
�

If i is even, we get

f �i�m������ 	�i
 � �
�m���i� � � � � �m���i � �

�� � � �m�� � �m���i

�
� �m

�
�
�m�� � �m���i

�
� � � � �

�m�� � �m���i

�
� �

�
	mod �m � �
�

It can easily be checked that this set of integers is a subset of �.
If i is odd, we get

f �i�m������ 	�i
 � ���m���i� � � � � �m���i � �
�
�
�m�� � �m���i

�
� �

�
�
�m�� � �m���i

�
� � � � �

�m�� � �m���i

�
� �

�
	mod �m � �
�

which is also a subset of �.
Furthermore, for i � m� �, the mapping f �i�m������ 	�i
 equals

f ��m����m������ 	�m��
 � ��m����m�����
�
� � �m�� � �

�
� �

�
� �

� �� � � � �
m�� � �

�
�
� � �m��

�

� �m�� � �

�
	mod �m � �
�

which is an integer of�. Hence, we have f �i�m������ 	�i
 � � for � 	 i 	 m��,
which means that for every � � � �

Sm��
i�� �i, the row number �� is contained

inM�. �

The conception of the partitioning of� into the disjoint subsets�i in the above
proof may at first be difficult to grasp. We prefer not to go into detail here

192 Chapter 7. The Polar Representation

64 70 74 90 106 127

��

��

��

��

��

��

�	

Position �

S
u
b
se

t

�
i

Figure 7.6: Checkerboard plots of the contents f��� ��� � � � � ���g of � �
Sm��

i�� �i

for m � �.

about the forming of these subsets. However, the checkerboardplot of the con-
tents of � in Figure 7.6 may give some insight into the partitioning of �. The
black cells in a cell row indicate which positions are contained in the subset�i

which is associated with that particular cell row. For example, we see that ��

is formed by the positions 90 and 122.

Definition 7.8 If an element appears several times in a set, we say that the extra ele-
ments are redundant. By the relative redundancy of a set we mean the ratio of the
redundant elements to the total number of elements in the set.

For m � �, the relative redundancy of the set M� equals 	�m�� � �c
��m�� �
	m��
�m. Then, form � � the relative redundancy equals zero, which means
that � � f����� � � � � ���� � �g � f�� �g is such a set �� of unique positions
that we are looking for. The integers � � 	����
� and � � 	����
� of � � ��
are the only 4-bit NBC integers whose three most significant bits equal 	���
�.
Therefore, in Step 2 on page 185, the checking whether ai ja
 is an integer of �� is
performed by checking whether the three most significant bits of ai ja
 equals
	���
�. In Step 3 on the same page, the least significant bit of ai ja
 can be used

to address the look-up table. If ai ja
 � d�k

�
� �, the subscript �k� is read from

table location 0 and if ai ja
 � d�k�
�
� �, the subscript �k� is read from table loca-

tion 1.

7.5. The Mirror SequenceMm 193

For m � � and m � �� the relative redundancy is ��� and ��� respectively.
It is desirable to reduce these redundancies even more. We therefore further
reduce the set M�.

Theorem 7.14 Let ��� � �� ���, where

��
�
�

�
�	�m�� � �

�
� � � � � � � �m�� � �

�

��
�
�

�
� � �m�� � �

�
� � � � � �m�� � �

�
are disjoint subsets of �. Also, letM��� be the set of �m���� integers ofMm in the
positions given by the elements of ���. Then, for m � � and m � ��, we have

M��� � f�� �� � � � � �c � �g �Z�c�

Proof: Let � �
S�

i���i, where

��
�
�

�
�m��� � � � �

�	�m�� � �

�
� �

�

��
�
�

�
� � �m��� � � � � � � �

m�� � �

�
� �

�
and where �� and �� are defined in the theorem. The equality M��� �Z�c in
Theorem 7.14 holds if (and only if) the integers in the sets �� and �� map, by
f �i�, into �� and/or �� for some i. Let �� �

S�
j�����j, where

����
�
� � � �m�� �

�
�� � � � �

�	�m�	 � �

�
� �

�

����
�
� � � �m�� �

�
�	�m�	 � �

�
� � � � � �m�	 � �

�

����
�
� � � �m�� �

�
�m�	� � � � �

�m�� � �

�
� �

�
are disjoint subsets of ��. Then, using the function f �m���, we get

f �m��� 	����
 �
�
� � �m�� � �

�
� �� � � � � �m�� � �

�
�

	mod �m � �

f �m��� 	����
 �
�
� � �m��� � � � � � � �

m�� � �

�
� �

�
�

	mod �m � �

f �m��� 	����
 �
�
�	�m�� � �

�
� �� � � � � � � �m�� � �

�
�

	mod �m � �
�

194 Chapter 7. The Polar Representation

where clearly f �m��� 	����
 is a subset of ��, f �m��� 	����
 is a subset of ��, and
f �m��� 	����
 is a subset of ��. We again partition f �m��� 	����
 into three dis-
joint subsets, say ������, ������, and ������, in the same way as we did with ��.
Then, we get f �m��� 	������
 � ��, f �m��� 	������
 � ��, and f �m��� 	������
 � ��.
This process of partitioning ������������ � �� into three disjoint subsets which
map (by f �m���) into ��, ��, and ��, respectively, is repeated until only two
integers remain. One of these integers map into �� and the other integer maps
into ��. Hence, for every integer � � �� there is a positive integer i such that
f �i�m����	�
 � ���.

In order to show that the set �� can be mapped into ��� � � � �� we parti-
tion it into a number of disjoint subsets which map into ��� in different ways.
This approach is used both in the proof of Theorem7.13 and in the aboveproof
that �� maps into ���. It shows that �� can be partitioned into m� � disjoint
subsets, say ����, ����� � � �, ���m��, such that

f �j��� 	���j
 � ��� ����

where � 	 j 	 m � �. We have not yet been able to express the subsets ���j

analytically, but they can easily be obtained as follows.��

1. Let j � � and P� � f ��� 	��
.

2. Let j � j � � and Pj � �Pj�� � � 	mod �m � �
.

3. Let ���j be equal to the set of integers in Pj which are also
contained in ��� ���.
Let Pj � Pj n���j.

4. If Pj �� � (i.e. if j � m� �), goto Step 2.
Otherwise, stop.

Hence, for every integer� � �� there is an integer i� � 	 i 	 m�� such that f �i�	�
 �
��� � ��. As shown above, the integers of �� in turn map into ���. Conse-
quently, every integer of �� � �� maps into ���, which means that M��� �
M� �Z�m. �

Because �� contains 	�m�� � �
�� elements and �� contains 	�m�� � �
�� ele-
ments, their union��� � ����� contains 	�m����
���	�m����
�� � �m����
elements. Therefore, the relative redundancy of the setM��� equals

�m�� � �� �m��m

�m�� � �
�

m� �

m
�

��

m	�m�� � �

�

�
����� for m � �
��� � ����
�� for m � ��

�

��For example, for m � � we have ���� � f��� ��� ��g, ���� � f��� ��g, ���� � f��� ��g,
and ���� � f��� �
� �
g.

7.5. The Mirror SequenceMm 195

In order to store �m�� � � integers of Z�m, we need a table of size �m�� � m
bits. Unfortunately, almost half of the locations in such a table would not be
used. In the next section we show that one of the elements in the set M���

is dispensable. This property makes it possible to reduce the size of the table
needed to �m�� �m bits.

7.5.5 Addressing the Look-Up Table for Discrete Logarithm

The sets�� �
n

���m�����
� � � � � � � � �m�� � �

o
and�� �

n
���m����

� � � � � � �m�� � �
o

can be viewed as row vectors of m-bit NBC integers:

�� �

�������
������

���� ���� � � � ���
���� ���� � � � ���

...
���� ���� � � � ���
���� ���� � � � ���

�������
������

�� �

�������
������

���� ���� � � � ���
���� ���� � � � ���

...
���� ���� � � � ���
���� ���� � � � ���

�������
������

We see that the four most significant bits in every NBC integer of �� and ��

are equal to 	����
� and 	����
�, respectively. Hence, arbitrary integers p� � ��

and p� � �� can be written on the forms p� � �m�� � p
�m���
� and p� � �m�� �

�m�� � p
�m���
� , where

p
�m���
� � ���

�
� �� � �m�� �

�
�	�m�� � �

�
� � � � � �m�� � �

�

p
�m���
� � ���

�
� �� � �m�� � �m�� �

�
�m�� � �

�
� � � � � �m�� � �

�

are 	m� �
-bit NBC integers. Let ��� denote the set formed by the one’s com-
plements of the 	m� �
-bit NBC integers of ��� � � mod �m��, i.e. we have

���
�
� �m�� � � � 	��� � �
 �

�
�m�� � �

�
� �� � � � � �� ��

�
��

�
�
�� � � � �

�m�� � �

�
� �

�
� f�m�� � �g 	mod �m��
�

Hence, we have ���� ��� � f�� � � � � �m�� � �gwith only one redundant element

– the integer �m�� � � appears twice in the union set ��� � ���. Fortunately, we

can allow this overlap. For any p� � ��, let q� � p
�m���
� � �. Then, we have

q
�m���
� � �m�� � � � q

�m���
� � ���. Using (7.24) we can write p� � �m�� � � on

196 Chapter 7. The Polar Representation

the form p� � �m��	� � �
 � � � am�� ja
 	mod �m � �
, where a� � d� � �.
Hence, we have p� � d�k� for some �k� � ��������c, where ��� � � (i.e. p� is in row
zero (the top row) of the matrix Dm). By (7.31) in Lemma 7.1 we also have

p� � d�k� � a����� j� 	mod �m � �
�

which consequently implies ����� � m � � 	mod �m
. From this congruence

we get ��� � 	m��
�� � m��� 	mod �m
. Hence, for p� � d�k� � �m����, the

subscript �k� � 	m���
�c 	mod �m
 is stored in location p
�m���
� � �m��� � of

the look-up table.

Now, consider the integer p� � � � �m�� � � � �m��	� � �
 � � � am�� ja

	mod �m � �
, where a� � d� � �, and which maps to the same table entry

as p� (note that here we generally use the primitive element 	 � � when com-

puting dk in (7.25)). Thus, p� is in row ��� � � of Dm. Again, for �k� � ��� � ����c,
we have

p� � d�k� � a����� j� 	mod �m � �

by (7.31). This gives ����� � m � � 	mod �m
, from which we get ��� �
	m��
�� � m��� 	mod �m
. Form � � andm � ��, which are the cases con-
sidered here, we can write ��� � m� �� � m��� 	mod �m
 and ��� � m���
	mod �m
. Hence, with ��� being the least nonnegative residue of m � ��

modulo �m, we get ��� � �m� �� ���, which means that ��� can be obtained from
��� by inverting its log� mmost significant bits. Also, ��� � � can be obtained from
��� � � by inverting its least significant bit.

Consequently, by storing the subscript �k� of d�k� � p� � �m�� � � in the table,

the subscript �k� of d�k� � p� � � � �m�� � � (which maps to the same table
entry as p�) can be obtained simply by inverting log� m�� of the table output
bits. Each inversion may be implemented as a 2-input XOR gate, with one of
its inputs coming from the table output and the other input coming from the
last carry of the 	m� �
-bit addition q� � �p� ��. This carry is high only when
�p� � �m����, i.e when p� � � ��m����, which therefore is the only case when
the table output is changed (from d�k� to d�k�) by the XOR gates. This is further
discussed in Section 7.6.2.

From the above reasoning we conclude that the �m�� � � elements of ��� �
�� � �� can be mapped onto the entries of a look-up table (memory) of size
�m�� �m bits as follows:

� Each position p� � �� maps to table entry p
�m���
� . The table output is the

m-bit NBC subscript �k� of d�k� � p�.

7.6. Architectures for Arithmetic Operations 197

� Each position p� � �� maps to table entry q
�m���
� , i.e. the one’s comple-

ment of q
�m���
� , where q� � p

�m���
� ��. The table output is the m-bit NBC

subscript �k� of d�k� � p�. However, if p� � � � �m��, the table output is

the subscript �k� of d�k� � �m�� � �. This table output is modified to the
desired value by a simple circuit.

Because we can handle the problem when ���m���� and �m���� both map to
the same table entry, the actual relative redundancy of the setM��� is exactly
�� form � � and ��� form � ��. In the latter case, form � ��, it is possible to
reduce the set��� even further. However, we have not yet succeeded in reduc-
ing it by half to �m�� elements. Such a set would have �� relative redundancy.
If the number of elements in the reduced set obtained from��� is greater than
�m��, we still need a look-up table (memory) of size �m�� �m bits. Therefore,
for m � �� �� we let �� � ���, where �� is the set introduced in Notation 7.1 in
Section 7.5.2. Note that form � �, we let �� � � (see the paragraph subsequent
to Definition 7.8 in Section 7.5.4).

7.6 Architectures for Arithmetic Operations

In this section we propose VLSI architectures for most of the arithmetic oper-
ations considered in Sections 7.2 – 7.5. The sizes, fan-ins, internal CP delays,
and output normalised resistances of the basic building blocks in the architec-
tures are given in Chapter 4. Note that these complexity parameters are sum-
marised in Table 4.2.

7.6.1 Discrete Exponentiation

An Architecture for Computing ai ja

The respective algorithms in Sections 7.4.1 and 7.5.1 for performing discrete
exponentiation both involve the computation of ai ja
 from some a� using a
feedback shift register of length m (see Step 1(b) on page 174 and Step 2 on
page 183). Such a shift register is shown inFigure 7.7. Generally, the circuit can
be used to compute ai ja
 , which is defined in (7.24), from an arbitrary a� �Z�m

by loading it with a� and shifting (rotating) the register contents i steps to the
left. The size of the circuit equals

Cai � mCreg � Cinv � ��m � �

198 Chapter 7. The Polar Representation

CP
a�

ai ja

Shift register

Figure 7.7: Recursive computation of ai ja
 from a� using a feedback shift register of
length m.

and the CP, which runs from the output of the register element in the most sig-
nificant bit position to the input of the element in its least significant bit posi-
tion, equals

LCP�ai � Lreg � rreg	finv � fnext
 � rinvfreg

� �� � �fnext�

where fnext is the fan-in (seen from the most significant bit position of the reg-
ister) of the circuit subsequent to the register. For example, if the subsequent
circuit is another register, we get fnext � freg � � and thus LCP�ai � ��. Assum-
ing that an initial clock cycle is required to load the shift register with a�, the
register contains the desired result ai ja
 after i additional clock cycles. Thus,
the total computation time T is proportional to

Lai � 	i� �
LCP�ai� (7.41)

where i 	 �m� �.

An Architecture for Computing dk

When performing discrete exponentiation using the algorithm in Section 7.4.1,
we need to recursively compute dk from dk�� (see Step 2 on page 174). The
architecture in Figure 7.8 for computing dk is based on (7.36), i.e.

dk � 	�dk�� � �
 � dk�� � � 	mod �m � �
�

7.6. Architectures for Arithmetic Operations 199

which was obtained from (7.25) by letting 	 � �. The addend �dk�� � � mod
�m � �, which equals a� jdk�� , is obtained simply by inverting the most signifi-
cant bit (the wire labelled “msb” in the figure) of dk�� and modifying the feed-

back wirings.�� Let dk � ��� 	mod �m ��
, where �
�
� 	�dk�� ��
� dk�� �

�dk���� is the sum of the addend �dk���� and the augend dk�� in Figure 7.8.
If � � �m, i.e. if �m � �, we have dk � �m���m����� � ��m��� 	mod �m��
.
In this case we set the first carry signal, which in the figure is denoted by c�,
of the adder equal to zero. If � � �m, we have dk � ��m���� � 	mod �m � �
.
Here, we set c� equal to one.

The carry signal c� can be generated using for example a comparator. From the
inequality � � �dk���� � �m it follows that dk�� � 	�m��
�� � 	����� � � � ��
�.
A comparator can for example be implemented using a chain of full adder ele-
ments, where the carry out of the most significant bit position indicates wheth-
er one of the addends is greater than the other (see Weste and Eshraghian [113,
Fig. 8.26]). In our case, where one of the comparator addends is always 	�m�
�
��, the comparator simplifies to a chain of m � � alternating OR and AND
gates.�� With respect to the comparator propagation delay, this carry ripple
type of comparator is preferably used together with a parallel carry ripple
adder: By inserting the comparator prior to the register in Figure 7.8 and by
modifying its output circuitry, the resulting comparator do not have any effect on
the CP length of the total circuit.

If dk�� � 	�m � �
��, the comparator output equals 1, otherwise it equals 0.
Note that we do not refer to the output of the modified comparator (see the
figure). The first carry c� of the adder equals the inverse of the comparator
output. In the architecture in Figure 7.8, this inversion is realised by exchang-
ing the output OR gate of the comparator for a NOR gate. In the figure, the
resulting NOR gate is moved outside the comparator.

With them-bit parallel adder in Figure 7.8 being a standard carry ripple adder,
the size of the complete circuit equals

Cdk � mCFA � 	m� �
Creg � Ccomp � CNOR � Cinv
� ��m� ���

where Ccomp � 	m��
C
AND�OR

� �	m��
 is the size of themodified comparator.
The CP through the circuit is the path from the output of the register element
in the least significant bit position along the carry chain of the parallel adder
to the input of the register element in the most significant bit position. This
path, which is marked by the dotted line in Figure 7.8, has length

��The procedure is based on the architecture in Figure 7.7.
��The resulting chain of gates both starts and ends with an OR gate.

200 Chapter 7. The Polar Representation

D

FA FA FA

D

� �z �
�dk�� � �

c�

� �z �
dk��

m-bit parallel adder

Modified comparator
m-bit register

�� � dk

msb

����������������
���������������

The most significant bits of the
adder, comparator, and register.

c�

msb

��m�� ��m�� ��m��

CP

CP

Figure 7.8: Recursive computation of dk from dk�� when 	 � �. In order to con-

veniently label the sum output bits, say as ��m��, ��m��, ��m��� � � � � ���, we only

temporarily define ��
�
� dk in this figure.

7.6. Architectures for Arithmetic Operations 201

LCP�dk � Lreg � rreg � �fFA�signal � 	m� �
	L
FA�carry

� r
FA
f
FA�carry

�L
FA�sum

� r
FA
freg

� ��m � ���

Hence, after the register has been loaded with some integer dk �Z�m, the time
T needed for each recursive computation of dk��, dk��, dk��, etc. is propor-
tional toLCP�dk. Note that in order to obtain the correct carry signal c� for these
computations, the initial integer dk must also be fed to the modified comparator. If
not, the D flip-flop in Figure 7.8 may not be properly initiated.

The Look-Up Table

The algorithm in Section 7.5.1 for performing discrete exponentiation involves
the process of reading integers from a look-up table. Such a look-up table is
suitably implemented as a semiconductor memory. A look-up table of size
�u � �w bits is usually implemented as a memory of size �a � �b bits (�a rows
and �b columns), where a � b � u� w and b � w. Figure 7.9 shows the block
diagram of a typical random-access memory (RAM) of size �a � �b bits.

When reading from the memory, a of the u address lines select one of the �a

rows of the memory array. The remaining u� a address lines select �w of the
�b columns. Thecontents of the �w corresponding memorycells in the accessed
row are detected and multiplexed to the data output. A memory cell and the
sense amplifier connected to the bit and bit lines of that cell is shown in Fig-
ure 7.10. The memory cell considered is a standard six-transistor static RAM
cell. The sense amplifier is used to sense the state of the memory cell.

The size of the 	�a � �b
-bit memory cell array equals � � �a�b. Using a NOR-
type row decoder [44, Fig. 9.10-2] and a standard column tree decoder [44, Fig.
9.10-3], the size of these (line) decoders together with the sense amplifiers is
roughly in the order of a�a�b�b. Hence, using six-transistor memory cells, the
total chip area occupied by the 	�a� �b
-bit RAM in Figure 7.9 is proportional
to the size

C
RAM

� � � �a�b � a�a � b�b� (7.42)

In order to minimise the area complexity of the address decoding, the memory
array is usually organised as a square array, i.e. we have a � b (if a�b is even).
Note that we do not consider the chip area occupied by the address bus or the
word lines and data lines of the memory.

The critical path associated with the process of reading from the memory can
be separated into two main paths. The first path runs from the address input

202 Chapter 7. The Polar Representation

�a

Sense amplifiers and write control

memory cells

Column decoder

Array of �a � �b

Address

Data

�b

R
o
w

d
ec

o
d
er

Figure 7.9: A block diagram of a typical random-access memory.

through the row decoder and along one of the word lines in the memory ar-
ray. The second path runs from inside an accessed memory cell along a data
bit line, through a sense amplifier, to the data output. The memory access time
is dominated by the time required to fully charge the word line plus the time
required to sense the state of an accessed memory cell. In order to minimise
the length of the first path, i.e. to speed up the charging of the word line, a col-
umn of drivers is usually inserted between the row decoder and the memory
array. The chip area occupied by these drivers is neglected here.��

The delay of a stage with capacitive load CL , which is driven by an optimised
driver, is proportional to log� 	CL�Cg
, whereCg is the (minimum size) transis-

��An optimised driver on a word line is formed by a number of cascaded inverters of in-
creasing size. The total area occupied by the column of such drivers is actually greater than
the row decoder area, but it is less than the area occupied by the memory cell array.

7.6. Architectures for Arithmetic Operations 203

VrefVref

Vdd

Sense

amplifier

Precharge

Word line

Control Data out

bit bit

Memory cell

Figure 7.10: A memory cell and the sense amplifier for detecting the memory cell con-
tents.

tor gate capacitance. We refer to Mead an Conway [66, Sec. 1.5]. When using
the six-transistor static memory cell in Figure 7.10, the total capacitance CL at
each word line (not counting the wire capacitance) equals �b � �Cg , where �b is
the number of memory cells in one row of the memory array. Hence, the word
line delay is proportional to log� �b�� � b � �, which implies that the length
of the first part of the critical path is about L� � 	b � �
L�, where L� is some
constant.

Prior to the driving of the word line, all bit and bit lines of the memory array
are precharged to some suitable potential. When a word line opens the mem-
ory cells in a row, the potentials on the bit and bit lines start changing. The re-
sulting difference in potential is either positive or negative, depending on the

204 Chapter 7. The Polar Representation

data stored in the cell. When the difference in potential between the lines has
reached some specified voltage level�V , the memory state can be detected by
the (differential) sense amplifier. There exist various sense amplifiers, see for
example Bakoglu [14, Ch. 4.9] and Annaratone [8, Ch. 6.4.3].

By properly precharging the bit and bit lines and choosing a suitable type of
sense amplifier, the memory cell contents can be detected very quickly. Let tcell
denote the time needed for a memory cell to induce the potential difference
�V between the bit and bit lines and let tsense denote the sense amplifier delay
time. Then, the delay associated with the second part of the memory critical
path equals tdetect � tcell � tsense. It can be shown that tdetect can be minimised
to be approximately proportional to log� 	Cbit�Cg
, where Cbit is the total ca-
pacitive load at a bit line and Cg is the transistor gate capacitance. We refer to
Svensson et al. [98], McCarroll et al. [64], and Mohsen and Mead [67].

Let Cd denote the drain capacitance of a CMOS transistor. For a 	�a � �b
-bit
memory, where each memory cell has a transistor drain connected to the bit
line (and another transistor drain connected to the bit line), we get�� Cbit

�aCd. Assuming that the drain capacitance is approximately equal to the gate
capacitance Cg, we get

tdetect � log� �
a � a�

Then, the length of the second part of the critical path, which has delay time
tdetect, is about L� � aL�, where L� is some constant.

Hence, the access time of the 	�a��b
-bit memory in Figure 7.9 is proportional
to the length of its critical path, which in turn is approximately equal to

LRAM � L� � L� � 	b� �
L� � aL�� (7.43)

The look-up table used in the algorithm described in Section 7.5.1 has size �c�
m bits, where c � m � t � � and m � �t. Using the above notations, we have
u � c, w � log� m � t, and thus a � b � c � t � m� �. Because m � � is odd,
the memory array associated with the table can not be square. Instead, we let
a � b� � (or alternatively a � b� �) which implies a � m�� and b � m��� �.
Then, the size Cexp�tab of the memory in which the 	�c �m
-bit look-up table is
stored is approximately equal to C

RAM
j�a�b���m���m�����, i.e. we get

Cexp�tab
 	�� � �m�� � �m� �
�m����
 � � �m� (7.44)

The critical path through the memory equals

Lexp�tab
 LRAM j�a�b���m���m������ mLexp�tab� (7.45)

where Lexp�tab � 	L� � L�
�� is some constant.

��We do not include the wire capacitance.

7.6. Architectures for Arithmetic Operations 205

Remark: Note that the memory size CRAM and the length LRAM of the critical
path trough the memory in Figure 7.9 are approximate reflections of the
true chip area occupied by the memory and its true access time, respec-
tively.

7.6.2 The Discrete Logarithm

In Section 7.4.2, the algorithm for computing the discrete logarithm without
using any table involves the recursive computation of dk from dk�� (see Step 2
on page 178). An architecture for this computation was considered in Sec-
tion 7.6.1.

An architecture for computing ai ja
 is needed in the algorithm described in
Section 7.5.1 (Step 2 on page 185). Such an architecture is also considered in
Section 7.6.1.

In Section 7.5.5, page 196, we describe how to correct an erroneous look-up ta-
ble output by letting each of the log� m most significant bits and the least sig-
nificant bit of the NBC output integer pass through an XOR gate. Figure 7.11
shows how the table output is modified by the XOR gates. When the con-
trol signal ctrl equals 1, each XOR gates inverts its signal taken from the ta-
ble. For ctrl � �, the XOR gates do not change the table output bits. Let p�
and q� be defined as in Section 7.5.5. The erroneous table mapping occurs for
p� � � � �m�� � �, which is the only case where the carry out, say c�, from the

most significant bit position of the sum q� � p
�m���
� � � equals one (1).

Let p � ��� be an integer which maps to an entry of the look-up table. Then,
pm�� � � if p � �� and pm�� � � if p � ��. Hence, the control signal can be
formed by the Boolean function

ctrl � c� � pm�� � c� � pm���

Note that if we define c� � � whenever p �� ��, we simply get ctrl � c�.

For m � �, the above-mentioned look-up table used when computing the dis-
crete logarithm has size �m�� � m bits, see the end of Section 7.5.5. We do
not consider the simple look-up tables used when m � � and m � �. When
log� m is even (i.e. when m � ��) we let a � b � 	m � � � log� m
�� in
(7.42) and (7.43) and when log� m is odd (i.e. when m � �) we let 	a� b
 �
	b � �� 	m � � � log� m
��
. Then, the size of the memory which realises the
	�m�� � m
-bit table and the length of the critical path through that memory

206 Chapter 7. The Polar Representation

Table output

� �z �
�� 	c bits

� �z �
�� 	m� c bits
� �z �

�k � ���c � �� 	m bits

ctrl

Look-up table for discrete logarithm

Figure 7.11: Correcting the one case of erroneous output from the table used when
computing the discrete logarithm.

are equal to

Clog�tab
 CRAM
 �m � �m�� (7.46)

Llog�tab
 LRAM
 	m� � � log� m
Llog�tab � (7.47)

respectively, where Llog�tab is some constant.

7.6.3 Negation

From (7.6) we have �� � P 	�

 � �
m���m�� � �
�m��� 	mod �m
� where
 is
a nonzero integer of Z�m��. Thus, for �
 � Z�m (i.e. for �
m � �), �� is obtained
from �
 simply by inverting the digit �
m��. If
 � � we let �� � �
 � P 	�
 � �m.
Consequently we get

��m � �
m

��m�� � �
m � �
m�� � �
m � �
m��

���m��� � �
�m����

7.6. Architectures for Arithmetic Operations 207

��m ��m��

�
m���
m �
�m���

���m���

Figure 7.12: Negation in the polar representation.

Figure 7.12 shows an architecture for performing negation with respect to the
polar representation. The CP through the not so complicated circuit runs from
the most significant bit input to the output of the NOR gate. The size, fan-in,
and output normalised resistance of the circuit equal

Cpolneg � C
NOR

� �

fpolneg � npolneg � fNOR � npolneg � �

rpolneg � rNOR � ��

respectively, where npolneg is the fan-out of the circuit, with respect to the ��m-
output node. Assuming that the input �
 is obtained from a parallel register
and the output �� is also stored in a register,�	 the time required for performing
negation in the polar representation is proportional to the length

Lpolneg � Lreg � rregfpolneg � rpolnegfreg � ��

and hence the area-time performance of the architecture is proportional to

CL�
polneg

�
� Cpolneg	Lpolneg

� � �����

��Like we did in Chapters 5 and 6.

208 Chapter 7. The Polar Representation

7.6.4 Addition

For nonzero ��
 � Z�m��, i.e. for ��� �
 � Z�m, the following congruence was
given in (7.9):

�� � P 	� �

 � �� � Z
�
�
 � ���m��� � �

	
	mod �m
� (7.48)

where ���m��� � �m � � � ���m��� is the one’s complement of ���m���. With re-
spect to area complexity, this congruence is preferably computed in two clock

cycles, using an m-bit feedback parallel adder. Let �� denote the sum output
of the adder. During the first clock interval we compute the Zech logarithm

Z
�
�
�m��� � ���m��� � �

	
. The two adder inputs are �
�m��� and ���m��� and the

first carry input signal equals 1. The m-bit sum �� � �
�m��� � ���m��� � �
	mod �m
 is the input of a circuit which outputs the m-bit Zech logarithm

Z	��
. However, because we have defined Z	�m��
 �
 �
� �m, the Zech’s log-

arithm circuit will generate an erroneous output when the input �� equals �m��.
This situation is handled by defining an additional output signal, say Zind,
which indicates whether the logarithm output of the circuit is the correct Zech

logarithm of its input ��:

�� �� �m�� �� Correct output Z	��
� Zind � �

�� � �m�� �� Incorrect output Z	��
� Zind � �
�

During the second clock interval, the new adder output �� equals the sum
���m��� � Z	��
 mod �m, i.e. ��second � ���m��� � Z	���rst
. Thus, the adder input

signals are ���m��� and Z	��
 and the carry input signal equals 0. If Zind � �, the

desired sum �� equals the adder output ��. If Zind � �, we let �� �
 � �m. If

both � and
 are zero, i.e. if �� � �
 � �m, we also let �� � �m. If only � (or
)

equals zero, we let �� � P 	� �

 � �
 (or �� � ��).

Figure 7.13 shows an architecture for “polar” addition, which is based on the
procedure described above. Them-bit parallel registers R� and R� are initially

loaded with ���m��� and �
�m���, respectively, and the D flip-flops D�, D�, and

D� are loaded with 1, ��m, and �
m, respectively. The number of parallel wires
in every signal bus (“��”) in the figure equals m. Consequently, the inverter
which has the m-bit contents of register R� as its input signal is actually a row
of m ordinary one-bit inverters.

The desired output signal �� is formed by the output controller circuit in the
bottom-leftmost part of Figure 7.13. Table 7.3 shows which output is gener-

ated for different values of ��m, �
m, and Zind. Based on this table, we form the
two Karnaugh maps in Figure 7.14 for ��m and ��i, where � 	 i 	 m� �.

7.6. Architectures for Arithmetic Operations 209

���m��� �
�m�����m �
m

�

�m
�
�
�

R� R�

��
Zind

m-bit parallel adder

Zech’s
logarithm

P�

D�

D�

D�D�

1 0

��m ���m���

controller
Output

Z
	� �

P�
� �
�m
�
�
�

Figure 7.13: An architecture for addition using the polar representation. The
arrangement of the output controller circuit is shown in Figure 7.16.

210 Chapter 7. The Polar Representation

��m �
m Zind ��m ���m���

1 1 0 �
m � ��m � � 0

1 0 ��� �
m � � �
�m���

0 1 ��� ��m � � ���m���

0 0 1 1 0

0 0 ���m���

Table 7.3: The output �� � ��m�m � ���m��� for the various values of ��m, �
m, and
Zind.

0 ��i �
iX

0��i��i �
i0 00

1 0 0

0

10

1

0000 11 0101

1

��m

11 10

��m�
m ��m�
m

0
ZindZind

��i� � 	 i 	 m� �

1

X

Figure 7.14: Karnaugh maps for ��m and ��i, where � 	 i 	 m��. X = “don’t care”.

From these maps, we obtain the Boolean functions

��m � ��m � �
m � Zind � ��m�
m � 	��m � �
m
Zind � ��m�
m (7.49)

��i � ��m � �
m � Zind � ��i � ��i � 	��m � �
m
 � 	Zind � ��i
 � ��i� (7.50)

for � 	 i 	 m� � and where ��i � ��i ��m�
m � �
i ��m�
m. The Boolean function ��i
can simply be generated using the reduced four-input multiplexer shown in

Figure 7.15. This multiplexer lets either ��i or �
i pass to the output ��i, depend-

ing on whether 	 ��m� �
m
 equals 	�� �
 or 	�� �
, respectively. According to the

Boolean function for ��i, when 	 ��m� �
m
 equals 	�� �
 or 	�� �
, we should have
��i � �. Therefore, in order to always get the correct output, each output node ��i of
the reduced multiplexer should be discharged (i.e. we set the logical level equal to zero)

before the control signals �
m and ��m and their inverses are present at the multiplexer
inputs. The circuitry for doing this, however, is not considered here.

7.6. Architectures for Arithmetic Operations 211

��m �
m

��i
��i

(a) (b)

��i

�
i

�
m��m

�
i

�
m

��i

��m

��m �
m

��m �
m

Figure 7.15: A reduced four-input multiplexer. (a) Symbolic description.
(b) Schematic description.

Figure 7.16 shows the structure of the output controller in Figure 7.13. For � 	
i 	 m, the gates of the circuit generate the binary digits ��i of �� � P 	� �

where, depending on i, ��i is given either by (7.49) or (7.50). The size Cctrl of
the output controller in Figure 7.16 equals

Cctrl � mC
RMUX

� 	m� �
Creg � 	�m� �
C
NAND�NOR

�	�m� �
Cinv
� ��m � ���

where CRMUX � � is the size of one reduced (four-input) multiplexer. The fan-
in, internal delay, and output normalised resistance of the output controller,
with respect to the dotted path P� in the figure, equal

fctrl � finv � �

Lctrl � rinvfNOR � rNORfNAND � rNANDfNAND � ��

rctrl � rNAND � ��

respectively. The chip area A occupied by the entire “polar” adder in Figure
7.13 is proportional to its size

Cpoladd�� � CZech � Cmadd � 	�m� �
Creg � 	m� �
Cinv � Cctrl

212 Chapter 7. The Polar Representation

DD

���m��� �
�m���

R�

��m �
m

��m ���m���

Zind

���m���

P�

A row of reduced
4-input multiplexers

���m���

Figure 7.16: The output controller of Figure 7.13.

7.6. Architectures for Arithmetic Operations 213

� CZech � Cmadd � ��m� ���

where Cmadd is the size of the m-bit parallel adder and CZech is the size of the
Zech’s logarithm circuit in the bottom-rightmost part of the figure. The Zech
logarithm can be computed using one discrete exponentiation and one dis-
crete logarithm, which both can be efficiently computed using look-up tables,
see Sections 7.5.1 and 7.5.2. The size of such a Zech’s logarithm circuit is dom-
inated by the sizes of the look-up tables. For m � � we thus have�

CZech
 Cexp�tab � Clog�tab
 � � �m � �m � �m��� (7.51)

where Cexp�tab and Clog�tab are given by (7.44) and (7.46), respectively. Assuming
that the parallel adder in Figure 7.13 is an ordinary carry ripple adder, consist-
ing of m full adder elements, we have Cmadd � mCFA � ��m and thus

Cpoladd��
 � � �m � �m � �m�� � ���m�

The total CP of the “polar” adder architecture is formed by the two dotted
paths P� and P� in the figure, where P� is the CP during the first clock inter-
val and P� is the CP during the second clock interval of the computation. The
length of path P�, which runs from the output of register R� through one in-
verter, along the carry chain of the carry ripple adder, and through the Zech’s
logarithm circuit to the input of register R�, equals

LP� � Lreg � rregfinv � rinv	freg � fFA�signal
 � 	m� �
	LFA�carry � rFAfFA�carry

�LFA�sum � rFA	fctrl � fZech
 � LZech � rZechfreg

� LZech � fZech � �rZech � ��m� ���

whereLZech, fZech, and rZech are the internal CP length, the fan-in, and the out-
put normalised resistance of the Zech’s logarithm circuit. Note that when the

path P� and P� are active we have 	 ��m� �
m
 � 	�� �
, which means that the re-
duced multiplexers of the output controller are switched off. Hence, the out-
put controller does not affect the output stages of register R� and R�.

Assuming that the sum �� is stored in a parallel register, the length of path P�,
which runs from the output of register R� through the carry ripple adder and
the output controller, equals

LP� � Lreg � rregfFA�signal � 	m� �
	LFA�carry � rFAfFA�carry

�LFA�sum � rFA	fctrl � fZech
 � Lctrl � rctrlfreg

� ��m � �� � fZech�

��The simpler cases for whichm � � should be handled separately.

214 Chapter 7. The Polar Representation

If either ��m or �
m (or both) equals one, them-bit NBC integer �� � 	��m��� ��m���

� � � � ���
� is loaded into register R� of the output controller in the beginning of
the first clock cycle. Then, in the beginning of the second clock cycle, the output

controller sets ���m��� � ���m���. Hence, if we do not include the time needed
for the initiation of the registers (and D flip-flops), the time T required to per-
form an addition using the polar representation is proportional to�

Lpoladd��
�
� LP� � LP� � LZech � �fZech � �rZech � ��m�
��

As indicated above, a Zech’s logarithm can be computed using two look-up
tables – one for exponentiation and one for the discrete logarithm. The algo-
rithms for performing discrete exponentiation and computing the discrete log-
arithm are described in Sections 7.5.1 and 7.5.2, respectively. We conclude that
the worst-case time for computing a Zech’s logarithm using these algorithms
is approximately proportional to the length

LZech jmax � Lexp�tab � Llog�tab � �Lai jmax

 mLexp�tab � 	m� � � log� m
Llog�tab � ���m�

where Lexp�tab and Llog�tab are given in (7.45) and (7.47), respectively, and
Lai jmax� ��m is the maximum value of Lai given in (7.41). Note that Lai jmax

can quite simply be reduced to ��m, for example by using an architecture for com-
puting ai which allows shifting to the right as well as to the left. With LZech

LZech jmax and by assuming fZech � � and rZech � �, we get

Lpoladd��
 mLexp�tab� 	m� � � log� m
Llog�tab � ���m � ���� (7.52)

The area-time product AT � performance of the adder architecture in Figure
7.13 is proportional to

CL�
poladd��

�
� Cpoladd��	Lpoladd��

��

Remark: The two clock intervals associated with the respective CP length P�

and P� are not equally long.

An Alternative Adder

Let � and
 benonzero integers of theprime fieldZ�m��. Using the congruences
� � ��d�� 	mod �m��
 and
 � ��d�� 	mod �m��
 (see (7.35) in the proof
of Theorem 7.7), addition inZ�m�� can be expressed as

� � � �
 � � � d�� � � � d�� � d�� � d�� � �

� d �
 � � � 	 �
 	mod �m � �
� (7.53)

�	The time for needed for initiating the registers is negligible in comparison with the first
and second clock cycle times.

7.6. Architectures for Arithmetic Operations 215

where
d �
 � d�� � d�� � 	 �
 � � 	mod �m � �

and where� denotes diminished–1 addition. Based on (7.53), we can perform

polar addition in the following way: First, we compute d�� and d�� from �� and
�
, respectively. This can be done either using direct computations (see the al-
gorithm in Section 7.4.1) or using a look-up table and some binary shifts (see
the algorithm in Section 7.5.1). Then, the sum d �
 � d�� � d�� 	mod �m � �

is formed by the output of a diminished–1 adder (see Section 6.3.4) with d��

and d�� as its input signals. The desired result �� � P 	� �

 is obtained from
d �
 either by using direct computations (see the algorithm in Section 7.4.2) or
using a look-up table and essentially some binary shifts (see the algorithm in
Section 7.5.2).

Figure 7.17 shows ablock diagram of apolar adder which is basedon the above
addition procedure. The adder in the figure is modified to work also for zero
addends (� � � and/or
 � �). Let

�� � 	 ��m�
m � d���m��	
� 	 ��m�

m � d���m��	
 	mod �m � �
�

where d���m��	 and d���m��	 are obtained from ���m��� and �
�m���, respectively, be

the output of the diminished–1 adder in Figure 7.17. Then, we have ��m � ��m
and ���m��� is obtained from d �
�m��	 � ���m���. This can be understood from the
following three special cases:

1. If ��
 �� �, i.e. 	 ��m� �
m
 � 	�� �
� � 	 ���m���� �
�m��� 	 �m � �:

(a) If �� � �m, which occurs if � �
 � � 	mod �m � �
, then �� �
 �
�m. Thus, we set ��m � ��m � �. Also, ���m��� � � is obtained from
d �
�m��	 � ���m��� � �.

(b) If � 	 �� 	 �m � �, which occurs if � � � �
 �� � 	mod �m � �
,
then we set ��m � ��m � �. Also, ���m��� � Z�m is obtained from
d �
�m��	 � ���m��� �Z�m.

2. If � �� � and
 � �, i.e. 	 ��m� �
m
 � 	�� �
, � 	 ���m��� 	 �m � �, and

�
�m��� � � (or � � � and
 �� �, i.e. 	 ��m� �
m
 � 	�� �
, ���m��� � �, and

� 	 �
�m��� 	 �m � �):

Then �� � d���m��	 (or �� � d���m��) and thus, we get ��m � ��m � �. Also,

���m��� � �� (or ���m��� � �
) is obtained from d �
�m��	 � ���m���.

3. If ��
 � �, i.e. 	 ��m� �
m
 � 	�� �
, and ���m���� �
�m��� � �:

Then d���m��	 � d���m��	 � �, which means that �� � �m. We have � �

216 Chapter 7. The Polar Representation

� �
 � � 	mod �m � �
 and thus ��m � ��m � �. Also, ���m��� � � is
obtained from d �
�m��	 � ���m��� � �. Hence, the output �� equals
 � �m.

The polar adder in Figure 7.17 works as follows: The computation procedure
is split into two parts (clock cycles). During the first clock cycle, d���m��	 is com-

puted from the input �
�m��� and is stored, together with �
m, in the register.

During the second clock cycle, d���m��	 is first computed from the input ���m���

and the addends ��m�m�d���m��	 and �
m�m�d���m��	 appears at the inputs of the
diminished-1 adder. Then, the desired sum �� � P 	� �

 is computed from

the adder output ��.

Assuming that the two translation circuits in Figure 7.17 are realised using
look-up tables, as described above, the sizes of the input and output transla-
tion circuits are approximately equal to Cexp�tab
 � � �m and Clog�tab
 �m �
�m��, respectively.�� The parameters Cexp�tab and Clog�tab are given by (7.44) and
(7.46), respectively. Using the carry ripple adder in Figure 6.9, which has size
Cdimadd�� � ��m � �, the total size of the polar adder in Figure 7.17 equals��

Cpoladd��
 Cexp�tab � Clog�tab � Cdimadd��� 	m� �
Creg

 � � �m � �m � �m�� � ��m�

where Creg � ��. Hence, the size of thepolar adder in Figure 7.17 is less than the
size of the polar adder in Figure 7.13. Also, the overall structure of the former
architecture is simpler than the structure of the latter one.

The total critical path through the circuit in Figure 7.17 is formed by the paths
P� and P�, which correspond to the critical paths associated with the first and
second clock cycles, respectively. The length LP� of path P� is approximately
equal to Lexp�tab � Lai jmax� m	Lexp�tab � ��
 and the length LP� of path P� is
approximately equal toLexp�tab�Ldimadd���Llog�tab��Lai jmax
 mLexp�tab�	m�
�� log� m
Llog�tab����m (see (7.45), (6.28), (7.47), and (7.41)). Hence, the total
time required to perform polar addition, using the architecture in Figure 7.17,
is approximately proportional to the length

Lpoladd�� � LP� � LP�

 �mLexp�tab � 	m� � � log� m
Llog�tab � ���m�

where Lexp�tab and Llog�tab are some constants, By comparing Lpoladd�� with
Lpoladd��, which is given in (7.52), we conclude that the polar adder in Figure
7.13 is faster than the adder in Figure 7.17.

�
Thus, the sum of the sizes of the two translation circuits is equal to CZech (see (7.51)).
��Note that here we only consider the casesm � � andm � �
.

7.6. Architectures for Arithmetic Operations 217

Translation from

dk to k

	m� �
-bit diminished-1 adder

Translation from

k to dk

Register

��m ���m���

��m
���m��� � d �
�m��	

�
m �
�m���

���m�����m

d���m��	 d���m��	

P�

P�

Figure 7.17: The block diagram of an alternative polar adder. The paths P� and P�

form the CP through the circuit. We have k� dk �Z�m.

218 Chapter 7. The Polar Representation

The AT � performance of the polar adder in Figure 7.17 is proportional to the
product

CL�
poladd��

�
� Cpoladd��	Lpoladd��

��

Remark: The two clock intervals associated with the respective CP length P�

and P� are not equally long.

7.6. Architectures for Arithmetic Operations 219

Subtraction

By (7.11) and (7.6) we get

P 	� �

 � �� � Z
�
P 	�

 � ���m��� � �

	
	mod �m
� (7.54)

where P 	�

 � �
m���m�� � �
�m��� 	mod �m
. Hence, by comparing (7.54)
with (7.48), we conclude that polar subtraction can be carried out by using
the adder architecture in Figure 7.13 but with the input bit �
m�� exchanged for
its one’s complement �
m��. An XOR gate can be used to control whether the
input bit �
m�� of �
 is to be inverted (when subtracting) or unchanged (when
adding).

Polar subtraction can also be carried out by using a modified version of the
polar adder in Figure 7.17. Similar to (7.53), we can write

� � � �
 � � � d�� � 	� � d��
 � d�� � �m � �� d�� � �

� d�� � d�� � � � d�� � � � 	
�� 	mod �m � �
� (7.55)

where d�� is the one’s complement of the m-bit normal binary coded integer d��
and d�� � d���d�� � 	

���� 	mod �m��
. A row ofmXOR gates can be placed
at the output of the k-to-dk translation circuit in Figure 7.17 to control whether
the output is to be inverted (when subtracting) or unchanged (when adding).

7.6.5 General multiplication

From Section 7.2.6, we get

��
�
� P 	�

 �

�
���m��� � �
�m��� 	mod �m
� if ��m� �
m � �

	�

 � �m� if ��m � � and/or �
m � �
�

(7.56)

which we compute as follows. Let ��
�
� ���m��� � �
�m��� 	mod �m
. Then, by

(7.56) and for � 	 i 	 m � �, each output bit ��i of �� can be written as the
Boolean function

��i � ��i�� (7.57)

where � � ��m��
m � ��m � �
m indicates whether �� � ���m�����
�m��� 	mod �m

(� � � �) or �� � �m (� � � �). The most significant bit ��m of �� equals � .

220 Chapter 7. The Polar Representation

���m���
�
�m���

��m �
m

���m�����m

m-bit parallel adder

� ���m���

Figure 7.18: A bit-parallel architecture for general multiplication using the polar
representation.

A Bit-Parallel Architecture

An architecture for general “polar” multiplication, which is based on the
above procedure, is shown in Figure 7.18. The AND gate in the figure rep-
resents a row of m AND gates, each which, for some i � �� �� � � � � m� �, gen-
erates the output bit ��i according to the Boolean function in (7.57).

Assuming that the parallel adder in Figure 7.18 is an ordinary carry ripple
adder, which comprises m full adder elements, the chip area A occupied by
the general multiplier architecture is proportional to its size

Cpolmult�par � mCFA �mCAND � CNOR � Cinv
� ��m � ��

The length of the internal CP, which is the path from the least significant bit in-
put of the parallel adder, through the chain of full adder elements to the output
of the AND gate in bit position m� �. The length of this CP equals

LCP�polmult�par � 	m� �
	LFA�carry � rFAfFA�carry

�LFA�sum � rFAfAND � LAND

� ��m � ��

7.6. Architectures for Arithmetic Operations 221

The fan-in and the output normalised resistance of the architecture are equal
to

fpolmult�par � f
FA�signal

� �

rpolmult�par � rAND � ��

respectively. Assuming as before that the circuit inputs are obtained directly
from some parallel registers and the output �� is directly stored in a parallel
register, the total computation time T is proportional to

Lpolmult�par � Lreg � rregfpolmult�par� LCP�polmult�par � rpolmult�parfreg

� ��m � ���

Hence, the area-time product AT � is proportional to

CL�
polmult�par

�
� Cpolmult�par	Lpolmult�par

�

� 	��m � �
	��m � ��
�

A Bit-Serial Architecture

In the beginning of Chapter 4 we stated that, depending on the modulus, bit-
serial architectures are often impracticable for arithmetic operations in integer
quotient rings. However, when using the polar representation of the integers
ofZ�m��, all computations are carried out modulo �m. Because the reduction
modulo �m can be carried out instantaneously, bit-serial architectures may be
competitive for some arithmetic operations.

In Figure 7.19 we show a bit-serial architecture for general “polar” multipli-
cation, which is based on the parallel multiplier in Figure 7.18. The chip area
A occupied by this multiplier is proportional to its size

Cpolmult�ser � CFA � 	�m � �
Creg � CAND � CNOR � Cinv
� ��m � ���

During an initial clock cycle, them-bit shift registers R� and R� are loaded with
���m��� and �
�m���, respectively, and the D flip-flops D�, D�, and D� are loaded

with ��m, �
m, and zero, respectively. Then, during the m subsequent clock cy-
cles, the digits ���, ���� � � �, ��m�� are shifted into the feedback shift register R�.
Hence, after a total of m� � clock cycles, the result ���m��� is contained in reg-
ister R�.

The CP is the dotted path from the serial output of R� (or R�) to the serial input
of R�. The length of this path equals

LCP�polmult�ser � Lreg � rregfFA�signal � LFA�sum � rFAfAND � LAND � rANDfreg

� ���

222 Chapter 7. The Polar Representation

�
�m���

���m���

R�

R�

���m���

CP

cin

cout

�

Reset

��m

��m

��i��i

�
i

�
m

D� D�

D�

FA

Figure 7.19: A bit-serial architecture for general multiplication using the polar rep-
resentation.

which implies that the total computation time T is proportional to

Lpolmult�ser � 	m� �
LCP�polmult�ser � ��	m� �

and the AT � performance is proportional to

CL�
polmult�ser

�
� Cpolmult�ser	Lpolmult�ser

�

� 	��m� ��
	��	m � �

��

In Figure 7.20 we have plotted the parameters Cpolmult�par, Cpolmult�ser, Lpolmult�par,
Lpolmult�ser, CL�

polmult�par, and CL�
polmult�ser versus m for m � �� �� �� ��. Obvi-

ously, the bit-parallel architecture in Figure 7.18 is superior to the bit-serial ar-
chitecture in Figure 7.19 with respect to both chip area and computation time
and, consequently, also with respect to area-time performance. Note, how-
ever, that the size (area) of the bit-parallel architecture becomes greater than
the size of the bit-serial architecture if the input and output registers are in-
cluded in the size parameter Cpolmult�par.

7.6. Architectures for Arithmetic Operations 223

Cpolmult�par

Cpolmult�ser

Lpolmult�parLpolmult�ser

CL�
polmult�parCL�
polmult�ser

� � � ��

���

���

Time complexity

m

C
P

le
n
g
th

,L

� � � ��

��	

��

��

���
Area-time performance

CL
�

m

� � � ��

���

���

Area complexity

m

S
iz

e,
C

Figure 7.20: The sizes C, lengths L, and AT � performances CL� of the bit-parallel
and the bit-serial polar multipliers in Figure 7.18 and Figure 7.19, respectively.
The parameters are plotted versus m for m � �� �� �� ��.

7.6.6 Multiplication by powers of �

One of the major attributes of the polar representation of the elements ofZ�m��

follows from Corollary 7.1: When computing a Fermat number transform of

length N � �b using the transform kernel � � 	�m�b 	mod �m � �
, each
multiplication by � can be performed as one b-bit addition modulo �b.
Let
 be a nonzero integer ofZ�m�� and � 	 b 	 m. By Definition 7.3, the polar
integer P 	

 � �
 �Z�m can be written on the form �
 � �
�m�b��m�b � �
�m�b���,
where �
�m�b� is formed by the b most significant bits and �
�m�b��� is formed
by the m � b least significant bits of �
. By (7.21), (7.22) and (7.23), the polar

representation of the product � �
�n �
	n�
m�b

	mod �m � �
 equals

P 	
�n
 � �� � ���m�b��
m�b � ���m�b���

� �
 � �� 	mod �m
�

224 Chapter 7. The Polar Representation

0

� ��

� �

� ��

m bits

b bits

�
�m�b�

n�b���

���m�b� ���m�b���

�
�m�b���

Figure 7.21: Computation of �� � �
 � �� 	mod �m
, where �� � n�b����m�b.

where ��
�

���m�b� � �
�m�b� � ���m�b� 	mod �b

���m�b��� � �
�m�b���
�

where in turn we have ���m�b� � n�b���. Obviously, P 	�n

 can be computed
using only one b-bit addition of �
�m�b� and n�b��� modulo �b. This is illustrated
in Figure 7.21.

7.6.6.1 Fixed Architectures

An architecture which computes �� � P 	�n

, for some fixed b � ��� m�, is

shown in Figure 7.22. Let �� � �
�m�b��n�b��� 	mod �b
 denote the b-bit output

of the parallel adder in the figure. Each digit of �� and each digit of �
�m�b��� is
forwarded to one of the inputs of a two-input AND gate. The one’s comple-
ment �
m of �
m is the second input of each AND gate. If �
 � Z�m, i.e. if �
 � �,
the desired product �� � 	�
�m�b��n�b��� mod �b
�m�b��
�m�b��� will be present
at the circuit output. If �
 �
 � �m, i.e. if �
 � �, the output ���m��� is set equal
to zero by the row of AND gates. We always have ��m � �
m.

If the b-bit parallel adder in Figure 7.22 is an ordinary carry ripple adder, the
size of the architecture in the figure equals

Cmult���par � bCFA �mCAND � Cinv � �m� ��b � ��

where � 	 b 	 m. The internal CP of the architecture, which is indicated by
the dotted path in the figure, has length

7.6. Architectures for Arithmetic Operations 225

b-bit parallel adder

CP

��

�
m �
�m�b�n�b���

���m�b������m�b���m

�
�m�b���

Figure 7.22: A bit-parallel architecture for computing polar multiplication by pow-
ers of �; �� � P 	
�n
 � ��m�m� ���m�b��

m�b� ���m�b���, where ord�m��	�
 �
�b for some fixed b � ��� m�. The output circuitry is formed by a row of
b� 	m� b
 � m two-input AND gates.

LCP�mult���par � 	b� �
	LFA�carry � rFAfFA�carry
 � LFA�sum � rFAfAND � LAND

� ��b� ��

The fan-in and the output normalised resistance , with respect to this CP, are
equal to

fmult���par � fFA�signal � �

rmult���par � rAND � ��

226 Chapter 7. The Polar Representation

respectively. With the CP both starting and ending in a register, the total com-
putation time of the the architecture in Figure 7.22 is proportional to

Lmult���par � Lreg � rregfmult���par � LCP�mult���par � rmult���parfreg

� ��b � ��

and hence, the area-time performance is proportional to

CL�
mult���par

�
� Cmult���par	Lmult���par

�

� 	�m� ��b � �
	��b � ��
��

Note that for b � mwe haveLmult���par � Lpolmult�par and Cmult���par
 Cpolmult�par.
For b � m we have Lmult���par � Lpolmult�par and Cmult���par � Cpolmult�par.

A bit-serial architecture for polar multiplication by powers of �, can be de-
signed in a rather straightforward manner. It is derived from the bit-parallel
architecture in Figure 7.22 in the same way as the bit-serial general multiplier
in Figure 7.19 was derived from the bit-parallel multiplier in Figure 7.18. Such
an architecture would be rather similar to the universal bit-serial architecture
in Figure 7.24, which is described below. Therefore, it is not considered here.

7.6.6.2 Universal Architectures

A bit-serial/parallel architecture

So far, all architectures considered in the present chapter, except the one in Fig-
ure 7.22, can be used when computing the Fermat number transform of length
N � �b inZ�m�� for some given m � �� �� �� ��. The circuit in Figure 7.22 can
only be used for some fixed b � ��� m�. The bit-serial/parallel architecture in
Figure 7.23, however, is a universal circuit for multiplication by powers of �,
i.e. it is applicable for all possible transform lengths N � �b, where b � ��� m�.
The circuit works as follows.

� During an initial clock cycle, the parallel register R� is loaded with n�b���,
shift register R� is loaded with �
�m���, and the D flip-flop is loaded with
�
m. All registers in the architecture are m bits wide.

� During the following b clock cycles, the transmission gates subsequent to
the parallel adder are all closed and the b-bitNBC integer �
�m�b� is shifted
into both register R� and R�. The signal S (Shift enable) is a control signal
that either enables (S � �) or disables (S � �) the shifting of the contents
of the shift registers. Consequently, during the b shifts just mentioned,
we have S � �. Each clock interval is proportional to the length

LP� � Lreg � rreg � �freg � ��

7.6. Architectures for Arithmetic Operations 227

�
�m���

���m�b� ���m�b���

m-bit parallel adder

n�b���

��mS
S���m���

S

R�

R�

R� R� P�

P�

��b�� ���

P�

�
m

D

Figure 7.23: A universal bit-serial/parallel architecture for polar multiplication by
powers of �; �� � P 	
�n
, where ord�m��	�
 � �b for any b � ��� m�.

of the dotted path P� in Figure 7.23.

� After the b shifts, the control signal S is set to 0 (zero). Let �� denote the
NBC integer which is formed by the b least significant output bits of the

parallel (carry ripple) adder. Thenwehave �� � �
�m�b��n
�b��� 	mod �b
.

The m� b most significant output bits of the adder are redundant.

1. If �
m � �, i.e. if
 � �, the transmission gates subsequent to the
adder remain closed, so that the contents �
�m�b� � 	�� �� � � � � �
� in
the b least significant bit positions of R� remain unchanged.

228 Chapter 7. The Polar Representation

2. If �
m � �, i.e. if
 �� �, the transmission gates are open�� and the

register R� is loaded with the adder output ��.

The time needed to compute �� � ���m�b� and load it into the b least sig-
nificant bit positions of R� is proportional to the length��

LP� � Lreg � rregfFA�signal � 	b� �
	LFA�carry � rFAfFA�carry

�LFA�sum � 	rFA � �
freg

� ��b� ��

of the dotted path P� in the figure. The maximum computation time is

obtained for b � m, i.e. we have LP��max

�
� maxLP� � ��m � ��.

� Next, the control signalS is set to 1 (one). This transition closes the trans-
mission gates (if they were open) and enables shifting of the shift register
contents. For �
m � �, the time to close the transmission gates is propor-
tional to the length

LP� � r
S
	fOR � �f

S�reg
 � LOR � rOR	finv �m
 � rinv �m
� r

S
	� � �f

S�reg
 � �m� ��

where r
S

is the normalised resistance from the S input node of the OR
gate to the supply voltage source and f

S�reg
is the fan-in of the shift regis-

ters, with respect to the control input signal S. By assuming r
S
� � and

f
S�reg � �, we get LP� � �m� ��.

� Finally, during m � b clock cycles, ���m�b��� � �
�m�b��� is shifted from

R� into the m� b least significant bit positions of R� while ���m�b� � �� is
shifted up to the b most significant bit positions of R�.

We assume that the registers can be initialised during one cycle of the shift
register clock. Then, the total time needed to perform a polar multiplication
by a power of �, using the universal architecture in Figure 7.23, is proportional
to

Luniv�mult���par � 	b� �
LP� � LP� � LP� � 	m� b
LP�

� ��m� ��b �
�

��The transmission gates have opened before the digit 	�b�� of 	� is present at the adder
output.

��We assume that, for all b � m, the length of path P� is always greater than the length of
path P�. This is true in virtually all cases.

7.6. Architectures for Arithmetic Operations 229

which, for b � m, equals Luniv�mult���par�max � ��m �
�. The desired result
�� � P 	�
�n
 is present at the output of register R� (and the D flip-flop). The
size of the universal architecture equals

Cuniv�mult���par � mCFA � 	�m� �
Creg �mCTG � COR � Cinv
�
�m � ���

which implies that its area-time performance is proportional to

CL�
univ�mult���par

�
� Cuniv�mult���par	Luniv�mult���par

�

� 	
�m� ��
	��m � ��b �
�
��

A bit-serial architecture

In Figure 7.24 we show a universal bit-serial architecture for polar multipli-
cation by powers of �, which is based on the bit-serial/parallel architecture
in Figure 7.23. Also, it is quite similar to the bit-serial architecture for general
multiplication, see Figure 7.19. The size of the architecture in Figure 7.24, in
which the shift registers R� and R� are m bits wide, equals

Cuniv�mult���ser � CFA � 	�m� �
Creg � CAND � �Cinv � CTG � �

� ��m� ���

The control signal S is the same signal for shift enabling/disabling that is used
in the above universal bit-serial/parallel architecture. During an initial clock
cycle, S is set to zero, the registers R� and R� are loaded with n�b��� and �
m��,
respectively, and the D flip-flops D� and D� are loaded with �
m and zero, re-
spectively. During the following m � b clock cycles, ���m�b��� is shifted into
the most significant bit positions of shift register R�, i.e. we simply perform an
	m�b
-bit rotation of the contents of R�. Then, S is set to one (this is done dur-
ing one clock cycle) and if �
m � �, the b-bit sum �� � �
�m�b� � n�b��� 	mod �b

is shifted into register R�. If �
m � �, only zeros are shifted into the register
(�� � P 	� � �n
 � P 	�
 � �m � ���m��� � �).

The CP of the multiplier is the dotted path from the serial output of register
R� to the serial input of register R� in Figure 7.24. The clock cycle time is pro-
portional to the length

LCP�univ�mult���ser � Lreg � 	rreg � �
fFA�signal � LFA�sum

� rFAfAND � LAND � rANDfreg

� ��

230 Chapter 7. The Polar Representation

���m���

R�

��m

FA

cin

cout

D�
Reset

D�
S

CP

R�

���m�b������m�b�

n�b���

�
�m���

��i

�
m

��i

�
i

Figure 7.24: A universal bit-serial architecture for polar multiplication by powers of
�; �� � P 	
�n
, where ord�m��	�
 � �b for any b � ��� m�.

of the CP. Because the desired product �� � P 	
�
 is obtained in register R�

after � � 	m � b
 � � � b � m � � clock cycles, the total computation time is
proportional to

Luniv�mult���ser � 	m� �
LCP�polmult�ser � ��	m � �
�

which implies that the AT � performance of the bit-serial architecture is pro-
portional to

CL�
univ�mult���ser

�
� Cuniv�mult���ser	Luniv�mult���ser

�

� 	��m� ��
	��	m � �

��

The area and time complexities and the area-time performances of the above
universal bit-serial/parallel and strictly bit-serial architectures are plotted ver-
sus m in Figure 7.25. Note that for Luniv�mult���par and CL�

univ�mult���par we have

actually set b � m, i.e we have plotted Luniv�mult���par�max and CL�
univ�mult���par�max.

As expected, for all m � �� �� �� ��, the size of the bit-serial/parallel archi-
tecture is greater than the size of the bit-serial architecture, while we have the
opposite relation when considering their respective computation time. With
respect to their area-time performance, the bit-serial/parallel architecture is
preferable to the bit-serial architecture for m � �� � with b 	 m and for m �
�� �� with b 	 m�� � �. The bit-serial architecture is preferable to the bit-
serial/parallel architecture for m � �� �� with b � m�� � �. Note, however,
that the difference in area-time performance of the two architectures is rela-
tively insignificant.

7.7. Summary 231

Cuniv�mult���parCuniv�mult���ser

Luniv�mult���par

Luniv�mult���ser

CL�
univ�mult���parCL�
univ�mult���ser

2 4 8 16
���

���

Area complexity

m

S
iz

e,
C

2 4 8 16
���

���

Time complexity

m

C
P

le
n
g
th

,L

2 4 8 16

��

��

���
Area-time performance

m

CL
�

Figure 7.25: The sizes C, lengths L, andAT � performances CL� of the universal bit-
serial/parallel and bit-serial architectures in Figure 7.23 (for b � m) and Fig-
ure 7.24, respectively. The parameters are plotted versusm form � �� �� �� ��.

Remark: For simplicity, wehave assumed that the shift registers in Figures 7.23
and 7.24, with shift enable control signal S, have the same area and time
complexities as the other registers considered in the thesis.

7.7 Summary

In Sections 5.2 and 6.4 we summarised the complexity and performance para-
meters of the architectures considered in the respective chapters. In Table 7.4,
we have summarised the corresponding parameters for the architectures con-
sidered in the present chapter.

232 Chapter 7. The Polar Representation

O
p
eratio

n
F
ig

u
re

S
u
b
scrip

t
n
am

e
S
izeC

F
an

-in

f

In
t.

C
P

len
g
thL

C
P

C
o
m

p
u
tin

g

a
i ja

7.7
ai

��m
�
�

—

��
�
�f
n
ex
t

C
o
m

p
u
tin

g

d
k

7.8
d
k

��m
�
��

—

��m
�
��

N
eg

atio
n

7.12
p
o
ln

eg
4

n
p
o
ln
eg
�
�

—
A

d
d
itio

n
7.13

p
o
lad

d
,1

���
m

�
�m
��
m
�
�
�
���m

—
—

A
d
d
itio

n
7.17

p
o
lad

d
,2

���
m

�
�m
��
m
�
�
�
��m

—
—

���

G
en

eral
m

u
ltip

l.
7.18

p
o
lm

u
lt,p

ar

��m
�
�

8

��m
�
�

G
en

eral
m

u
ltip

l.
7.19

p
o
lm

u
lt,ser

��m
�
��

—
58

M
u
ltip

licatio
n

b
y

�
n

7.22
m

u
lt,�

,p
ar

�m
�
��b
�
�

8

��b
�
�

U
n
iv.

m
u
ltip

l.
b
y

�
n

7.23
u
n
iv,m

u
lt,�

,p
ar

�m
�
��

—
—

U
n
iv.

m
u
ltip

l.
b
y

�
n

7.24
u
n
iv,m

u
lt,�

,ser

��m
�
��

—
66

N
o
rm

.
o
u
tp

u
t
res.

r
o

T
o
tal

C
P

len
g
thL

(in
clu

d
in

g
reg

isters)
A

rea-tim
e

p
erf.CL

�

—

	i
�
�
L
C
P

—
—

—
—

2
34

4624
—

m
L
ex
p
�ta
b
�
	m
�
�
�
log
�
m

L
lo
g
�ta
b
�
���m
�
���

—

���

—

�m
L
ex
p
�ta
b
�
	m
�
�
�
log
�
m

L
lo
g
�ta
b
�
���m

—
1

��m
�
��

O
	m
�

—
��m
�
��

O
	m
�

1
��b
�
��

O
	m
b
�

—

��m
�
��b
�

�

O
	m
�

—

��m
�
���

O
	m
�

T
a
b
le

7
.4:

C
om

plexity
param

eters
of

the
architectu

res
con

sidered
in

the
presen

t
chapter.

Chapter 8

Comparisons Between Element
Representations

The purpose of this chapter is to make brief comparisons between the element
representations in Chapters 5, 6, and 7, i.e. the normal binary coded (NBC),
the diminished–1, and the polar representation, respectively. We compare the
respective VLSI architectures for arithmetic operations which are considered
in these chapters.

8.1 Arithmetic Operations

Only the measure C of area complexity, the measureL of time complexity, and
the measure CL� of combined area-time performance of each architecture are
considered here. Regarding the parameter L, we generally only consider the
total CP length (which is proportional to the total computation time) and not
the internal CP length (which for a bit-serial architecture is proportional to the
clock cycle time). For detailed characterisation of the architectures, we refer to
the mentioned Chapters 5, 6, and 7. In particular, see Tables 5.1, 6.5, and 7.4 in
the respective Summary sections 5.2, 6.4, and 7.7.

8.1.1 Modulus Reduction

One of the main advantages of the polar representation is that modulus reduc-
tion is an instantaneous operation: The residue of the normal binary coded

233

234 Chapter 8. Comparisons Between Element Representations

Form of repr. Size C Total CP length L CL�

NBC

� CR type ��m� � ��m� �� O 	m�

� CLA type �m log� m� ��m �m� � log� m� �� O 	m� log� m

Diminished–1 As in the NBC case

Polar 0 0 0

Table 8.1: Sizes C, total CP lengths L, and area-time performances CL� of the
architectures for modulus reduction, with respect to element representation.
“CR” = carry ripple, “CLA”= carry look-ahead.

integer �
 � Zmodulo �m equals �
�m��� � 	�
m��� �
m��� � � � � �
�
�. In both the
diminished–1 and the polar representation, the integer �m is used as a rep-
resentative of zero, which means that we can use an m-bit arithmetic for the
nonzero integers ofZ�m��.

In Section 5.1.1 (see for example Figure 5.3) we concluded that, with respect
to the area-time performanceAT � (and the time performance), the carry look-
ahead type modulus reduction architecture is preferable to the carry ripple
type architecture. From the CL� parameters in the rightmost column of Ta-
ble 8.1 one may conclude that the carry ripple type architecture (with CL� �
O 	m�
) is preferable to the carry look-ahead type architecture (for which
CL� � O 	m� log� m
). However, the product CL� is smaller for the former
architecture, compared to the latter one, only for very large m; m � ���.

Anyhow, as seen in Chapters 5, 6, and 7, in most circuits performing arithmetic
operations, the modulus reduction part of the operation is preferably incorpo-
rated into each separate arithmetic operation.

8.1.2 Code Translation

The code translation from the NBC to the diminished–1 representation is sim-
ply carried out as a subtraction by one modulo �m � �. As seen in Table 8.2,
the area-time product CL� is slightly less for the reverse translation (addition
by one modulo �m��). The code translation from the NBC to the polar repre-
sentation and it reverse code translation involves the computation of the dis-
crete logarithm and discrete exponentiation, respectively. In Sections 7.4 and

8.1. Arithmetic Operations 235

Form of repr. Size C Total CP length L CL
�

NBC —

Diminished–1

�NBC to dim.–1 �m log� m� �m� � �m� � log� m� �� O
�
m

� log� m
�

� Dim.–1 to NBC ��m� � ��m� �� O
�
m

�
�

Polar
�NBC to polar One discrete logarithm
� Polar to NBC One discrete exponentiation

Table 8.2: Sizes C, total CP lengths L, and area-time performances CL� of the archi-
tectures for code translation, with respect to element representation.

Form of repr. Size C Total CP length L CL�

NBC ��m� �� ��m� �� O 	m�

Diminished–1 �m �m� �� O 	m�

Polar 4 34 4624

Table 8.3: Sizes C, total CP lengths L, and area-time performances CL� of the archi-
tectures for negation, with respect to element representation.

7.5, we showed how to compute the discrete logarithm and perform discrete
exponentiation either without (Sec. 7.4) or with (Sec. 7.5) the use of look-up
tables.

It is obvious that both the area complexities and the time performances of the
code translations to and from the diminished–1 representation are less than
the corresponding complexities of the code translations to and from the po-
lar representation. Regarding the area and time complexities of the discrete
logarithm and discrete exponentiation, we refer to Sections 7.6.1 and 7.6.2.

8.1.3 Negation

Table 8.3 shows some complexity parameters related to the architectures for
negation using the NBC, diminished–1, and polar representations. The pa-

236 Chapter 8. Comparisons Between Element Representations

NBC
Dim.–1
Polar

NBC
Dim.–1
Polar

NBC
Dim.–1
Polar

2 4 8 16 32 64 128256

���

���

���
Time complexity

m

T
o
ta

l
C

P
le

n
g
th

,L

2 4 8 16 32 64 128 256
���

��	

��

����

Area-time performance

m

CL
�

2 4 8 16 32 64 128256

���

���

���

���
Area complexity

m

S
iz

e,
C

Figure 8.1: Plots of the complexity parameters C, L, and CL� for negation when us-

ing the NBC, the diminished–1, or the polar representation. The parameters are
obtained from Table 8.3.

rameters C, L, and CL� are plotted versus m in Figure 8.1. With respect to
each of these parameters, it is clear that diminished–1 negation is generally
less complex than NBC negation. In Fermat prime fields, i.e. for m � �� �� ��
�� ��, negation in the polar representation is in turn less complex than nega-
tion in the diminished–1 representation.

8.1.4 Addition

As seen in Table 8.4, the complexity and the performance of performing addi-
tion inZ�m�� are approximately the same when using the NBC representation
as when using the diminished–1 representation. For a comparison between

8.1. Arithmetic Operations 237

Form of repr. Size C Total CP length L CL
�

NBC (carry r.) ��m� � ��m� �� O
�
m

�
�

Diminished–1

� Carry ripple ��m� � ��m� �� O
�
m

�
�

� Carry l.-a. ��m� �� ��m� � log� m� 	� O
�
m

�
�

Polar

� Figure 7.13 �
 � �m �
m�m�� � mLexp�tab � �m� � —

����m � log� m�Llog�tab � ���m� ���

� Figure 7.17 �
 � �m �
m�m�� � �mLexp�tab � �m� � —

���m � log� m�Llog�tab � ���m

Table 8.4: Sizes C, total CP lengths L, and area-time performances CL� of the archi-
tectures for addition, with respect to element representation. The sizes and CP
lengths for polar addition is valid form � � andm � ��.

the carry ripple-type and the carry look-ahead-type diminished–1 adders, we
refer to Section 6.3.4.

One of the main disadvantages of the polar representation derives from the
fact that each polar addition involves the computation of one Zech’s logarithm
(see Figure 7.13), or essentially two discrete exponentiations and one discrete
logarithm (see Figure 7.17). We have considered realisations of these opera-
tions which involve look-up tables. As seen in Table 8.4, polar addition is a
muchmore complex operation than for examplediminished–1 addition. Note,
however, that in order to get a correct/fair comparison between the polar rep-
resentation and thediminished–1 (or NBC) representation, polar addition should
be compared with diminished–1 (or NBC) general multiplication and polar
general multiplication should be compared with diminished–1 (or NBC) ad-
dition. This is further discussed in Section 8.1.7.

Remark: The complexity parameters for polar addition in Table 8.4 are ap-
proximate estimations. When using the delay model described in Sec-
tion 4.2, we have not been able to determine the values of the constants
Lexp�tab and Llog�tab.

238 Chapter 8. Comparisons Between Element Representations

Form of repr. Size C Total CP length L CL�

NBC (s/p) �m log� m� ���m ��m� � ���m � ��� O 	m� log� m

� ��

Diminished–1

� Ashur’s par ��m� �
�m� �� ��m� ��� O 	m�

� Shyu’s s/p ���m � ��� ��m� � ���m � ��� O 	m�

Polar

� Bit-parallel ��m � � ��m � �� O 	m�

� Bit-serial ��m� �� ��m � �� O 	m�

Table 8.5: Sizes C, total CP lengths L, and area-time performances CL� of the ar-
chitectures for general multiplication, with respect to element representation.

“s/p”= bit-serial/parallel. “par” = bit-parallel.

8.1.5 General Multiplication

The sizes C, total CP lengths L, and area-time products CL� of the architec-
tures for general multiplication considered in Chapters 5, 6, and 7 are listed in
Table 8.5. In Chapter 6 we considered six different diminished–1 general mul-
tipliers, of which three are bit-serial and the other three are bit-serial/parallel
multipliers. The sizes and total CP lengths of these multipliers were summa-
rised in Table 6.4 in the end of Section 6.3.6. Also, the complexity parametersof
the best bit-parallel multiplier (Ashur’s) and the best bit-serial/parallel multi-
plier (Shyu’s) were plotted versusm in Figure 6.25. Among the diminished–1
multipliers, only these two are considered in Table 8.5.

In Figure 8.2, we have plotted the parameters C, L, and CL� of the NBC bit-
serial/parallel multiplier, Ashur’s diminished–1 bit-parallel multiplier, and
our polar bit-parallel multiplier. For m � �, the complexity parameters of
Shyu’s multiplier are all slightly less than the corresponding complexity para-
meters of the NBC multiplier. Therefore, Shyu’s multiplier is not considered
in Figure 8.2. We see that the AT � performance of Ashur’s multiplier is less
than the AT � performance of the NBC multiplier. In Fermat prime fields, the
polar multiplier is in turn superior to the other multipliers.

8.1. Arithmetic Operations 239

NBC
Ashur’s
Pol. par.

NBC
Ashur’s
Pol. par.

NBC
Ashur’s
Pol. par.

2 4 8 16 32 64 128256
���

���

���

���

��	
Area complexity

m

S
iz

e,
C

2 4 8 16 32 64 128256
���

���

���

���

��	
Time complexity

m

T
o
ta

l
C

P
le

n
g
th

,

L

2 4 8 16 32 64 128 256
��	
��

����
����
����
���	

Area-time performance

m

CL
�

Figure 8.2: Plots of the complexity parameters C, L, and CL� for
general multiplication with respect to the NBC, the diminished–1, or the

polar representation. The diminished–1 multiplier is Ashur’s bit-parallel
multiplier and the polar multiplier is the bit-parallel one. The parameters are
obtained from Table 8.5.

8.1.6 Multiplication by Powers of �

Multiplication by �n

Multiplications by powers of two typically occur when computing Fermat
number transforms of lengths N � �m and N � �m using the NBC or the
diminished–1 representation. Then, the transform kernels most often used are
� � � (forN � �m) and � �

p
� (forN � �m), see Section 2.3.2. In Table 8.6 we

have listed some complexity parameters of architectures for multiplication by
�n� n �Z, with respect to the NBC, the diminished–1, and the polar represen-
tation. The parameters of the architecture for polar multiplication (the bottom

240 Chapter 8. Comparisons Between Element Representations

Form of repr. Size C Total CP length L CL�

NBC �m log� m� ��m 	 ��m� � ��m log� m O 	m� log� m

� �� ����m

Diminished–1 ��m � � 	 ��m � �� O 	m�

Polar �m� �� log� m �� log� m� �� O

m log��m

�
���

Table 8.6: Sizes C, total CP lengths L, and area-time performances CL� of the archi-
tectures for multiplication by �n, with respect to element representation.

row in the table) are obtained by letting� b � log� �m � log� m� � in the cor-
responding parameters of the fixed architecture for polar multiplication by �n

in Table 8.7.

The parameters in Table 8.6 are plotted versus m in Figure 8.3. The complex-
ity and performance of the architecture for the NBC representation are rela-
tively high for all m. The architecture for the diminished–1 representation is
generally superior to the other architectures. However, for m � �� �� �� ��,
the architecture for the polar representation has the smallest time complexity
and the smallest area-time performance. Hence, whenever applicable, the ar-
chitecture for polar multiplication by powers of two is preferable to the other
architectures performing the same operation.

Multiplication by Powers of � � 	�
m�b

When using the diminished–1 representation (or the NBC representation), the
Fermat number transform is generally known to be applicable only for some
small transform lengths, because then the transform multiplications by pow-
ers of the transform kernel can be carried out using only binary shifts (rota-
tions) (we mentioned above the kernels � � � and � �

p
�, for which we get

the transform lengthsN � �m andN � �m). The restriction to relatively small
transform lengths, however, is still adequate in Fermat integer quotient rings
where the modulus �m � � is composite, because in such rings the maximum
possible transform length is relatively small, in comparison with the modulus.
In the Fermat prime fieldsZ���� andZ�����, however, i.e. where the modulus
�m�� is prime, there exist transforms of much greater lengths than �m and �m:

�The equality follows from the fact that the order of � � �modulo �m�� equalsN � �b �
�m.

8.1. Arithmetic Operations 241

NBC
Dim.–1
Polar

NBC
Dim.–1
Polar

NBC

Polar
Dim.–1

2 4 8 16 32 64 128256

���

���

���

Area complexity

m

S
iz

e,
C

2 4 8 16 32 64 128 256
��	
��

����
����
����
���	

Area-time performance

m

CL
�

2 4 8 16 32 64 128256
���

���

��	
Time complexity

m

T
o
ta

l
C

P
le

n
g
th

,

L

Figure 8.3: Plots of the complexity parameters C, L, and CL� for
multiplication by �n when using the NBC, the diminished–1, or the polar

representation. The parameters are obtained from Table 8.6.

We know that for m � �� �� �� �� ��, there exist Fermat number transforms of
length N � �b inZ�m��, where � 	 b 	 m.

Using the NBC representation or the diminished–1 representation, when com-
puting a transform of arbitrary length N � �b, each nontrivial multiplication
by a power of the transform kernel� of orderN modulo �m��must generally
be carried out as a generalmultiplication. Thepowers of�which appear in the
computation of each transform may be precomputed and stored in a memory.
If not, they can be obtained using general exponentiations.

In Chapter 7 we showed how to compute multiplications by arbitrary powers

of the transform kernel � � 	�
m�b

	mod �m��
 of arbitrary order �b� � 	 b 	
m modulo �m � �, using one simplified addition in the polar representation.
The complexity parameters of the architectures for polar multiplication by a

242 Chapter 8. Comparisons Between Element Representations

Form of repr. Size C Total CP length L CL�

NBC General (exponentiation and) multiplication needed

Diminished–1 General (exponentiation and) multiplication needed

Polar
� Fixed ��m� ��b � �� ��b � �� O 	mb�

� Universal

– Serial/parallel
�m � �� ��m� ��b �
� O 	m�

– Serial ��m � �� ��m� ��� O 	m�

Table 8.7: Sizes C, total CP lengths L, and area-time performances CL� of the ar-

chitectures for multiplication by �n � 	n��m�b 	mod �m � �
, with respect to

element representation.

power of 	�m�b mod �m � �, is listed in Table 8.7. These parameters are also
plotted versus m in Figure 8.4. Some of the parameters are plotted twice in
the figure. For each such pair of curves, the upper curve is an upper bound
(for b � m) and the lower curve is a lower bound (for b � �) on the parameter
in question.

For all b � ��� m�, the fixed architecture is superior to the two universal archi-
tectures. However, the universal bit-serial architecture has the smallest size
among the architecture. Note that the complexity and performance of these
three architectures are less than the complexity and performance of the archi-
tectures for NBC and diminished–1 general multiplication.

8.1.7 Butterfly Computations

In Section 2.3.3, we considered some algorithms for computing the Fermat
number transform. In each of these algorithms, the transform computation is
subdivided into a number of butterfly computations. For example, in the well
known radix-2 decimation-in-time and decimation-in-frequency algorithms,
which are described in Section 2.3.3, a Fermat number transform of length
N � �b is obtained by computing 	N��
 log� N basic butterflies. Each butterfly,
which performs a transform of length two, involves one negation, two addi-
tions, and one multiplication by some power of the transform kernel �. We
refer to Figures 2.1 and 2.2.

8.1. Arithmetic Operations 243

Fixed

Un. s
Un. s/p

Fixed
Un. s/p
Un. s

Fixed
Un. s/p
Un. s

2 4 8 16
��	

��

��

���
Area-time performance

CL
�

m

2 4 8 16
���

���

Area complexity

m

S
iz

e,
C

2 4 8 16
���

���

Time complexity

m

T
o
ta

l
C

P
le

n
g
th

,

L

Figure 8.4: Plots of the complexity parameters C, L, and CL� for

multiplication by �n � 	n��m�b 	mod �m � �
 when using the polar

representation. The parameters are obtained from Table 8.7. “Fixed”= the
fixed bit-parallel architecture. “Un. s/p” = the universal bit-serial/parallel
architecture. “Un. s” = the universal bit-serial architecture.

Next, we consider gross estimations of the total size and the total critical path
length of such a butterfly, with respect to the normal binary coded represen-
tation, the diminished–1 representation, and the polar representation. When
using the normal binary coded and the diminished–1 representations, we as-
sume that we have two adders in parallel. We use the following complexity
parameters:

244 Chapter 8. Comparisons Between Element Representations

� The Normal Binary Coded Representation:

Negation:

�
Cneg � ��m � ��

Lneg � ��m � ��

Addition:

�
Cadd � ��m� �

Ladd � ��m� ��

General multiplication:

�
Cmult � �m log� m� ���m � ��

Lmult � ��m� � ���m � ���

Total complexity:

�������
������

Cbutt�NBC � Cneg � �Cadd � Cmult

� �m log� m� ���m � ��

Lbutt�NBC � Lneg � Ladd � Lmult

� ��m� � ���m � ���

� The Diminished–1 Representation:

Negation:

�
Cdimneg � �m

Ldimneg � �m� ��

Addition:

�
Cdimadd�� � ��m� �

Ldimadd�� � ��m� ��

General multiplication:

�
CAshur�mult � ��m� �
�m� ��

LAshur�mult � ��m � ���

Total complexity:

�������
������

Cbutt�dim � Cdimneg� �Cdimadd��� CAshur�mult

� ��m� � �
�m � ��

Lbutt�dim � Ldimneg� Ldimadd��� LAshur�mult

� ��m� �
�

When using the polar representation, the two butterfly additions can not be
computed exactly in parallel, because then we would get a memory access
conflict. Therefore, the total critical path runs through the negater and the
two adders of the decimation-in-frequency butterfly in Figures 2.2. Multipli-
cation by a power of the transform kernel is carried out during the compu-
tation of the second addition. If the decimation-in-time butterfly is used, the
path through the multiplier must also be added to the total critical path length.

8.1. Arithmetic Operations 245

Hence, for the polar representation (and when using decimation-in-frequency
butterflies), we use the following complexity parameters:

� The Polar Representation:

Negation:

�
Cpolneg � �

Lpolneg � ��

Addition:

��
�

Cpoladd��
 � � �m � �m � �m�� � ���m

Lpoladd��
 mLexp�tab � 	m� � � log� m
Llog�tab

����m � ���

Multiplication by �n:

�
Cmult���par � �m� ��b � �

Lmult���par � ��b � ��

Total complexity:

���������
��������

Cbutt�polar � Cpolneg � Cpoladd�� � Cmult���par

� � � �m � �m � �m�� � ���m � ��b� �

Lbutt�polar � Lpolneg � �Cpoladd��

 �mLexp�tab � �	m� � � log� m
Llog�tab

����m � ���

The butterfly complexity parameters Cbutt�NBC, Lbutt�NBC, Cbutt�dim, Lbutt�dim,
Cbutt�polar, and Lbutt�polar are plotted versus m in Figure 8.5. For Cbutt�polar and
Lbutt�polar we have set maximum b � m and Lexp�tab � Llog�tab � �, respectively.
These complexity parameters, however, do not change significantly for other
(reasonable) values of b, Lexp�tab, and Llog�tab.

FromFigure 8.5 we conclude that, for allm, the diminished–1 representation is
superior to the normal binary coded representation. Regarding the polar rep-
resentation, the complexity parameters Cbutt�polar andLbutt�polar should be taken
with a pinch of salt. The reason for this is the inaccuracies of the modelled ar-
eas and access times of the memories used to perform discrete exponentiation
and compute discrete logarithms. In Sections 7.6.1 and 7.6.2, we only derived
approximate estimations of the parameters Cexp�tab,Lexp�tab, Clog�tab, andLlog�tab.
We can obtain more accurate estimations of these parameters by considering
all parts of the memory architecture in Figure 7.9. Such a complex modelling,
however, is not considered in this thesis.

As mentioned earlier in the thesis, the main disadvantage of the polar repre-
sentation is the relatively large chip area required when implementing polar
addition on the form which uses look-up tables. Still, some other nice proper-
ties of the polar representation may make up for this disadvantage. For

246 Chapter 8. Comparisons Between Element Representations

NBC
Dim.–1
Polar

NBC
Dim.–1
Polar

NBC

Polar
Dim.–1

2 4 8 16 32 64 128256

���

��	

Area complexity

m

S
iz

e,
C

2 4 8 16 32 64 128 256

����

����

Area-time performance

m

CL
�

2 4 8 16 32 64 128256

���

��	
Time complexity

m

T
o
ta

l
C

P
le

n
g
th

,L

Figure 8.5: Plots of the complexity parameters C, L, and CL� for
the complete decimation-in-frequency butterfly when using the NBC, the

diminished–1, or the polar representation.

example, wehave proposed universal architectures for multiplication by pow-
ers of the transform kernel with favourable sizes and critical path lengths, see
Sections 7.6.6 and 8.1.6. Any of these universal architectures can be used in
the computation of a Fermat number transform of arbitrary allowed length in
a Fermat prime field.

8.2 Other element representations

We have focused on the normal binary coded, the diminished–1, and the po-
lar representation. A few alternative ways of representing the (binary coded)
integers of Fermat integer quotient ringsZ�m�� have been suggested in the lit-

8.2. Other element representations 247

erature. For example, Agrawal and Rao [3]� describes an 	m � �
-bit binary
coded representation which uses one of the bits as a zero indicator. However,
none of these forms of representation have been considered in this thesis.

�See also references [6] and [7] in their paper.

248 Chapter 8. Comparisons Between Element Representations

Chapter 9

Conclusions

The arithmetic operations considered in this thesis are essentially modulus re-
duction, code translation, negation, addition, subtraction, general multiplica-
tion, and multiplication by powers of the Fermat number transform kernel.
All operations are carried out in Fermat integer quotient rings. The properties
of these operations were thoroughly investigated with respect to the normal
binary coded representation, the diminished–1 representation, and the polar
representation of the binary coded integers of Fermat integer quotient rings.
The polar representation is applicable only when the Fermatnumber modulus
is prime.

Based on a linear switch-level RC model for CMOS transistors we derived
area and time complexities and combined area�time� performancesof the var-
ious architectures for the above arithmetic operations. The architectures were
mutually compared with respect to these measures of complexity andperform-
ance. To the authors knowledge, such a comparison has not been carried out
before.

Regarding the normal binary coded representation, we found that the area�
time� performanceof some of the architectures considered was relatively poor.
This derives mainly from the relatively complex circuitry for performing the
modulus reduction of the corresponding arithmetic operations. In some archi-
tectures, the modulus reduction part of the circuit represented a rather large
part of the complete architecture.

With respect to the area and time complexities and the area�time� perform-
ance, we established the superiority of the diminished–1 representation over

249

250 Chapter 9. Conclusions

the normal binary coded representation. We also came to the general conclu-
sion that, mainly from a computational complexity point of view, the dimini-
shed–1 representation is in fact the one most efficient in the class of element
representations that can be expressed as a linear elementary function of the
normal binary coded representation.

Using properties of Zech’s logarithms, we derived an algorithm for efficiently
computing the discrete logarithm in Fermat prime fields, principally using
only a number of recursive diminished–1 additions. We also derived an al-
gorithm for performing discrete exponentiation using only a number of re-
cursive diminished–1 additions and some binary shifts. Based on these algo-
rithms, we then derived computational procedures for computing the discrete
logarithm and performing discrete exponentiation using look-up tables of ap-
propriate sizes (one table for each operation). Each resulting algorithm prin-
cipally only involves a number of binary shifts and a table look-up. Hence,
the complexity of computing the discrete logarithm and performing discrete
exponentiation was significantly reduced, to the cost of two look-up tables.

One of the main advantages of the polar representation concerns the complex-
ity of performingmultiplication bypowers of the transformkernel. Weproved
that, for every possible transform length N � �b� � 	 b 	 m, the polar repre-
sentation provides a suitable choice of the transform kernel for which mul-
tiplication by powers of the transform kernel can be carried out using only
one addition modulo �b. We also designed universal architectures (one bit-
serial/parallel and one bit-serial) for performing such multiplications. Thus,
any of these universal architectures can be used in the computation of a Fer-
mat number transform of arbitrary allowed length in a Fermat prime field.

Appendix A

Proofs of Some Theorems

In this Appendix we present proofs of some theorems of the thesis. The proofs
themselves may not be of central importance for the results of the thesis, but
they are included mainly because they have great number theoretic signifi-
cance in the context of the thesis.

A.1 Proof of Theorem 2.1

The outline of the proof is essentially the same as the outline of the proof by
Agarwal and Burrus in [2, Th. 1]. The theorem is equivalent to

Theorem A.1 There exists an invertible NTT of length N in Zq if and only if
N j 	pi � �
 for every prime pi that divides q.

Proof: According to Euler’s theorem (”if q is a positive integer and � is relatively
prime to q, then �	�q� � � 	mod q
”), the order N of the transform kernel �
modulo q must divide
	q
where
 denotes Euler’s totient function (see for ex-
ample Rosen, [84, Ch. 5.3]). It can be shown that for such an integer q with
prime-power factorisation q � pn�� pn�� � � � pnkk , the totient function is

	q
 � pn���
� 	p� � �
pn���

� 	p� � �
 � � � pnk��
k 	pk � �
�

Hence, we get

N j pn���
� 	p� � �
pn���

� 	p� � �
 � � � pnk��
k 	pk � �
�

251

252 Appendix A. Proofs of Some Theorems

However, by the congruence �N � � 	mod q
 we get q j 	�N � �
, and hence
pnii j 	�N � �
, i.e.

�N � � (mod pnii)

for every factor pnii of q. Then, by Euler’s theorem, we get

N j
	pnii
 � pni��
i 	pi � �
� (A.1)

In order for the inverse transform to exist, N�� must exist in the ring. The con-
gruence N � N�� � � (mod q) implies that N and q must be relatively prime,
which means that no prime factor pi of q can be a factor of N . Therefore (A.1)
reduces to

N j 	pi � �
�

for i � �� �� � � � � k, which can also be written as

N j gcd	p� � �� p� � �� � � � � pk � �
�

Conversely, if N j 	pi��
 we know, by Theorem 8.8 of [84], that there are
	N

incongruent integers with order N modulo pi. For pi � � we get the solution
N � � and the theorem becomes trivial. For odd primes pi, let 	i be an integer
with gcd		i� pi
 � � such that ordpi 	i � pi � �. Then, each nonzero integer
of Zpi is congruent to some power of 	i modulo pi [84, Th. 8.3]. For such an
integer �i � 	ri

i with ordpi �i � N and some positive integer ri, it follows from
[84, Th. 8.4] that

N �
pi � �

gcd	pi � �� ri

�

By Theorems 8.9 and 8.10 of [84] we know that if ordpi 	i �
	pi
, the order of
	i modulo pnii is
	pnii
 � 	pi � �
pni��

i for all positive integers ni.

From the above reasoning we get

	
�pi���p

ni��
i

i � 	
N
N
�pi���p

ni��
i

i �

�
	
gcd�pi���ri��p

ni��
i

i

�N

� � 	mod pnii
�

and consequently we can choose

�i � 	
gcd�pi���ri��p

ni��
i

i

as an integer with order N modulo pnii . By the Chinese reminder theorem [84,
Th. 3.12] we can find a unique solution � modulo q � pn�� pn�� � � � pnkk such that

� � �i 	mod pnii

for distinct primes pi and i � �� �� � � � � k. Also, the order of � modulo q is N .
Because gcd	N� pi
 � � we have gcd	N� q
 � � and thus there exists an inverse

A.2. Proof of Theorem 2.3 253

of N modulo q. Hence, there exists an invertible NTT of length N in Zq for
which N j 	pi � �
 for every prime factor pi of q.

�

A.2 Proof of Theorem 2.3

In most number theory books the author leaves the proof of Theorem 2.3 as an
exercise for the reader. In this section we present our solution to this exercise.

The proof involves the concept of quadratic residues.

Definition A.1 An integer a which is relatively prime to a positive integer q is said
to be a quadratic residue modulo q if there is an integer x such that the congruence
x� � a 	mod q
 has a solution. If the congruence has no solution, we say that a is
a quadratic nonresidue modulo q.

The Legendre symbol
�

a
p

	
is frequently used to indicate whether an integer a,

not divisible by the odd prime p, is a quadratic residue modulo p:�
a

p

�
�
�

�
� if a is a quadratic residue modulo p

�� if a is a quadratic nonresidue modulo p
� (A.2)

Euler’s criterion is useful when deciding whether an integer is a quadratic resi-
due modulo a prime:

Lemma A.1 If p is an odd prime and a is a positive integer not divisible by p, then�
a

p

�
� a

p��
� 	mod p
� (A.3)

Proof: See the proof of Theorem 9.2 of Rosen in [84]. �

Now, we are ready for the proof of Theorem 2.3, which is equivalent to

Theorem A.2 Every prime divisor of the Fermat number Ft � ��
t
��, where t � �,

is on the form k � �t�� � �, for some natural number k.

254 Appendix A. Proofs of Some Theorems

Proof: For every Fermat number Ft we have ����
t � 	��
� � � 	mod Ft
,

which implies Ft j 	��t�� � �
. Therefore, for every prime divisor p of Ft, we
get p j 	��t�� � �
 or equivalently

��
t�� � � 	mod p
� (A.4)

Also, by Euler’s theorem we have �p�� � � 	mod p
 and therefore �t�� j 	p�
�
, which means that p is of the form p � k� � �t���� for some positive integer
k�. For t � � we see that p � k� � �t�� � �� � � is congruent to 1 modulo 8.

By Proposition A.17(ii) of Stewart [95], 2 is a quadratic residue modulo p, i.e.�
�
p

	
� �, and thus, from Euler’s criterion (Equation (A.3)) we get

�
p��
� � � 	mod p
� (A.5)

Hence, from (A.4) and (A.5), we see that

�t�� j p� �

�
�

which implies that p is on the form p � � � �t�� � � � �t�� � �.

�

A.3 Proof of Theorem 2.5

TheLegendre symbol, whichwasdefined in (A.2), canbeused to check wheth-
er an integer is primitive or not. It follows from Euler’s criterion (Equation
(A.3)), together with the definition of primitive elements, that a primitive ele-
ment inZFt is a quadratic nonresidue modulo Ft.

The quadratic reciprocity law, which was discovered by Euler and proved by
Gauss, can be of great help to calculate the Legendre symbol:

Lemma A.2 If p and q are odd primes, then�
q

p

�
�

�
p

q

�
	��
 p��� q��

� �

Proof: See for example Lang [57, pp. 76–78] or Rosen [84, Ch. 9.2]. �

We are now able to prove Theorem 2.5, which is equivalent to

A.3. Proof of Theorem 2.5 255

Theorem A.3 The integer 3 is a primitive element of each Fermat prime field ZFt
where t � �.

Proof: (See for example the proof of Theorem 9.7 (Pepin’s test) in the book by
Rosen, [84]). Consider the primes among the Fermat numbers Ft � �m � �;
m � �t for t � �. The quadratic reciprocity law yields�

�

�m � �

�
�

�
�m � �

�

�
	��
 �

m����
� � ���� �

�
�m � �

�

�
�

By Euler’s criterion (A.3) we can write

�m��
�

�
as�

�m � �

�

�
� 	�m � �

���
� � �m � � � 	��
m � � � � � �� (mod 3)�

and hence we have �
�

�m � �

�
� ���

or equivalently

��
m�� � �� 	mod �m � �
� (A.6)

By Euler’s theorem we know that the order of 3 modulo the prime Ft divides
Ft � � � �m, i.e. ordFt� j �m, which means that ordFt� is a power of two. Fur-
thermore, since (A.6) implies that ordFt� j� �m��, we consequently get ordFt� �
�m. Thus, the integer 3 is a primitive element ofZ�m�� for �m � � � � (when-
ever �m � � is prime.

�

256 Appendix A. Proofs of Some Theorems

Appendix B

A Table of Some Primes

n m q q � �

2 1 3 2
3 1 7 � � �
3 2 5 ��

4 2 13 �� � �
5 1 31 � � � � �
5 2 29 �� � �
5 4 17 ��

6 2 61 �� � � � �
7 1 127 � � �� � �
7 4 113 �� � �
7 5 97 �� � �
8 4 241 �� � � � �
8 6 193 �	 � �
9 2 509 �� � ���
9 6 449 �	 � �
9 8 257 �

10 2 1021 �� � � � � � ��
10 4 1009 �� � �� � �
10 8 769 �
 � �

Table B.1: Prime numbers of the form q � �n � �m � � for � � m � n 	 ��. The
table continues on the next page.

257

258 Appendix B. A Table of Some Primes

n m q q � �

11 5 2017 �� � �� � �
12 2 4093 �� � � � �� � ��
13 1 8191 � � �� � � � � � ��
13 5 8161 �� � � � � � ��
13 8 7937 �
 � ��
13 9 7681 �� � � � �
14 2 16381 �� � �� � � � � � ��
14 4 16369 �� � � � �� � ��
14 10 15361 ��� � � � �
14 12 12289 ��� � �
15 9 32257 �� � �� � �
16 4 65521 �� � �� � � � � � ��
16 10 64513 ��� � �� � �
16 12 61441 ��� � � � �
17 1 131071 � � � � � � �� � ���
17 5 131041 �� � �� � � � � � ��
17 6 131009 �	 � �� � �

17 8 130817 �
 � � � ��
17 14 114689 ��� � �
17 16 65537 ��	

19 1 524287 � � �� � � � �
 � ��
19 5 524257 �� � � � �� � ���
19 9 523777 �� � � � �� � ��
19 12 520193 ��� � ���
20 2 1048573 �� � �� � � � �
 � ��
20 14 1032193 ��� � �� � �
20 18 786433 ��
 � �
22 2 4194301 �� � � � �� � �� � �� � ��
23 4 8388593 �� � ������
23 13 8380417 ��� � � � �� � ��
23 17 8257537 ��
 � �� � �
23 20 7340033 ��� � �
24 2 16777213 �� � � � �� � �
 � ���
24 6 16777153 �	 � �� � � � �
 � ��
24 8 16776961 �
 � � � � � �� � ���
24 14 16760833 ��� � � � �� � ��
24 18 16515073 ��
 � �� � �

Table B.1: cont’: Prime numbers of the form q � �n � �m � � for � � m � n 	 ��.
The table continues on the next page.

259

n m q q � �

25 12 33550337 ��� � ��
�
25 14 33538049 ��� � �� � �

25 18 33292289 ��
 � ���
26 12 67104769 ��� � � � �� � ���
26 16 67043329 ��	 � � � �� � ��
27 11 134215681 ��� � � � � � �� � ���
27 21 132120577 ��� � �� � �
28 16 268369921 ��	 � �� � � � � � ��
29 2 536870909 �� � � � �� � ������
29 6 536870849 �	 � �� � ������
29 8 536870657 �
 � �� � ��� � ���
29 9 536870401 �� � � � �� � �� � �� � ��
29 18 536608769 ��
 � �� � �

29 26 469762049 ��	 � �
30 18 1073479681 ��
 � �� � � � � � ��
31 1 2147483647 � � �� � � � �� � �� � ��� � ���
31 9 2147483137 �� � � � �� � �
 � ���
31 17 2147352577 ��
 � � � �� � ���
31 19 2146959361 ��� � �� � � � � � ��
31 24 2130706433 ��� � ���
31 25 2113929217 ��� � �� � �
31 27 2013265921 ��
 � � � �
32 20 4293918721 ��� � �� � � � � � ��
32 30 3221225473 ��� � �

Table B.1: cont’: Prime numbers of the form q � �n � �m �� for � � m � n 	 ��.

260 Appendix B. A Table of Some Primes

Appendix C

Further Properties of Zech’s
Logarithms

Several properties of Zech’s logarithms in Fermat prime fields were consid-
ered in Chapter 7. In this appendix we present some additional properties of
such logarithms. These properties may be used to derive alternative ways of
computing Zech’s logarithms in Fermat prime fields.

Theorem C.1 Let P 	

 � �
 be a polar representation of
 � Z�m��. For P 	�
 �

we have

Z	�m��
 �
 	mod �m
 (C.1)

Z	

 � � 	mod �m
 (C.2)

For nonzero
, i.e. for �
 �Z�m, the following congruences hold.

Z	��

 � Z	�

� �
 	mod �m
 (C.3)

Z

Z	�

 � �m��

� � �
 � �m�� 	mod �m
 (C.4)

Z

�m�� � Z	�

� � �
 � Z	�

 	mod �m
 (C.5)

Z

�m�� � �
 � Z	�

� � �Z	�

 	mod �m
 (C.6)

Z

�m�� � �
 � Z	�

� � �m�� � �
 	mod �m
 (C.7)

261

262 Appendix C. Further Properties of Zech’s Logarithms

Proof:

� Equation (C.1): FromDefinitions 7.1 and 7.2 weget	Z��
m��� � ��	�m�� �

� � � � � � 	
 	mod �m � �
 and thus Z	�m��
 �
 	mod �m
.

� Equation (C.2): From 	Z�
� � � � 	
 � � � 	� 	mod �m � �
 we get
Z	

 � � 	mod �m
.

� Equation (C.3): Taking the discrete logarithm of the congruence	Z����� �
��	��� � 	��	��
	��� � 	Z������� 	mod �m��
 yields Z	��

 � Z	�

� �

	mod �m
.

� Equation (C.4): From the congruence 	Z	Z������
m��
 � � � 	Z���� � � �

	� � 	��
 � 	����m�� 	mod �m � �
 we get Z 	Z	�

 � �m��
 � �
 � �m��

	mod �m
.

� Equation (C.5): By (C.3) wegetZ 	�m�� � Z	�

 � Z 	�	Z	�

 � �m��

 �
Z 	Z	�

 � �m��
 � Z	�

 � �m�� 	mod �m
. Using (C.4) we then get
Z 	�m�� � Z	�

 � �
 � �m�� � Z	�

 � �m�� � �
 � Z	�

 	mod �m
.

� Equation (C.6): Using (C.3) and (C.5), we canwriteZ 	�m�� � �
 � Z	�

 �
Z 	�m�� � Z	��

 � ��
�Z	��

 � ��
� 	Z	�

� �

 � Z	�

 	mod �m
.

� Equation (C.7): Using (C.3) and (C.4), we canwriteZ 	�m�� � �
 � Z	�

 �
Z 	�m�� � Z	��

 � ��
 � �m�� 	mod �m
.

�

The set of all polar integers �
 � Z�m can be partitioned into subsets such that
the Zech logarithms of all integers in each subset can be computed using the
knowledge of only one logarithm in the subset. This property is demonstrated
in the following theorem

Theorem C.2 Let �
 � Z�m n f�m��g be a polar integer and let f�, f�, f�, f�, and f�
be mappings formZ�m toZ�m, given by

f�	�

 � ��
 	mod �m
 (C.8)

f�	�

 � Z	�

 � �m�� 	mod �m
 (C.9)

f�	�

 � �m�� � Z	�

 	mod �m
 (C.10)

f�	�

 � �m�� � �
 � Z	�

 	mod �m
 (C.11)

f�	�

 � �m�� � �
 � Z	�

 	mod �m
 (C.12)

263

Let F 	�

 be a set of polar integers defined by F 	�

�
� f�
� f�	�

� f�	�

� f�	�

�

f�	�

� f�	�

g. Then, we have F 	�

 � F 	f�	�

 � F 	f�	�

 � F 	f�	�

 �
F 	f�	�

 � F 	f�	�

.

Proof: Let j � f�� �� �� �� �g. Then, by (C.8), (C.9), (C.10), (C.11), and (C.12)
we have

f�	fj	�

 � �fj	�

 	mod �m

f�	fj	�

 � Z	fj	�

 � �m�� 	mod �m

f�	fj	�

 � �m�� � Z	fj	�

 	mod �m

f�	fj	�

 � �m�� � fj	�

� Z	fj	�

 	mod �m

f�	fj	�

 � �m�� � fj	�

 � Z	fj	�

 	mod �m
�

respectively. Depending on j, Zech’s logarithm of fj	�

 is given byeither (C.3),
(C.4), (C.5), (C.6), or (C.7). By (C.8) and (C.3) it follows thatZ	f�	�

 � Z	��

 �
Z	�

� �
 	mod �m
. Therefore, for j � � we get

f�	f�	�

 � �f�	�

� �
 	mod �m

f�	f�	�

 � Z	f�	�

 � �m�� � Z	�

� �
 � �m��

� f�	�

 	mod �m

f�	f�	�

 � �m�� � Z	f�	�

 � �m�� � 	Z	�

� �

� f�	�

 	mod �m

f�	f�	�

 � �m�� � f�	�

� Z	f�	�

 � �m�� � �
 � 	Z	�

� �

� f�	�

 	mod �m

f�	f�	�

 � �m�� � f�	�

 � Z	f�	�

 � �m�� � �
 � Z	�

� �

� f�	�

 	mod �m

and thus F 	f�	�

 � ff�	�

� f�	f�	�

� f�	f�	�

� f�	f�	�

� f�	f�	�

�
f�	f�	�

g � ff�	�

� �
� f�	�

� f�	�

� f�	�

� f�	�

g � F 	�

.

For j � �� �� �� � and i � �� �� �� �� �, the integer fi	fj	�

 can be obtained
in a way similar to the above derivation of fi	f�	�

. All elements fi	fj	�

are shown in Table C.1. For example, f�	f�	�

 is found as the element f�	�

in the intersection of the f�-row and the f�-column. The elements in the first
row of the table form the set F 	�

, the elements in the second row form the

264 Appendix C. Further Properties of Zech’s Logarithms

h

— f� f� f� f� f�

— �
 f�	�

 f�	�

 f�	�

 f�	�

 f�	�

 �� F 	�

f� f�	�

 �
 f�	�

 f�	�

 f�	�

 f�	�

 �� F 	f�	�

g f� f�	�

 f�	�

 �
 f�	�

 f�	�

 f�	�

 �� F 	f�	�

f� f�	�

 f�	�

 f�	�

 f�	�

 f�	�

 �
 �� F 	f�	�

f� f�	�

 f�	�

 f�	�

 f�	�

 �
 f�	�

 �� F 	f�	�

f� f�	�

 f�	�

 f�	�

 �
 f�	�

 f�	�

 �� F 	f�	�

Table C.1: The table shows, for i� j � �� �� �� �� �, all combinations of fi	fj	�

 �
g	h	�

, where g and h denote fi and fj , respectively. The symbol ’—’ indicates
that no mapping is carried out, i.e. if h ’=’ — or g ’=’ — we get the mapping
g	�

 or h	�

, respectively.

set F 	f�	�

, the elements in the third row form the set F 	f�	�

, etc. Further-
more, we see that each of the elements �
, f�	�

, f�	�

, f�	�

, f�	�

, and f�	�

only appears once in every row (and column) of the table. Hence, we have
F 	�

 � F 	f�	�

 � F 	f�	�

 � F 	f�	�

 � F 	f�	�

 � F 	f�	�

. �

Thus, Theorem C.2 says that given two arbitrary elements �� and �� of F 	�

, the

sets F 	 ��
 and F 	��
 are equivalent. Let �� � f�	�

 	mod �m
 and �� � f�	�

	mod �m
. Then, by Theorem C.2 we get F 	�

 � f�
� ��� ��gSf��
� ���� ���g,
where ��
 � f�	�

 	mod �m
, ��� � f�	�

 	mod �m
, and ��� � f�	�

	mod �m
. Using these notations for the elements of F 	�

, we show in Fig-

ure C.1 how these elements are related to each other, via the mappings defined
in Theorem C.2. Table C.1 and Figure C.1 are equivalent descriptions of the re-
lations between the elements of F 	�

.

It can bee seen in Figure C.1 that the paths f� � f� associated with a set F 	�

(for some �
) form a pair of triples. The paths f� � f� are marked with thicker
lines in the figure. The set of all integers ofZ�m, except the integer �m��, can be
partitioned into disjoint subsets of size six, which each can be viewed as such
a pair of triples. Note, however, that one of these subsets only comprises three
integers: It follows from (C.8), (C.9), (C.10), (C.11), and (C.12) in Theorem C.2
that f�	�
 � �, f�	�
 � f�	�
, and f�	�
 � f�	�
. Hence, the subset F 	�
 is equal
to f�� f�	�
� f�	�
g � f�� �m�� � Z	�
� �m�� � Z	�
g, which has size three (3).

265

��

��

�

f�

f� f�

f�

���
f�

f�

f�

f�

f�

f�

f�

���

��

f�

f�

f�

f�

f�

f�

f�

f�

Figure C.1: Relations between the polar integers ��, ���, �
, ��
, ��, and ��� modulo
�m, with respect to the mappings f�, f�, f�, f�, and f�.

The set of all Zech’s logarithms, except Z	�m��
 �
, is also partitioned into
corresponding subsets of size six. This is illustrated, for m � �, in Figure C.2.
The number of disjoint subsets of size six, as described above, equals

	�m � �
 �� � �

�
�

�m�� � �

�
�

Suppose the Zech logarithm of one integer, say �
, from each of the above sub-
sets (of size six) is stored in a table. Then, the Zech logarithm Z	x
 of an arbi-
trary integer x � Z�m n f�m��g can be computed in the following way:

1. Find the unique integer �
 which is contained in F 	x
 and whose Zech’s
logarithm Z	�

 is stored in the table. The set F was defined in Theo-
rem C.2.

2. Read Z	�

 from the look-up table.

266 Appendix C. Further Properties of Zech’s Logarithms

Z	�

Z	�

Z	�

Z	�

Z	�

Z	�

Z	�
Z	��

Z	��

Z	�

Z	

Z	��

Z	��

Z	��

Z	��

Z	�

Figure C.2: The Zech logarithms inZ����, partitioned into pairs of triples.

3. Use the congruences in Theorem C.1 and C.2 to compute, from x, �
, and
Z	�

, the desired logarithm Z	x
.

When �m�� is added to anm-bit normal binary coded integer, the sum is sim-
ply obtained by inverting the most significant bit of the integer. Therefore,
apart from this simple operation, the computation of an integer fj	�

, or its
Zech’s logarithmZ	fj	�

, requires atmost one addition modulo �m. Themain
problem here is to carry out Step 1. We have not fully investigated how to se-
lect the integers �
 which in a unique way should map to the entries of the look-
up table. This problem is similar to the problem in Section 7.5.4 of finding the
unique positions inMm.

We conclude this appendix by presenting two properties of the subset F 	x
.
These properties may be of help in Step 1, when trying to find the unique inte-
ger �
 of F 	x
. Consider the set F 	x
 of integers, where x is an arbitrary integer
in any triple, as described above. Then, by the congruences in Theorems C.1

267

and C.2 we straightforwardly obtain the two following properties:�

x� f�	x
 � f�	x
 � x�

�m�� � Z	x

�
�

�m�� � x� Z	x

�
� � 	mod �m
 (C.13)

Z	x
 � Z	f�	x

 � Z	f�	x

 � Z	x
 � 	x� Z	x

 �

�m�� � x

�
� �m�� 	mod �m
� (C.14)

Remark: We have derived still more properties of Zech‘s logarithms in Fermat
prime fields. However, these properties are not considered here.

�Alternatively, using the above notations, we can write 	� � 		 � 	� �
 �mod �m� and

Z�	�� � Z� 		� � Z�	�� � �m�� �mod �m�.

268 Appendix C. Further Properties of Zech’s Logarithms

Bibliography

[1] M. Afgahi and J Yuan, “A Novel Implementation of Double-Edge
Trigger Flip-Flop for High Speed CMOS Circuit”, IEEE Journal of
Solid-State Circuits, Vol. 26, No. 8, pp. 1168–1170, August 1991.

[2] R. C. Agarwal and C. S. Burrus, “Fast Convolution Using Fermat
Number Transforms with Applications to Digital Filtering”, IEEE
Trans. Acoust., Speech, and Signal Processing, Vol. ASSP-22, No. 2, pp.
87–97, April 1974.

[3] D. P. Agrawal and T. R. N. Rao, “Modulo 	�n��
 arithmetic logic”,
IEE Journ. Electronic Circuits and Systems, Vol. 2, pp. 186–188, No-
vember 1978.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, 1974.

[5] L.-I. Alfredsson, “Properties of Zech’s Logarithms over Fermat
Prime Fields”, Proc. Sixth Joint Swedish-Russian International Work-
shop on Information Theory, Mölle, Sweden, pp. 310–314, August
1993.

[6] L.-I. Alfredsson, “A Fast Fermat Number Transform for Long
Sequences”, Proc. Seventh European Signal Processing Conference,
(EUSIPCO-94), Edinburgh, Scotland, Vol. III, pp. 1579–1581, Sep-
tember 1994.

[7] L.-I. Alfredsson, “A Mirrored Integer Sequence of Length �m and
the Discrete Logarithm in Fermat Prime Fields”, Proc. Sixth Joint

269

270 Bibliography

Swedish-Russian International Workshop on Information Theory, St.-
Petersburg, Russia, pp. 15–19, June 1995.

[8] M. Annaratone, Digital CMOS Circuit Design, Kluwer Academic
Publishers, 1986.

[9] B. Arambepola and S. Choomchuay, “Algorithms and Architec-
tures for Reed-Solomon Codes”, GEC Journal of Research, Vol. 9, No.
3, pp. 172–184, 1992.

[10] A. S. Ashur, “Area-Time Efficient Diminished–1 Multiplier for Fer-
mat Number Transform”, Electronic Letters, Vol. 30, No. 20, pp.
1640–1641, September 1994.

[11] M. Benaissa, A. Bouridane, S. S. Dlay, and A. G. J. Holt,
“Diminished–1 Multiplier for a Fast Convolver and Correla-
tor Using the Fermat Number Transform”, IEE Proceedings, Vol.
135, Pt. G, No. 5, pp. 187–193, October 1988.

[12] M. Benaissa, A. Pajayakrit, S. S. Dlay, and A. G. J. Holt, “VLSI De-
sign for Diminished–1 Multiplication of Integers Modulo a Fermat
Number”, IEE Proceedings, Vol. 135, Pt. E, No. 3, pp. 161–164, May
1988.

[13] M. Benaissa, S. S. Dlay, and A. G. J. Holt, “CMOS VLSI De-
sign of a High-Speed Fermat Number Transform Based Con-
volver/Correlator Using Three-Input Adders”, IEE Proceedings,
Vol. 138, Pt. G, No. 2, pp. 182–190, April 1991.

[14] H. B. Bakoglu, Circuits, Interconnections, and Packing for VLSI,
Addison-Wesley, 1990.

[15] G. Bilardi, M. Pracchi, and F. P. Preparata, “A Critique and an Ap-
praisal of VLSI Models of Computation”, VLSI Systems and Com-
putations, pp. 81–88, Editors: H. T. Kung, B. Sproull, and G. Steele,
Springer-Verlag, 1981.

[16] R. E. Blahut, Theory and Practice of Error Control Codes, Adison-
Wesley, 1984.

[17] R. E. Blahut, Fast Algorithms for Digital Signal Processing, Adison-
Wesley, 1985.

[18] I. E. Bocharova and B. D. Kudryashov, “Fast Exponentiation Based
on Lempel-Ziv Algorithm”, Proc. of the Sixth Joint Swedish-Russian
International Workshop on Information Theory, Mölle, Sweden, pp.
259–263, August 1992.

Bibliography 271

[19] I. E. Bocharova and B. D. Kudryashov, “Fast Exponentiation
Based on Data Compression Algorithms”, Proc. of the Seventh Joint
Swedish-Russian International Workshop on Information Theory, St.-
Petersburg, Russia, pp. 36–39, June 1995.

[20] S. Boussakta and A. G. J. Holt, “Calculation of the discrete Hartley
transform via the Fermat number transform using a VLSI chip”,
IEE Proceedings, Vol. 135, Pt. G, No. 3, pp. 101–103, June 1988.

[21] S. Boussakta and A. G. J. Holt, “Fast multidimensional discrete
Hartley transform using Fermat number transform”, IEE Proceed-
ings, Vol. 135, Pt. G, No. 6, pp. 253–257, December 1988.

[22] S. Boussakta and A. G. J. Holt, “Relationship between the Fermat
number transform and the Walsh-Hadamard transform”, IEE Pro-
ceedings, Vol. 136, Pt. G, No. 4, pp. 191–204, August 1989.

[23] S. Boussakta, A. Y. Md. Shakaff, F. Marir, and A. G. J. Holt, “Num-
ber theoretic transforms of periodic structures and their applica-
tions”, IEE Proceedings, Vol. 135, Pt. G, No. 2, pp. 83–96, April 1988.

[24] R. P. Brent, “Factorization of the Eleventh Fermat Number” (pre-
liminary report), Abstracts, Amer. Math. Soc., Vol. 10, 89T-11-73,
1989.

[25] R. P. Brent, “Parallel Algorithms for Integer Factorizations”, Num-
ber Theory and Cryptography, London Math. Soc. Lecture Note Se-
ries, Editor: J. H. Loxton, Vol. 154, Cambridge, 1990.

[26] R. P. Brent and H. T. Kung, “The Area-Time Complexity of Binary
Multiplication”, Journ. of the Ass. for Comp. Mash., Vol. 28, No. 3, pp.
521–534, July 1981.

[27] R. P. Brent and H. T. Kung, “ARegular Layout for Parallel Adders”,
IEEE Trans. on Computers, Vol. C-31, No. 3, pp. 260–264, March
1982.

[28] J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman, and S. S.
Wagstaff, Jr., Factorizations of bn � �� b � �� �� �� �� �� ��� ��� �� up
to high powers, Contemporary Mathematics, Volume 22, American
Mathematical Society, Second Edition, 1988.

[29] J. T. Butler (editor), Multiple-valued logic in VLSI, IEEE Computer
Press Society, Los Alamitos, 1991.

272 Bibliography

[30] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-Power
CMOS Digital Design”, IEEE Journal of Solid-State Circuits, Vol. 27,
No. 4, pp. 473–484, April 1992.

[31] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS
Design, Kluwer Academic Publishers, 1995.

[32] J. J. Chang, T. K. Truong, H. M. Shao, I. S. Reed, and I-S Hsu, “The
VLSI Design of a Single Chip for the Multiplication of Integers
Modulo a Fermat Number”, IEEE Trans. Acoust., Speech, and Signal
Processing, Vol. ASSP-33, No. 6, pp. 1599–1602, December 1985.

[33] P. R. Chevillat, “Transform-Domain Digital Filtering with Num-
ber Theoretic Transforms and Limited Word Lengths”, IEEE Trans.
Acoust., Speech, and Signal Processing, Vol. ASSP-26, No. 4, pp. 284–
290, August 1978.

[34] J. H. Conway, “A Tabulation of Some Information Concerning Fi-
nite Fields”, Computers in Mathematical Research (R. F. Churchhouse
and J.-C. Herz, Editors), pp. 37–50, North-Holland, Amsterdam,
1968.

[35] J. W. Cooley and J. W. Tukey, “An algorithm for the machine cal-
culation of complex Fourier series”, Mathematics Computation, Vol.
19, pp. 297–301, 1965.

[36] L. E. Dickson, History of the theory of numbers, Vol. I, Washington D.
C.: Carnegie Institute, 1919.

[37] V. S. Dimitrov, T. V. Cooklev, and B. D. Donevsky, “Generalized
Fermat-Mersenne Number Theoretic Transform”, IEEE Trans. on
Circuits and Systems–II: Analog and Digital Signal Processing, Vol. 41,
No. 2, pp. 1–7, February 1994.

[38] E. Dubois and A. N. Venetsanopoulos, “Number Theoretic Trans-
forms with modulus ��q��q��”, Rec. 1978 IEEE Int. Conf. Acoust.,
Speech, and Signal Processing, pp. 624–627, April 1978.

[39] E. Dubois and A. N. Venetsanopoulos, “The Generalized Discrete
Fourier Transform in Rings of Algebraic Integers”, IEEE Trans.
Acoust., Speech, and Signal Processing, Vol. ASSP-28, No. 2, pp. 169–
175, April 1980.

[40] P. Duhamel and H. Hollman, “Split-radix FFT Algorithm”, Elec-
tron. Lett., Vol. 20, pp. 14–16, January 1984.

Bibliography 273

[41] P. Duhamel, “Implementation of ’Split-Radix’ FFT Algorithms for
Complex, Real, and Real-Symmetric Data”, IEEE Trans. Acoust.,
Speech, and Signal Processing, Vol. ASSP-34, No. 2, pp. 285–295,
April 1986.

[42] H. M. Edwards, Fermat’s Last Theorem, A Genetic Introduction to Al-
gebraic Number Theory, Springer-Verlag, New York 1977.

[43] W. C. Elmore, “The Transient Response of Damped Linear Net-
works with Particular Regard to Wideband Amplifier”, Journal of
Applied Physics, Vol. 19, No. 1, pp. 55–63, January 1948.

[44] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques
for Analog and Digital Circuits, McGraw-Hill Publishing Company,
1991.

[45] W. M. Gentleman and G. Sande, “Fast Fourier transforms for fun
and profit”, Fall Joint Computing Conference, AFIPS Proc., Vol. 29,
pp. 563–578, 1966.

[46] D. Gollman, Y. Han, and C. J. Mitchell, “Redundant Integer Repre-
sentations and Fast Exponentiation”, To appear in Designs, Codes
and Cryptography.

[47] S. W. Golomb, “Properties of the Sequence � � �n � �”, Mathematics
of Computation, Vol. 30, N0. 135, pp. 657–663, July 1976.

[48] S. W. Golomb, I. S. Reed, and T. K. Truong, “Integer Convolutions
over the Finite Field GF 	� � �n��
”, SIAM Journal of Applied Math.,
Vol. 32, No. 2, pp. 356–365, March 1977.

[49] N. Hedenstierna and K. O. Jeppson, “CMOS Circuit Speed and
Buffer Optimization”, IEEE Trans. on Computer-Aided Design, Vol.
CAD-6, No. 2, pp. 270-281, March 1987.

[50] I. N. Herstein, Topics in Algebra, Second Edition, John Wiley & Sons,
1975.

[51] K. Huber, “Some Comments on Zech’s Logarithms”, IEEE Trans.
on Inf. Theory, Vol. IT-36, No. 4, pp. 946–950, July 1990.

[52] K. Hwang, Computer Arithmetic: principles, architecture, and design,
John Wiley & Sons, 1979.

[53] K. Imamura, “A Method for Computing Addition Tables in
GF 	pn
”, IEEE Trans. on Inf. Theory, Vol. IT-26, No. 3, pp. 367–369,
May 1980.

274 Bibliography

[54] J. Justesen, “On the Complexity of Decoding Reed-Solomon
Codes”, IEEE Trans. on Inf. Theory, Vol. IT-22, pp. 237–238, March
1976.

[55] A. Karatsuba and Y. Hofman, “Multiplication of multidigit num-
bers on automata” (in Russian), Dokl. Akad. Nauk SSSR, Vol. 145,
pp. 293–294, 1962.

[56] D. E. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical
Algorithms, Addison-Wesley, Reading, MA, 1969.

[57] S. Lang, Algebraic Number Theory, Springer-Verlag, New York, 1986.

[58] L. M. Leibowitz, “A Simplified Binary Arithmetic for the Fermat
Number Transform”, IEEE Trans. Acoust., Speech, and SignalProcess-
ing, Vol. ASSP-24, No. 5, pp. 356–359, October 1976.

[59] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard, “The
factorization of the ninth Fermat Number”, Math. Comp., Vol. 61,
pp. 318–349, 1993.

[60] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Math-
ematics and its Applications, Volume 20, Cambridge University
Press, 1984.

[61] D. Liu, Low Power Digital CMOS Design, Ph.D. dissertation, No.
364, Linköping University, Linköping, Sweden 1994.

[62] K. Y. Liu, I. S. Reed, and T. K. Truong, “Fast Number-Theoretic
Transforms for Digital Filtering”, Electronic Latters, Vol. 12, No. 24,
pp. 644–646, November 1976.

[63] K. Y. Liu, I. S. Reed, and T. K. Truong, “High-Radix Transforms for
Reed-Solomon Codes over Fermat Primes”, IEEE Trans. on Inf. The-
ory, Vol. IT-23, No. 6, pp. 776–778, November 1977.

[64] B. J. McCarroll, C. G. Sodini, and H.-S. Lee, “A High-Speed CMOS
Comparator for Use in an ADC”, IEEE Journal of Solid-StateCircuits,
Vol. 23, No. 1, pp. 159–165, February 1988.

[65] J. H. McClellan, “Hardware Realization of a Fermat Number
Transform”, IEEE Trans. Acoust., Speech, and Signal Processing, Vol.
ASSP-24, No. 3, pp. 216–225, June 1976.

[66] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-
Wesley, 1980.

Bibliography 275

[67] A. M. Mohsen and C. A. Mead, “Delay-Time Optimization for
Driving and Sensing of Signals on High-Capacitance Paths of VLSI
Systems”, IEEE Journal of Solid-State Circuits, Vol. SC-14, No. 2, pp.
462–470, April 1979.

[68] Y. Morikawa, H. Hamada, and K. Nagayasu, “Hardware Reali-
sation of High Speed Butterfly for the Maximum Length Fermat
Number Transform”, Trans. IECE, Japan, Vol. J66-D, No. 1, pp. 81–
88 1983. (We have not yet been able to get a copy of this reference.)

[69] H. Murakami, I. S. Reed, and L. R. Welch, “A Transform Decoder
for Reed-Solomon Codes in Multiple-User Communication Sys-
tems”, IEEE Trans. on Inf. Theory, Vol. IT-23, No. 6, pp. 675–683, No-
vember 1977.

[70] J. K. Ousterhout, “A Switch-Level Timing Verifier for Digital MOS
VLSI”, IEEE Trans. on Computer-Aided Design, Vol. CAD-4, No. 3,
pp. 336–349, July 1985.

[71] A. Pajayakrit, VLSI Architecture and Design for the Fermat Number
Transform Implementation, PhD. Thesis, Dept. of Electrical and Elec-
tronic Engineering, University of Newcastle-Upon-Tyne, United
Kingdom, 1988.

[72] S. C. Pohlig and M. E. Hellman, “An Improved Algorithm for
Computing Logarithms over GF 	p
 and Its Cryptographic Signif-
icance”, IEEE Trans. on Inf. Theory, Vol. IT-24, No. 1, pp. 106–110,
January 1978.

[73] J. M. Pollard, “Implementation of Number-Theoretic Transforms”,
Electronic Letters, Vol. 12, No. 15, pp. 378–379, July 1976.

[74] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Princi-
ples, Algorithms, and Applications, Second Edition, Macmillan Publ.
Comp., 1992.

[75] J.G. Proakis, C. M. Rader, F. Ling, andC. L. Nikias, AdvancedDigital
Signal Processing, Macmillan Publ. Company, 1992.

[76] D. A. Pucknell and K. Eshraghian, Basic VLSI Design, Third Edi-
tion, Prentice Hall, 1994.

[77] C. M. Rader, “Discrete Convolution via Mersenne Transforms”,
IEEE Trans. Comput., Vol. C-21, No. 12, pp. 1269–1273, December
1972.

276 Bibliography

[78] C. M. Rader, “On the application of the number theoretic meth-
ods of high-speed convolution to two-dimensional filtering”, IEEE
Trans. on Circuits and Systems, Vol. 22, p. 575, 1975.

[79] L. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing, Prentice-Hall, 1975.

[80] I. S. Reed, R. A. Scholtz, T. K. Truong, and L. R. Welsh, “The Fast
Decoding of Reed-Solomon Codes Using Fermat Theoretic Trans-
forms and Continued Fractions”, IEEE Trans. on Inf. Theory, Vol. IT-
24, No. 1, pp. 100–106, January 1978.

[81] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields”, Journal of the Society for Industrial and Applied Mathematics,
Vol. 8, pp. 300–304, June 1960.

[82] I. S. Reed, T. K. Truong, and L. R. Welch, “The Fast Decoding of
Reed-Solomon Codes Using Fermat Transforms”, IEEE Trans. on
Inf. Theory, Vol. IT-24, No. 4, pp. 497–499, July 1978.

[83] R. M. Robinson, “A Report on Primes of the Form k � �n � � and
on Factors of Fermat Numbers”, Proc. of the Amer. Math. Soc., Vol.
9, pp. 673–681, 1958.

[84] K. H. Rosen, Elementary Number Theory and its Applications, Third
Edition, Addison-Wesley, 1993.

[85] J. Rubinstein, P. Penfield Jr., and M. A. Horowitz, “Signal Delay
in RC Tree Networks”, IEEE Trans. on Computer-Aided Design, Vol.
CAD-2, No. 3, pp. 202–211, July 1983.

[86] A. Schönhage and V. Strassen, “Fast multiplication of integers” (in
German), Computing, Vol. 7, pp. 281–292, 1971.

[87] W. C. Siu and A. G. Constantinides, “Very fast discrete Fourier
transform, using number theoretic transform”, IEE Proceedings,
Vol. 130, Pt. G, No. 5, pp. 201–204, October 1983.

[88] W. C. Siu and A. G. Constantinides, “On the computation of dis-
crete Fourier transform using Fermat number transform”, IEE Pro-
ceedings, Vol. 131, Pt. F, No. 1, pp. 7–14, February 1984.

[89] A. Y. Md. Shakaff, Practical Implementation of the Fermat Number
Transform with Applications to Filtering and Image Processing, PhD.
Thesis, Dept. of Electrical and Electronic Engineering, University
of Newcastle-Upon-Tyne, United Kingdom, 1988.

Bibliography 277

[90] A. Y. Md. Shakaff, A. Pajayakrit, and A. G. J. Holt, “Practical imple-
mentations of block-mode image filters using the Fermat number
transformon amicroprocessor based system”, IEE Proceedings, Vol.
135, Pt. G, No. 4, pp. 141–154, August 1988.

[91] A. Shiozaki, T. K. Truong, K. M. Cheung, and I. S. Reed, “Fast
Transform Decoding of Nonsystematic Reed-Solomon codes”, IEE
Proceedings, Vol. 137, Pt. E, No. 2, pp. 139–143, March 1990.

[92] H. C. Shyu, T. K. Truong, I. I. Reed, I. S Hsu, and J. J. Chang, “A
New VLSI Complex Integer Multiplier Which Uses a Quadratic-
Polynomial Residue System with Fermat Numbers”, IEEE Trans.
Acoust., Speech, and Signal Processing, Vol. ASSP-35, No. 7, pp. 1076–
1079, July 1987.

[93] W. Sierpiński, Elementary Theory of Numbers, Editor: A. Schinzel,
Second Edition, PWN-Polish Scientific Publishers, 1988.

[94] A. N. Skodras and A. G. Constantinides, “Efficient Computation of
the Split-Radix FFT”, IEE Proceedings–F, Vol. 139, No. 1, pp. 56–60,
February 1992.

[95] I. N. Stewart and D. O. Tall, Algebraic Number Theory, Second Edi-
tion, Chapman & Hall, 1987, Reprinted 1994.

[96] R. Sundblad and C. Svensson, “Fully Dynamic Switch-Level Sim-
ulation of CMOS Circuits”, IEEE Trans. on Computer-Aided Design,
Vol. CAD-6, No. 2, pp. 282–289, March 1987.

[97] S. Sunder, F. El-Guibali, and A. Antoniou, “Area-efficient
Diminished–1 Multiplier for Fermat Number-theoretic Trans-
form”, IEE Proceedings–G, Vol. 140, No. 3, pp. 211–215, June
1993.

[98] C. Svensson, K. Cheng, and J. Yuan, “Decisionmaking in Fast A/D
Converters”, Int. Report LiTH-IFM-IS-154, Linköping University,
October 1989.

[99] C. Svensson and D. Liu, “Low Power Circuit Techniques”, Manu-
script, 1995.

[100] C. D. Thompson, “Area-Time Complexity for VLSI”, Proc. Eleventh
Annual ACM Symposium on the Theory of Computing, pp. 81–88,
1979.

278 Bibliography

[101] P. J. Towers, A. Pajayakrit, and A. G. J. Holt, “Cascadable NMOS
VLSI circuit for implementing a fast convolver using the Fermat
number transform”, IEE Proceedings, Vol. 134, Pt. G, No. 2, pp. 57–
66, April 1987.

[102] T. K. Truong, J. J. Chang, I. S. Hsu, D. Y. Pei, and I. S. Reed, “Tech-
niques for Computing the Discrete Fourier Transform Using the
Quadratic Residue Fermat Number Systems”, IEEE Trans. on Com-
puters, Vol. C-35, No. 11, pp. 1008–1012, November 1986.

[103] T. K. Truong, I. S. Reed, C. -Yeh, and H. M. Shao, “A Parallel VLSI
Architecture for a Digital Filter of Arbitrary Length Using Fermat
Number Transforms”, Proceedings of IEEE International Conference
on Circuits and Computers (ICCC ’82), New York, pp. 574–578, Sept.
28 – Oct. 1, 1982.

[104] J. D. Ullman, Computational Aspects of VLSI, Computer Science
Press, 1983.

[105] J. P. Uyemura, Circuit Design for CMOS VLSI, Kluwer Academic
Publishers, 1992.

[106] J. P. Uyemura, Fundamentals of MOS Digital Integrated Circuits,
Addison-Wesley, 1988.

[107] C. -Yeh, I. S. Reed, J. J. Chang, and T. K. Truong, “VLSI Design of
Number Theoretic Transforms for a Fast Convolution”, Proceedings
of IEEE International Conference on Computer Design: VLSI in Com-
puting, New York, pp. 200–203, October 1983.

[108] J. Yuan, I. Karlsson, and C. Svensson, “A True Single-Phase-Clock
Dynamic CMOS Circuit Technique”, IEEE Journal of Solid-StateCir-
cuits, Vol. 22, No. 5, pp. 899–901, October 1987.

[109] J. Yuan and C. Svensson, “CMOS Circuit Speed Optimization
Based on Switch Level Simulation”, Proceedings of 1988 IEEE Inter-
national Symposium on Circuits and Systems, Espoo, Finland, Vol. 3,
pp. 2109–2112, June 1988.

[110] J. Yuan, C. Svensson, and P. Larsson, “New Domino Logic
Precharged by Clock and Data”, Electronic Letters, Vol. 29, No. 25,
pp. 2188–2189, December 1993.

[111] L. Wanhammar, B. Sikström, DSP Integrated Circuits, Dept. of EE,
Linköping University, Sweden, 1990.

Bibliography 279

[112] B. W. Y. Wei and C. D. Thompson, “Area-Time Optimal Adder De-
sign”, IEEE Trans. on Computers, Vol. C-39, No. 5, pp. 666–675, May
1990.

[113] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI De-
sign: A Systems Perspective, Second Edition, Addison-Wesley Publ.
Comp., 1993.

[114] S. B. Wicker, Error Control Systems for Digital Communication and
Storage, Prentice Hall, 1995.

[115] D. Zuras, “More on Squaring and Multiplying Large Integers”,
IEEE Trans. on Computers, Vol. 43, No. 8, pp. 899–908, August 1994.

280 Bibliography

Linköping Studies in Science and Technology
Dissertations, Data Transmission

V. Ramamoorthy: Speech coding based on a composite-Gaussian source model.
Dissertation No. 60, 1981.

Jan-Erik Stjernvall: A study of distortion measures for source coding.
Dissertation No. 68, 1981.

Jens Zander: Distributed access algorithms for a class of multi-access channels.
Dissertation No. 123, 1985.

Edoardo Mastrovito: VLSI architectures for computations in Galois fields.
Dissertation No. 242, 1991.

Shakir Abdul-Jabbar: Disjunctive codes for the multiple access OR-channel.
Dissertation No. 254, 1991.

Youzhi Xu: Contributions to the decoding of Reed-Solomon and related codes.
Dissertation No. 257, 1991.

Tommy Pedersen: Performance aspects of concatenated codes.
Dissertation No. 245, 1992.

Jan Nilsson: On hard and soft decoding of block codes.
Dissertation No. 333, 1994.

Per-Olof Anderson: Superimposed codes for the Euclidean channel.
Dissertation No. 342, 1994.

Per Larsson: Codes for correction of localized errors.
Dissertation No. 374, 1995.

Eva Englund: Codes with unequal error protection.
Dissertation No. 412, 1995.

Ralf Kötter: On algebraic decoding of algebraic-geometric and cyclic codes.
Dissertation No. 419, 1996.

