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Abstract

The properties of arithmetic operations in Fermat integer quotient rings Zym_,
where m = 2, are investigated. The arithmetic operations considered are
mainly those involved in the computation of the Fermat number transform.
We consider some ways of representing the binary coded integers in such rings
and investigate VLSI architectures for arithmetic operations, with respect to
the different element representations. The VLSI architectures are mutually
compared with respect to area (A) and time (7') complexity and area-time per-
formance (A7?). The VLSI model chosen is a linear switch-level RC' model.

In the polar representation, the nonzero elements of a field are represented by
the powers of a primitive element of the field. In the thesis we particularly in-
vestigate the properties of arithmetic operations and their corresponding VLSI
architectures with respect to the polar representation of the elements of Fer-
mat prime fields. Some new results regarding the applicability of the Fermat
number transform when using the polar representation are also presented.
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Chapter 1

Introduction

In 1972 Rader [77] proposed transforms in the ring of integers modulo a Mer-
senne or a Fermat number (2" — 1 and 2™ + 1; m = 2" =1, 2, 4, 8, ..., respec-
tively) to compute error-free convolutions of real integer sequences. Later,
Agarwal and Burrus [2] showed that for some transform lengths the radix-2
Fermat number transform can be implemented using only addition, subtrac-
tion, and bit shifting, i.e. without using multiplication. This transform was
shown to be faster than the conventional fast Fourier transform over the com-
plex field.

There are also other applications of the Fermat number transform. Justesen
[54] was one of the first to consider Reed-Solomon codes over the finite field
of integers modulo a Fermat prime. He stated that the decoding complexity of
such codes can be reduced if the Fermat number transform is used to evaluate
the syndromes and error magnitudes. This was further investigated by Reed
et al. [82] and others.

The special attributes of the Fermat number transform have led several re-
searchers to consider the VLSI (Very Large Scale Integration) implementation
of arithmetic operations in the ring of integers modulo a Fermat number.
These operations are traditionally implemented using binary logic circuits,
which means that the elements of the ring have a binary coded form of rep-
resentation. The 2™ + 1 binary coded elements of the ring of integers modulo
a Fermat number can be represented using m + 1 bits. We thus get numer-
ous ways of representing the elements of the ring. The complexity and per-
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formance of architectures for arithmetic operations depend inter alia on the
representation chosen.

The most known representations are the ones proposed by McClellan [65] and
Leibowitz [58]. Their coding schemes are linear coordinate transformations
of the normal binary coded representation of the elements in the ring. Using
their representations, operations like addition, multiplication by two, and the
code translation can be carried out fairly easy in VLSI. Also, for some relatively
small transform lengths, the transform multiplications by powers of the trans-
form kernel can be carried out as binary shifts. This is a well known property
of the Fermat number transform. One of the main disadvantages of using Mc-
Clellan’s or Leibowitz” element representation is that for most other possible
transform lengths, the resulting transform computation involves general mul-
tiplications (by powers of the transform kernel). Nevertheless, Leibowitz’ so
called diminished—1 representation is used by most people who consider the
VLSI implementation of the Fermat number transform.

In this thesis we investigate various ways of representing the binary coded el-
ements of the ring of integers modulo a Fermat number. For each element rep-
resentation considered, the properties of the arithmetic operations involved in
the computation of the Fermat number transform are thoroughly investigated.
Some other (arithmetic) operations are also considered. We also investigate
VLSI architectures for the arithmetic operations. Some architectures are pre-
viously known and some are new. We show how each of these architectures is
derived from its associated analytical expression for the arithmetic operation
in question.

One of our main goals is to find a representation that makes it possible to com-
pute the Fermat number transform with favourable area-time performance for
all possible transform lengths. In particular, we focus on the arithmetic op-
erations obtained when using the polar representation of the elements of Fer-
mat prime fields. In the polar representation, the elements of a field are rep-
resented by powers of some primitive element of the field.



Chapter 2

Binary Arithmetic in the Fermat
Integer Quotient Ring

In this chapter we give a formal introduction to the number theoretic trans-
form in general and the Fermat number transform in particular. The chap-
ter contains several known results from the area of number theory. We also
consider some fast Fourier transform algorithms for implementing the Fermat
number transform. For each algorithm, we find out which arithmetic opera-
tions are needed and the complexity of computing the transform. The purpose
of the survey is to get our work into perspective. The chapter is concluded by
presenting some aspects of representing the binary coded integers of the Fer-
mat integer quotient ring.

2.1 The Integer Quotient Ring

A ring is an algebraic system consisting of a set of elements together with ad-
dition, subtraction, and multiplication. The result of any of these arithmetic
operations is always an element of the original set. It may also be possible to
divide in a ring. Then the multiplicative inverse of the divisor must exist in the
ring.

A natural example of a ring is Z, the ring of integers; for a, b € Z, we have
a+b,a—>b,a-be Z. Denoteby Z, the quotient ring of integers modulo an
integer ¢: It consists of the set {0, 1, 2, ..., ¢ — 1} of integers and the result of
every arithmetic operation is reduced modulo ¢. Thus, an integer ¢ maps into
Z4 as the remainder r of ¢ divided by ¢. If we have ¢ = r + dq for some integer

3
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d, then ¢ and r are congruent modulo ¢. The notation for such a congruence is

¢c=r (modgq).

The multiplicative inverse of an element of Z, exists if and only if the element
is relatively prime to the modulus ¢.! If ¢ is a prime number, then every non-
zero element of Z, has a multiplicative inverse and thus division becomes a
general operation in the ring. Then Z, is called a field.* For a detailed math-
ematical survey on the theory of rings and fields, see for example Lidl and
Niederreiter [60] or Herstein [50].?

In this thesis we investigate VLSI architectures for arithmetic operations in the
integer quotient ring Z,, where ¢ is a Fermat number. Even though the devel-
opment of multiple-valued logic has progressed over the years [29] it is still
a difficult problem to design ¢-valued logic circuits for large ¢. Therefore, we
restrict ourselves to representations of the integers modulo ¢ as binary coded
symbols and use binary logic circuits in the VLSI architectures for the arith-
metic operations in Z,.

2.2 The Number Theoretic Transform

Before going into details about the Fermat number transform, we give the de-
finition of the number theoretic transform in an arbitrary integer quotient ring
Z,. We also discuss which moduli g are most suitable, with respect to the com-
plexity of computing the number theoretic transform. The computation of the
number theoretic transform (NTT) involves integer ring arithmetic operations.
The NTT is a DFT-like (discrete Fourier transform) transform which is com-
puted in the ring of integers modulo some integer:

Definition 2.1 In the ring 7Z, of integers modulo a positive integer
q = pi'py? - pp* the number theoretic transform of the sequence x = {x, }2=' of
elements x,, € Z, is a sequence X = {Xk}ff:‘ol, Xy € Z,, given by

If a € Z4 and q are relatively prime, then we have 1 = ab + dg = ab (mod ¢) where b and
d are integers. The integer b mod q is then referred to as the multiplicative inverse of a under
multiplication modulo q.

Thus, a field is a ring in which it is also possible to divide.

3The quotient ring Z, is denoted by Z /(¢) and .J, in [60] and [50] respectively. The notation
Zg4, which we conveniently use in this thesis, is very common in many other books on abstract
algebra and number theory.
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N-1
X 2Y e (modqk  k=01,...,N-1, @1

n=0

where w is any element with order N in Z,.
The factors pi, p2,. .., px of ¢ are distinct primes.

Remark: Letw and ¢ berelatively prime positive integers. Then, the least pos-
itive integer N such thatw” =1 (mod q) is called the order of w modulo
q. We denote the order of w modulo ¢ by ord, w. Thus, for the transform
kernel wwe getord, w = N. Sometimes, w is said to be a primitive Nth root
of unity.

Because we have ord,w = N, the product kn in the exponent of w in (2.1) is
calculated modulo N. Itis easy to show that the NTT, as well as the DFT, pos-
sesses the cyclic convolution property, i.e. the transform of a cyclic convolu-
tion of two sequences is equal to the product of their transforms. There are
also other properties of the DFT that have their counterparts in the NTT. The
inverse number theoretic transform is given by

N-1
xnéN_IZka_k” (modg¢g); n=0,1,....N—1, (2.2)
k=0

where N~ is the multiplicative inverse of N modulo g, i.e. the least positive
integer M for which N - M =1 (mod ¢). Such an inverse exists if and only
if gcd(N, q¢) = 1. The factor w™*" in (2.2) is congruent to w™ = " M4V mod ¢.
Therefore, (2.2) involves multiplication by positive powers of «w modulo .

It is sometimes convenient to use the multiplicative inverse w™' of w modulo
q instead of w as the transform kernel of the inverse NTT.* If there exists an
integer w with order N modulo ¢, then its inverse w™! = wV=! (mod ¢) also
exists.

Thus, we can say that a number theoretic transform of length N and its inverse
transform exist in Z, if there is an integer w with order N modulo ¢ and N
has a multiplicative inverse modulo ¢. The following theorem may be useful
when determining the possible lengths of an invertible transform in an integer
quotient ring:

4We have w™F" = (w‘l)kn.
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Theorem 2.1 There exists an invertible NTT of length N in Z, if and only if
N | (pi — 1) for every prime p; that divides q.

Proof: See Section A.1 of Appendix A. O

Thus, the theorem says that the transform length /N must satisfy

N|ng(p1_17p2_17"'7pk_1)7 (23)

1 12

where ¢ = p{'p3? - - - pp*. In particular, if ¢ = p is a prime, then every nonzero
element of the prime field Z, has a multiplicative inverse and there exists an
NTT of every length N that divides p — 1.

221 Suitable Integer Rings

There exist infinitely many number theoretic transforms. The modulus ¢ =
P py? - - - pp¥ should be chosen in a suitable way with respect to the complexity
and performance of the architectures for the binary coded integer arithmetic
operations modulo ¢, and with respect to the possible NTT lengths that will
be obtained. Multiplication by powers of the transform kernel w is usually the
most complex arithmetic operation involved in the computation of the NTT.
Therefore, the efficiency of a VLSI implementation of an NTT is often largely
determined by the efficiency by which such multiplications can be carried out.

The direct computation of an NTT of length N requires in the order of N? mul-
tiplications and N (N — 1) additions. If the transform length is composite the
NTT can be decomposed into several transforms of smaller sizes which may be
computed using some fast Fourier transform (FFT) algorithm [17, Ch. 4]. The
FFT algorithm is most efficiently computed if the transform is a single-radix
transform with a small radix, i.e. if the transform length can be expressed as a
power of a small integer. For example, if N = r?, for some r and b, the NTT can
be computed using a radix-r FFT algorithm. Such an algorithm requires in the
order of k(r — 1) N log, N multiplications and (r — 1) N log, N additions, where
k depends on N and the choice of w [33, 35]. Hence, the complexity of com-
puting the NTT can be significantly reduced by choosing a suitable transform
length and using an FFT algorithm. From (2.3) it follows that it is the modulus
that determines the possible transform lengths.

From a VLSI implementation point of view, the reduction modulo ¢ of a binary
coded integer is simplest to perform when ¢ is close to a power of two or when
the binary coded representation of ¢ contains few ones. The modulus reduc-
tion in Z,n is very simple and straightforward, but since 2 is a prime factor of
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q = 2™ the maximum possible NTT length in any ring of size 2" is 1. The same
conclusion holds for every even modulus ¢. Integer quotient rings with even
modulus are therefore not interesting from an NTT application point of view.

Any odd natural number ¢ can be written on the form ¢ = « - v 4 1 for some
natural numbers «, r, and m, where r does not divide a. When ¢ is a prime,
we see from (2.3) that the possible transform lengths are the ones that divide
a - r™. Therefore, the maximum radix-r transform length in the prime field
Zy.rmy1 is ™. Because a radix-r transform of length N = r’ involves in the
order of (r — 1)N log, N multiplications and additions, the transform is most
efficiently computed if V is highly composite, i.e. r is small.

Chevillat gives a table [33, Tab. II] of 8-bit to 16-bit moduli whose associated
integer quotient rings each contains a single-radix transform of length N' > 16.
Some of these moduli are composite, but most of them are prime numbers.
The modulus should be chosen such that the modulus reduction is not a very
complex operation. As an example we consider Z, with a prime modulus ¢ =
39367, for which ¢ — 1 = 2 - 3%, This is one of Chevillat’s numbers. The maxi-
mum transform length of a single-radix NTT in Z 39367 is 3% = 19683. However,
because the normal binary representation of ¢ = 39367 is 1001100111000111,
the reduction modulo ¢ may not be as simply performed as when ¢ can be rep-
resented by much fewer ones or when it is closer to a power of two.

We mentioned above that multiplication by powers of the transform kernel
should be carried out as simply as possible. The complexity of such a mul-
tiplication depends inter alia on the kernel chosen. However, in an arbitrary
integer quotient ring there may not exist a suitable kernel for which this com-
plexity is low. In general, even if there exist single-radix transforms of great
lengths in an integer ring, it is not certain that a transform multiplication can
be computed using a procedure that is simpler than general multiplication.

Mersenne numbers

A set of integers of particular interest is the set of Mersenne numbers. These
numbers are of the form 2” —1, wherem = 2, 3,4, . ... We denote such numbers
by M,,. The NTT in a Mersenne integer quotient ring Z yy,, is usually called the
Mersenne number transform. One of the first to consider Mersenne number
transforms was Rader in 1972 [77]. Arithmetic operations are easily carried
out in Zy,, if the elements are represented as normal binary coded m-bit in-
tegers, because then the complexity of performing the operations equals the
complexity of one’s-complement arithmetic: Because 2 =1 (mod 2™ — 1),
the modulus reduction is equivalent to the procedure for handling overflow
in one’s-complement arithmetic.
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m | My, =2"—1] M, —1=202""1-1)
3 7 23
5 31 2-3-5
7 127 2.32.7
13 8191 2.32.5.7-13
17 131071 2.3-5-17-257
19 524287 2.3%.7-19-73
31| 2147483647 | 2-3%-7-11-31-151 - 331

Table 2.1: The first 7 Mersenne prime numbers.

There is, however, no general fast algorithm for the computation of the Mer-
senne number transform. Let m = Ak where ) is a prime number. Then 2* — 1
divides 2**—1. This is easily shown by using the relation 2" —1 = (z—1)(2*~'+
22 4. .4z 41) for x = 2* which gives 2" —1 = (2 —1)(2ME=D) 4.2 E=2) ooy
2)41), and thus we get (2* —1) | (2" —1). If m = 2k iseventhen2? —1 = 3isa
prime factor of M,, which, from (2.3), implies that the transform length divides
2. Thus, a transform of meaningful length can only be obtained when 1 is odd.
Furthermore, if M,, = 2™ — 1 is prime then m must also be prime, i.e. k equals
1in the previous factorisation of 2** — 1. The converse, however, is not always
true — for example 2'' — 1 = 2047 = 23-89 is not a prime number. This shows,
by applying (2.3) to the prime factorisation of M,,, that the possible lengths of
the NTT in Zy,, are relatively small when m is odd and M,, is composite.

When M,, is prime the NTT length must divide M,, — 1 = 2 — 2. The third
column of Table 2.1 shows the prime factorisations of M, — 1 for the first 7
Mersenne numbers. We see that for large M,, the number M,, — 1 is not highly
composite. Therefore, there may not exist any efficient FFT-type algorithm to
compute transforms of great lengths in Z,,,,. Properties of Mersenne num-
ber transforms and some applications are further discussed in Chapter 6.3 of
Blahut [17] and by Rader [77].

Numbers of the form 2" — 2™ 4+ |

The final set of numbers to be considered here are prime numbers of the form
qg=2"—2"+4+1,where (0 < m < n. Several of these numbers can also be found
in the set of Chevillat numbers. In 1976, Pollard [73] stated that such numbers
are good choices as integer ring moduli.
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The normal binary representation of the n-bit modulus ¢ = 2" — 2™ + 1 is

n bits

11---100---01,
——— ——

n—m ones m—1 zeros

i.e. a block of n — m ones followed by a block of m — 1 zeros and a one in the
least significant bit position. It is quite easy to perform the modulus reduc-
tion in VLSI when the modulus has this form and if the integer to be reduced
is less than 2". Because 2" — 2" + 1 =0 (mod 2" —2™ + 1) we get2" — 2™ =
—1 (mod 2" — 2™ 4 1). Therefore, when the n — m most significant bits of an
integer not greater than 2" — 1 are all ones, the modulus reduction is carried
out by changing these bits to zero and subtract one (1) from the resulting bi-
nary coded integer. When the integer to be reduced is greater than 2" — 1, the
modulus reduction procedure is just slightly more complicated.

Example: n =8, m =5 = ¢=2%—-2°+1 =225
Modulus reduction 235 = 10 (mod 225):

11101011 = 235
L ]
00001011 = 11

_ 1 1
00001010 = 10

In Section 5.1.1 we show how subtraction by one can be carried out in VLSl in
a simple way.

For prime moduli ¢, the possible transform lengths divide ¢ — 1 = 2"(2"~" —
1),which implies that there exist radix-2 NTTs of length N = 2°, where b < m,
in the corresponding prime fields Z,. In Table B.1 of Appendix B we present
the factorisations of ¢ — 1 together with n, m, and ¢ for all primes ¢ of the form
q=2"+4+2"+1where0 < m < n < 32. These primes were found by computer
search. In order to obtain a transform of great length, m should be large. On
the other hand, in order to make efficient use of the n-bit representation of the
integers in Z,, m should be as small as possible (m > 1). The best choice of m
with respect to » may differ, depending on the NTT application in question.

We have not found any general structure of the prime factorisations of com-
posite moduli ¢ = 2" — 2™ + 1 = 2™(2"™ — 1) 4+ 1. However, it may be
profitable to consider subsets of this set of moduli for which the NTT in the
corresponding integer rings possesses some of the desirable properties. Such
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a subset may, for example, consist of moduli for which » —m is constant. Prop-
erties of the NTT in Z, can then be examined separately in each subset.

We see in Table B.1 of Appendix B that there are several prime moduli for
which n — m is small. A report on primes of the form £ - 2™ 4 1 was pub-
lished by Robinson in 1958 [83]. In [83] he also presented a table of all such
primes for k£ < 100 and m < 512. Liu et al. [62] considered primes of the form
27(2™ — 1)+ 1, ie. for n = 2m, for some values of m. Number theoretic trans-
forms in the integer ring modulo 2™ (2™ — 1) 4+ 1 have also been considered
by Dubois and Venetsanopoulos [38, 39]. Some other researchers have inves-
tigated properties of moduli of the form 3 - 2™ + 1, i.e. for n — m = 2, see for
example Golomb [47] and Golomb et al. [48]. In [48] the authors discuss how
to perform arithmetic operations in Zs.om4 .

The above-mentioned numbers are all special cases of numbers of the form
gPIn p gD g b 1 = (¢P" —1)/(¢" — 1) for some integers ¢, p, and n.
In a recent article by Dimitrov et al. [37], the authors define number theoretic
transforms in integer quotient rings with such moduli for ¢ = 2, p = 3, 5, and
7, and for some appropriate values of n.

In the present thesis we consider moduli ¢ = 2”(2"~™ —1)+1forn—m = 1,i.e
moduli of the form ¢ = 2™ + 1. For m equal to a power of two, such numbers
are called Fermat numbers.

2.3 The Fermat Number Transform

2.3.1 Fermat Numbers

In this section we study number theoretic transforms in integer quotient rings
with moduli of the form 2™ + 1 for some m.

Theorem 2.2 If 2™ + 1 is a prime then m is a power of two.

Proof: (From [42, pp. 23-24]) Suppose m has an odd factor £, say m = nk.
Using the factorisation 2" +1 = (z+1)(z* ! —a*242F 2 — . .4 22—z 41) forz =
2" weget 2741 = 270 41 = (20 4 1)(27k—1) —on(k=2) pon(k=3) ... 192 _9n 1),
which apparently is composite. The only numbers that have no odd factor are
the powers of two. a
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We have shown that 2™ + 1 is not a prime when m is not a power of two, but
for which m = 2° do we get a prime? The number

F,22"41;, m=2,

where ¢t € N, is defined as the tth Fermat number.® Fermat observed that the
tirst five such numbers are all prime:

Fob=2+1 =3,
Fi=22+1 =5,
Fo=2"41 =17,
Fy=241 =257,
Fy,=2%4+1 =65537.

Fermat expressed his belief that every F; is a prime, but admitted that he had
no proof.

From Fermat’s little theorem [84, Th. 5.3] it follows that if p is a prime and «
is a positive integer, then «” = « (mod p), thatis p | (a” — a). ¢ In general, if
a is a positive integer and ¢ is a composite positive integer that divides a7 —a,
then ¢ is usually called a pseudoprime to the base a. One of the reasons for Fer-
mat’s statement that every £} is a prime may have been that in fact all Fermat
numbers are either primes or pseudoprimes.

We see that for every Fermat number F; = 22" 4+ 1, where ¢ € N, the relation
Fy | (27t — 2) holds [93, Exerc. 2]: For any positive integer t we have ¢ + 1 < 27,
and thus 2*' | 2%'. Consequently, we have (22" — 1) | (222t — 1) =211,
Because 22" — 1 = (22 +1)(22 —1)weget I, = (2* +1) | (2"~ — 1) and
hence F} | (2f* — 2).

Therefore, all composite Fermat numbers [} are pseudoprimes to the base 2.
When trying to find the factors of composite Fermat numbers, the following
theorem is of good use:

*Henceforth, whenever the number 2™ + 1 appears in the thesis we always mean the Fer-
mat number F}, i.e. we implicitly assume mn = 2* for some natural number ¢.

®Even the ancient Chinese had a test for primality which is similar to Fermat's little the-
orem. The test said that an integer p is a prime if and only if p | (2" — 2). By Fermat’s
little theorem we know that the test is correct when p is an odd prime, but the converse
is not always true. For example, the ancient Chinese did not discover that the smallest
composite integer that passes their test is 341 = 11 - 31. It can easily be verified that
2341 =2 (mod 341) and thus 341 | (23! — 2).
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Theorem 2.3 Every prime divisor of the Fermat number I'y = 22" 11, where t > 2,
is of the form k - 2'*2 + 1, for some natural number k.

Proof: See Section A.2 of Appendix A. The proof involves Euler’s theorem
and the concept of quadratic residues. a

Thus, every prime divisor of F} is congruent to 1 modulo 2142 for t > 2. Actu-
ally, because the product of two numbers of the form £-n+1 is also of this form,
any divisor of F; is congruent to 1 modulo 2'** for ¢ > 2. Lucas [36, pp. 376~
379] was the first to prove that every prime factor of F} is of the form k-2+2 4 1.
Prior to Lukas’ proof Euler showed that 5 - 2° 4+ 1 = 641 is a factor of /5. The
complete factorisations of /5 and [ are

Fo=(5-2741)(3-17449 - 27 4 1); Euler 1732

Fo=(32-7-17-25 4 1)(5-47 - 3732998279 - 28 +1);  Landry 1880

To this day, no Fermat prime greater than I, has been found. Since the days of
Euler, finding the prime factors of composite Fermat numbers or proving that
certain Fermat number are composite have been two of the most famous prob-
lems in number theory. In 1958, Robinson presented a list [83, Table 2] of all
known prime factors of composite Fermat numbers together with the dates of
discovery. Using today’s powerful computing tools still more prime factors
have been found. In [28, page Ixxxviii], Brillhart et al. published a table of all
factors of composite Fermat numbers known in 1988. To the author’s knowl-
edge, the largest Fermat number with known factorisation is F; = 22 41,
which was factored by Brent and Morain in 1988 using the elliptic curve
method [24], [25]. The ninth Fermat number Fy was factored by A. K. Lenstra,
H. W. Lenstra Jr.,, M. S. Manasse, and J. M. Pollard in 1990 by means of the
number field sieve [59]. The complete factorisation of Fij is still not known.
The largest Fermat number with a known factor is Fs347;. It is divisible by
5 . 223473 _I_ 1

2.3.2 The Transform Kernel

The number theoretic transform in the Fermat integer quotient ring Z , is often
referred to as the Fermat number transform (FNT). A great advantage of the
FNT is that the possible transform lengths are all highly composite. As shown
in Section 2.3.1, a composite Fermat number F; can be factorised into prime
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powers as
Fy= (F 22 4 1) (ko202 4 1) oo (Bp20T2 4 1),

for some ki, ks, ..., kyand ny, ng,..., n;. Let 2¥ be a common factor of k;, ks,
..., ki for some k.7 Equation (2.3) then implies that there exist radix-2 trans-
forms in Zr,. The transform length N must divide t+h+2, Furthermore, when
I is prime the possible lengths N divide F; — 1 = 2*. Thus, the radix-2 FNT
in Zp, is of length

0§b§t—|—l%—|—2; Fy is composite
N=2"; : (2.4)
0<b<m(=2"; F, is prime

Because the FNT length NV is a power of two the transform can be computed
using a fast and efficient algorithm. Using the radix-2 Cooley-Tukey FFT algo-
rithm [35], a transform of length N = 2° in a Fermat integer quotient ring Z,
can be computed using only (N/2)log, N multiplications and N log, N addi-
tions modulo £}. Since elements of the sequence that is to be transformed are
multiplied by powers of the kernel w, the complexity of computing the trans-
form depends strongly on the choice of w.

Using binary arithmetic, multiplication by a power of two can be implemented
in VLSI as binary shifts. We see by the congruence

1=(-1>=2""  (mod2™ + 1)

that the integer 2 has order 2m = 2! modulo 2" + 1 and hence can be used
as the kernel of an FNT of length 2m. Then, all multiplications involved in
the transform computation can be carried out as binary shifts. Equation (2.4)
implies that N must divide 2'***! when F} is composite, i.e. for ¢ > 4. In par-
ticular it can be verified that k is zero for 5, Fs, and F~, i.e. the k;’s in the fac-
torisations of these numbers are all odd (see page 12 and [28, page Ixxxviii]).
Thus for I5, Fs and F; the maximum transform length is 22 = 4m.

A suitable kernel of a 4m-length transform is an integer that has 2 as its square.
Such an integer exists if the congruence * = 2 (mod F}) has a solution. By
the definition of quadratic residues in Section A.2, the integer 2 is then called
a quadratic residue modulo F;. The least positive solution « to the mentioned
congruence is often denoted /2 in the literature. The following theorem says
that there really exists such a solution z.

In general, we have ged(k1, ko, ..., k) = k- 2k for some k' and l;*, but here we are only
interested in the cases when the transform length is a power of two.
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Theorem 2.4 The integer 2 is a quadratic residue modulo each Fermat number I, for
t>2.

Proof: From the proof of Theorem 2.3, given in Section A.2, we know that the
integer 2 is a quadratic residue modulo every odd prime factor p; of the Fermat
number F; = pi'p3? - - p,* fort > 2. Then, 2is also a quadratic residue modulo
p;* (see for example Stewart, [95, Prop. A.13]). By Proposition A.10 of [95] we

then get that the integer 2 is a quadratic residue modulo F; for ¢ > 2. a

The square of the element v/2 can be expressed in the following way:

<\/§>2 — 2= (—1)2-(-1)=—2.2" =2%(—14+1-2.2%)

Il
TN
[N\
.J>|§
S’
[\]
TN
—~
[N\
1\3|§
~—
[\]
_'_
—~
|
—_
~—
[\]
_'_
DO
—
|
—_
[N\
1\3|§
~—
S’

= (2%(2% = 1)) (mod 2" +1),

and thus we get
3 5

V2 =225 —1) =27 +2F  (mod 27" +1).

Powers of v/2 can be written as

n
22 n even

(v2) = . (25)
2”7_1\/5 — ofmin=t + o =2 (mod 2™ 4+ 1); nodd

which means that multiplication by powers of v/2 can be implemented in VLSI
as binary shifts when the exponent » is even, and two binary shifts and one
addition when the exponent is odd. This is the reason why the element /2 is
practically always used as the kernel of the FNT of length 4m in Zgm,;. It can
easily be shown that the order of V2 modulo F, is 4m fort > 2 [2, App. C].

Because we have 4m = 2™ = N,,.. for m = 4, the kernel v/2 will yield the max-
imum length FNT in Z r,. The same kernel will also yield the maximum length
FNTin Zp, fort =5, 6, and 7. However, in several applications the transform
length 4m is still relatively small. In general, one-dimensional prime field
FNTs of length greater than 4m require nontrivial multiplications. For a maxi-
mum length FNT (V. = 2™) in a Fermat prime field, the transform kernel must
be a primitive element.
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tlm=2¢ F,—1=92" || Nforo=2| Nforw=+v2| N forw=a
0 1 2 2 — —
1 2 4 4 — 4
2 4 16 8 16 16
3 8 256 16 32 256
4 16 65536 32 64 65536
5 32 4294967 296 64 128 —
6 64 | 264 ~ 1.8 x 10" 128 256 —

Table 2.2: Some parameters for the FNT. The boldfaced numbers are the maximum
obtainable transform lengths. The kernel « is any primitive element modulo F;.

Every primitive element of a prime field Z, has maximum order p — 1 modulo
p.® In Chapter 7 we find use of the following property:

Theorem 2.5 The integer 3 is a primitive element of each Fermat prime field Zp,
where t > 1.

Proof: See Appendix A.3. a

Remark: Cunningham (see [36, page 199]) noted that for ¢ > 2, the integers
3,5, 6, 7,10, and 12 are all primitive elements of the field of integers
modulo a Fermat prime F; for ¢ > 2.

By Theorem 2.5 the maximum length FNT in a Fermat prime field can be com-
puted using the primitive element 3 as transform kernel. Table 2.2 shows the
relations between some kernels and their corresponding FNT lengths for the
seven first Fermat numbers.

For each primitive element o € Zymy;, where 2™ + 1 is a prime, we have o?” =
(®" ™) =1 (mod 2™ 4 1). Because the order of the element o>"~" modulo
2™ + 1 equals 2°, it may be chosen as the kernel of an FNT of arbitrary length
N = 2° for 0 < b < m. This is further discussed in Section 7.2.7.

As previously mentioned, we would like to calculate the radix-2 FNT with
as low complexity and high performance as possible for every such transform

8In general, if a and ¢ > 0 are relatively prime integers such that ord, a = ¢(g), where ¢
denotes Euler’s totient function, then « is called a primitive root modulo q.
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length N = 2°. Hence, we would like its approximately N log, N additions to-
gether with its (IV/2) log, N multiplications by powers of the kernel to be car-
ried out as simply as possible. In the present section we do not go into detail
about what we mean by "simple’. Complexity issues are further discussed in
Chapter 4.

One purpose of our work is to find suitable ways of representing the binary
coded integers of Zym, 1, in order to simplify the arithmetic operations (espe-
cially multiplication by powers of the transform kernel) involved in the com-
putation of the FNT of every possible length N = 2°. We are particularly in-
terested in the rings for which 2™ 4 1 is a prime, i.e. the Fermat prime fields.

2.3.3 Butterfly Computations

The Radix-2 Decimation-In-Time Algorithm

We mentioned above that the FNT of length N = 2" can be computed using
a radix-2 FFT algorithm. When using the well known decimation-in-time algo-
rithm, which is due to Cooley and Tukey [35], the FNT of the form in (2.1) is
first split into two parts as follows.”

N-1

X, = E 20" = E 20" + E 2w

n=0 n even n odd

N/2-1 N/2-1

kr k kr
= E Top Wy T W - g T2r41 WN/2

r=0 r=0
= Grp+w"-Hy (mod Fy), E=0,1,..., N—1,
where G, and H; are the N/2-point FNTs of the sequences {xzr}iﬂg‘l and

{z9,11} ,],V:/ 3 -t respectively. The order of the kernel wy, 2 w¥modulo F,is N /2.
Because w/? = —1 (mod Fy) wehave w*+V/? = —F  (mod F}) and thus the
FNT can be expressed as

Xk = Gk—l—wka (mod Ft)

Xipnp = Gy — W - Hy  (mod Fy),

“The derivation of the decimation-in-time FFT algorithm can be found in most books on
digital signal processing, e.g. [74, Ch. 9.3.3].
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3 o ® >® o ¢

Figure 2.1: Butterfly of a radix-2 decimation-in-time FFT.

fork = 0,1,..., N/2 — 1. The name decimation-in-time is due to the dec-
imation of z, by a factor of 2. A repeated decimation of the sequences {5, }
and { 3,41 } will resultin four N/4-point FNTs after the second step, eight V/8-
point FNTs after the third step and so on, until we end up in N/2 2-point FNTs
after step log, N—1. Thus, the computation of the FNT of length N = 2° may be
carried out in log, NV stages, where each stage consists of V/2 2-point FNTs [74,
Fig. 9.14]. Hence, the FNT can be computed as (N/2)log, N = (N/2)b FNTSs of
length 2. Figure 2.1 illustrates how such a basic 2-point FNT is computed. Be-
cause of the flow graph symmetry of the 2-point transform, it is usually called
a butterfly. The two output signals from the decimation-in-time butterfly of
Figure 2.1 are

10 B+wy (mod F)

¢ = [f—w'y (mod Fy),

for some r and where 3 and v are the butterfly inputs. Because each butterfly
involves two additions and one multiplication, the total number of additions
modulo /' equals NV log, N and the total number of multiplications modulo £}
equals (N/2)log, N, as we have previously indicated.'’

When the FFT algorithm is used for computing the ordinary DFT, the real and
imaginary parts of the factors w” = ¢=/2™/" which are often called the twiddle
factors, are usually stored in a table. This yields the fastest algorithm, to the
cost of a look-up table. Concerning the FNT, by choosing a suitable kernel for
the transform it may not be necessary to store the different powers of the ker-
nel modulo . For example, for w = V2and N = 4m = 2t12 multiplication by
powers of w can be carried out as two binary shifts and one addition, as men-
tioned in connection with (2.5). For such kernels the b-bit exponents » may be

1%Subtraction is regarded as addition, because it can be carried out by adding the minuend
to the negated subtrahend (see Section 5.1.3).
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3 o >@ o ¢

Figure 2.2: Butterfly of a radix-2 decimation-in-frequency FFT.

generated by some control logic for small transform lengths [101]. For larger
transform lengths, the exponents are preferably stored in a table [90]. How-
ever, if there is no suitable kernel «w for which multiplication by powers of w
can be carried out simpler than the procedure for general multiplication, then
we may still want a table of the twiddle factors involved in the computation
of the transform.

The Radix-2 Decimation-In-Frequency Algorithm

When using the decimation-in-time FFT algorithm, the input sequence must
appear in a bit-reversed order [74, Ch. 9.3.3]. The transformed sequence is,
however, obtained in natural order. Using the radix-2 decimation-in-frequency
FFT algorithm, we have the opposite situation. Then the input occurs in the
right order while the output is obtained in bit-reversed order. The decimation-
in-frequency algorithm is obtained by repeatedly divide the transform into
two transforms, one which depends on the first half of the sequence and the
other depending on the second half of the sequence. This algorithm is due to
Gentleman and Sande [45].

As for the decimation-in-time algorithm, the decimation-in-frequency algo-
rithm also divides the N-length transform into log, NV stages of N/2 butterflies.
Figure 2.2 shows the butterfly for the decimation-in-frequency algorithm.

For the butterfly input variables 3 and 7, we have the output variables
d=0+~ (mod Fy)

and
p=(B—7)w" (mod F),

for some r.
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The computations in both the decimation-in-time and decimation-in-frequen-
cy algorithms are done in place, which means that the same memory locations
that hold the NV elements of the sequence {z, } can be used to store the results
of the butterfly computations at each of the log, N stages. Also, both algo-
rithms involve (N/2)log, N butterfly operations, each consisting of one mul-
tiplication by a twiddle factor and two additions. The two algorithms can be
arranged such that both the input and output sequences are maintained in
natural order. However, the resulting algorithms are no longer in-place algo-
rithms, which implies that additional memory is required.

Remark: Because of the similarity between the FNT and its inverse transform,
they can be computed using the same FFT algorithm. The two trans-
forms differ only in the factor 1/N and the sign of the exponent of w.

Radix-4 Algorithms

Ifb = log, N is even we have N = 4%/2 and thus the transform can be computed
using a radix-4 FFT algorithm. Such an algorithm can be obtained by repeat-
edly dividing the input sequence into four parts in a manner that is similar
to the procedure for deriving a radix-2 algorithm [74, Ch. 9.3.4]. The radix-4
FFT algorithm consists of b/2 stages of N/4 butterflies. The four outputs, say
%0, 1, 2, and ¢s, of a decimation-in-time butterfly can be expressed in matrix
form as

QbO 1 1 1 1 wOﬁO
o _ 1 N4 wN/4)2 (wN/4)3 W By
by | T 1 (W2 (WMt (w4 W B (mod F}),
¢3 1 (C(JN/4)3 (wN/4)6 (CUN/4)9 w3r63

for some r and where 3, 1, 32, and 35 and the four butterfly input data. Be-
cause the order of w™/* modulo F} is 4 we get the congruences (w/4)? =
(W8 = —1  (mod F}), (WN*)? = —wN* (mod Fy), (WN*)* = (mod F}),
and (wV/*)? = WN*  (mod Fy). In order to reduce the number of additions,
the butterfly is usually derived from the following factorised twiddle-factor
matrix:

1 1 1

WN/4 2N/4 3N/4 B

WEN/4 AN/4 6N/4 =

—_ = =

WIN/4 BN/4 ON/4
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Figure 2.3: Butterfly of a radix-4 decimation-in-time FFT.

10 1 0 10 1 0

o1 0 WM 10 -1 0

=l 10 -1 0 01 0 1 (mod £).
01 0 —wV4 01 0 —1

A radix-4 decimation-in-time butterfly is shown in Figure 2.3. The two-stage
structure of the butterfly is due to the factorisation of the twiddle-factor ma-
trix. Note that the input is in bit-reversed order, because then the computa-
tions can be carried out in place.

For the ordinary DFT, which has kernel w = ¢77?"/V, we have w™/* = —j (see
[74, Eq. 9.3.44]).

Let ¥ = w™/* (mod F}). It can be proved that for prime F} > 5, the four in-
congruent solutions to the congruence ¥* = 1 (mod F}) are &1 and +2™/2
modulo F}. By Theorem 8.8 in [84] there are ¢(4) = 2 incongruent integers of
order 4 modulo a prime F;. Obviously, the integers

Wy = 272 (mod F})
W, = 2% =92 (mod F})
are these two incongruent integers. In particular, we see that for the FNTs of

length N = 2m and N = 4m and with kernelsw = 2 and w = v2 (mod F}),
respectively, we have ¢ = w™/* = 2™/2  (mod F)).

We showed earlier that for composite /3, the maximum radix-2 FNT length
is at least 4m = 2!*2. ! Because the order of 2 modulo F; is 2m = 2*! it

For most composite F; with at least one factor known, the maximum length is exactly 4m.
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follows that for all transform lengths N = 2 where 0 < b < t + 1, we have
ordp, 22™/N = N. Therefore, for every such transform length there exists a ker-
nel which is a power of two.

Hence, by choosing a suitable kernel w, the radix-4 butterfly multiplication by
w™V/4 can simply be carried out as some binary shifts modulo F; for every Fer-
mat number /} and every possible transform length in Zp,. Therefore, using
three general multiplications and eight additions modulo F; per butterfly, a
radix-4 FNT can be computed using 3 - (N/4) - log, N = (3N/8)log, N mul-
tiplications and 8 - (N/4) - log, N = N log, N additions modulo F;.

Compared with the radix-2 FNT algorithm, the radix-4 algorithm requires 25%
less multiplications but the same number of additions, i.e. we get the same
complexity reduction as is obtained for the “ordinary” radix-4 DFT (see [74,
Ch. 9.3 .4]).

By using appropriate decimating procedures, it is also possible to define fast
algorithms for radix-r transforms for » > 4. These algorithms are quite simi-
lar to the radix-2 and radix-4 algorithms, and they do not result in a significant
reduction of the number of arithmetic operations. Therefore, they are not con-
sidered here.

The Split-Radix Algorithm

The split-radix algorithm, which is due to Duhamel and Hollman [40], [41], is
presently the most efficient radix-2 FFT algorithm. The decimation-in-frequen-
cy algorithm is derived by using a radix-2 decomposition of the even-indexed
terms and a radix-4 decomposition of the odd-indexed terms. In the first stage,
the even-indexed terms are inputs to a radix-2 transform of length N/2 and the
odd-indexed terms are again decomposed into two sequences of length N/4,
which becomes the inputs of two radix-4 transforms. The even-indexed terms

are given by
N/2-1

Xop = Z <$n + $n+N/2> W (mod Fy),

n=0

fork=0,1,..., N/2 —1 and the two radix-4 transforms are given by
N/4-1

Xiypt1 = Z [(xn - 51?n-|-N/2> + W/ <xn—|—N/4 - 51?n+3N/4>] w'w

n=0

4kn

and

N/4-1
3n, 4kn

Xiagts = Z [(l‘n - 51?n-|-N/2> — W/ <=’l?n-|-N/4 - 51?n+3N/4>] wow,

n=0
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Figure 2.4: Butterfly of a split-radix decimation-in-frequency FFT.
fork=0,1,2,..., N/4—1 and where both congruences are reduced modulo

F,. As shown on page 21, in Zp, the factor «w"¥/ equals some power of two.

Thus, using a binary coded element representation, multiplication by w"/* can
be carried out as binary shifts modulo f}. Figure 2.4 shows a butterfly of a
split-radix decimation-in-frequency FFT.

In the first stage of the algorithm, the input variables 3y, 51, 52, and J; are
Ty, TpyN/1s Tngpny2, and 2, 13n/4, respectively, for some n. The output variables
o and ¢ are used to calculate some of the even-indexed terms of the trans-
formed sequence, and ¢, and ¢, are used to calculate the terms with odd in-
dices of the forms 4% + 1 and 4k + 3, respectively, for some k.

Because the split-radix algorithm is a kind of mixture of a radix-2 and a radix-4
FFT, it does not progress stage by stage. Therefore, the indexing will be more
complicated compared with for example a fixed-radix FFT algorithm. It has
been shown that a split-radix FFT can be computed using in the order of
(N/3)log, N multiplications and N log, N additions for great transform
lengths NV (see for example Proakis et al. [75, Ch. 2.14] or Skodras and Con-
stantinides [94]).

As seen above, the only arithmetic operations that are involved in the compu-
tation of the FNT and its inverse transform are addition, subtraction (i.e. nega-
tion followed by addition), multiplication by powers of the transform kernel,
and multiplication by powers of two modulo F3. In this thesis we mainly fo-
cus on these arithmetic operations and others that may be needed in connec-
tion with the transform computation. Examples of such operations are general
multiplication, the discrete logarithm, and exponentiation modulo F;. We do
not care about which FFT algorithm is used (radix-2, radix-4, split-radix, or
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Integer | Normal binary
coded repr.
2m 1000 - - - 000
2" —1 0111 --- 111
27 —2 | 0111---110
27 —3 | 0111---101

0000 - -- 011

3

2 0000 - -- 010
1 0000 - -- 001
0 0000 - -- 000

Table 2.3: The normal binary coded integer representation.

any other). We are only interested in the arithmetic operations involved in the
computation of the transform.

2.4 Element Representation

We mentioned in Section 2.1 that we represent the elements of the Fermat in-
teger quotient rings Z,m, as binary coded integers and use binary logic circuits
in the VLSI architectures for the arithmetic operations in Zgmy,. It is clear that
m + 1 bit positions are needed to represent the 2™ + 1 elements of Zym,. Thus,
there are

g+

oy oy e 2

2™ 41 factors

different ways of representing these elements. The very well known normal
binary coded representation of integers is illustrated in Table 2.3.

This representation, however, may not be the best one with respect to the com-
plexity and performance of the VLSI architectures for arithmetic operations in
Ziym 1. Depending on how complexity and performance are defined, it may re-
quire a great effort to find the ‘optimum’ representation among the
2mF11/(2™ 4+ 1)! possible ones, e.g. there are about 2 x 10%® ways to represent
the 5-bit binary coded integers of Zjs;,;. We therefore choose to restrict our-
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selves to consider a subset of representations that can be expressed as elemen-
tary functions of the normal binary coded representation.

The first form of representation considered is the normal binary coded repre-
sentation. In Chapter 5 we study VLSI architectures for arithmetic operations
using this representation. Linear coordinate transformations of the normal bi-
nary coded representation and the corresponding VLSI architectures are con-
sidered in Chapter 6. Finally, in Chapter 7 we particularly focus on the polar
representation, which can be regarded as a nonlinear coordinate transforma-
tion of the normal binary coded representation.



Chapter 3

Applications

The Fermat number transform (FNT) is one of the most useful and powerful
number theoretic transforms. As mentioned in Chapter 1, in the beginning of
the 1970’s the interesting properties of the FNT attracted several researches. In
this chapter we describe some of the main applications of the FNT. In particu-
lar, we consider digital convolution and correlation in Fermat integer quotient
rings and Reed-Solomon codes over Fermat prime fields.

There are also other applications of the FNT. Siu and Constantinides [87] have
shown that the number of multiplications required to compute the discrete
Fourier transform can be reduced by using number theoretic transforms. In
[88] they particularly consider the FNT for reducing the complexity of com-
puting the discrete Fourier transform. Truong et al. [102] later considered the
computation of the discrete Fourier transform using the FNT in a quadratic
residue Fermat number system. Several other researchers have also studied
the computation of the discrete Fourier transform using number theoretic
transforms.

Boussakta and Holt have shown that the discrete Hartley transform can be
calculated using the FNT [20, 21]. In [22], the same authors showed how to
compute the Walsh-Hadamard transform using the FNT and vice versa. Two
decades ago, Rader [78] discussed number theoretic transforms for use in a
block-mode image filtering scheme. A microprocessor-based architecture for
block-mode image filters using the FNT was later implemented in VLSI by
Shakaff et al. [90].

25
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Boussakta et al. [23] showed that the FNT of periodic data has a regular struc-
ture with many transform components equal to zero. Any small imperfection
in the periodic data significantly changes the high regularity of its FNT. As a
consequence of the results in [23], the authors conclude that the FNT is highly
applicable in areas like for example the detection of errors in maskmaking for
integrated circuit design and defect detection in industrial inspection. They
also suggest applications for image compression and data storage, where only
the nonzero elements of the FNT of periodic data need to be stored together
with their locations.

3.1 Convolution and Correlation of Real Integer
Sequences

Discrete convolution and correlation are two very common operations in dig-
ital signal processing (see for example Blahut [17]). The cyclic convolution of
two sequences {z,, }. ) and {h,}"~} is given by the sum
N-1
Y, = Zxkhn_k(mod]v); n=0,1,....,N—1 (3.1)
k=0
Correlation and convolution are computationally equivalent. The cross-corre-
lation of two sequences {z,} and {4, } is obtained by convolving {z,} with

(h ).

Like the discrete Fourier transform the FNT also has the cyclic convolution
property, i.e. the transform of a cyclic convolution of two sequences is equal
to the product of their transforms. Because the method of computing the con-
volution sum using transform calculations is often faster than the direct com-
putation of the sum, the procedure is sometimes called fast convolution. The
method is particularly efficient when the sequence length is highly composite,
because then some FFT algorithm can be applied to compute the transform.

It is often possible — and sometimes preferable — to let computations in one
algebraic field be carried out in another field, which is then usually called a
surrogate tield. Depending on the application in question, this computational
procedure may also apply to rings. A computation of interest where this is
applicable is convolution via transform calculations. Using a computer or a
digital signal processor, these calculations are often carried out in the complex
tield C, i.e. the discrete Fourier transform is used. However, if the sequences
that are to be convolved consist of real integers, the convolution can instead be
computed in an integer quotient ring Z,, for some suitable modulus ¢ [2].
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There are some advantages of computing the transforms in Z, rather than in
the complex field: A complex multiplication requires several real multiplica-
tions while a multiplication in Z, is a single and often simpler operation (inte-
ger multiplication). The computation precision is also improved since compu-
tations in a finite ring are exact. Another very important consequence of the
simplified arithmetic is that, depending on ¢, the complexity and performance
of the hardware implementation of a transform in Z, can be smaller than the

complexity and performance of the corresponding implemented transform in
C.

The modulus ¢ must be chosen such that every element x,, %,, and y,, for n =
0,1,..., N—1,is contained in the ring Z,. Because of the congruence relation
modulo ¢ in the ring Z,, negative integers are represented as positive integers,
in accordance with the congruence —z = ¢ — = (mod g).

In the following example we illustrate how discrete cyclic convolution of real
integers can be computed in an integer quotient ring.

Example 3.1 If the convolution of two positive real integer sequences x and h
are to be carried out in the surrogate field Z,, then the greatest integer in the
convolution sum must be less than the modulus ¢, i.e. ¢ must not exceed the
dynamicrangeof y, (and z, and h,,). Forx = {4, 11, 7, 4} and h = {9, 0, 8, 14},
by (3.1) we can compute the convolution y = {246, 229, 151, 180}. The prime
modulus ¢ = 257 = 2® + 1 is greater than the maximum value of y. Conse-
quently, this convolution can be carried out in Zss,,. Furthermore, because
the sequences involved have length 4, which divides 257 — 1 = 256, the con-
volution y can be obtained by using FNT calculations in Zs .

Because the order of the integer 16 is 4 modulo 2° + 1, it can be chosen as the
kernel w of an FNT of length N = 4. Thus, the 4-point FNT of x is

3
Xp =D w16t (mod 257);  k=0,1,2,3

n=0

with a similar relation for the transform of h. Using matrix notations we have

X, 11 1 1 4 2%
X, | |1 16 256 241 1| [ 109
X, = 1 25 1 256 7| T 253 (mod 257)
X, 1 241 256 16 4 142
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and
Hy 31
Zl = 3;1 (mod 257).
2
Hs 225

Each component Y}, of the FNT of y is then obtained by multiplying X}, by
modulo 257, which gives

Yo 35
Yi . 108
Y, = 945 (mod 257).
Ys 82

Regarding the inverse transform we need to know N~! and w™'. From the
congruences 4 - 193 = 1 (mod 257) and 16 - 241 = 1 (mod 257) we get
N7t =471=193 (mod 257)andw™' =167 =241 (mod 257), respectively.
Hence, the inverse transform is

Yo 1 1 1 1 35 246
Y1 _ | o241 256 16 108 | _ | 229
Ys = 131 95 1 256 25 | = | 151 (mod 257),
Y3 1 16 256 241 82 180

which agrees with the convolution y obtained when using the conventional
convolution sum in (3.1). O

Let x be the input sequence of a linear time-invariant system with impulse
response h. Let A be the dynamic range of z,, i.e. we have | z, | < A for

n=0,1,..., N—1. If 2, can take on negative numbers, the convolution sum
yields

N-1 g—1

oy | < AY | < -,

k=0

and thus
qg—1
S =N -
2Z:k:ol | hk |

If A is also the dynamic range of 4, and the computations are carried out in
Zigmyr, weget| hy | < A, g=2"+1,and N = 2°. Thus, we have

A < [2m +1—1 :2m—2b—1
o 2.0
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b m

2‘4‘8‘16‘32‘64
111(2(8]128 215 | 23
21014 64|21 |23
3114 64|21 |23
41 -101]2] 321|213 |22
51-1-12] 32|21 |2%
6|-|-|1| 16|22 | 2%
701-1-11| 16|22 | 2%
8II-1-10 8| - | 277
91 -1-1- 8| - | -
10)-1(-1- 4| - | -
1m|-|-1- 4| - | -
122-1-1- 21 - | -
13-1-1- 21 - | -
M4|-]-1- 1] - | -
15| -1-1- 1] - | -
16| -|-1|- 0| - | -

Table 3.1: The dynamic range of x,, and h.,,, for which the corresponding sequences
are of length N = 2. In Zigmyy we have 0 < b < mform =1, 2,4, 8,and 16,
and 2° < 4m for m = 32 and m = 64.

which implies that the maximum dynamic range is

m—b—1

A= 2,

i.e. the greatest integer less than or equal to 2(™~*=1)/2, Table 3.1 shows the dy-
namic range of x,, and A, for some values of m and b. Because of the relatively
poor dynamic range for small m, digital filtering of real integer sequences is
generally considered to be applicable primarily for m > 32.

A common situation in filtering applications is the filtering of a relatively long
sequence by an FIR filter of much shorter length. This involves a linear con-
volution of great length which can be impractical to compute. There exist,
however, two well known techniques that simplify the computation of great-
length linear convolutions: Using the overlap-add method or the overlap-save
method, the longer sequence is sectioned into shorter length subsequences that
are cyclically convolved with the impulse response [79, Ch. 2.25]. Truong et
al. [103, 107] have devised a general overlap-save method for filters of arbi-
trary length using the Fermat number transform.
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An important application of the cyclic convolution property is multiplication
of (large) integers. Let u and v be two m-bit normal binary coded integers, i.e.
w=>""u2"and v = Y7 v,2" where u,, v, € Z, The procedure for
multiplying u by v is equivalent to the convolution (v * v),. The direct con-
volution requires in the order of m? bit operations. If m is a power of 2, this
complexity can be reduced to approximately m!°82? bit operations by using the

Karatsuba-Ofman algorithm [55], [4, Ch. 2.6].

The most efficient algorithm for multiplication of large m-bit integers, where
m is a power of two, is due to Schonhage and Strassen [86]. The algorithm
multiplies two m-bit normal binary coded integers v and v, where m = 2. The
output is the (m + 1)-bit product of v and v modulo the Fermat number F; =
2" 4+ 1. The product is computed using the FNT in Z, for s = (¢ + 3)/2 if t is
odd and for s = (¢+2)/2if ¢ is even. The algorithm, which requires in the order
of m - log, m - log,(log, m) bit operations , is described in English by Aho et al.
in [4, Ch. 7.5].

3.2 Decoding of Reed-Solomon Codes

Denote by (GF(q) an algebraic finite field of order ¢.! The Galois field Fourier
transform (GFT) can be regarded as a generalisation of the well known discrete
Fourier transform. The GFT of the vector v = (vg, vy, va,..., vx_1) over GF(q)
is the vector V = (Vo, Vi, Vo, ..., Vn_1), where

N-1
\G:Zviwij; 7=0,1,.... N —1.
=0

The transform kernel w is an element of GGF'(¢") of order N, where N divides
q" — 1 for some positive integer n, see for example Blahut [16, Def. 8.1.1]. The
inverse GFT of V is given by

where the multiplicative inverse N~! is computed modulo the characteristic p
of the field G'F'(¢q). Each transform component V; is an element of G'F'(¢").

' The only finite field we have considered so far is the prime field GF (p), where p is a prime
number. Because the set Z, = {0, 1, 2,..., p — 1} of integers modulo the prime p forms the
prime field G'F(p) under addition and multiplication modulo p, the prime field of order p is
often denoted Z,.
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Let C = (Cy, C1, Cy, ..., Cn_1) be the GFT of a Reed-Solomon codeword ¢ =
(co, €1, €2,..., cn_1) Of length N. For Reed-Solomon codes the exponent n in

the GFT computation equals one, i.e. the transform kernel w is an element of
('F(q). The codeword polynomial ¢(z) = 327 " ¢;2f, which is associated with
the codeword c, has 2¢ consecutive powers of w as its roots, where ¢ is the num-

ber of errors that can be corrected by the code. Thus, we have

z

c(wu-l-l) _ ci(wuH)i — Cu-l—l (mod N) = 0

7

Il
=]

forsome v and ! =0, 1,..., 2t — 1. Consequently, each cyclically contiguous
transform component ', ;; (mod n) €quals zero. This property may be used to
construct Reed-Solomon codes in the transform domain: The encoder first sets
2t consecutive? components of C equal to zero. The remaining X' = N —2¢ po-
sitions of C are filled with message symbols. Next, the resulting transform is
inverted to produce the desired codeword c. Depending on the choice of ¢, IV,
and K, this procedure may yield a computational complexity that is smaller
than the complexity of the "direct’ computation of the codeword, i.e. by means
of polynomial multiplication in the time domain.

The decoding procedure at the receiver’s end may also take place in the trans-
form domain (see Blahut [16, Ch. 8-9]). The receiver first computes the GFT
vector R from the received vector r = c+e, where e is an error vector of length
N. In the transform domain we have the relation R = C + E. The transmit-
ted codeword c can be obtained as the inverse GFT of C = R — E. When
the encoding take place in the transform domain, the message symbols may
be obtained directly from C. Because the encoder has set 2¢ consecutive posi-
tions of C equal to zero, E equals R in these positions. The 2¢ corresponding
components of R are called the syndromes of r. If not more than ¢ errors have
occurred, the remaining N — 2¢ unknown components of E can be recursively
computed from the syndromes using for example the Berlekamp-Massey al-
gorithm.

When ¢ is a Fermat prime and » equals one, the FNT in the prime field Zp,;
t =1, 2, 3, 4is obtained as a special case of the GFT. Justesen [54] was among
the first researchers to consider Reed-Solomon codes over Fermat prime fields.
He stated that the decoding complexity of such codes can be reduced if the
FNT is used to calculate the syndromes.

Reed, one of the originators of the Reed-Solomon codes, have coauthored sev-
eral articles concerning fast decoding of Reed-Solomon codes using the FNT.

2QOr cyclically contiguous.
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For example, in [80], Reed et al. show how to use the FNT and continued frac-
tions in the decoding procedure. In [82], Reed et al. conclude that a decoder for
Reed-Solomon codes of length 2'** over G'I'( F};) using an FNT is simpler than
corresponding decoders for a code of length 2 — 1 using a GFT in G F'(2). Liu
et al. [63] considered Reed-Solomon codes over G F'(F3) for use in space com-
munication applications. In a recent article by Shiozaki et al. [91], the authors
consider a Reed-Solomon code as a special case of a redundant residue poly-
nomial code. They present a fast algorithm for decoding Reed-Solomon codes
over G I'(F;) using the FNT and the Euclidean algorithm.



Chapter 4

The VLSI Model

We use complementary metal-oxide-semiconductor (CMOS) circuits in the
VLSI architectures presented in this thesis. The CMOS technology offers high
packing density, high yield, wide noise margin, low power dissipation, and
low cost. Because of these attractive properties, CMOS has become one of the
most important VLSI technologies of today (see for example Weste and Esh-
raghian [113, Ch. 1]). The VLSI model adopted in this thesis (and defined in
the present chapter) is only valid for CMOS and nMOS circuits.

Ininteger quotient rings, all arithmetic operations involve modulus reduction.
When performing modulus reduction of a binary coded integer, the value in
each bit position of the reduced binary coded integer may depend on the value
in every bit position of the original binary coded integer. Therefore, depend-
ing on the modulus, bit-serial architectures are often impracticable for arith-
metic operations in integer quotient rings. This particularly applies to integer
arithmetic operations modulo a Fermat number 2™ 4 1. Most of the architec-
tures presented in the subsequent chapters are based on bit-parallel transmis-
sion and processing of the data. The main exceptions are the bit-serial /parallel
multipliers in Sections 5.1.5, 6.3.6, and 7.6.6 and the bit-serial multipliers in
Sections 7.6.5 and 7.6.6.

33
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4.1 Introduction

In the VLSI circuit design process it is important to consider aspects like floor-
planning and interconnections. These aspects play a major role when mini-
mising parameters like clock skew, noise, and power dissipation (see the book
of Bakoglu [14]). Over the years, two of the main goals for integrated circuit
designers have been to minimise the area and maximise the performance of
the implemented circuits. During the last years, there has also been an in-
creasing interest in low-power digital CMOS design, see Chandrakasan et al.
[30, 31] and Liu [61]. One reason for this is the increasing number of portable
equipment requiring low power. Another reason is that the scaling of digital
CMOS circuits results in a higher power consumption.

In Chapters 5, 6, and 7 we investigate different architectures for arithmetic op-
erations. These architectures are mutually compared mainly with respect to
their area complexity and time performance. The chip area occupied by the
corresponding implemented circuit is denoted by A and the time required to
perform the operation is denoted by 7'. In order to take both chip area and
computation time into account, we also consider the area-time performance
AT? of each architecture. The AT? performance is a cost function to be min-
imised. Thompson [100] is one of the originators of this area-time performance
measure. In his paper of 1979 [100] Thompson proposed a VLSI model of com-
putations. Based on this model, he derived a lower bound N? on the AT per-
formance of computing the discrete Fourier transform of length N, i.e AT? =
Q2 (N?) for such a computation.! Brent and Kung [26] also did some basic
works on VLSI models and complexity. They derived the lower bound AT?* =
Q(N't), for 0 < a < 1, on the performance of N-bit binary multiplication. A
survey of computational algorithms and their VLSI implementation is given
by Ullman [104]. For example, in Chapter 2 of [104], Ullman gives an intro-
duction to the area of AT? performance.

As indicated above, two very important steps in the VLSI design process are
floorplanning and the routing of interconnections and communication paths.
Interconnections usually occupy a large part of the chip, typically more than
tifty percent of the total chip area. The placement of the different modules of
the chip is crucial to the interconnection delay. The wire lengths between mod-
ules and within each module should be as small as possible in order to get a
small interconnection delay.

By a(m) = O (b(m)) (or “a(m) is O (b(m))”) we mean that, for increasing m, the function
a(m) does not grow faster than the function 6(m). The notation a(m) = 2 (b(m)) (or “a(m) is
Q (b(m))”) is used to bound the growth rate of a(m) from below. The notations O and 2 are
conventionally used in the area of VLSI complexity, see for example Ullman [104].
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The choice of VLSI model differ between researchers. The modelling of the
chip area is quite uncontroversial. The main difference lays in the modelling
of the interconnection delay. The time for a signal to propagate along a wire
of length [ is usually modelled as either O (1) (synchronous model), O (log!)
(capacitive model), O (/) (transmission line model), or O (I?) (RC model), see
Bilardi et al. [15] and Bakoglu [14, Ch. 5-6]. The capacitive model, adopted
by for example Thompson, is appropriate for short wires and the 2C' model
for long wires. It is, however, common to divide long wires into shorter sub-
sections using repeaters (buffers). These repeaters have the effect of reducing
the interconnection delay from O (1%) to O (1), see for example Bakoglu [14, Ch.
54.2].

Because device dimensions are getting smaller and chips are getting larger, the
lengths of on-chip wires are increasing. Therefore, the interconnection delay
is more and more becoming a major factor when determining the overall cir-
cuit performance. In this thesis we assume that interconnection delays within
each module are O (1),i.e we adopt the synchronous model. For large systems,
the synchronous model gives a gross simplification of the true interconnection
delay. Because in general the architectures studied here do not involve global
routing (interconnections between modules on the chip) our delay estimations
should not, however, considerably deviate from the true intramodular delays.

If we go a couple of steps further in the design process and consider the imple-
mented circuit, then it is simpler to estimate the delays caused by the wiring.
It is also simple to estimate the true interconnection delay after the floorplan-
ning and routing steps of the design process. One way of estimating the aver-
age lengths of the chip interconnections is to partition the circuit design into
different sections and calculate the number of connections between the sec-
tions. The average lengths can then be modelled by using Rent’s rule, which
is described by, for example, Bakoglu [14, Ch. 9.8.1].

Adopting the synchronous model for the interconnection delays does not
mean that we disregard the wiring effects. Our effort is to design architectures
with a high degree of regularity and with wires only connecting neighbouring
gates.

In general, the architectures presented in this thesis do not contain logic cir-
cuits for generating control signals. For example, every clock signal is assumed
to be available wherever needed and without any clock skew involved.

The phrase “low power” can be found in many current publication titles. Sev-
eral aspects of low power digital CMOS design can be found in the recently
published PhD thesis by Liu [61]. For example, in his thesis Liu considers low
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power CMOS device design, low power circuit and system techniques, and
power estimations in digital CMOS VLSI chips.

In this thesis, we do not give estimates of the power dissipated by the investi-
gated circuits. However, with a low-power design strategy in mind, we often
follow the guidelines suggested by Liu [61] and others when choosing clock-
ing strategy and combinational logic circuits.

4.2 Complexity and Performance

4.2.1 The Delay Model

Over the years, the linear switch-level #C' model for CMOS transistors has
been adopted by many researchers when investigating the timing properties
of digital VLSI circuits. We refer to the articles by Ousterhout [70] and Rubin-
stein et al. [85], and Chapter 1 in Mead’s and Conway’s book [66]. A linear
switched RC model for the nMOS transistor is shown in Figure 4.1.

For the sake of simplicity, all hMOS and pMOS transistors are modelled to
have the same characteristics, e.g. they have equal size and the pull-down and
pull-up times of the nMOS and pMOS transistors, respectively, are the same.
The RC model for the pMOS transistor is similar to the nMOS transistor model
in Figure 4.1. When a transistor is off, the switch is open and the transistor acts
only as a capacitive load to the rest of the circuit. The variables C,, Cy, C;, and
Ry are the gate, drain, and source capacitances, and the channel resistance, re-
spectively.

A consequence of modelling the non-linear MOS transistors of a circuit as lin-
ear switched RC circuits is that the estimated circuit delays are more or less er-
roneous. A circumstance which is often neglected is the fact that the transistor
capacitances and the channel resistance are actually functions of voltage. In-
accuracies in delay computations may also occur because of the difficulties in
including input waveform effects. Nevertheless, for most ZC' models the de-
lay estimations do not deviate more than 20 percent from SPICE simulations,
see the articles by Ousterhout [70], Sundblad and Svensson [96], and Heden-
stierna and Jeppson [49].

In this thesis we adopt the Penfield-Rubenstein model [85] in which the input
voltages are modelled as step waveforms and transistors are modelled as the
transistor in Figure 4.1. The delay calculation of a circuit is based on Elmore’s
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Figure 4.1: Model of an nMOS transistor. (a) Symbolic description. (b) A switched
linear RC' model of the transistor. The transistor is switched on when the gate
voltage Vi is high.

delay model for an RC' tree without side branches, i.e. an RC' chain [43], [85].
For example, the Elmore delay 7, from the input to the output of the RC' chain
in Figure 4.2 equals

n- Y (il@) ‘.

=1 7=1

= RiCi+ (Ri+ Ry)Cy+ (R1 4+ Re 4+ R3)Cs + (Ry + Ry + Rs + R4)Cl,

i.e. each capacitor contributes to the delay as the product of the capacitance and the
total resistance between the capacitor and the signal source (or ground)*. The delay
is defined as the time from the 50-percent level of the input signal waveform
to the 50-percent level of the output signal waveform.

Without considering wire capacitances, the capacitive loads in different nodes
of most of today’s digital CMOS combinational logic circuits are dominated
by gate capacitances [113, Ch. 4.3.4], [49]. The main reason for this is that the
number of gates connected to a node is often several times greater than the
number of drains and sources connected to the node. Furthermore, according
to Weste and Eshraghian [113, Ch. 4.3.4] and others, the gate capacitance is

?Each capacitor is assumed to be charged (or discharged) through all resistors between the
capacitor and the signal source (ground).
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Ry Ry Rs Ry
Ci=— Y=/ Ca— Cy—

Figure 4.2: An RC chain.

typically several times greater than the drain and source capacitances. Due to
these facts and in order to obtain a measure of time complexity on a simple
form, we generally disregard the effects of the drain and source capacitances
on the delays. Thus, the only capacitances and resistances that are involved
in our delay computations are gate capacitances and transistor channel resis-
tances, respectively.

4.2.2 Area and Time Complexities

Denote by A the chip area occupied by an implemented circuit. Because the
CMOS technology changes so fast, it is essential to have a measure of the chip
area that is technology-independent. The area complexities of the architec-
tures considered in this thesis are given in terms of the sizes of the architec-
tures.

Definition 4.1 The size of an architecture is the number of CMOS transistors that
form the architecture and is denoted by C.

Consequently, with equally sized transistors the chip area A occupied by the
implemented circuit, not including the wire area, is proportional to C. If the
total circuit area is to be determined, the circuit interconnections must also be
considered. Even though the area occupied by these interconnections is not
considered here, we still strive to design modular and regular architectures
in order to reduce the interconnection area and simplify the interconnection
work.

The clock frequency of a circuit is related to the length of its critical path. The
critical path is the longest path along which signals are pulling up and pulling
down circuit transistors, or propagating through them, during one clock inter-
val. The critical path usually starts and ends with a clocked latch or flip-flop.
Thus, the minimum clock cycle time of a circuit is proportional to the length of
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its critical path. Suppose the circuit needs m clock cycles to perform its oper-
ation. Then, the computation time is proportional to m times the critical path
length.

When determining the critical path, we use the same strategy as the one used
in the timing verification program Crystal, which is described by Ousterhout
in [70]. The circuit to be examined is decomposed into chains of transistors
called stages. A stage runs from the supply voltage source or ground through
a number of transistors to the gate inputs of some other transistors.

Definition 4.2 Let s denote a certain stage of a circuit and let T denote the delay of
that stage. Then, the length L, of stage s is the ratio of 1, and the time constant R,C,,

ie.
Tq

RoC,’
where Ry and C', are the linearised MOS transistor channel resistance and gate ca-
pacitance, respectively.

L, =

The delay of a stage is calculated as Elmore’s delay of the iC' chain model of
the stage. The critical path through a circuit is formed by an ordered set of
stages, where each stage gives a separate contribution to the total circuit delay.

Definition 4.3 The length L, of the critical path (CP) equals the sum of the lengths
of the stages that forms the critical path.

One of the transistors in each stage is called the trigger. The trigger is the last
transistor to turn on in a stage.

Consider, as an example, the circuit in Figure 4.3. This circuit has no relevance,
except for being an example. The CP through the circuit is the ordered set
{s1, 52, s3, s4} of stages. These stages, which become active for in = 0, are
signified by dotted lines in the figure. The RC circuits in the bottom of the fig-
ure correspond to the equivalent ZC' models of the four stages s1, s, s3, and
s4. The total delay 7} of the circuit is approximately equal to the sum

Td — T1 —|— T2 —|— T3 —|— T4 — Rl N 20g —|— QRO N 3Cg —|— R()Cg —|— (RQ —|— Ro) N an, (41)

where Ty, 15, T3, and T} are the delay contributions of the stages s1, s, s3, and
s4, respectively and where n is the fan-out of the circuit, i.e. the number of tran-
sistor gates that are driven by the circuit output signal. The trigger of stage
52/ s3/s4 is the transistor in the end of stage s1/s,/s3, respectively. By Defini-
tions 4.2 and 4.3, the length of the CP through the circuit in Figure 4.3 equals
L., =Ta/RoC,.
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Figure 4.3: An example of a circuit (the one within the dashed box) that has CP
length L., = 2ry + 7 + n(ry + 1) and size C = 8. Here, the output load is
strictly capacitive; n is the circuit fan-out. The RC' equivalent circuits of the
stages sy, sy, s3, and s, are shown in the bottom of the figure.

Definition 4.4 We define the normalised resistance r of a resistor with resistance
R as the ratio

= R

where Ry is the linearised MOS transistor channel resistance.

By letting 2y = ri1f and R, = ry Ry we get, from (4.1), the CP length £, =
2ry + 7 + n(ry + 1) for the circuit in Figure 4.3. Hence, the time from the ris-
ing/falling of the input signal to the rising/falling of the output signal is pro-
portional to £, = 2ry + 7 4 n(r; + 1). We also note that the circuit has size
C = 8, because it comprises 8 transistors.” The area-time performance AT? of
the circuit is proportional to CL? = 8- (2ry + 7 + n(r; + 1))

3In this example we do not consider the area of the two resistors Ry and Rs.
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The architectures of this thesis mainly comprise basic building blocks like in-
verters, transmission gates, 2-input gates, adder elements, and registers. In
the following Section 4.3 we present the sizes and time performances of such
CMOS logic circuits, with respect to the adopted delay model. The size of an
architecture was defined above as the number of nhMOS and pMOS transistors
that form the circuit. We describe the time performance of an architecture in
terms of its fan-in, internal CP length, and output normalised resistance:

Definition 4.5

1. The fan-in f of a circuit is the number of transistor gates of the circuit that are
driven by the circuit input signal.

2. Aninternal stage of a circuit is a stage whose associated RC model does not de-
pend on how the circuit is connected to other circuits. The internal CP length
L., is the sum of the lengths of the internal stages.

3. The output normalised resistance r is the total normalised resistance from
the circuit output node back to the supply voltage source (or ground).

The length of the CP is used as a measure of time performance. When char-
acterising the CP through a circuit, it is partitioned into three parts, in accor-
dance with Definition 4.5-1, 2, and 3:

1. The first part of the CP is the input stage of the circuit. The delay of the in-
put stage depends on the total capacitance n;,C, at the input node, where n;, is
the fan-out of the preceding circuit that has this input stage as its output stage.
Henceforth, we describe the input stage of a circuit in terms of its contribution
to nin, i.e. we only state the fan-in f of the circuit.

For example, the fan-in of the circuit in Figure 4.3, whose input stage is s,
equals 2.

2. The second part of the CP is the set of internal stages, which is described
by the internal CP length.

For example, the internal stages of the circuit in Figure 4.3 are s, and s3. Their
respective lengths equal 2- 3 = 6 and 1 - 1 = 1. Hence, the internal CP length
of the circuit equals 6 +1 = 7.

3. The third part of the CP is the output stage. The output normalised resis-
tance determines, together with the subsequent resistive and capacitive loads
of the output stage, the length of the stage. The circuit contribution to this
length is described in terms of its output normalised resistance.

For example, the output stage of the circuit in Figure 4.3 is s, and its output
normalised resistance equals r; + 1.
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Remark: There are architectures in Chapters 5, 6, and 7 for which the delays
of some stages are proportional to 1, where m is the exponent of 2 in the
Fermat number 2™ + 1. These delays are generally due to the fact that
single logic gates or inverters are driving large capacitive loads. For ex-
ample, if a logic gate with output normalised resistance r is driving m
logic gates, each with fan-in equal to f, the delay of that stage is pro-
portional to its length r - fm. The traditional way of reducing the delay
of a stage with a large capacitive load is to properly buffer the stage by
using a number of cascaded drivers (inverters) of gradually increasing
size. Then, the resulting total delay can be bounded to be proportional
to log m, see Mead an Conway [66, Sec. 1.5]. Note, however, that regard-
ing the architectures in Chapters 5, 6, and 7, we generally do not consider the
problem of driving large capacitive loads.

4.3 Basic CMOS Building Blocks

In this section we derive the sizes, fan-ins, internal CP lengths, and output nor-
malised resistances of the inverter, the transmission gate, the two-input multi-
plexer, two-input gates, the single-bit adder, and the register (D flip-flop), with
respect to the VLSI model defined in the previous section. In Section 4.3.6,
these parameters are all listed in a table.

4.3.1 The Inverter and the Transmission Gate

The Inverter

Because the CMOS inverter comprises two MOS transistors, its size equals
Cinv = 2. The inverter is shown in Figure 4.4. When the inverter input sig-
nal changes from high to low, the stages marked by the dashed lines in Fig-
ure 4.4(b) are activated. For a low-to-high input signal transition, the stages
marked by the dotted lines are activated. Because the two possible input
stages, as well as the two output stages, are actually equivalent, the inverter
contribution to the CP is simply its fan-in, which equals fi., = 2, and its output
normalised resistance r;,, = 1. There is no internal stage.

In Figure 4.4(c), nin is the total number of transistor gate inputs that are con-
nected to the inverter input node and » is the fan-out of the inverter. Further-
more, ri, is the output normalised resistance of the circuit prior to the inverter.
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Figure 4.4: A CMOS inverter. (a) Symbolic description. (b) Schematic description.
The CP is formed either by the dotted or the dashed stages. (c) Simple RC equiv-
alents of the stages.

The Transmission Gate

The transmission gate has the same size C,, = 2 as the inverter. Figure 4.5
shows how the transmission gate is formed by an »MOS and a pMOS tran-
sistor in parallel. The dotted path in Figure 4.5(b) is the output stage of the
CP. This stage is also the output stage of a preceding circuit whose output sig-
nal is the input signal of the transmission gate. The stage runs through one
of the transmission gate transistors. Therefore, the output normalised resis-
tance equals r,, = 7prior + 1, Where 7,5, is the output normalised resistance
of the mentioned circuit prior to the transmission gate. Note that because the
transmission gate is not connected to the supply voltage source or ground, its
equivalent pass transistor resistor is a series resistor (and not a Thevenin equiv-
alent resistor).

If one of the transistors of the transmission gate is the trigger of the output
stage, then the stage that ends up in the gate input of this transistor also be-
longs to the CP; it becomes the input stage. Then, the fan-in f,, equals the
fan-in of the trigger,* i.e. we have f,, = 1. Otherwise, the fan-in equals zero.
Like the inverter, the transmission gate has no internal stage.

“In accordance with Definition 4.5-1, by the fan-in of the trigger we mean the number of
gates of a circuit that are driven by the signal on the gate of the trigger.
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Figure 4.5: A transmission gate. (a) Symbolic description. (b) Schematic descrip-
tion. The dotted line is the output stage of the transmission gate.

4.3.2 The Two-Input Multiplexer

The two-input multiplexer is simply constructed using two transmission
gates, as shown in Figure 4.6.

Because the multiplexer comprises two transmission gates, each of size 2, the
total size of the two-input multiplexer equals C,,,, = 4. Like the output stage
of the transmission gate, the multiplexer output stage (s, in Figure 4.6) is also
the output stage of another circuit. Hence, the output normalised resistance of
the multiplexer equals 7, = Tprior + 1, Where rp,iq, is the output normalised
resistance of the circuit prior to the multiplexer.

Furthermore, if the transmission gate transistor of stage s is the trigger of
stage s, stage s; also belongs to the CP. Then, the multiplexer fan-in equals
fuux = 2, because the control signal S in stage s; controls two of the multi-
plexer transistors.” If s; does not belong to the CP, the multiplexer has no in-
put stage and thus its fan-in equals zero. The internal CP length equals zero.

4.3.3 Two-Input Gates

NAND/NOR Gates

Schematic descriptions of the 2-input NAND and NOR gates are given in Fig-
ures 4.7(a;) and (b,) respectively. The NAND and NOR gates have equal size

5If S controls the trigger of the output stage, the fan-in f,, 5 also equals two.
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Figure 4.6: A two-input multiplexer. (a) Symbolic description. (b) Schematic de-
scription. The dotted lines show the two stages of the CP when the signal S = 1
opens the trigger of stage s,.

Coannmor = 4. With respect to the switch-level transistor model, the gate de-
lays are also the same. The RC' equivalents of the NAND and NOR gates are
given in Figure 4.7(c). In the worst case delay, D, is the input signal of the trig-
ger of stage s,. Because each of the input signals controls the switching of two
transistors, the fan-in equals [, vor = 2 for both the NAND gate and the
NOR gate. We also get the same output normalised resistance ry, . on = 2

for both gates. The NAND and NOR gates have no internal stage.

In a more realistic transistor model, the NAND gate is often preferable to the
NOR gate. For example, if the gates are designed to have symmetric switch-
ing, the area occupied by the NAND gate is smaller than the area required for
the NOR gate, see Uyemura [106, Ch. 6.5.3]. Conversely, for transistors of the
same size, the rise-time and fall-time asymmetry is greater for the NOR gate
than for the NAND gate.

AND/OR Gates

Two-input AND gates and OR gates are usually designed as NAND gates
and NOR gates, respectively, each followed by an inverter. Thus, AND gates
and OR gates have size C,,,, ., = 6. The fan-in [, .. equals the fan-in
= 2 of the NAND (and NOR) gate and the output normalised re-

f&AND/NOR
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Figure 4.7: Two-input NAND and NOR gates. (a) A NAND gate. (b) A NOR gate.
(c) RC equivalents of the CP stages when there are no side branches or extended
branches. The NAND gate and the NOR gate have similar CP stages, see the
dotted lines in (ay) and (b,).
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sistance 7, ., of the AND and OR gates equals the normalised resistance
rinv = 1 of the inverter. The internal CP length £, .. equals the product
of the output normalised resistance of the NAND (and NOR) gate and the in-

verter fan-in, i.e. we have ,CAND/OR = T'yann/won fiow=2-2=4.

XOR/XNOR Gates

The XOR gate can be designed in several ways. For example, a transmission
gate-based XOR gate can be built with as few as six transistors [113, Fig. 8.11].
However, it may be rather difficult to track down CPs of circuits that contain
such XOR gates. Therefore, we instead consider the realisation shown in Fig-
ure 4.8(b), which has size C,,, = 12. This gate contains more transistors than
the transmission gate-based XOR gate, but it is quite easy to find the stages of
its CP.

There are eight different stages in the XOR gate in Figure 4.8. Which ones
will be activated depends on the input signals D and D, and their last val-
ues. Among the 16 different transitions of the input signals that may occur,
the one from (D, D,) = (1, 0) to (D, Ds) = (0, 0) activates the stages s, s2,
and s3 in the listed order. These stages, which are signified by the dotted lines
in Figure 4.8(b), form a CP through the XOR gate.°

The fan-in of the XOR gate equals f,., = 4 and the normalised resistance of
the output stage s3 equals r, ., = 2. The RC equivalent of the internal stage
59 of the CP through the XOR gate is shown in Figure 4.8(c). The length £
of stage s, equals 2.

XOR

The two-input XNOR gate can be constructed by interchanging the connec-
tions of v and its binary inverse (i.e. its one’s complement) 7 in the rightmost
part of the circuit in Figure 4.8(b). Consequently, the XNOR gate have the
same size and delay characteristics as the XOR gate.

4.3.4 The Single-Bit Adder

Addition is a fundamental operation in all arithmetic processes. There are
many ways to implement an m-bit binary adder. In general, it consists of a
some single-bit full adder elements. A parallel m-bit adder can be formed by
cascading m such adder element. Figure 4.9 shows the Karnaugh maps for the
sum output o and carry output ¢ of the full adder element. The adder has three

SThere are also other stages of the XOR gate whose lengths sum up to the length of the CP
chosen.
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Figure 4.8: A static two-input XOR gate. (a) Symbolic description. (b) Schematic
description. The dotted lines show the three stages of a possible CP through the
gate. (c) RC equivalent circuit of the internal stage s, of the CP.

inputs; the signals  and v and the carry input ¢;,. According to the Karnaugh
maps, the carry and sum outputs of the full adder element can be expressed
as the Boolean expressions

¢ = By+an(B+7) (42)
o = [BDYDcn, (4.3)

respectively. The symbol ¢ denotes the XOR function, i.e. addition modulo
2. Figure 4.10(a) shows the symbolic description of the single-bit full adder
element.

There are various ways of implementing the full adder element. Here, we use
the conventional static full adder element shown in Figure 4.10(b), which is
based on the carry output Boolean function given by (4.2) and the sum output
Boolean function

o= Byen+e(B+7+ an),

which is obtained by rewriting (4.3). The delays of this adder element can eas-
ily be estimated when using the adopted switch-level RC' delay model. An-
other advantage is that the adder outputs are driven by inverters. However,
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Figure 4.9: Karnaugh maps of the sum output o and carry output c of the full adder
element.

compared with dynamic adders it has at least one disadvantage: From an in-
vestigation of various adder elements, Liu and Svensson [61, Paper 5] con-
clude that the power consumption of the static adder in Figure 4.10(b) is typ-
ically two to three times greater than the power consumption of dynamic full
adder elements. The size of the chosen full adder, which equals C,, = 28, is
comparable to the sizes of most other dynamic and static full adder elements.

There are 64 different input signal transitions of the adder element that may
occur. From a CP search point of view, however, most of them are ruled out.
Yuan and Svensson [109] propose two principles of determining the number
of significant transitions. Firstly, the start stage of each transition should in-
clude as many transistors as possible. Secondly, the final stage should have as
few transistors in parallel as possible. Using these principles, the number of
interesting input transitions are reduced to 14 [109, Fig. 5]. When investigat-
ing these transitions, we have found that they all give rise to paths of the same
lengths.

For example, one such CP is obtained when the input signals change from
(8,7, cn) = (1,1, 1) to (3, v, ¢in) = (0, 0, 1). If this transition occurs synchro-
nously for the three adder inputs, the CP from the input to the sum output is
equal to the set {sy, 53, s5, s} of stages, see the dotted lines in Figure 4.10(b).
The internal signal ¢ opens the trigger of stage s5. Moreover, the CP from the
input to the carry outputis equivalent to the set {5, s2, s3}. If 5 opens the trig-
ger of stage s,, then s; is replaced by ss in the above sets of stages. However,
because both v and /3 drive eight of the full adder transistors, the fan-in of the
trigger of stage s, will still be the same; f; = fs = 8.

If the trigger of stage s5 is the transistor with gate input signal ¢, i.e. if ¢;, ap-
pears at the adder input later than the moment when the end node of stage s,
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Figure 4.10: The single-bit binary full adder element. (a)Symbolic description.
(b) Schematic description. The dotted and the dashed lines are stages that form

the different CPs of the adder element.
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is fully charged, then stage s, is included in the input-to-sum CP. This situa-
tion typically occurs in parallel adders, for which the CP is usually the carry
chain through the full adder elements. Then, the CP from the carry input to
the carry output is the set {s4, s7, s3}, for which only one of the two parallel
transistors (controlled by 5 and v) in stage s~ is switched on. Because the carry
input ¢, is connected to the gates of six transistors of the full adder, the fan-in
of the trigger of stage s5 (and of the trigger of stage s;) equals f4 = 6. Using
the switch-level #C' model, we obtain the lengths £, =2-4 =8, £L; =2.2 =4,
and £ = 2 - 4 = 8 of the internal stages s, s5, and s7, respectively.

From the above reasoning we get that the full adder fan-ins equal f, ..., =8
and f, ..., = 6, with respect to the signal and carry input nodes, respectively.
When the CP through the full adder leads to the sum output, the internal CP
length equals £, ..., = £2 + £5 = 8 +4 = 12 and when it leads to the carry
output, the internal CP length equals £, . .= = £2 = L7 = 8. In both cases we
get the same output normalised resistance r,, = 1.

If one of the inputs, say the carry input, of the full adder element is always
equal to zero, a half adder may be used instead of a full adder. Then, the sum
and carry outputs of the half adder are the Boolean functions ¢ = 3 & v and
¢ = (v, respectively. These functions may be directly implemented using one
XOR gate for the sum output and one AND gate for the carry output, where
the latter gate is realised as a NAND gate followed by an inverter.

The half adder element is depicted in Figure 4.11. The size of this half adder
equalsC,, =C,, +Cypnp + Cinv = 12 +4 4 2 = 18. Its CP delay parameters
are shown in the bottom of the figure.

4.3.5 The Register

As for many other CMOS circuits, there are several ways of designing a reg-
ister. Here, we consider the dynamic true single-phase clock master-slave D
flip-flop depicted in Figure 4.12. This positive edge-trigged flip-flop is an ex-
tended version of a precharged inverting D flip-flop suggested by Yuan et al.
[108]. Thesize of the flip-flop in Figure 4.12, which equals C,., = 16, is less than
the sizes of ordinary static D flip-flops. Also, Liu and Svensson [61, Ch. 3.3],
[99] found that the power consumption of this flip-flop is less than the power
consumption of other known static and dynamic master-slave D flip-flops.

The flip-flop in Figure 4.12 has an asynchronous reset input. In some circuits,
one may need settable registers and when using a plain bit-serial shift register
there is no need for settable or resettable registers. There are also other types of
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Figure 4.11: A half adder element, realised using one NAND gate, one XOR gate,
and one inverter.

registers and D flip-flops. We make the following assumptions regarding the
register elements (and D flip-flops) in the architectures considered in Chap-
ters 5,6, and 7:

e Every register element (and D flip-flop) has the same size and delay pa-
rameters as the D flip-flop in Figure 4.12.

e Data is fed from the output of one register through a block of combina-
tional logic to the input of another register during one clock cycle. Con-
sequently, each CP starts with the output stages of the first register and
ends with the input stages of the destined register.

e The register input data obeys the setup and hold time constraints of the
register.

e The clock signal clk of a register is the output signal of an inverter that
only drives this particular register clock input. The delay time of any
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Figure 4.12: A resettable register, realised as a dynamic, true single-phase clock, pos-
itive edge-trigged master-slave D flip-flop. The register is reset for B = 1.
(a) Symbolic descriptions. (b) Schematic description.
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H Stage s; | Stage length £,
S1 1-2=2
39 1-4=4
S5 1-2=2
36 1-4=4
S7 2:-2=4
S5 2:-2=4
39 1-2=2

Table 4.1: Lengths of the internal stages of the register in Figure 4.12.

stages ahead of the clock input stages s; and s5 are not included in the
total delay of the register.

¢ Ina particular CMOS system, the various architectures for arithmetic op-
erations all share the same registers for storing the input data and they
share the same registers for storing the output data. Therefore, the input
and output registers are generally not considered when deriving the to-
tal size of an investigated architecture. In some architectures, like archi-
tectures for serial/parallel multiplication, the input data are loaded into
registers which are used throughout the whole execution time (during
several clock cycles). An output register may also be used in a similar
mannet, for example as a feedback shift register. The size of every regis-
ter involved in the computation in this way is included in the total size
of an architecture.

The D flip-flop stages that are included in the CP are marked with dotted (sig-
nal stages) and dashed (clock stages) lines in Figure 4.12. The CP stages s1, s3,

.., s9 in the figure are activated when an output (input) signal of the CP start
(end) register changes from low to high. The output stages of the start register
are the stages s; (due to clock rising), s», and s3;. The input stages of the end
register are sy, S5, 6, 57, 53, and sg.

The lengths of the register stages are tabulated in Table 4.1. The total internal
length of the start register equals the sum L,z oue = 2+ 4 = 6 of the lengths of
stages s; and s,. The total internal length of the end register equals the sum
Lregin = 2+4+4+4+2 = 16 of the lengths of stages s5, sg, s7, 55, and sg. Hence,
the register contribution to the total CP length equals L,c; = Liegout + Lregin =
22. The fan-in f..; of the register and its output normalised resistance 7., of
the output stage s3 both equal 2.
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4.3.6 Table of Complexity Parameters

In Table 4.2 we have listed the complexity parameters of the circuits that
have been analysed in the previous Sections 4.3.1 to 4.3.5. For each circuit
we state its size C, fan-in f, internal CP length £ , and its output normalised
resistance r.
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CMOS circuit Size | Fan-in | Internal CP | Output norm.
C f length £ resistance r
Inverter 2 2 — 1
Transmission gate’ 2 1(0) — Tprior 1+ 1
2-input Multiplexer” 4 2(0) — Pprior + 1
2-input NAND and 4 2 — 2
NOR gates
2-input AND and 6 2 4 1
OR gates
2-input XOR and 12 4 2 2
XNOR gates
Full adder element 28 1
e Signal input to 8 12
sum output
e Signal input to 8 8
carry output
e Carry input to 6 12
sum output
e Carry input to 6 8
carry output
Half adder element 18 6
e Signal input to 2 2
sum output
e Signal input to 4 1
carry output
(Shift) Register, 16 16+6= 22
D flip-flop
e Input path 2 16
e Output path 6 2

“If a transmission gate transistor is the trigger of the output stage, then the fan-in equals
1 for the transmission gate and 2 for the multiplexer. If not, the fan-in equals zero in both
cases and only the output stage contributes to the CP. The normalised resistance rp.ior equals
the output normalised resistance of the circuit that is prior to the transmission gate (or
multiplexer).

Table 4.2: The sizes, fan-ins, internal CP lengths, and output normalised resistances
of some frequently used CMOS circuits.
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4.4 Implementing the Fermat Number Transform

In the previous chapters, we have mentioned several advantages of number
theoretic transforms in general and the Fermat number transform in particu-
lar. For example, digital convolution of real integer sequences can be imple-
mented using Fermat number transforms for which multiplication by powers
of the transform kernel can be carried out as binary shifts (rotations). Also, no
round-off errors occur during the computations, because the arithmetic oper-
ations involved are carried out in a finite ring or field.

As mentioned in Section 2.3.2 the Fermat number transform, whose length is
a power of two, can be computed using a suitable fast Fourier transform algo-
rithm. In Section 2.3.3 we considered the conventional radix-2, radix-4, and
split-radix algorithms, in which the transform additions and multiplications
are partitioned into so called butterfly computations. These algorithms exploit
different degrees of parallelism.

Since the publication in 1976 of McClellan’s [65] hardware implementation of
a Fermat number transform, several Fermat number transform architectures
have appeared in the literature. Truong et al. [103, 107] considered the imple-
mentation of fast digital filtering using a generalised overlap-save method and
a parallel pipelined Fermat number transform architecture.

Based on the work of Truong et al., Towers et al. [101] designed a cascadable
nMOS VLSI circuit for fast convolution, involving a pipelined Fermat number
transformer.

Shakaff et al. [90] investigate the practical aspects of using the Fermat number
transform as a block-mode image filtering tool on small microprocessor based
systems. Their transform architecture is based on a gate array implementation
of the butterfly computational unit.

Several aspects and techniques for implementing the Fermat number trans-
form in (nMOS) VLSI are investigated in the theses by Pajayakrit [71, Ch. 4-]
and Shakaff [89].

Finally, we also would like to mention the recent paper by Benaissa et al. [13],
in which the authors present a CMOS VLSI design of a high-speed Fermat
number transform-based convolver/correlator. The VLSI chip comprises a
complete 64-point pipeline transformer that can be used for both the forward
and the inverse Fermat number transform.
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In all the above papers, except the one by McClellan, the authors have adopted
the diminished—1 representation of the elements in Fermat integer quotient
rings. The diminished—-1 representation is thoroughly investigated in Chap-
ter 6.

As mentioned before, we are primarily interested in the arithmetic operations
required to compute the Fermat number transform. Architectures for the com-
plete transform or the transform butterflies are not further considered in this
thesis.



Chapter 5

The Normal Binary Coded
Representation

We only consider element representations that can be expressed as simple el-
ementary functions of the normal binary coded (NBC) representation. In the
present chapter, we study integer arithmetic operations modulo 2™ + 1 with
respect to the NBC representation itself.

5.1 Architectures for Arithmetic Operations

We are mainly interested in VLSI architectures for the arithmetic operations
that may be involved in the computation of the Fermat number transform and
its inverse transform. Therefore, we consider architectures for modulus reduc-
tion, negation, addition, subtraction, multiplication by powers of 2, general
multiplication, and exponentiation, with respect to a binary coded represen-
tation of the integers of Zym,. All these operations may not be involved in the
computation of the Fermat number transform, but for completeness they are
still considered. For example, general multiplication can be avoided using a
suitable transform kernel, see Section 2.3.2. We do not consider division, be-
cause it is not needed when computing the Fermat number transform and it
is not a general operation in every Fermat integer quotient ring.

The architectures for some of the arithmetic operations considered in the the-
sis are based on architectures for operations on ordinary two’s complement
binary coded numbers. There is a wide variety of VLSI designs available for
these operations. For example, an adder circuit can be implemented in sev-

59
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eral ways. It can be a carry ripple adder, a carry select adder, a carry save
adder, a carry look-ahead adder, a conditional-sum adder, or some other type
of adder [113, Ch. 8.2.1]. All architectures in Chapters 5, 6, and 7 are not op-
timal with respect to chip area, computation time, or area-time performance.
We primarily consider architectures that can be mutually compared in order to
decide which form of element representation is most advantageous, with respect
to some area and/or time complexity of the resulting architectures. Thus, for
a certain element representation and a certain arithmetic operation there may
exist architectures that have better area-time performance than the one (or the
ones) presented here.

Henceforth, most of the architectures presented are valid for arithmetic oper-
ations in the Fermat integer quotient ring Z4,,, i.e. for m = 4. However, in
general the architectures are regular in such a way that they can easily be ex-
panded (or contracted) to become applicable in any ring Zn;, where m is a
power of two. The only exceptions are the architectures in Chapter 7. They
are based on the polar representation and are applicable only when Zym 4 is a
field, i.e. form =1, 2, 4, 8, 16.

The 2™ 4 1 binary coded integers of Z,n,; are represented as (m + 1)-bit NBC
numbers. Therefore, by a congruencea = b (mod 2™ + 1) we generally con-
sider a to be the least nonnegative (m + 1)-bit residue of 6 modulo 2™ + 1.

5.1.1 Modulus Reduction

It is important that the reduction modulo 2™ + 1 is carried out as simply and
fast as possible, because it is involved in all arithmetic operations in Zymy.
For some operations, the modulus reduction may be included in the overall
computation.

Let 3 be an n-bit normal binary coded integer. This integer § = ,_12""' +
Bn_22"% + - 4 512 + [o, where 8; € Zyfor 0 < i < n — 1, may also be
JAN

represented by the n-bit binary vector B = (B,_1, Buas ...y B1,B0)2. The
notation 5"~ is occasionally used also for the integer 3.!

The residue of an (m+1)-bitinteger 5 > 2™  (mod 2" +1) is simply calculated
by first changing the one (1) in the most significant bit position 3,, of 3 to a zero
and then subtracting a one from the modified number, i.e. 3 = 3,,2™+ 3"~ =
B — 3, = p"Y 1 (mod 2™ + 1). In a hardware realisation, a simple
way to subtract 1 from the binary coded m-bit positive integer 3™~ is to add

IThis is illustrated, for n = m + 1, in Table 2.3 of Section 2.4.
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the two’s complement of 1 to the integer;
B = g™V _1 (mod2™+1)
= = o (mod?2™),

where o = 3"~ 1 (2 — 1). It follows by (4.2) and (4.3) that the carry output
¢i+1 and the sum output o; of a binary full adder element can be expressed as
the Boolean functions

¢iv1 = OBvita(Bi+v)

o = Bidvdg

respectively, where 3; and ~; are the adder input signals and ¢; is the carry in-
put signal. By letting v = 2™ —1,i.e.lety;, = 1 for 0 <: < m —1, the carry and
the sum output functions reduce to

Ciy1 = ﬁz—l—cz (51)

op = Bide, (5.2)

respectively. Hence, we get o = ¢,,2™ + Om_12" "V 4+ oo 4+ 012 + 0y, where ¢,,
and o;; 0 <1 < m — 1 are given in (5.2) and (5.2), respectively.

The full adder elements can be connected in different ways. We consider two
types of two-operand parallel adders, which are based on how the internal car-
ries between the adder elements are generated. One of the adder types is the
carry ripple (or ripple carry) adder, for which the carry output of each full adder
element is connected to the carry input of the subsequent full adder element
(the one in the next higher-order bit position). The second adder type is the
carry look-ahead adder, for which the internal carry signals are precomputed.
The carry look-ahead adder is usually faster than the carry ripple adder, but
the penalty paid for this is a greater area complexity, see for example Weste
and Eshraghian [113, Ch. 8.2.1] or Hwang [52, Ch. 3].

A Carry Ripple-Based Architecture

Figure 5.1 shows an architecture that performs the modulus reduction ¢ = 3

(mod 2* 4 1) using essentially a simplified carry ripple adder followed by
two-input multiplexers. The multiplexers, which are formed by the transmis-
sion gate pairs at the outputs, let either 3 (if 5 < 2™) or o (if # > 2™) pass to
the output. The signal % and its inverse control the multiplexers. The output
residue is the (m+ 1)-bit normal binary coded integer ¢ = ©,,2" + ., _12" 1 +
-+ -+ ¢12 + po. The architecture is based on the following algorithm:
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1. If0 < 3 <2 (h=0),thenlety = 3

2. 127 +1 <8 <27 — 1 (h = 1), thenletp = (0,00"7Y),
where o(m=1) = glm=1) _ 1,

The carry signals are realised using a chain of OR gates. The Boolean function
h = B,.¢,, is used to indicate whether 3 is greater than 2™. We assume that /3 is
always an (m + 1)-bit integer, i.e. the maximum reducible overflow is 2"+! — 1.

The architecture in Figure 5.1 for reduction modulo 2™ + 1 comprises m — 1
OR gates, m — 1 XNOR gates, one NAND gate, m + 1 two-input multiplexers,?
and two inverters. Using the size parameters of Table 4.2, the size®of this ar-
chitecture equals

CmOdJ = (m - 1)(COR + CXNOR) + CNAND + (m + 1)CMUX + QCinV
(m—-1)(6+12)+44+4m+1)+2-2
= 22m — 6. (5.3)

The critical path®(CP) through the circuit is the path from (3, to / together with
the path from f3,,_; to ¢,,_1, as signified by the dotted lines in the figure. The
fan-in,*with respect to the 3y-input node, equals

fmod,l = finv + fOR + fXNOR =2+2+4=8.
The output normalised resistance’equals
Tmod,1 = "'m-1 + 1,

where 7,,_; is the total normalised resistance from the 3,,_;-input node to the
supply voltage source, i.e. the output normalised resistance of the preceding
circuit.

Regarding rmoa,1, the length of the output stage, which is the dotted path from
Br-1 t0 pp—1 in Figure 5.1, actually equals 7,1 (for + fiwor ) + (Tm—1+ 1)7m_1,
where n,,_; is the fan-out seen from the ¢,,_;-output node. However, because
the 3,,_i-input node is fully charged when the output multiplexer opens,
we do not include the former part of the expression. Thus, only the term
(rm—1+ 1)n,,_ contributes to the length of the output path and hence the out-
put normalised resistance rmoq4,1 €equals r,,_; + 1. The internal CP length of the

?For the sake of simplicity, the single inverter of the output circuitry in bit position m is
regarded as a transmission gate.

3The size, critical path, fan-in, and output normalised resistance of an architecture was de-
fined in Section 4.2.2.
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Figure 5.1: A carry ripple-type circuit for reduction modulo 2™ + 1, where o™~V =
B 1 (mod 2™)and m = 4. If 3 > 2™ (overflow) then h = 1, otherwise
h = 0. The two dotted lines indicate the set of stages that form the critical path
through the circuit.
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circuit equals

ECP7m0d71 = (m_l)’COR—I_(m )OR(fOR—I_fXNOR)—I_rORfNAND
+ Pyanp (2m + 1+ finy) + Tiny - 2(m + 1)
= m—1)-4+(m—=2)-1-2+4)+1-2
+202m+14+2)4+1-2(m+1)
= 16m — 6.

The circuit parameters forming Lcp mod,1 are obtained from Table 4.2.

In some situations, the modulus reduction may directly succeed operations for
which the signal 3,,_; appears on its input node after the time when the inter-
nal carry signal ¢,,_; appears on its node in the carry chain. See for example
the adder architecture of Figure 5.7. Then, the modulus reduction circuit con-
tribution to the total CP length may be much smaller than Lcp mod,1-

In Chapter 4 we mentioned that, with respect to size and time performance,
NAND and NOR gates are preferable to AND and OR gates, respectively. Ac-
cordingly, it may seem advantageous to realise the carry chain using a chain
of alternating NAND and NOR gates instead of a chain of OR gates. We have
designed such an architecture. The size of that architecture equals 21m — 4,
which is slightly less than the size Cyoa1 = 22m — 6 of the OR-type architec-
ture in Figure 5.1. However, the internal CP length of the NAND/NOR-type
architecture equals 18m + 33, which is greater than the corresponding length
Lcp mod1 = 16m — 6 of the architecture in Figure 5.1. The increase of the first
term by 2m (from 16m to 18m) equals the difference between the contributions
(’COR + rOR(fOR + fXNOR))m = (4 +1- 6)m = 10m and TNAND/NOR(fNAND/NOR +
Fixorn)m = (2-6)m = 12m to the CP lengths of the OR-type and the NAND/
NOR-type architectures, respectively. Thus, for each bit position, the increase
of the CP length (by 6) due to the doubling of the normalised resistance in a
stage (When exchanging an OR gate for a NAND or NOR gate) is greater than
the decrease of the length (by 4) due to the elimination of the internal length
L, of the OR gate.

A Carry Look-Ahead-Based Architecture

In Figure 5.2 we present a carry look-ahead-type circuit for modulus reduc-
tion. Here, the carry signals are generated in parallel using the tree of NAND
and NOR gates that precedes the row of XNOR gates in the figure. The struc-
ture of this simplified and distributed carry look-ahead tree is similar to the
structure of Brent and Kung’s carry look-ahead tree [27].
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The depth of the tree is log, m and there are m — 2° NAND or NOR gates in
level 7 of the tree, starting with : = 0 for the input level. Thus, there are a total
of

log, m—1
Z (m —2) = m(log, m — 1) + 1
i=0
such gates in the tree, distributed such that the NOR gates are only in the even
numbered levels of the tree and the NAND gates are only in the odd numbered
levels. Also, there are 2 inverters in level i of the tree, which means that the
total number of inverters in the tree is m — 1. Hence, the size of the carry look-
ahead-type modulus reduction circuit in Figure 5.2 equals

Cmod,? - (m(logz m — 1) + 1)CNAND/NOR + mCinv
+ (m - 1)CXNOR + CNAND + (m + 1)CMUX
= (m(log,m—1)+1)-44+m-24+(m—-1)-124+44+(m+1)-4
= 4m -log, m + 14m. (5.4)

The CP through the circuit is the set of stages along the two dotted lines in the
figure.* The fan-in of the circuit equals

fm0d72 = fXNOR + 2fNOR =4+2-2=38
and its output normalised resistance rmoq,2 equals
"mod,2 = Tmod,1 = T"m-1 + 1.

Thus the architectures in Figures 5.1 and 5.2 have equal fan-in and output nor-
malised resistance. The internal CP length of the carry look-ahead-type archi-
tectures equals

ECP7m0d72 = (10g2 m— 1)TNAND/NOR (fNOR/NAND + finv) + Tyann fNAND
+ Pyanp (2m + 1+ finy) + Tiny - 2(m + 1)
= (log,m—1)-2(2+2)+2-2
+202m4+142)+1-2(m+1)
= 6m + 8log, m + 4.

As mentioned above, in some situations the CP may enter the circuit via the
Bm-1-input node. In such a situation, the carry ripple-type architecture in Fig-
ure 5.1 is preferable to the carry ripple-type architecture in Figure 5.2, because
the path from the /3,,_; input to the last carry signal ¢,, is shorter in the former
case than in the latter case. Regarding the architecture in Figure 5.2, we would
like to mention the following;:

* Actually, the CP output stage is any of the stages from a 3;-input node to the correspond-
ing p;-output node, where 0 < ¢ < m — 1.
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Figure 5.2: A carry look-ahead-type circuit for reduction modulo 2™ + 1, where
m = 4. The two dotted lines signify the set of stages that form the critical path
through the circuit.

1. With respect to both area and time complexity, NAND and NOR gates
are preferable to OR gates in the carry look-ahead tree. The difference in
complexity is, however, not significant.

2. The placement of the row of m /2 inverters in the last level of the carry
look-ahead tree differs, depending on whether log, m is odd or even.
The inverters can be omitted if the subsequent row of m /2 XNOR gates
is exchanged for a row of XOR gates.

3. A disadvantage of the carry look-ahead tree may be its relatively long
internal wires.

Regarding the architectures in both Figure 5.1 and Figure 5.2, for large m there
may be a problem for the NAND gate and the inverter (whose output signals
are h and h, respectively) to each drive 2(m + 1) multiplexer transistors. The



5.1. Architectures for Arithmetic Operations 67

delay of a stage with a large capacitive load can be significantly reduced by
using properly sized drivers. Such drivers are, however, not used here.

Our comparison between different architectures with respect to their area-time
performanceis made under the assumption that the architectures are both pre-
ceded and followed by a parallel register. Then, using the architecture in Fig-
ure 5.1 or the one in Figure 5.2, the time 7" to perform the modulus reduction
operation is proportional to the lengths

Emod,l — Ereg + rregfmod,l + ECP,mod,l + rmod,lfreg
= 2242-8416m—-6+3-2
= 16m + 38

Emod,? — Ereg + rregfmod,? + ECP,mod,? + rmod,2freg
= 22+4+2-846m +8log, m+4+3-2
= 6m + 8log, m + 48,

respectively, where rnod,1 = "mod2 = rreg + 1 = 3. Using the size paramaters
Cimod,1 and Cpoa 2 in (5.3) and (5.4), respectively, and the above lengths L.04,1
and L0q,2, the area-time performances AT? of these modulus reduction cir-
cuits are proportional to the products

>

C’C’lznod,l Crnod 1 (Lmod1)? = (22m — 6)(16m + 38)?

= O <m3>

C£12nod,2 = Cmod,?(£mod,2)2 = (4dmlog, m + 14m)(6m + 8log, m + 48)2
= 0 <m3 log, m) \

respectively. The sizes, CP lengths, and AT? performances of the above two
circuits for modulus reduction are plotted in Figure 5.3. We see that the size
Cimoa,2 Of the carry look-ahead-type architecture in Figure 5.2 is greater than
the size Cp0a,1 Of the carry ripple-type architecture in Figure 5.1. On the other
hand, for the CP lengths of the architectures we have the reverse relation. The
ratio of the CP lengths L,,041 and L6042 converges relatively fast to 8/3 with
growing m. We conclude that, with respect to the time complexities and the
AT? performances, the architecture in Figure 5.2 is preferable to the architec-
ture in Figure 5.1.
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Figure 5.3: Sizes, CP lengths, and AT? performances of the two modulus re-
duction architectures. The parameters are plotted versus m for m =
2,4, 8,16, 32, 64, 128, 256. The lines connecting the parameter values are
plotted only to clearly illustrate how the complexity parameters grow with m.

5.1.2 Negation

Let 3 be an (m + 1)-bit NBC integer. Then we have
o = PB=2"" -1)—-p3-2-2"+1
= 343 (mod?2™+1), (5.5)

where 8 = (B, Bm_1,---, B1, Bo)2 is the one’s complement of 3 = (3., Bm-1,
..y B1, Bo)2. Adding 3 to 3 seems to be a simple operation, but we also would
like to perform the modulus reduction in the same computation step. We there-
fore expand j3 as

B = B,2" 4 Bn-1) = glm=1) _ 37— glm=1) 4 31 (mod 2™ 4+ 1)
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where, by Definition 2.4, 8"~V = (B,,_1,Bn_2.....51,00)2 = Bpno12™7' +
Bm22™ % + -+« + 312 + Bo. Hence, (5.5) can be written as

p = —B=p"D43, —143
20+ D)+ fBo+ B (mod 27 +1),

wherey = B3, 12772+ 3,,22" 3 + - + 3,2+ 3, is an (m — 1)-bit binary coded
integer for whichv; = 3,11;0 <7 < m — 2. Leto Z v+ 0, where § = 1.
This sum can be computed using a simplified (m» — 1)-bit parallel adder. By
(4.3) and (4.2) the sum output and the carry output of the adder element in bit
position ¢ are the Boolean functions o; = 6, &+, @& ¢; and ¢;41 = 0,y + (6 + i)
respectively, where 0 < 7 < m — 2. We havey; = ;11 for0 < ¢ < m — 2,
0; =0forl <:<m—2,0,=1,and ¢, = 0. Hence, the sum and carry output
functions simplifies to

op = YiDe= By Do
Ciy1 = ¢ = B
respectively, for: = 0, 1,..., m — 2. We identify these functions as the sum

and carry outputs of the half adder element, see Section 4.3.4 (Figure 4.11).

From the above it follows that the desired integer ¢ equals the (m+1)-bit NBC
integer ¢ = (Ym, T2, Om-3,..., 01, 0o, ¥o),. We obtain the bit values ¢, and
©o as Boolean functions of the carry signal ¢,,_; and the input signals 3,, and
9. There are four situations that have to be handled:

1. If 3=0, theno =2, 3, =0,and 3,, = 0.
Let ©m = Cp—1 = 0 and Yo = 60 = 0.

2. If3=1, theno =2"", 3y = 1,and 3, = 0.
Let ©m = Cp—1 = 1 and Yo = 60 = 0.

3. If2<3<2"~1, thenl <o < 2m=1 — 1, By is arbitrary, and (3,, = 0.
Let ©m = Cp—1 = 0 and Yo = 60.

4. If3=2"=—-1 (mod2™+1), thenoc =2"""1, 3, =0,and 3,, = 1.

Let ©m = Cp—1 = 0 and Yo = 60 =1.

These special cases yield the Karnaugh maps for ¢, and ¢, in Figure 5.4. The
respective Boolean functions are

Pm = cm—lﬁO =Cp_1 + %7

0o = Bt CniBo= B (Cnifo).
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Cm—lﬁo Cm—lﬁo
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Figure 5.4: Karnaugh maps for the output variables ¢, and ¢q of the negation cir-
cuit. X = “don’t care”. (a) ¢, = ¢i_10.  (b) o = B + C1Bo.

Figure 5.5 shows a realisation in Zj:,, of the negation circuit. As seen in the
tigure, the above-mentioned simplified parallel adder consists of a row of half
adder elements, each comprising one AND gate and one XOR gate. In order
to generate the signal ¢,,—7, the carry output of the half adder in the most sig-
nificant bit position is inverted. The inversion is realised by exchanging the
half adder AND gate for a NAND gate.

The size of the architecture in Figure 5.5 equals

Cneg = (m + Q)Cinv + (m - 3)CHA + Ciorn + 3Cxann T Chon
= 2(m+2)+18(m—3)+1243-4+4
= 20m — 22,
The CP of the architecture is the dotted path from the 3; input along the carry

chain to ¢,,-7 and finally through two NAND gates to ¢,. Hence, the fan-in of
the architecture equals

fneg = finv =2

and its output normalised resistance equals

rneg = TNAND = 2

The length Lcp neg of the internal CP equals

’CCP,Heg = rinv(finv + fHA) + (m - 3)(’CHA,cany + THa carry fHA)
+ Tyanp (fNOR + foawo T fNAND)
= 1-246)+(m—3)4+1-6)+2-(24+2+2)
= 30m — 10.

The negater in Figure 5.5 is a carry ripple type of architecture. The AND-gate
carry chain can be exchanged for a chain of alternating NAND and NOR gates,
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Figure 5.5: Negation modulo 2™ 4+ 1, m = 4.
©0=—0B=204Bm+ 08 (mod?2™+ 1), where v = (™1 — 3y)/2 + 1.
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resembling the modification of the OR-gate carry chain of the modulus reduc-
tion circuit in Figure 5.1. Such a modification slightly reduces the size of the
architecture, but the CP length will, however, increase. This was also the case
for the circuit in Figure 5.1.

It is possible to design a carry look-ahead type of architecture for NBC nega-
tion. The carry look-ahead part of such a circuit may be similar to the carry
look-ahead part of the modulus reduction architecture in Figure 5.2. The dif-
ference in area-time performance between that carry look-ahead negater and
the architecture in Figure 5.5 is in the same order as the difference in area-time
performance between the architecture in Figure 5.2 and the one in Figure 5.1.

When the negater in Figure 5.5 is preceded and followed by parallel registers,
its total CP length equals

Eneg = /:reg + rregfneg + ECP,neg + rnegfreg
= 22+42-2430m—-1042-2
= 30m + 20,

which means that the area-time performance AT? of the suggested negater is
proportional to

CLEy = Creg(Lueg)” = (20m — 22)(30m +20)* = O (m?) .

neg

In Section 8.1.3 we compare the complexity parameters of the above negater
with the complexity parameters of other negation circuits.

5.1.3 Addition and Subtraction

Addition

We consider the addition ¢ = 3+ v (mod 2™ + 1), where the (m + 1)-bit
NBC integers ¢ and ~ are elements of Z;my, i.e. we have 0 < 3,y < 2™. In
order to simplify the arithmetic operation, we expand the above addition in
the following way.

Let o = 30"=1) 4 ~(m=1)_ This sum can be obtained by using an m-bit parallel
carry ripple adder. We write o on the form o = ¢,,2" 4+ 0,,_12" ' 4+ 5,,,_,2""* +
--+ + 0o, where ¢,, is the carry output of the full adder element in bit posi-
tion m — 1 and o; is the sum output of the adder element in bit position ¢ for
0 <7 < m — 1. Because the first carry input signal is always equal to zero,
the adder element in the least significant bit position may be implemented as
a half adder.
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Furthermore, let § = o(™~1) 427 1. This is the same type of addition as the one
that resulted in the carry ripple-type modulus reduction circuit of Figure 5.1 in
Section 5.1.1. With ¢; being the input of a simplified adder element of the type
described in Section 5.1.1, the corresponding output is ;. We denote by g,,
the carry output from the simplified adder element in the most significant bit
position. Finally, we need a binary control signal, say 4, that lets either (™~
or o™~ pass to the adder output. Thus, we define i € Z, such that p(™~!) =
hom=1) 4 (1- h)a(m_l), ie. g =h0; + ho;for0 <i<m— 1.

With regard to the above definitions, we consider the following seven special
cases of input signal combinations.

1. If g =~ =0, then (B, vm) = (0, 0), (cm, g) = (0, 0).
Let h=0, ¢,=0 "1 =cglmn1),

2. 1f =0, 1<~<2™—1 or
then (8., vm) = (0, 0), (¢m, g

~—

Let h=0, ¢,=0 "1 =cglm1),

3.1f3=0, y=2™ or =27 ~=0,
then (8., vm) = (0, 1) or (1, 0), (cm, g) = (0, 0).

Let h=0, ¢,=1, "1 =cglmn-1),

4. 1 <p,y<2™ —land o = 27,
then (8., ym) = (0, 0), (e, g) = (1, 0).

Let h=0, ¢,=1, "1 =cglmn-1),

5.1f1<B8,v<2" —1lando > 2",
then (3,,, vm) = (0, 0), (cm, g) = (1, 1).

Let h=1, ¢,=0 "1 =gm-1),

6. f1<pB<2m—1, v=2" or B=2", 1<y<2m_1,
then (B, vm) = (0, 1) or (1, 0), (cm, g) = (0, 1).

Let h=1, ¢,=0 "1 =gm1),
7. 13 =~=2",then (B, ym) = (1, 1), (cm, g) = (0, 0).

Let h=1, ¢,=0, m=¢0n1,
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Figure 5.6: Karnaugh maps of the Boolean function h and o,,.
(@) h = BaYm + Gnlem + B + Ym)- (B) 0 = - BV T

The binary control signal 4 and the output bit ¢,,, can be expressed as a Boolean
functions of the variables j3,,, v, ¢, and g,,,. From the Karnaugh map in Fig-
ure 5.6(a) we derive the Boolean function

By writing / on this form we see that it can be realised using four NAND gates,
one inverter, and one XOR gate. The Boolean function

Om = (Cm + (B @ Ym)) + Gm

is derived from the Karnaugh map in Figure 5.6(b). However, by comparing
the Karnaugh maps in Figure 5.6(a) and (b), we see that the map for ¢,, is the
inverse of the map for &, except in the positions (3., Y, ¢m, gm) = (0, 0, 0, 0)
and (0, 0, 0, 1). Therefore, the function ¢,, can also be expressed as

Pm :E'qﬁ_mV_m:h+m(ﬁm+7m)'

Because the inverse of the term ¢, (3,, + v, ) is a part of the expression for i, we
consequently only need one inverter and one NOR gate to generate ¢,, from
the gates producing the signal .

Figure 5.7 shows an adder architecture whose structure is based on the above
reasoning. The sum ¢ = 3("~1) + 4("~1) js computed using an ordinary m-bit
parallel carry ripple adder. This part of the architecture may be replaced by a
carry look-ahead adder, if desirable. The gates in the leftmost dashed box in
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B4 B3 B2 B1 Bo Y4 Y3 V2 Y1 Yo

=0+~ (mod?2*+1)

P4 3 P2 P1 Po

Bava Bs 73 B2 V2 B m Bo Yo

Figure 5.7: A circuit performing the addition o = 3+~ (mod 2™ +1) form = 4.
The dotted paths Py and P, form the CP through the circuit. The gates within
the rightmost dashed box performs the modulus reduction. This part of the ar-
chitecture can also be found in Figure 5.1. The gates within the leftmost dashed
box generate the output bit ©,,, and the control signal h.
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Figure 5.7 generate the control signal / and the output bit ¢,,. The gates in the
rightmost dashed box in the figure generate the m least significant bits of the
output binary coded integer ¢ by subtracting, if necessary, one (1) from (™ ~1
modulo 2.

As a result of a timing analysis based on the RC' delay model described in
Chapter 4, we found that the dotted paths marked by P, and P, form the CP
through the adder architecture. The fan-in f,qq of the architecture equals the
fan-in of the half adder, i.e. we get

fadd = fHA = 6

The internal length Lcp 44 through the adder equals the length of path P4, i.e.

Lopadd = Lig oy + (M= D1y frg oy +(m —2)L
—I_EFA,sum —I_ rFA(fXNOR —I_ fOR) —I_ EOR —I_ (TOR —I_ rNAND)fNAND
+ TNAND (2m —I' fNOR + finv) + Tinv - 2m
= 44+(m—-1)-64+(m—2)-84+124+1-(4+2)+4+(1+2) -2
+2(2m+2+2)42m
= 20m 4+ 18.

FA , carry

The m two-input multiplexers at the circuit output are opened simultaneously
by the control signal /4 and its inverse signal. The maximum normalised re-
sistance of the stage that runs through the multiplexer at bit position : equals
Tavor T1=3forl <7 <m-—1landr,, . +1=3for:=0. Therefore, the CP
output stage is any of the stages associated with the m least significant bits of
¢ and thus, the output normalised resistance of the adder equals

Tadd = 3

The size of the addition circuit equals

Cada = (m - 1)(CFA + COR + CXNOR) + CHA + mCMUX + 4CNAND + 2CNOR + 4Ciny
= (m—1)(284+6+12)+184+m-4+4-442-4+4+4-2
= 50m + 4.

Assuming that $ and ~ are outputs of (m + 1)-bit parallel register and that ¢
is also stored in such a register, we get the total CP length

Eadd = Ereg + rregfadd + ﬁCP,add + raddfreg
= 2242-64+20m+18+3-2
— 20m + 5. (5.6)
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The area-time performance of the circuit is proportional to

CL21 = Cagd(Laga)® = (50m + 4)(20m + 58)* = O (m?).

Subtraction

The most straightforward method of performing subtraction is to first negate
the subtrahend and then add it to the minuend, i.e.

p=PB—y=p+(-y) (mod2™ +1).

Subtraction can thus be realised using the architectures of Figures 5.5 and 5.7.

5.1.4 Multiplication by Powers of 2

Multiplication of an NBC number by two is easily carried out as a binary shift
of the number. Because the modulus reduction operation is not so straightfor-
ward and we use an (m + 1)-bit representation of the binary coded integers
of Zym41, multiplication by an arbitrary power of two is preferably carried out
as repeated multiplication by two. The modulus reduction is carried out after
every single shift, i.e. according to the congruence

2"3=2(2""Bmod 2™ +1) (mod 2™ +1).

Multiplication by 2

Figure 5.8 shows an architecture for computing ¢ = 25 (mod 2™ + 1), where
m = 4. The modulus reduction part of the circuit may for example be the ar-
chitecture in Figure 5.1 or the one in Figure 5.2. Here, due to its favourable
AT? performance, we only consider the carry look-ahead-type architecture in
Figure 5.2.

The input to the residue circuit is 25 = §,-12" + 22" + -+ + 3122 + 32
when0 < 8<2" —1,and23=-2=2"—1=(011---111); (mod 2™ + 1)
when 3 equals 2. Thisis easily implemented using simplified two-input mul-
tiplexers prior to the reduction circuit, as shown in Figure 5.8. Hence, the com-
plete circuit has size

Cmult? — Cinv + (m - 1)(CTG + 1) + Cmod,?
= 4m-log, m+ 17m — 1.
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Bs Bs B2 B bo

e =203 (mod 2* + 1)

Y4 P33 P2 Y1 Yo

1

s b
T e gy] B gl ]

7 ]

Reduction modulo 2* + 1

Figure 5.8: Multiplication by two; ¢ =23 (mod 2™ + 1) for 3 € Zgymy,, where

m = 4.

The CP is formed by the two dotted paths in the figure. Because the fan-in of
the reduction circuit in Figure 5.2, with respect to its least significant bit posi-
tion, equals f,,, + finv = 4, the total fan-in of the architecture in Figure 5.8,
with respect to the 3,,-input node, equals

fmult2:finv+m_1+4:m‘|‘5.
The output normalised resistance of the architecture is
Tmult2 = Tmod,2 = 70 + 27

where ry equals the normalised resistance from the 3,-input node to the sup-
ply voltage source (or ground). The internal CP length equals



5.1. Architectures for Arithmetic Operations 79

Lopmutz2 = Tiny - 2(m — 1) 4+ (ro + 1) fmod.2 + LEP mod 2
= 2(m—1)+8(ro+1)+6m+8logy, m+4
= 8(m + logy, m + ro) + 10.

If the input /3 is obtained from parallel register and ¢ is stored in a similar reg-
ister, then ro = .., = 2 and the total CP length equals

Emult? = Ereg + rregfmuth + ECP,muth + rmult?freg
= 2242(m+5)+8(m+log, m+2)+10+(2+2)-2
= 10m + 8log, m + 66. (5.7)

The AT? performance of the architecture in Figure 5.8 is proportional to the
product

C’/:’12nult2 é Cmult?(£mult2)2
(4m -logy m + 17m — 1) (10m + 8log, m + 66)°
= O <m3 log, m) :

The row of transmission gates and pMOS transistors at the input of the multi-
plication-by-2 circuit in Figure 5.8 may be exchanged for a row of m — 1 OR
gates. The OR gate in bit position ¢, for 0 < : < m—2, would have (,, and j; as
its input signals. If such a row of OR gates is used, the fan-in and the output
normalised resistance of the circuit are reduced to (m — 1)f,, = 2(m — 1) and
ron +1 = 2, respectively. The total CP length £,,.1c> decreases by 30 but the cir-
cuit size increases by 3m — 5. With respect to the AT performance, the row of
OR gates is preferable to the row of transmission-gates-and-pMOS-transistors
only for m < 64. For m > 64, the circuit in Figure 5.8 has better area-time per-
formance, compared with an architecture with a row of OR gates at the input.

Multiplication by 2"

Multiplication by powers of two can be carried out by using a feedback cou-
pled multiplication-by-2 circuit with a parallel register in the feedback loop. A
block diagram of such a circuit is shown in Figure 5.9. Here, the multiplication-
by-2 block is the circuit in Figure 5.8.

For § € Zymyy and n € N, the arithmetic operation ¢ = 2”3 (mod 2™ + 1)
is carried out by first, during an initial clock cycle, loading /3 into the parallel
register and then run the circuit for an appropriate number of clock cycles. Be-
cause the the integer 2 has order 2m = 2*! modulo 2™ + 1 (see Section 2.3.2)

we have ¢ = 2" 3 (mod 2™ + 1), where t = log, m. Thus, only the ¢ + 1
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least significant bits of » have to be considered. This implies that the desired
product 2”3 mod 2™ + 1 is present at the circuit output after n*) clock cycles
(not counting the initial clock cycle for loading the feedback register with /3).

The chip area A occupied by the circuit in Figure 5.8 is proportional to
Cmult?n = Cmuth + (m + 1)Creg =4m - 10g2 m 4+ 33m + 15.

The internal CP of the circuit is the feedback path from the output of the reg-
ister element in the most significant bit position, through the multiply-by-2
circuit, to the input of any of the other register elements. Assuming that the
output 2" mod 2™ + 1 is stored in an (m + 1)-bit parallel register, the length
of the internal CP equals

ECP,mult?n = Ereg + rregfmult? + ECP,muth + Ymuls2 2freg
= 2242-(m+5)+8m+log,m+2)+10+(2+2)-2-2
= 10m + 8log, m + 74.

After n¥ +1 clock cycles, including one clock cycle for initiating the feedback
register, the result is shifted out to the output register. Hence, the time 7' re-
quired to perform the entire operation is proportional to

Emult?n = (n(t) + 1)£CP,mult2n = (n(t) + 1)(10m + 810g2 m + 74),

where 0 < n¥ < 2m — 1, and the area-time performance AT of the multiply-
by-2" architecture is proportional to the product Conutizn( Limulean )

Note that, because we have n(Y) = n,2t + n,_1271 + -+ + ng = ny - m + n(t=1),
we can write

o = Qn(t)ﬁ _ (Qm)nth(t—l)ﬁ — (_1)nt2n(t—1)ﬁ (mod om 4 1) (58)

Hence, 2”3 mod 2™ + 1 can be computed by first running the feedback multi-
plication-by-two circuit nt=1 clock cycles. Then, if n; = 0 the desired product
@ = 2" (mod 2™ + 1) is present at the circuit output and if n, = 1 the re-
sult must be negated to obtain ¢. The area-time performance of the resulting
circuit, which consequently also comprises a negater, is smaller (but not sig-
nificantly smaller) than the area-time performance of the circuit in Figure 5.9.

It is also possible to design a strictly parallel architecture that performs multi-
plication by powers of two in one clock cycle. The structure of such an archi-
tecture would be similar to the structure of a barrel shifter. Such an architecture
is considered in Chapter 6 but, however, not in the present chapter.
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m + 1-bit parallel register

Mult. by 2 (Figure 5.8)

23, 228,..., 2" 3 (mod 2™ + 1)
Figure 5.9: Block diagram for multiplication by powers of two.

5.1.5 General Multiplication

An overview of some well known approaches to the binary multiplication
problem can be found for example in Hwang [52, Ch. 5] and Weste and Esh-
raghian [113, Ch. 8.2.7]. In principle, there are three types of architectures for
general multipliers, namely the serial-type, the serial/parallel-type, and the
parallel-type architecture. Factors like form of data transmission, circuit area
and computation time requirements, potential for pipelining (to increase the
clock frequency), and power dissipation constraints may govern the choice
of architecture type. For multiplication in an integer quotient ring, a serial/
parallel or strictly parallel architecture is generally preferable to a serial ar-
chitecture, inter alia with respect to the complexity of performing the mod-
ulus reduction operation. This issue was briefly discussed in the beginning of
Chapter 4.

Independently of the type of architecture, multiplication of NBC integers is
generally performed as sequential addition of partial products. For the multi-
plicand 3 = >, 3:2" and the multiplier y = Y." 72", where as usual 3;, v; €
Z, we get the product



82 Chapter 5. The Normal Binary Coded Representation

A common approach when designing a fast multiplier is to find a way to
quickly sum up all the partial products. The serial/parallel multiplier, which
is also known as the shift-and-add multiplier, is one of the most well known
multipliers. It successively adds the partial products together using one feed-
back parallel adder. In each clock interval, a partial product 2'3 mod 2™ + 1
is calculated as 2 - (2'7!3) mod 2™ + 1, i.e. using repeated multiplication by 2
modulo 27 + 1.

A block diagram for a serial/parallel multiplier over Zym; is shown in Fig-
ure 5.10. The parallel-input multiplicand # and the serial-input multiplier ~
are initially loaded into the registers R; and SR, respectively. The register R,
is initiated with the all-zero word. These initiations are carried out during one
clock cycle. After the following i clock cycles, the (m + 1)-bit parallel register
R, contains the partial product 2'3 mod 2™ + 1. Each output bit from register
R, is fed both to one of the inputs of a two-input AND gate and to the input
of the multiplication-by-2 circuit. The bit-serial output v; of the shift register
SR is connected to the second input of each of these m +1 AND gates, making
the fan-out of the shift register equal to (m + 1) f,,,. Hence, the value of the
least significant bit of SR controls, in each clock interval, whether the all-zero
word (for v; = 0) or the partial product in Ry (for v; = 1) is to be added to the
contents of R,.

The CP of the serial/parallel multiplier architecture in Figure 5.10 is the path
from the output of shift register SR through an AND gate, the parallel adder,
and into one of the registers elements in R,.” Using the carry ripple-type adder
in Figure 5.7, the length of this CP equals

ECP,mult = /:'reg + Treg (m + 1)fAND + ’CAND
+ 7, wp fadd + LopPadd + Tadd freg
= 24 2(m+1)2 444 6420m 18432
= 24m + 60.

After m + 1 clock cycles, the product ¢ = 3 -+ (mod 2™ 4+ 1) is obtained in
register R,. Aninitial clock cycle is required for loading the registers with their
initial values and an extra clock cycle is required to shift ¢ from register R, into
an output register (not shown in the figure). Hence, the total computation time
T' is proportional to

Lonute = (m 4+ 2)Lop mue = 24m” + 132m + 180.

°If the adder architecture in Figure 5.7 is adopted here, the CP ends in the register element
in the next most significant bit position (m — 1) of the parallel register Ro.
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; I
26 mod F}
223 mod F} Mult. by 2 mod F}

R,
B

5
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SR
Ym |Ym—-1]= = =| Y1 | Yo

Row of AND gates /

Addition modulo F}

=05 (mod2™+1)

Figure 5.10: The block diagram for a serial/parallel multiplier. The product p = 3~

(mod F}), where Fy = 2™ + 1, is generated and stored in register Ry after

m + 1 clock cycles. The initial contents of the registers Ry and R, are 3 and the

all-zero word, respectively, and the shift register SR is initiated with ~. These
initial values are shown in the respective registers in the figure.
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Using the multiplication-by-two circuit in Figure 5.8, the chip area A occupied
by the circuit in Figure 5.10 is proportional to its size

Cmult - Cmuth + 3(m + 1)Creg + (m + 1)CAND + Cadd
= 4dm-log, m+1Tm —14+3(m+ 116+ (m+1)-6+50m +4
= 4m - log, m + 121m + 57.

The area and/or time complexities of the serial /parallel multiplier may be re-
duced by for example replacing the parallel carry ripple-type adder with an
adder that has better area-time performance. For standard binary serial/
parallel multiplication of binary coded two’s complement numbers, the effi-
ciency of computing the sum of partial products may be speeded up by adopt-
ing a different multiplication scheme, see for example Chapter 5 in Hwang’s
book on computer arithmetic [52]. However, using the NBC representation of
the integers of Z,n, 1, it seems as if none of these schemes yields a serial /paral-
lel architecture whose area-time performance is significantly improved, com-
pared to the area-time performance of the serial/parallel multiplier in Figure
5.10. The area-time performance A7 of the latter multiplier is proportional to

CL:

mult

= Lonutt(Conute)* = O <m5 log, m) .

Remark: We have not investigated the properties of any bit-parallel architec-
ture for NBC multiplication in Zym,. However, a promising candidate
for such an architecture is a modified version of the pipelined array mul-
tiplier suggested by Benaissa et al. [11, Fig. 4]. Their multiplier is based
on an NBC representation of both the multiplier and the multiplicand.
Because this multiplier is basically a diminished—1 multiplier, its proper-
ties are investigated in Section 6.3.6 (see page 138). A block diagram of
the multiplier is shown in Figure 6.21.

5.1.6 Exponentiation of the Transform Kernel

Consider the exponentiation
e =0" (mod 2™ + 1), (5.9)

where 3 € Zym;; and the exponent » is an integer. Because the order of every
element of Zymy, divides ¢(2™ + 1), where ¢ is Euler’s totient function,® the

®See Corollary 8.1.1 in Rosen’s book [84]. The totient function ¢(2™ + 1) equals 2™ in the
Fermat prime fields, i.e. form =1, 2, 4, 8, 16.
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only part of the exponent n that has to be considered is n mod ¢(2™ + 1). In
particular, when 3 is the transform kernel w, the order of 3 modulo 2™ + 1
equals the transform length N = 2" for some integer b (see (2.4) in Section 2.3.2).
Therefore, when computing powers of the transform kernel, we use the expo-
nent n mod V.

There exist several algorithms for integer exponentiation. Probably the most
well known method is the so called binary method, which is described by Knuth
in [56, Ch. 4.6.3]. It is based on the NBC extension of the exponent . The r-bit
NBC integer n can be written on the form

n=mn, 12" 40, 2"+ +n2+ne (mod q),

where r = [log, (n mod ¢)| + 1,7 ng, ..., n,_1 € Zy,and q = H(2™ + 1) (for
arbitrary 3 € Zgymyq) or ¢ = N (for 3 = w). Consequently, the congruence in
(5.9) can be written as

= << .. <(ﬁnr—1)2 ﬁnr—2>2ﬁnr—3 .. .5712)2@”1)2@’”0 (mod 2™ +1).

In the binary method, the right-hand side of this congruence is evaluated us-
ing repeated squaring and multiplication. Hence, depending onn, r —1 squar-
ings and at most the same number of multiplications are required to perform
the exponentiation. In a conventional circuit for exponentiation we use a full-
width exponent representation, i.e. we have r = |log, (¢(2™+1)—1)|+1in the
general case® (for arbitrary nonzero 3 € Zymyi)and r = [log, (N —1)] +1=1
for 3 = w. The multiplications required to perform the exponentiation are
general multiplications. For some choices of base /3, these multiplications may
be carried out in a simpler way, but such simplified multiplications are not
considered here.

Zuras [115] discusses how to find the fastest way to square (and multiply) large
integers in software: Denote by T}, and 7iquare the computation times for
general multiplication and squaring, respectively. Because squaring is a spe-
cial case of multiplying, we trivially have 7. quare < Timuie- There is no known

algorithm for exponentiation that is significantly faster than general multipli-
cation. From the equation

(A+ B)? — (A — B)?
4

it follows that a multiplication can be carried out as two squarings, three ad-
ditions, and one multiplication by 272. Assuming that addition and multipli-
cation by 272 takes at most O (m) time (see for example (5.6) and (5.7)), where

A-B=

“For x € R, the expression |z | denotes the greatest integer less than or equal to z.
8When 2™ + 1 is prime we get r = m.
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m is the operand word bit length, we thus get
Tmult S 2,stquare + @) (m) .

Hence, as stated by Zuras, even though someone may discover an algorithm
for squaring that is faster than any existing multiply algorithm, any squaring
algorithm can be used to construct a multiply algorithm that is not more than
a constant slower than the squaring algorithm. Regarding the NBC represen-
tation of the elements of Zn,,; we do not consider any specially designed ar-
chitecture for squaring. Squarings are performed as general multiplications,
which means that exponentiation requires at most 2(r — 1) multiplications,
where r = |log, (¢(2™ +1) — 1)| + 1 for arbitrary nonzero 3 € Zymyy andr = b
for 3 = w. Hence, using the NBC representation and the binary method as de-
scribed above, exponentiation in Zym, can be performed in O (2(r — 1)Luie)
time.

Alternative methods of performing integer exponentiation are described for
example in Chapter 4.6.3 in Knuth’s book [56] and in Zuras’ paper [115]. Bocha-
rova and Kudryashov [18], [19] investigate exponentiation schemes based on
different source codes. Gollmann et al. [46] consider exponentiation based on
a signed-digit representation of the exponent. See also the articles on integer
exponentiation in the reference list in Gollmann’s paper [46]. Compared with
the binary method, most other algorithms for integer exponentiation reduce
the number of true multiplications, often by processing several bits of the bi-
nary (or signed-digit) representation of the exponent at a time, which for some
algorithms is done to the cost of a precomputed look-up table. The number
of squarings are approximately the same for most algorithms. In the present
chapter we only consider the above binary method.

In Section 2.3.2 we showed that for some sequence lengths N there exist suit-
able choices of the kernel w for which the different powers of the kernel are
easily calculated. For example, for the combinations (N, w) = (2m, 2) and
(N, w) = (4m, v/2), multiplication by a power of w can be simply carried out
as binary shifts in the former case and a pair of binary shifts and one addition
in the latter case.

For transforms of arbitrary lengths, the powers of the transform kernel are
either directly calculated when needed or precomputed and stored in a mem-
ory (look-up table) from which they are read when needed. For the direct cal-
culations, we use the above binary method for exponentiation. When the pow-
ers of w are precomputed, the exponentiations are suitably carried out as re-
peated multiplication by w, i.e. w? = w-w, W’ =w? - w, W =W’ - w,.... Wedo
not consider the complexity of these precomputations.
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In Fermat prime fields, i.e. in Zymy form = 1, 2, 4, 8, 16, there are more ways
of performing exponentiation. For example, in Section 7.2.1 we describe meth-
ods of performing exponentiation with respect to the polar representation.

5.2 Summary

In Table 5.1 we have summarised the sizes, the fan-ins, the internal and to-
tal CP lengths, the output normalised resistances, and the area-time perfor-
mances AT? of the architectures in the present chapter. Note that the modulus
reduction operation is included in the other four operations.



| Operation | Figure | Subscript name || Size C | Fan-in f | Internal CP length Lin¢ |

Modulus reduction 51 mod,1 22m — 6 8 16m — 6

5.2 mod,2 dm -log, m + 14m 8 6m + 8log, m + 4
Negation 55 neg 20m — 22 2 30m — 10
Addition 5.7 add 50m + 4 6 20m + 18
Mult. by 2 5.8 mult2 dm - log, m 4+ 17Tm — 1 m+5 | 8(m + log, m + ro) + 10
Mult. by 2" 59 mult2n dm - log, m + 33m + 15 — 10m + 8log, m + 74
General mult. 5.10 mult dm - log, m + 121m + 57 — 24m + 60
Exponentiation — — —  —
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88

| Norm. output res. r,

Total CP length £ (including registers) | Area-time perf. CL* |

rm—1 + 1 16m + 38 O (m?)
Fm—1+ 1 6m + 8log, m + 48 O (m?log, m)
2 30m -+ 20 O (m?)
3 20m + 58 O (m?)
ro + 2 10m + 8log, m + 66 O (m?log, m)
— (' + 1)(10m + 8log, m + 74) | O ((n'*=1)2m?log, m)
— 24m* + 132m + 180 O (m®log, m)
At most 2(r — 1) multiplications are required, where r = |log, (¢(2" + 1) —1)| + Ll orr =

Table 5.1: The complexity parameters of the architectures in the present chapter.



Chapter 6

The Diminished-1 Representation

6.1 Linearly Transformed Representations

In this chapter investigate properties of arithmetic operations in Zym;, with
respect to a linear coordinate transformation of the (m + 1)-bit normal binary
coded (NBC) integers of Zym. In the resulting number system, an NBC inte-
ger v € Zymy, is represented by the binary coded integer

T(v)=ky+! (mod2™ +1), (6.1)

where k, | € Zym, ;. The reverse code translation (from 7'(v) to v) can be writ-
tenasy =k (T(y)—1) (mod 2™+ 1). Consequently, the reverse code trans-
lation only exists if £ has a multiplicative inverse k=Y in Zgmy,, ie. if

ged(k, 2™ +1) = 1.

Depending on the constants £ and /, we obtain various VLSI architectures for
arithmetic operations in Zym, ;. Trivially, for £ = 1 and [ = 0 we get the NBC
representation of 7'(y) = ~ and consequently the architectures considered in
Chapter 5.

Because every translated integer 7'(v) is an (m + 1)-bit NBC integer in Zym, 1,
reduction modulo 2™ + 1 can be performed using the procedure described in
Section 5.1.1 for any & and /. In Section 6.2 we investigate how to choose the
constants k& and [ so that the modulus reduction operation can be incorporated
into the various arithmetic operations in a straightforward way;, i.e. in a way
that minimises the computational complexity of each operation.

89



90 Chapter 6. The Diminished-1 Representation

For the sake of convenience, we occasionally denote a translated NBC integer
T'(y) by 4, ie. for 4m, Ym-1,--., %1, Yo € Zz we have

T(Y) 24 =24 + 2" Y1 4 -+ 2% + Ao

6.1.1 Arithmetic Operations

For arbitrary 3, v, k, | € Zymy1, whereged(k, 2™ +1) = 1, we get the following

arithmetic:

Negation

By (6.1) weget T'(y) + T'(—v) = 20 (mod 2™ + 1) and thus
T(—y)=-T(y)+2 (mod?2™ +1).

By (5.5) we get the congruence —7'(y) = T'(y)+3 (mod 2™ 4 1), which gives

T(—y)=T()+3+20 (mod2” +1). (6.2)

Thus, the integer —~ is represented by 7'(y) + 3 + 2/ mod 2™ + 1, where T'(7)
is the one’s complement of the (m + 1)-bit translated NBC integer 7'(+).

Addition
TR+~ =k(B+y)+I=TB)+T(y)—1 (mod 2™ +1). (6.3)

For the sake of simplicity we sometimes use the symbol & to denote addition
between translated symbols.! Hence, we define such an addition as

TB)&T(H)=TB+7) (mod 27 +1). (6.4)

Subtraction
The congruence
T(3—4) = T(8)& T(—7) (mod 2" + 1) (65)

follows directly from (6.3) and (6.4), i.e. subtraction is performed in the tradi-
tional way by first negating the subtrahend and then adding it to the minuend.

!Chang et al. [32] use the same notation.
Note that the symbol @& denotes the logical XOR function whenever it appears in a
Boolean expression.
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Multiplication by Powers of 2

We expand 7'(2") as

T(2y) = k2" — 1+ 2" — 27 = 2"T(y) — (2" — 1)l (6.6)
= E_: T(y) (mod 2" + 1), 6.7)

where P’ denotes the special summation of translated symbols. The special
case of simple multiplication by 2,

T(2y) = 2T(7) = (mod 2™ + 1), (6.8)

can also be directly obtained from the addition formula (6.3). The product
21'(y) is simply obtained by shifting the NBC integer 7'(+y) one bit to the left.
The translated product 7'(2"v) can be calculated in a way that is computation-
ally more efficient than the direct computation of (6.6). We have

T(2"y) = Ek2"y+1
= 2(k2" 'y + 1) — 1

= 27(2"'y) =1 (mod 2™ + 1), (6.9)
which is simply computed using repeated multiplication by 2 and addition.
The modulus reduction is performed after every multiplication by 2 and ad-
dition of —/.

General Multiplication
T(B3-7) = kBy+1=kk™(T(B) = DE (T () = 1) +1
= kNT(B)T(y)=UTB)+T(y)—1))+1 (mod 2™ +1). (6.10)

Because 7'(3) and 7'(y) are NBC integers, it is possible to simplify (6.10). By
writing 7'(y) on the form T'(y) = Y- 4:2, where v; € {0, 1}, we get
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I(B-vy) = kBy+l=08(ky+1)—15+1

B-T(y) =k (kB4 1)+ Pk~ +1

B3 42+ 1 (14 k= T(8)

=0

= N 2B+ ) —ml T (4 k= T(8)) —

=0

= (ﬁ: T(’miﬁ)) U +k—T(B) (mod2™ +1). (6.11)

=0

In some applications one may wish to represent either the multiplicand or the
multiplier as an NBC number. For example, constants or the Fermat number
transform coefficients w**” may just as well be stored in that format. By writ-
ing the NBC multiplier v on the form v = > 7:2" we get

KBy +1=kB> 52 +1

=0

T3 7)

m

(kv2B8+1) —lm+ 1) +1=Y T(ky2'8) - lm

0 =0

™

K3

T(kv:2'3) (mod 2™ + 1), (6.12)

Il

Il
=]

K3

which apparently has a simpler structure than both (6.10) and (6.11). Appar-
ently, the efficiency of computing (6.10) and (6.11) depends on which values
are assigned to k and [. The multiplication procedure according to (6.12) de-
pends on the value of k, but not [. It is also possible to obtain an expression
for general multiplication which involves [ but not &:

T(B-7) = kBy+l=(kB+1)> %2 —ly+I

=0

= > 2(kB+1D) — Iy +1
1=0

= D k2B 1Y 1Y 2 =y 1
1=0 1=0 1=0
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— zm: vT(2'8) + 1 (1 — zmj %»)
= Xhmwm+%§]yum—m)

=0

(vT(2°8) + 7)) + m —m(l+1)

1= 11:

-
Il
=]

(vT(2'8) +7l) —m(l4+1) (mod 2™ +1).  (6.13)

In Section 6.3.6 we consider various multiplication procedures which are based
on the above congruences (6.10), (6.11), (6.12), and (6.13).

Exponentiation
The formula for general exponentiation is

T =ky" +1=k"""(T(y) =" +1 (mod 2™ +1). (6.14)

6.2 The Use of a Zero Indicator

Generally speaking, the best choice of k£ and [ in (6.1) yields optimum complex-
ity and performance of the corresponding VLSI architectures for arithmetic
operations. Among the arithmetic operations considered in the previous sec-
tion, the code translation (Equation (6.1)), general multiplication according to
(6.10), (6.11), and (6.12), and exponentiation (Equation (6.14)) are the only ones
involving the constant £. It is involved in these operations in the following
ways:

e Multiplication by k& and &~
e Multiplication by (k™! (or —lk~') and addition by [ + k.
e Multiplication by &'~".
These operations are simplest carried outif £ = 1, &k = —/[,and £ = 1 re-

spectively. The operations then reduce to multiplication by one (for all equa-
tions involving k) and addition by zero (Equation (6.11)). Hence, we assert
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that choosing k = 1 is the best choice with respect to the simplification of the above
operations.

Now, let us consider the choice of the constant /. We have seen that addition
of translated symbols occurs in several operations (Equations (6.3), (6.5), (6.7),
(6.10), (6.11), (6.12), and (6.13)). We therefore first focus on the sum

rB)eTH) =TE+7)=TE)+TH) -1 (mod2™ +1).
in (6.3). Multiplication by two,
T(2v)=2T(y) -1 (mod 2™ + 1),

is another operation of special interest, because it is involved in the compu-
tation of general multiplication. Multiplication by two is of course a special
case of addition, but the product 27'() is preferably carried out as a binary
shift of 7'(+y) instead of ordinary addition. We would, however, like to carry
out the addition by —/ followed by the reduction modulo 2™ + 1 as simply as
possible.

The following (m + 1)-bit NBC integers modulo 27 + 1 are the 2" elements of
Ligmyy:

100---00 = 27

O11---11 2" —1

011---10 = 2™ =2

000---01 =1
000---00 =

It would be very convenient, at least from an implementation point of view,
if 2 represents the zero element. Because the NBC integer 2™ is the only el-
ement of Z,~; which has a one in its most significant bit position , it would
then be enough to check in one bit position whether an element is zero. Such
a procedure can be helpful for example when computing sums and products;
addition by zero (T'(y+0) = T(v) ) and multiplication by zero (T'(y-0) =
7'(0) ) are two operations that can be simply carried out in VLSI during a sin-
gle clock interval.

When representing the zero element by the integer 2™, the nonzero integers
1,2,3,..., 2" are consequently represented by the (m-bit) NBC integers of
Z9m. Hence, we can use an m-bit arithmetic for the nonzero elements of Z ., 1,
which from a complexity point of view is preferable to the (m + 1)-bit arith-
metic associated with the NBC representation in Chapter 5.
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Henceforth, the translated element 2™ is called the zero indicator. Thus, by let-
ting 7'(v) = 2™ represent v = 0 we get

[=—1

from (6.1), which is the same value of [ that is obtained from the choice of k:

Fork=1land k = —[,weget! = —1.

The congruences (6.3) and (6.8) then change to

TB+~) = TB)+T(v)+1 (mod2™ +1) (6.15)
T2y) = 2T(v)+1 (mod?2™ +1), (6.16)
respectively. It is also interesting to note that, for [ = —1, negation (Equa-

tion (6.2)) and general multiplication according to (6.13) simplify to

T(—y) = T(y)+1 (mod2™ +1) 6.17)

T(3-7)

» (WTEB)=7) (mod 2" +1), (6.18)

=0

respectively. Obviously, the addition by 1 modulo 2™ + 1 appears in the three
congruences (6.15), (6.16), and (6.17) (and actually also in the congruence (6.18),
which is formed by m additions of the type in (6.15)).2

For an arbitrary (m + 1)-bit NBC integer # < 2™*' the congruence ¢ = 6 + 1
(mod 2™ + 1) can be simplified as

o = 0+1=0""Y4140,2"
.y

= "V 41-4,
= 0" Y44, (mod2™ +1), (6.19)
where §(m=1) = <ém_1, O_s, ..., (%) . We thus have
2
. é(m_l); ford,, =1 .
b = { §n=) 112 for b = 0 (mod 2™ + 1), (6.20)

which can easily be computed using for example a chain of half adders. This
is further discussed in Section 6.3.1. The sum ¢ may be associated with

“Note that by letting 3 + 21 of (6.2) be equal to —{ of (6.3), we get! = —1 and thus 3+ 2{ = 1
and -/ = 1.
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T(3 + ), T(27), or T(—~) and the addend 0 may be associated with 7'(3) +
T(v), 21'(y), or T'(7)in (6.15), (6.16), or (6.17), respectively.

From the above arguments we conclude that, from a computational complexity point
of view and with respect to the complexity and performance of the VLSI architectures
for arithmetic operations, the best choice of the constants k and [ in (6.1) is (k,l) =

(1,-1).

McClellan’s Representation

In 1976, McClellan [65] proposed a way of representing the integers of Zgm ;.
By letting the (1 + 1)-bit binary coded number T(v) = 4 = () Y1, - - -» J0)5
represent the NBC integer v € Z,m,1, the coding scheme is defined as follows:

If4, =1, theny=0.
If ’A)/m = 0, then Y= g'm_12m—1 + O.m_22m—2 + -+ op (mod oy 1) ’

1 ify =1
“f_{ —1 if4; =0
Thus, McClellan uses binary weightings with £1 instead of 0 and 1. The core
of his representation is that the binary coded integer 2™ represents the integer
0, i.e. he uses 2™ as a zero indicator. Consequently, all the nonzero elements
have a zero in their most significant bit position and thus it is possible to per-
form m-bit arithmetic operations on these elements.

where

For a nonzero integer v, for which 4,, = 0, we have the relation o; = 2%; — 1.
Therefore, v can be expanded as
V= Qo = D27 (e — 127+ 4+ (20— 124 (290 — 1)
= 2 <F3/m—12m_1 + PA)/m—QQm_Q + PA)/m—SQm_B +- &12 + FA)/(J) + 2
= 24""Y 19 (mod 2™ +1).
Because 4,, equals zerowe get y = 24"V 42 = 2542 = 2T(y)+2 (mod 27+

1). It shows that this congruence also holds for the zero element; 27'(0) + 2 =
2:2"4+2=2--142 = 0. Hence, the congruence

y=2T(y)+2 (mod2™ +1)

holds for every element v € Zyn;;. Because we have 27! = (2™ + 2)27! =
27~ 41 (mod 2™ + 1) the code translation from v to 7'(y) is performed ac-
cording to the congruence

Ty)=2""y=1=2" "+ 1)y =1 (mod 2™ +1).
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We thus get McClellan’s element representation by choosing k£ = 2™~ 4+ 1 and
[=—1in(6.1).

Leibowitz’ Representation

Also in 1976, Leibowitz [58] presented another way of representing the inte-
gers of Zymyq. In his article, he mentions that McClellan’s element representa-
tion belongs to the set of element translations of the form

T(v)=ky—1 (mod2™ +1); k, k™' € Zymyy,

which all give the same simplified binary arithmetic modulo 2™ + 1. How-
ever, this is true only for operations like negation (Equation (6.2)), addition
(Equation (6.3)), multiplication by two (Equation (6.8)), and general multipli-
cation according to (6.12). The integer £ is not involved in any of these op-
erations. Leibowitz claimed that that the choice £ = 1 will give the simplest
code translation. Then, + is simply obtained from 7'(y) by adding 1 to 7'(~)
modulo 2™ 4 1. The reverse operation is carried out by diminishing v by 1
modulo 27 4 1. Owing to this fact, Leibowitz calls his element representation
the diminished-1 representation.

The diminished-1 representation has been adopted in most published archi-
tectures since 1976. As indicated above, the two main reasons for that should
be the utilisation of the element 2 as a zero indicator (/ = —1), and the sim-
plified element translation (¢ = 1). A very common application to Fermat
integer quotient ring computations is the computation of the Fermat number
transform of lengths 2m and 4m, for which the transform kernel w is prefer-
ably chosen as 2 and /2, respectively.® Then it is possible to compute the Fer-
mat number transform using bit shifts and additions but no general multipli-
cation or exponentiation. Hence, no operation involving k is needed to compute
such a transform. If the translation from the normal binary representation to
the diminished-1 representation and vice versa must take place, then, as as-
serted above, k = 1 is the best choice.

3See Section 2.3.2.
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6.3 The Diminished-1 Representation

6.3.1 Code Translation

Obviously, the code translation from the NBC integer v € Zjn,4 to the dimin-
ished-1 integer 7(y) = v — 1 (mod 2™ + 1) and the reverse translation v =
T(y)+1 (mod 2™ + 1) only involve subtraction by one and addition by one
modulo 2 + 1, respectively.

NBC to Diminished-1 Representation

The forward translation 7'(y) =4 =~ —1 (mod 2™ 4 1), where 0 < v < 27,
can quite easily be carried out using a simplified parallel adder. As in Sec-
tion 5.1.1, we first compute the sum ¢ = 4™~V 4+ (27 — 1) = (¢, Tp1, T2,

.., 01, 09)2, Where ¢,, is the carry output from the most significant bit po-
sition of the adder and o; is the adder sum output in bit position ¢, for i =
0, 1,..., m — 1. With one of the adder input signals in bit position : high and
the second input signal equal to v; we get, in accordance with (5.2) and (5.2),
the carry and sum outputs

Gyl = Vit G

0; = Vi@civ

respectively. The first carry input ¢, equals zero. In order to determine the
desired sum ¥, three cases have to be considered:

1. Ify = 0, thenlet4,, =&, = l and 41 = g(m=1) — (2™ — 1) =0,
ie.y, =0for0<i<m—1.
2. If 1 <~ <2" —1,thenlet?,, =¢, =0and 4"V = g(m-1),
3. If vy = 2", then let 4,, = ¢,, = 0 and ("1 = g{m-1),
From these three cases we form the two Karnaugh maps in Figure 6.1 for the

bit values of 4. According to the maps, for 0 <: < m—1 the Boolean functions
for 4,, and 4; can be expressed as

A

Ym = 7m+cm

A

Yi = Ym T €m0y,
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Cpy F)/mcm
1 00101,11,10
O] 1|0 Ol X ] 0| X|X
Tm g
10X 110 1]X
@ Am (b) ;i for0<i<m-—1

Figure 6.1: Karnaugh maps for the bit values 4; of 4. X = “don’t care”.

respectively. The sum ¢ may be computed using either a carry ripple or a carry
look-ahead type of architecture. In the previous chapter we concluded that,
due to its favourable AT performance, the carry look-ahead-type architecture
in Figure 5.2 is preferable to the carry ripple-type architecture in Figure 5.1.
We have designed a carry look-ahead type of architecture for the computa-
tion of T'(v) (i.e. 4) from ~. The architecture, which is shown in Figure 6.2,
is similar to the architecture in Figure 5.2. The row of combined AND-NOR
gates at the output generates the one’s complement 4("~1) of the NBC inte-
ger 40"~1) je. the gate in bit position i generates the signal 3; = 7,, T ¢,,0;.
A schematic description of such a gate is shown in the bottom of Figure 6.2.
The gate has size C, ., .., = 6, fan-in f,,,_.on = 2, and output normalised
resistance 7, ., ,n = 2. Ithas no internal stage. The output array of inverters
generates the desired output (™),

The total size of the "NBC-to-diminished-1" architecture in Figure 6.2 equals*

CNBC2Dim = (m(10g2 m— 1) + 1)CNAND/NOR + (m - 1)(Cinv + CXNOR)
—I_CNOR + m(CAND—NOR + CiHV)
= (m(log,m—1)+1)- 44+ (m—1)2+12) +4+m(6+2)
= 4m-log, m 4+ 8m — 6.

The CP is the dotted path from the ;-input node through the circuit and to
the Ap-output node. The fan-in and the output normalised resistance of the
architecture, with respect to this CP, equal

fNBC2Dim = med,? =38
=1

"ygo2Dim — T )

AND-NOR

“Compare the derivation of this expression with the derivation of Cpod 2 in (5.4).
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V4 73 V2 M1 Yo
. b+
B / N/
g3 09 g1 (oXs)
[ 1 [
AND-NOR AND-NOR AND-NOR AND-NOR
Ya Y3 Yo Vaa o0 Yo
ie cy4 Oy €4 — b— i
]| .
AND-NOR > Ccq | i
I il P
% = Tm + Cn O

Figure 6.2: An architecture performing the code translation from the NBC to the
diminished—1 representation (from ~ to T(v) = ). The dotted line indicates
the CP through the circuit. The bottom part of the figure shows how each com-
bined AND-NOR gate is designed.
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respectively, and the internal CP length equals

L (10g2 m— 1)TNAND/NOR (fNOR/NAND + finv)

—I_ TNAND (fNOR —I_ mfAND—NOR) —I_ TAND—NOR finv
(logy m —1)-2(24+2)+2(2+2m)+2-2
= 4m + 8log, m.

CP,NBC2Dim

As in Chapter 5, when determining the AT performance of the architecture,

we assume that it is both preceded and followed by (m + 1)-bit parallel reg-

isters. Therefore, the time 7" required to evaluate the congruence ¥ = v — 1
(mod 2™ + 1) is proportional to

ENBC2Dim = Ereg —I_ rrengBC2Dim —I_ ECP,NBC2Dim —I_ rNBC2Dim freg

= 2242-8+4m+8log, m+ 2
= 4m + 8log, m + 40,

which implies that the AT? performance of the circuit is proportional to the
product

CEI%TBC2Dim é CNBC2Dim (ENBC2Dim)2
= (4m -logy m + 8m — 6)(4m + 8log, m + 40)2 =0 <m3 log, m) )

This product is less than the area-time product CL,, , of the modulus reduc-
tion circuit in Figure 5.2.

An alternative procedure for performing the subtraction ¥ = ~ — 1
(mod 2™ + 1), for ¥ = (Ym, Ymets-++5 71, Y0)2 = Ym2™ + ¥V, is the fol-
lowing:

1.If0 <y < 2™ — 1 ie ify, = 0and 0 < 4(™=D < 27=1 _ | then let
B2y =1 =27 4 4 = (1, g, 7, %)z (mod 27 4 1),
The diminished-1 integer 7 is obtained by reducing 3 modulo 2™ + 1.

2. If vy = 27,ie. ify,, = land 7™ Y = 0, thenlet § = v —1 =27 — 1 =
(0, 1,..., 1, 1);. The diminished-1 integer 4 equals (.

In case 1, 3 can be obtained from v simply by inverting its most significant bit
Ym. By letting 3 be the input of a modulus reduction circuit, for example the
one in Figure 5.1 or the one in Figure 5.2, we get the desired integer 4 as the
output of the circuit. In case 2, 3 can be obtained by inverting all bits of 7. Even
though this 3 is the desired ¥, we avoid an unnecessarily complex control logic
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Tm—1 Ym—2 M1 Yo

1
L —m
T s e b

Figure 6.3: An alternative architecture for performing the code translation from the
NBC integer ~ to the diminished—1 coded integer T'(v) = 4 = v — 1
(mod 2™ + 1) using a modulus reduction circuit.

by letting 3 pass through the modulus reduction circuit also in case 2. Still, it
is the procedure in case 1 that determines the overall time performance of the
operation. Figure 6.3 shows an architecture that generates the binary coded
diminished-1 integer 4 from the NBC integer v using the above procedures in
cases 1 and 2.

It may be convenient to utilise a modulus reduction circuit to perform the code
translation but, however, both the size and the total CP length of such an archi-
tecture are greater than the corresponding parameters of an architecture that
is specially designed for the operation. For example, if the modulus reduction
part of the circuit in Figure 6.3 is the carry look-ahead-type architecture in Fig-
ure 5.2, its total size equals Cioa,2 + mC, + Ciny = 4mlog, m +20m + 2 and its
total CP length (including the delay contribution of one input and one output
register) equals Lreg+7reg(m [ + finv) + Lo +70 fmod 27 LEP mod 2 7'mod 2.freg =
10m + 8log, m + 46. These two complexity parameters should be compared
with the smaller size C ... and the smaller CP length £ respectively,
of the architecture in Figure 6.2.

NBC2Dim /

In his paper of 1976 Leibowitz [58] suggests that the code translation should be
carried out as an ordinary diminished-1 addition (see Section 6.3.4) of v and
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the NBC integer 2™ — 1.° This is a good solution if the diminished-1 adder
is readily available and if the time requirements for the code translation are
tulfilled. However, at least from a time performance point of view, a special-
purpose architecture like the one in Figure 6.2 is preferable to a general-pur-
pose architecture (like the diminished-1 adder).

Diminished-1 to NBC Representation

Leibowitz [58] described how to perform the translation from a binary coded
diminished-1 integer 7'(y) (= 4) to an NBC integer v by adding 74,, to 4("~1).
Thus, we have

yEAF1=4"T 1 =4, =40 L300 (mod 27 4 1).

This operation, which in hardware does not require any modulus reduction,
can be performed using a row of half adder elements. Consider an m-bit par-
allel carry ripple adder with input signals 3 and 7. In bit position ¢, where
0 <1 <m —1, the signal input bits are 3; = 0 and 4; € Z,, which implies that,
by (4.2) and (4.3), the carry and sum outputs are equal to

Cit1 — Gy

Y = G DY,

respectively. Because these functions are also the respective carry and sum
outputs of the half adder element (see the end of Section 4.3.4), the parallel
adder may be formed by a row of half adder elements, where the first carry
input ¢, equals 4,,. An architecture that performs the diminished—1-to-NBC
coordinate transformation using the above procedure is shown in Figure 6.4.
The size of this architecture equals

CDim2NBC = mCHA + Cinv
= 18m + 2.

The CP runs from the 4,,-input node through the inverter and the chain of cas-
caded half adder elements. Denote by n, and n. the fan-out with respect to the
Ym—-1-output node and the v,,-output node, respectively. If £, ... +7y, .75 =
2421, > Ly, oy TT n. =4+n.ieifn, > n./2+1, the CP runs from the
input to the sum output v,,_; of the half adder element in the most significant
bit position. Otherwise, the CP runs to the carry output v,,. The former path
is the one most likely to belong to the CP.° Therefore, the fan-in, the output

HA carry

"Wehavep =y —1=9+2" - 1+1=va (2™ 1) (mod 2™ +1).
For example, if n, = n., the CP runs from the input of the half adder element to its carry
output only if n. = 1.
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Ya Y3 Y2 M1 Yo
HA HA HA HA j
Ya 3 V2 e Yo

Figure 6.4: A simple architecture for performing the code translation from the bi-
nary coded diminished—1 integer T'(y) = 4 to the NBC integer v = 4 + 1
(mod 2* + 1).

normalised resistance, and the internal CP length of the circuit equal

fDim2NBC = finv:27

Tbimene = THAsum = 2,
’CCP,DimzNBc = rianHA + (m - 1)(’CHA,cany + T A carry fHA) + ’CHA,sum
= 6+ (m—1)(4+6)+2
= 10m — 2,

respectively. When the input and the output of the coordinate transformation
circuit in Figure 6.4 are each connected to an (m + 1)-bit register, the time 7" to
perform its operation is proportional to the total CP length
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) Area complexity Time complexity
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Figure 6.5: The sizes, CP lengths, and AT? performances of the code translation
architectures. The parameters are plotted versus m for
m =2, 4, 8, 16, 32, 64, 128, 256.

EDim2NBC = Ereg —I_ rrengim2NBC —I_ ECP,Dim2NBC —I_ rDim2NBC freg
2242-24+10m —2+2-2
= 10m + 28.

Hence, the area-time performance AT? of this circuit is proportional to

CcL? 2 C

Dim2NBC Dim2NBC (

= O <m3>

L )? = (18m + 2)(10m + 28)*

Dim2NBC

The row of half adder elements in Figure 6.4 is a carry ripple type of archi-
tecture. Other classes of architectures, like the parallel carry look-ahead (half)
adder, are not considered here.

In Figure 6.5 we have plotted the sizes, total CP lengths, and area-time per-
formances of the architectures in Figure 6.2 and Figure 6.4. When comparing
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these parameters we see that

CNBC2Dim < CDim2NBC; for m = 2 and m = 4.
CNBC2Dim > CDim2NBC; for m > 8.

’CNBC2Dim > ’CDimzNBc; form =2 and m = 4.
’CNBC2Dim < ’CDimzNBc; for m > 8.

CEI%TBC2Dim < C£]23im2NBC; for a]‘]‘ m.

6.3.2 Modulus Reduction

Because the diminished-1 integers are represented by the NBC integers in
Zigmy1, the residue modulo 2™ + 1 of an (m + 1)-bit binary coded diminished-1
integer can be computed using any of the modulus reduction circuits in Sec-
tion 5.1.1. However, one of the nice properties of the diminished-1 represen-
tation is that it yields arithmetic operations for which the modulus reductions
together with the arithmetic operations can be carried out in a more straightfor-
ward way than what is possible when using the ordinary NBC representation.
This is demonstrated in the following sections.

6.3.3 Negation

By letting [ = —1 in (6.2) we get

T(—y)=T(7)+1 (mod2™ + 1). (6.21)

This congruence was also considered in (6.17). The computational complexity

of computing 7'(y) + 1 mod 2" 4+ 1 may seem to be in the same order as the
complexity of performing the code translation from the diminished-1 integer
T(vy) € Zgmyq to the NBC integer v = T'(y) + 1  (mod 2™ 4+ 1). However, by
expanding (6.21) as

T(=9) = (1=40)2" +300 +1

" . Y(m=1) if 4, =0
(m—1) =7 T dom+1

where 4 = T'(v), it shows to be quite easy to implement. The negative of a
nonzero integer v (for which 4,, = 0) is simply derived by inverting its m least
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P4 Pz P2 D1 Po

A

Figure 6.6: Negation modulo 2* + 1. Here, we have % = T'(v) and T(—v) = ¢.

significant bits. For the zero element we have the relation 7'(—0) = 7(0) = 2™,
which means that the symbol 7'(0) stays unmodified. For the (m+1)-bit binary
integer T'(v) = (%, Ym—1, - - -» J0)2 we thus have

A

T(_ﬁ)/) = S‘a = (S‘amv S‘am—lv RN 990)27

where the Boolean function for ¢; equals

s Y Am =% + Am; fori=0,1,...,m—1
Pi= A fori =m '

Figure 6.6 shows an architecture that realises such a negation, using a row of
NOR gates. This simple circuit is generally used for negation of diminished-1
numbers, see for example Pajayakrit [71, Ch. 3.4], Benaissa et al. [11, Fig. 8],
and Sunder et al. [97, Fig. 3].
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The CP through the negater circuit is the path from the 4,,-input node through
one of the NOR gates to the circuit output. The fan-in and the output nor-
malised resistance, with respect to this path, equal

fdimneg = Nyt mfNOR = Ny + 2m

Tdimneg = Tyor :27

respectively, where n,, is the negater fan-out with respect to the /,,, node. Note
that the delay of the input stage will be excessively long if both 1 and the nor-
malised resistance of the input stage are large. One way of reducing this delay
is to properly buffer the circuit input stage, i.e. by using drivers in the stage.
However, as mentioned before, such a buffering is not considered here. There-
fore, the chip area A occupied by the negater circuit in Figure 6.6 is propor-
tional to its size
Cdimneg = mCNOR = 4m.

There is no internal CP of the architecture. When the negater input is taken
from an (m + 1)-bit parallel register and the output is stored in a similar reg-
ister, we get n,, = fie = 2. Then, the negation time 7' is proportional to the
total CP length

Edimneg = Ereg + rregfdimneg + rdimnegfreg = 4m + 30.

Hence, the product AT? is proportional to

C’Czlimneg é Cdimneg(ﬁdimneg)z =0 <m3> .

6.3.4 Addition and Subtraction

In Section 6.2 (Equations (6.3) and (6.15)) we showed that the choice / = —1 in
(6.1) yields
T(B+v)=T(B)+T(y)+1 (mod2™ +1) (6.22)

For 0 < T(3), T(v) < 2™, we expand this equation as

b = TB+7) =" 440 =B =5 1
A1 (mod 2" 4 1); if (Bm,’ym) = (0,0)
= { X (mod 2™ +1); if (B, Am) € {(0,1), (1,0)} ,

~

A—=1=2" (mod 2™ +1); if (Bp,3m) = (1,1)
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where 3 = T(3), 4 = T(y), and A £ 3™ 4 4(m=1) The three cases in the
above equation are handled in the following way:

1. =X+ 1 (mod 2™ + 1):

Using the congruence A = A, 2™ 4+ A(m=1) = X\(m=1) _ X (mod 2™ + 1)
we get

=MD 41—}, =A=D L X (mod 2™ + 1)

2. ¢ =\ (mod 2™ + 1):

In this case we have either 5™~ = 0 or 4("~1) = 0, which implies
Am = 0. Therefore, no modulus reduction is needed. We let

B = (G, ") = (0, A7),

3. 6=A—1=2" (mod 2™ + 1):

In this case we have ("~ = 4(m=1 = (, which gives A = 0.
Therefore, let

B = (G, ™) = (1, Al7=D),

A Carry Look-Ahead Adder

For a bit-parallel transmission of both 3 and 4, the sum A = g(m=1) 4 4(m~1)
may be calculated using an m-bit parallel adder. In the above case 1, the sup-

plementary addition by A,, may be carried out by letting the carry in ¢, in the

least significant bit position be equal to A,,. The bit value },, must then be gen-
erated by a carry look-ahead circuit. In cases 2 and 3, the initial carry in ¢
equals zero. Hence, ¢ can be generated according to the Boolean function

~ ~ ~

0= B T A = (B + 3 ) + A (6.23)

The most significant bit 2, of the output ¢ must be generated separately. Let
¢ denote the final carry of the addition 3("=" + 4("=1) 4 ¢,. Table 6.1 shows
the possible states of Bm, Ams 5\m, Co, ¢, and the resulting sum . We see that
¢ is high only for (B Am) = (1, 1) and for (co, ¢,,) = (1, 1), which means
that it can be described as the Boolean function

S‘am:ﬁm'ﬁ)/m—I'cO'cm:ﬁm'ﬁ)/m'CO'cm-



110 Chapter 6. The Diminished-1 Representation

| Case || B S [ Ao cu| E
1 0 O0]0|1 0]>0,<2"-1]0
011 1 2 1
1]0 1[>0,<2"-1]|0
2 [[0/T 1/0] 0|0 0 >0, <2°—1] 0
3 1 100 O 27 1

Table 6.1: The possible states of some variables involved in the computation of
> =T(6+~) (see also Figure 6.7).

Figure 6.7 shows one possible architecture of a diminished-1 carry look-ahead
adder. The carry-in of the carry look-ahead block equals zero. The adder has
about the same structure as McClellan’s adder [65, Fig. 7]. However, because
of an incorrect gating of the carry ¢,,, McClellan’s adder gives an erroneous
output when \,, equals one (the third line of Table 6.1). On the other hand,
the gating is correctly realised for the carry look-ahead adder in Figure 8 of
[65].

Benaissa et al. [11] and others also use an adder that is based on the adder in
Figure 6.7. However, in Figure 9 of [11], the authors use AND and OR gates
to form the output bit ¢,,, in contrast to the NAND gates used in Figure 6.7.
Pajayakrit[71, Fig. 3.3] also considers an adder whose architecture slightly dif-
fers from the one presented in [11]. In Pajayakrit’s adder, there is an AND gate
that has J,,, (which by Pajayakrit is named D) as one of its input signals. This
signal is exchanged for ¢, in Benaissa’s adder. Using the (' model adopted
in this thesis, it can easily be verified that when ¢, is chosen as input signal to
the AND gate, the internal delay from the \,,-output node of the carry look-
ahead circuit to the ¢, carry input node of the parallel adder is less than the
corresponding delay if ), is chosen as the input signal of the AND gate.

Remark: Pajayakrit’s adder is actually a corrected version of the adder con-
sidered by Towers et al. [101, Fig. 9]. In Towers” adder, which is based
on McClellan’s adder, the carry-in signal ¢, was improperly formed as

the Boolean function ¢y = ﬁm’ym)\ instead of the correct one given by
(6.23).

When comparing the adder architectures described above we find that the
adder in Figure 6.7 is preferable to the others, with respect to correctness and
both area and time complexity. So far, we have not considered the choice of
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ﬁm ﬁm—]ﬁ? ﬁl 60 FA)/m FAYM—I:)Q ’AYI ’AYO

e=T(F+~) (mod?2™41)

Pm Pm-192 P1 Po

B BoiAm—1 B2 A B A Bo Ao

1L L

Carry

look-ahead
logic

~

1 | Am

m-bit parallel adder

A A A A A

©m ¥Pm—1 2 ©1 ¥o

Figure 6.7: Diminished—1 addition modulo 2™ + 1: 3 = T(8) and 4 = T (7).
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adder type for the m-bit adder in Figure 6.7 (the one whose inputs are Blm=1),
4m=1) "and ¢). If this adder is implemented as a carry look-ahead type of
adder, like for example McClellan’s adder [65, Fig. 8], we presumably obtain
a faster diminished—1 adder than if it is implemented as a carry ripple type of
adder. However, the chip area occupied by an adder is generally larger for the
carry look-ahead adder than for the carry ripple adder.

In order to get fair comparisons between the bit-parallel carry ripple-type
NBC adder in Figure 5.7 and the bit-parallel adders in this section, the paral-
lel diminished—-1 adders considered here are all plain carry ripple-type adders.
As mentioned in the beginning of Section 5.1, we primarily consider architec-
tures that can be mutually compared in order to decide which form of element
representation is most advantageous, with respect to chip area, computation
time, and area-time performance. Therefore, we generally compare architec-
tures of the same type, but with respect to different element representations,
rather than try to find the most area-time efficient architecture for a certain el-
ement representation.

Hence, the bit-parallel m-bit carry ripple adder in Figure 6.7 simply consists
of a row of m cascaded full adder elements. Consequently, the total size of the
entire diminished-1 adder equals

Cdimadd,1 = mCpy +Cqpy + 4CNAND/NOR +Con = Copy +28m + 22, (6.24)

where the complexity C,, , of the carry look-ahead logic depends on how it is
implemented. It is well known that the output carry ¢, , from a full adder ele-
ment in bit position 7, whose input signals are 3;, 4;, and ¢, may be expressed
as the Boolean function”

Cip1 = Gi + pic, (6.25)
where g; = ﬁm and p; = §3;+ 4; are called the carry generate and propagate func-

tions, respectively. For the diminished-1 adder we have A,, = ¢/,. Therefore,
by expanding (6.25) for i = m — 1 we get

5\m = C;n = gm-1 + Pm—19m—2 + Pm—-1Pm—29m-3 + -
+ P 1Pm—2 " P1G0 + Pm—1Pm—2 - PoCo- (6.26)

However, the addend p,,,—1p—2 - - - pocy, of (6.26) can be excluded here, because
for the circuit in Figure 6.7 we have ¢, = 0. The resulting Boolean function
can efficiently be evaluated using the carry look-ahead tree in Figure 6.8. This
architecture for generating only one carry signal is also suggested by Yuan

"For the diminished-1 adder in Figure 6.7, we denote by ¢, the input carry signal in bit
position ¢ of the carry look-ahead circuit. We do this in order to distinguish it from the corre-
sponding carry signal ¢; of the parallel adder in the bottom part of the figure.
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Figure 6.8: A carry look-ahead tree that generates the carry signal \,, = .. Each
g/p cell has an inverted carry propagate and an inverted carry generate as out-
put signals. The odd and even levels of the tree consist of the O cells and the
E cells, respectively. The output functions of the three cells are displayed in the
top-rightmost part of the figure.

et al. [110, Fig. 4]. Furthermore, it is essentially a modified version of Brent
and Kung’s [27] well known carry look-ahead tree.

As seen in Figure 6.8, the g/p cells generate the inverted initial carry propa-
gate and generate signals p; and g;, respectively, for 0 < ¢ < m — 1. Consider
the tree subsequent to the array of ¢/p cells. This tree has log, m levels. By
subsequently numbering the levels from 1 to log, m (from left to right for the
tree in Figure 6.8), we deduce that the odd indexed levels of the tree are formed
only by O cells and the even indexed levels are formed only by £ cells. Con-
sequently, the end cell is either an £ cell or an O cell, depending on whether
log, m is even or odd, respectively. Note that in the former case, the g out-
put signal of the end cell must be inverted to form the desired carry signal Ao
Henceforth, we do not consider this extra inverter needed for even log, m. The
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| Cell || Size | Input | Fan-in | Output norm. res. ||

g/p || 8 Bi/%i 4 2

O |10 ||p/g/g" 2 2
p// 4

(10 | p'/d/9" 2 2
p// 4

Table 6.2: The sizes, fan-ins, and output normalised resistances of the g/p, O, and
E cells of Figure 6.8. We use the cell names as subscripts of the complexity pa-
rameters, e.g. g/, =2, f, , =4,andC,,, =C, =C, = 10.

input and output signals of the g/p, O, and £ cells are displayed in the top-
rightmost part of Figure 6.8.

Each ¢/p cell consists of one NAND gate and one NOR gate. The E cell con-
sists of one NAND gate and one combined AND-NOR gate (see Figure 6.2).
The complexity parameters of the latter gate are given on page 99. Also, a
schematic description of the gate is given in Figure 6.2. The O cell consists of
one NOR gate and one gate which has a similar structure and the same com-
plexity parameters as the AND-NOR gate. Recently, Wei and Thompson [112]
derived an AT? optimal parallel carry look-ahead adder based on Brent and
Kung’s carry look-ahead tree. Two of their basic cells which they use to im-
plement the parallel carry computation are equivalent to the £ and O cells in
Figure 6.8: Their ‘black ba’ cell [112, Fig. 3(a)] is equivalent to our £ cell and
their ‘black bb” cell [112, Fig. 3(b)]is equivalent to our O cell. The sizes, the fan-
ins and the output normalised resistances of the cells in Figure 6.8 are given
in Table 6.2.

The binary carry look-ahead tree in Figure 6.8 comprises m g/p cells and 2m —1
E and O cells. Hence, the size C_, , of the tree equals

Cora =mCypp +(2m —1)C,,, = 8m + 10(2m — 1) = 28m — 10. (6.27)

EJO

The values of C;/, and C
(6.24), we get the total size

are taken from Table 6.2. By combining (6.27) and

Cdimadd,1 = 56m + 12

of the diminished-1 adder of Figure 6.7. The fan-in f_, , of the carry look-
ahead tree equals f,/, = 2. The output normalised resistance equals r
Tpo = 2.

CLA —
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Regarding the F and O cells, because the respective p”- and p”-inputs have
the largest fan-ins, the CP is the path from either the Bm_l node or the ¥,,_1
node through the carry look-ahead tree to )\m and onwards through the m-bit
parallel adder to the ¢, output. With respect to this CP, the fan-in, the output
normalised resistance, and the internal CP length equal

fdimaddn = fon i T fopp =8 +4 =12
Tdimadd,l = Tyaxp = 2

Lop dimadd1 = rg/pfa? + (logy m — 1)y, . f

B,p'"jO,p"

+ rNOR(fNOR + fFA,cany) + m’CFA,cany
+ (m - ]‘)TFAfFA,carry + (TFA + rNAND)fNAND

= 2-44(log, m—1)2-44+2-24+2(2+6)+8m
+(m—1)-1-64+(1+2)-2

= 14m + 8log, m + 20.

+ Tgro fNAND

A Carry Ripple Adder

The NBC adder of Figure 5.7 in Section 5.1.3 is a carry ripple type of adder. In
Figure 6.9 we present an equally comparable diminished-1 carry ripple adder.
We have A = 3("=1) 4 4("=1)_ In the carry look-ahead adder of Figure 6.7, for

case 1 (see page 109) the addend M, is added to the sum A"~ by letting Ao
be the carry input signal of the parallel adder. In contrast, the carry input sig-
nal of the parallel adder in Figure 6.9 is always equal to zero. Therefore, it is
sufficient to use a half adder element in the least significant bit position of the

adder. Furthermore, the addition of Am=1) by )\, is carried out by multiplex-
ing either the sum A1) (for A, = 1in case 1) or A(™=Y) 41 (for \,, = 0 in case
1) to the output. The addition of A\(™~Y by 1is carried out by the row of half
adder elements in the figure, in accordance with the circuit in Figure 6.4 for
code translation from the diminished-1 representation to the NBC represen-
tation. Here, because one of the inputs of the half adder element in the least
significant bit position equals zero, the adder element can be simplified to an
inverter (see Figure 6.9).

Let o = A(™=1) 4 1 where A = 3(m=1 4 3(m=1) a5 before. For all three cases
described in the beginning of Section 6.3.4, we introduce a Boolean function f
to control which of ¢™1) (for f = 0) or A=V (for f = 1) should be passed
to the output ¢(™~1. The most significant bit 3,, is generated separately. In
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o=T(f+~) (mod2*'+1)

P4 P3 P2 P11 Do

By A Bs % B A B o
] P,
FA FA FA HA
A3 Ao A S I
,/ Add-by-one
HA HA HA .
- circuit
3 02 01 Do
e -t ey
T T T T
% E»g % s plexers
! | ! T
P4 3 P2 1 ©o

Figure 6.9: A carry ripple architecture for diminished—1 addition modulo 2* +1. The
paths Py and P, form the CP through the circuit.
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| Case || Bn_ Gm | A | On | J ] ¢ ]
1 0O 0]0]O0 O[O
1 1
1[0 1[0
2 J[0/1 1/0[ 0 [0/1]1] O
3 [ 1 100 |11

Table 6.3: Properties of some variables of the addition circuit of Figure 6.9. The
Boolean functions f and 4, depend on the other variables.

Table 6.3 we have listed the possible values of Bm, A, 5\m, q%m, f,and ¢, for
the three above-mentioned cases. By using Karnaugh maps for f and ¢,, we
obtain the minimised Boolean functions

P = ’Aymj‘m + Bmﬁg = ’Aij‘m ) Bmﬁg
These functions are formed by the logic gates in the leftmost part of Figure 6.9.

By comparison with the adder in Figure 6.7, the size of the adder in Figure 6.9
is reduced by 6m + 10 to

Cdimadd2 = (m — 1)Cyy + mCy, + MCyyx + 2Con + 3Coanp + 3Ciny = 50m + 2.

Also, as expected when comparing a carry ripple adder with a carry look-
ahead adder, the internal CP length is greater for the carry ripple adder: The
CP through the adder is formed by the two paths labelled P; and P, in Fig-
ure 6.9. Hence, for this adder we get the fan-in, output normalised resistance,
and internal CP length

fdimadd2z = fy, =6
Fdimadd,2 = Ty T1 =3

Lopdimadd2 = Lyy oy T Tincory S cary T (1 — 1L
+ (m - Q)TFAfFA,carry + rFAfOR
+ Lo +7on(2m + finy) + 2mriny
= 4464+8m—1)+6(m—2)+2+44 (2m+2)+2m
= 18m,

FA , carry

respectively.
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Carry Look-Ahead versus Carry Ripple Adder

In order to take all three delay parameters, i.e. the fan-in, the internal CP
length, and the output normalised resistance, of each adder into account we
assume as before that the adders are both preceded and followed by registers.
Then, the computation times (71") of the carry look-ahead adder in Figure 6.7
and the carry ripple adder in Figure 6.9 are equal to

Laimadd,1 = Lreg + Treg fdimadd,1 + LOP dimadd,1 + Tdimadd 1 freg
= 2242124 14m 4+ 8log, m+20+2-2
= 14m + 8log, m 4+ 70

Laimadd,2 = Lreg + Treg fdimadd,2 + LOP dimadd,2 + Tdimadd,2 freg
= 2242:-64+18m+3-2
= 18m 440, (6.28)

respectively. Apparently, the carry look-ahead adder is faster than the carry
ripple adder. By combining the size and the total CP length (including reg-
isters) of each adder, we find that the AT* performance of the two adders is
proportional to

CLAmaads = Coimadd,i( Ldimadd,)® = (56m + 12)(14m + 8log, m + 70)°
= 0 <m3>
CLAmaddz = Climadd2(Ldimadd2)’ = (50m + 2)(18m +40)°

= O <m3> ,

respectively. The sizes, total CP lengths, and CL* products of the two adders
are plotted versus m in Figure 6.10. We see that the values of the complexity
parameters do not differ much between the adders. However, for all m the
size of the carry look-ahead adder is slightly greater than the size of the carry
ripple adder. For m > 16, the total CP length Lgimadd,1 0f the carry look-ahead
adder is less than the total CP length Lgimadd,2 Of the carry ripple adder. For
m < 8 we have Lgimadd,1 > Ldimadd,2-

With respect to the AT performance, the carry look-ahead adder is preferable
to the carry ripple adder for m > 32, but the carry ripple adder is preferable
for m < 16.
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Figure 6.10: The sizes, CP lengths, and AT* performances of the two
diminished—1 adders. The parameters are plotted versus m for
m =2, 4, 8, 16, 32, 64, 128, 256.

A Bit-Serial Adder

The chip area required to perform an arithmetic operation is usually smaller
for bit-serial architectures than for bit-parallel architectures. Another advan-
tage of bit-serial architectures is that they can be clocked with a higher clock
frequency, i.e. they have a higher throughput. However, it is not certain that
the total time required to perform an operation is smaller for a bit-serial archi-
tecture than for a bit-parallel architecture.

The bit-serial carry-save adder of Figure 6.11 adds the two binary coded num-
bers 6 and 4. Here, we assume that the binary digits of 6 and 4 are fed into the
adder element with the least significant bits first. Each digit of the sum ¢ =
(..., 02, 01, 0p) is either directly stored in a shift register or first manipulated
in some way, for example to form the sum ¢ + 1 (according to diminished-1
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addition), before it is stored. In any case, assuming that 62 and 4; are the out-
puts from two (shift) registers, the internal CP length of the bit-serial adder can
not be less than the length of the path from the input register through the full
adder element (from the signal input to the sum output) to an output register.
This minimal CP length equals

FaN

Ereg —I_ rrengA,signal —I_ EFA,sum —I_ TFA freg
= 2242-8412+1-2
= 52

ECP,seradd,min

It takes at least m + 1 clock cycles before the desired diminished—1 sum B+
¥ 4+ 1 mod 2™ + 1 is present at the adder output, whether it is in bit-serial or
bit-parallel form. Hence, the total computation time is proportional to to the
length Lcradd,min, for which we have

ﬁseradd,min Z (m + 1)ECP,seradd,min — 52(m + 1)

This length is also greater than the total CP lengths Laimadd,1 and Ldimadd,z Of
the carry look-ahead adder and the carry ripple adder, respectively. We assert
that from an A7 performance point of view, when comparing the bit-serial
adder with the carry look-ahead and carry ripple adders, the bit serial adder
is not competitive. The bit-serial adder is not further considered here.

Other Adders

In addition to the adders described above, we would like to mention some
other diminished-1 adders that have been presented in the literature. In this
thesis, we do not consider the complexity or performance of these adders.

Firstly, because we let the adder block of the diminished-1 adder in Figure 6.7
be a carry ripple adder, the complete adder architecture is not a true carry look-
ahead adder. McClellan [65, Fig. 8], however, implements this adder part of
the circuit using length-4 arithmetic logic units and carry look-ahead logic
blocks.

Secondly, Towers et al. [101, Fig. 10] and Pajayakrit[71, Fig. 3.4] propose a true
carry look-ahead diminished-1 adder that is based on McClellan’s adder [65,
Fig. 8]. They forward the generate and propagate signals obtained in the carry
look-ahead block (see Figure 6.7) to an array of 4-bit carry look-ahead units,
which in turn is followed by an array of XOR gates forming the sum output.
The resulting adder is implemented in nMOS technology. The authors state
that their carry look-ahead scheme “seemed to be the best in terms of area and
speed”.
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Figure 6.11: The adder part of a diminished—1 bit-serial adder.

Thirdly, Morikawa et al. [68] have implemented a three-input diminished-1
adder, i.e. an adder that adds three numbers at a time. Their adder is based
on the three-input carry-save adder presented by Hwang [52, Ch. 4.2]. Re-
cently, Benaissa et al. [13, Fig. 5] presented a VLSI design of a Fermat number
transform using three-input adders. Benaissa’s adder is an improved version
of Morikawa’s adder.

Subtraction

In the end of Section 5.1.3 we wrote that subtraction is simplest carried out by
tirst negating the subtrahend and then adding the result to the minuend. This
should also be the most straightforward procedure for diminished-1 subtrac-
tion. Thus, subtraction can be performed using the negation architecture in
Figure 6.6 and any of the two-input adders described in the present section.
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6.3.5 Multiplication by Powers of 2

Multiplication by 2

Multiplication by two is simply performed in VLSI when using the dimin-
ished-1 representation. By letting v = 3 in (6.22), we get

p 2 T(28)=28+1

= <23m ‘I’ Bm—l) 2m ‘I’ QB(m_2) ‘I’ 1 = QB(m—Z) - QBm ‘I’ Bm—l

2.0-2-141=—1=2"=3; if3=2" (e if 3 =0)

2607 4 3,y ifo<f<2m 1
= (S‘anH S‘am—lv"'v 9517 950)2 (mOd 2m_|_1)7
where ¢, = 5m and ¢; = B¢—1 for: =1, 2,..., m — 1 holds for all elements

3e Ligmyq . For 3 = 2™ we get oo = 0and for 0 < A< 2" —1wegetyy = By
Hence, the binary digits of ¢ are formed as

Po = Bm ) Bm—l = Bm + Bm—l

pi=Pfi; 1<i<m—1

S‘am = ﬁm
Figure 6.12 shows an architecture for multiplication by 2. The CP of this simple
architecture is the path from the 3,,-input node to the @o-output node. With

respect to this CP, the size of the circuit, its fan-in, and its output normalised
resistance equal

Cdimmult? = CNOR = 4
fdimmult2 = N, T+ fNOR =Ny, + 4

rdimmult? = TNOR = 27

respectively, where n,, is the circuit fan-out with respect to the ¢,,,-output node.
There is no internal stage. If n,, is (much) greater than 2, the circuit perfor-
mance can be improved by connecting the ¢,,-output to a simple driver (two
cascaded inverters). Then, n,, = finv = 2 and thus the fan-in fgimmuit2 equals 6.
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Bm Bm—l Bm—Z ﬁl 50

¢ =T(26) (mod 2™ + 1)

Figure 6.12: Diminished—1 multiplication by 2 modulo 2™ + 1

The total CP length of the multiplication-by-2 circuit in Figure 6.12, including
registers®, equals

Edimmuth = Ereg + rregfdimmult? + rdimmuthfreg
= 2242244)+4-2=42,

Hence, the area-time performance is proportional to the product

CLA iy = 4 - 422 = 7056.

8Thus, we have n,, = rpeg = 2.
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Figure 6.13: A feedback shift register for repeated multiplication by 2.

Multiplication by 2"

Some computations, like for example bit-serial/parallel multiplication, in-
volve repeated multiplication by 2. Repeated multiplication by 2 may be con-
veniently implemented as a feedback shift register with a NOR gate in the
feedback loop, as shown in Figure 6.13. This circuit is based on the circuit in
Figure 6.12.

The feedback shift register is initially loaded with 3. After k clock cycles, the
contents of the register (mcludmg the smgle register element holding the most
significant bit) equals T'(2¢3) £ (k) = (0,0, 0p_1, ..., 01, 05); (mod 2™ +1).
As concluded in Section 5.1.4 (page 80), for ¢ = log, m only the ¢ + 1 least sig-
nificant bits of the exponent n have to be considered when computing 7'(2"3).?
Hence, at most k = n(*) clock cycles are required to compute 7'(2"3) using the
circuit in Figure 6.13.

Furthermore, in Section 5.1.4 we also concluded from (5.8) that it is enough to
tirst compute O(nt=9) = 727" 3) (mod 2™ + 1) and then, if and only if
ny = 1, negate 0(n'"=1) to obtain the desired result.'® Diminished-1 negation
is performed by inverting the m least significant bits of the register contents

O(nt=1). If n, equals zero or 0,, equals one, the negatlon does not take place.
Let o =T(2"3) (mod 2™ + 1). The binary digit ¢; is obtained from the Kar-
naugh map in Figure 6.14 as the Boolean function

b= Bl 00+ 70) = s 0 (629)

“Because ordam 12 = 2m = 2! it is enough to consider n) = n mod 2m.
10By (5.8) we get T'(2"3) = T(2*" ") (mod 2™ + 1) if n, = 0 and T(2"B) = T(-2"""")
(mod 2™ 4+ 1) if n; = 1.
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Figure 6.14: Karnaugh map for the output bit 4; of ¢ for 0 < <m — 1.
X = “don’t care”.

where §; is the contents in bit position 7 of the feedback register. Figure 6.15
shows an architecture that performs the operation ¢ = 7'(2"3) (mod 2™ + 1)
using repeated multiplication by 2 according to the above procedure. The con-
trol logic is not included in the figure. According to the Karnaugh map in
Figure 6.14, ¢; can also be formed by other Boolean functions, depending on
which values are assigned to the “don’t cares”. However, the function in (6.29)
results in the most efficient realisation (the array of XOR gates), with respect
to the area-time performance.

The size of the architecture in Figure 6.15 equals

Cseq,muthn - (m + 1)Creg + chOR + CNOR + CAND + Cinv
= 28m — 4.

The internal CP during the shift operation is the feedback path P, from the reg-
ister holding 0,,,_; through the NOR gate to the register in the least significant
bit position. This path has length

'CCP,seq,multZH — 'Creg + rreg(fXOR + fNoR) + rNoRfl“eg = 38.

During an initial clock cycle, 4 is loaded into the shift register. After the n('~")
subsequent clock cycles, the shift register contains the diminished-1 integer
7(2""™"). An extra clock cycle is then required to shift this result through the
array of XOR gates to the output. Assuming that ¢ is directly stored in a reg-
ister, the length of this final output path (which is named P5 in Figure 6.15)
equals

EPS = Ereg —I_ rreg(fXOR —I_ fNOR) —I_ £XOR —I_ TXOR freg = 407

which is slightly greater than the length Lcp seqmuit2n Of the internal critical
path P;. Therefore, by letting the clock interval be proportional to £,,, the time

P37/
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Figure 6.15: An architecture for diminished—1 multiplication by a power of 2.

T required to perform the multiplication by 2" modulo 2™ + 1 is proportional
to

Eseq,mult?n — (n(t_l) + 2)£p3 - 40(n(t_1) + 2)
Because 0 < nl'™) < 2! — 1 = m — 1, the maximum multiplication time is
proportional to 40(m + 1). When the circuit in Figure 6.15 is followed by a
register, the length £, of path P, of the figure equals

’CPz = ’Creg + rreg(freg + fiHV) + rianAND + ’CAND
+ Tanp * meOR + ’CXOR + TXORfreg
= 4m + 42.

Therefore, for Loeqmulion < Ly, ,i.e. forn=Y < [(4m+42)/40—2] = [m/10] -1,
the computation time 7 is proportional to £., and hence, for n(~1) >
[m/10] — 1 the computation time is proport10nal t0 Lseqmultzn. The AT? per-
formance of the circuit is proportional to the product

2
seq,mult2n —

CL?

Cseq,muthn('C'pQ)2 — (28m - 4)(4m + 42)2
= O(m?);
for 0 < n(=1 < [m/10] — 1

Cseq,mult?n(ﬁseq,mulﬂn)2 — (28m - 4)(40n(t_1) + 80)2
= O (m(n(t_l))2> :
for [m/10] —1 < nl=Y <m —1
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Note that for a nonzero integer 4, its corresponding diminished-1 integer /3 is
an element of Z,m, i.e. we have ﬁm = (). Because the odd Fermat number 2™ +1
is not divisible by 2, for n € N every integer 2”3 mod 2™ + 1 is also a nonzero
integer. Thus, for all such nonzero numbers 3 we get ¢,, = 0, where ¢ =
T(2*3) (mod 2™ 4 1), and hence the NOR gate in the feedback path can be
replaced by an inverter. Also, for 0 < ¢ < m — 1, each output bit ¢; of the
circuit is then formed by the Boolean function ¢; = n; © éi,. The procedure
for repeated multiplication by 2 using only a feedback shift register with an
inverter in the feedback loop was originally described by Leibowitz [58].

Multiplication Using a Modified Barrel Shifter

In 1982, Truong et al. [103] proposed a method of computing multiplication
by a power of two using a modified Barrel shifter. To the author’s knowledge,
Truong’s multiplication method (or modified versions of the method) is used
by most people when implementing diminished-1 multiplication by powers
of two. For example, Pajayakrit [71, Ch. 3.6] and Towers et al. [101, Sec. 11.1.3]
propose an nMOS architecture which comprises two modified Barrel (circular)
shifters. This architecture works for both negative and positive exponents », in
order to be applicable in the computation of the inverse Fermat number trans-
form as well as the forward transform.

One of the shifters is a diminished-1 left shifter, which is used for positive ex-
ponents. The second diminished-1 shifter is used when the exponent is neg-
ative. This shifter shifts the input to the right. The shifters are controlled by a
decoder. Figure 6.16 shows a block diagram for such a multiplier over Zam,.
The signal ctrl in the figure controls which of the shifters is to be activated.

If the exponent is always nonnegative (or nonpositive), i.e. we have ¢ =
72" 3) (mod 27 + 1) (or 4 = T(27"8) (mod 2™ + 1)), then it is suffi-
cient to use only one modified Barrel shifter. Figure 6.17(a) shows a block di-
agram of Truong’s modified Barrel (left) shifter together with a decoder. The
decoder has ¢t + 1 inputs and, consequently, 2'*' = 2m outputs. Hence, the
size of the shifter is O (m - 2m). The modified Barrel shifter differs from an or-
dinary Barrel shifter only in the wirings of its transistors. An architecture of
a transmission-gate based modified Barrel shifter over Z,s,, is presented in a
paper by Shakaff et al. [90, Fig. 6].

In Figure 6.17(b), we present a block diagram of a multiplier for which the
size of the decoder is half the size of the decoder in Truong’s architecture. The
decoder has the ¢-bit NBC number n(*~Y) as its input and it has 2! = m out-
puts. Therefore, the size of the Barrel shifter is O (m - m), i.e. half the size of the
shifter needed in Truong’s architecture. The output of the reduced-size shifter
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ctrl————>
" S Decoder

Figure 6.16: A diminished—1 multiplier of a power of two modulo 2™ + 1 (from [71,
Fig. 3.8] but using our notations). The signal ctrl controls whether the input 3
is to be shifted to the left (for a positive exponent) or to the right (for a negative
exponent). The output p equals $ = T(2%"3), where n € N.

equals A=T2"""8) (mod 2™ + 1) (we assume that the exponent is posi-
tive). If n; equals one, (™Y is inverted to form the desired result = 7/(2"3) =
T(=2""""3) (mod 2™ + 1). If n, equals zero, ) is passed unchanged to the
output. The inversion is carried out by a row of XOR gates, as in Figure 6.15.

The decoder can be implemented in several ways, see for instance Weste and
Eshraghian [113, Ch. 8.3.1.1.3]. The choice of implementation may for exam-
ple be governed by speed requirements, power dissipation constraints, and
chip size constraints. In this section, we do not give any further details about
the complexities and performances of the Barrel-shifter type of architectures
in Figures 6.16 and 6.17.

6.3.6 General Multiplication

Several algorithms and architectures for diminished-1 general multiplication
have appeared in the literature. To our knowledge, only bit-serial/parallel
and bit-parallel architectures are suggested by the originators of these archi-
tectures.
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Figure 6.17: Diminished—1 multiplication of a positive power of two modulo 2™ +1,
using one shifter. (a) Truong’s modified Barrel shifter of size m x 2m bits. The
output equals p = T(2"3) (mod 2™ + 1). (b) A modified Barrel shifter of
size m x m bits, followed by an array of XOR gates. For the output $(™~1) we
have $; = A; ®ny, where 0 < i <m—1land A\ =T(2""""3) (mod 2™ +1).
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6.3.6.1 Bit-Parallel Architectures

Leibowitz [58] was the first to present some procedures for general multipli-
cation. He briefly considers three procedures,'' which are based on how the
multiplicand and the multiplier are represented:

1. The multiplicand and the multiplier are both diminished-1 numbers.
2. The multiplicand and the multiplier are both NBC numbers.

3. The multiplicand is an NBC number and the multiplier is a diminished-1
number, or vice versa.

The third multiplication procedure is generally used only for bit-serial /paral-
lel multiplication. In the literature, we have not found any architecture for bit-
parallel diminished-1 general multiplication that is based on such a procedure.
In this section we give an analytical description of the above multiplication
procedures 1 and 2, beginning with the first procedure. For nonzero factors
(3 and ~, i.e for the diminished—1 numbers 0 < A, 4 < 2™ —1, the product in
(6.10) can be written as

_ Bm lpy(m 1)_|_0__1
m—1

= 2" fpqi2 07D — 1
=0
= —A+0" Y1 (mod 2™ +1), (6.30)
where & £ Blm=1) 4 4lm=1) 4 1 = Flm=1) g Am=1 " (mod 2™ + 1) and where
0= [3( )’}(m D 4+ & is a 2m-bit NBC integer and N = ZT:BI 0,,4:2" is an m-bit
NBC integer. Therefore, we have —\ —1 = (27 — 1) — A("=1) 41 = A(m-1) 41

(mod 2™ + 1), where A("=1) is the one’s complement of A(™~) and hence
(6.30) can be expressed as

T(B-v) = 001 4 \m=1) 41
= 0" @ A=) (mod 27 + 1). (6.31)

Hence, the above procedure 1 involves one ordinary (m x m)-bit general multi-
plication, one ordinary 2m-bit addition, and two diminished-1 additions (see
Example 12 in Leibowitz” paper [58]).

"Leibowitz did not formulate any algorithm for diminished—1 general multiplication. He
only sketched the main steps of the proposed multiplication procedures and presented two
examples.
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Sunder’s Parallel Multiplier

An (m x m)-bit multiplication can be carried out using a conventional (Braun)
bit-parallel multiplier array, see for instance Weste and Eshraghian [113, Ch.
8.2.7.1 (Figures 8.36 and 8.37)] or Hwang [52, Ch. 6.1 (Fig. 6.3)]. Sunder et
al. [97] recently proposed an architecture for diminished-1 general multipli-
cation based on the above procedure (Equation (6.30). They modified the con-
ventional array multiplier such that the addition of 3("~145("=1 by the non-
reduced sum & is performed in the multiplier array. Thus, following the nota-
tions above, the output of the array is the (2m + 1)-bit NBC integer

h = [OD4m=1) L Bem=1) L osme1) 4 g
= 27 0,2 00,
1=0

rather than just the 2m-bit NBC integer 3m=13(m=1) Here, we consequently
let A=Y, 0,,4:2° (compare thls (m +1)-bit A w1th the m-bit A used in (6.30)

and (6.31)). By (5.5) we get —\ = =A+3 (mod 2™ 4 1), which implies that
T( - v) can be written as

T(B-v) = =" L A+1)+1
= é<m—1>@(x+1) (mod 27 4 1).

%>

The addend A+ 1 can be obtained using the procedure for diminished—1 nega-
tion. Figure 6.18 shows the modified multiplier array. The addends 3("~" and
40m=1) are added to the sum of partial products in the first row of the array. The
addition by one is carried by the rightmost column of half adder elements.'?

A block diagram of Sunder’s bit-parallel diminished-1 pipelined multiplier is
shown in Figure 6.19. The output from the diminished-1 adder of the architec-

ture is the sum ¢ = 6" & (A +1) (mod 2™ 4 1), where § and ) are defined
as above. The desired product 7'(3-7) equals ¢ only for nonzero inputs, i.e. for
B, v # 0. When either 3 or v (or both) equals zero, we have ﬁm =1 (6 =2M)
and 9,, = 1 (§ = 2™), respectively, and 7'(3 - v) = 2™ (mod 2™ + 1). How-
ever, when only one of 3 and v equals zero, the adder output ¢ of Figure 6.19
is nonzero. The correct output is formed by a row of inverters and NOR gates,
see Figure 2 in Sunder’s paper [97]. Sunder names this circuit the output con-
troller.

For 0 <1 <m — 1, the output bit in position : can be expressed as the Boolean

function (3,, + 4m) + %1, i.€. its value can be generated using one inverter and

12Compare with the equivalent add-by-one circuit in Figure 6.4.
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Figure 6.18: A modified (m x m)-bit multiplier (from Sunder et al. [97, Fig. 1]).
(a) The multiplier array. The dotted line is the CP through the array.
(b), (c), and (d): The FA,, HA,, and FA, cells, respectively.
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Figure 6.19: A block diagram of a modified (m x m)-bit diminished—1 multiplier over
Ziymy (essentially from Sunder et al. [97, Fig. 4]).

one NOR gate. The Boolean function ﬁm + 4, is evaluated separately. Sun-
der assigns the value of this function to the most significant bit of the output
T(3-v). However, when the modulus 2™ + 1 is composite, there exist products
of nonzero integers of Zym, that are congruent to zero modulo 2™ + 1. If such
a situation occurs, the most significant bit of the product 7'(3 - v) should not
be formed by the Boolean function ﬁm + 9. The correct Boolean function is
Bm +4m + ¢m, i.e. only an extra OR gate is needed to form the true output (see
Figure 6.19).

Let Csunder,array denote the size of Sunder’s (m x m)-bit array multiplier of Fig-
ure 6.18. Then we have

CSundeLarray = (m - 1)2CFA2 + (m - 1)CHA1 + m(CFAl + CFA + CHA)
= 34m* + 36m + 10,

Where CFAl = CFA —I_ CAND = 34/ CFA2 = CFAl = 34/ CHAI = CHA —I_ CAND = 24/

C., = 28,and C,, = 18 are the sizes of the FA,, FA,, HA,, FA, and HA cells,
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respectively. The registers labelled R; in Figure 6.19 are m-bit parallel registers
and the ones labelled R, are (m + 1)-bit parallel registers. The D cells are D
flip-flops (single-bit registers). Hence, the total chip area A occupied by the
bit-parallel multiplier in Figure 6.19 is proportional to its size

CSunder,mult — CSunder,array + (2m + 2(m + 1) + 2)Creg
+ Cdimneg + Cdimadd,l + Cout,ctrl + QCOR
= 34m® 4+ 166m + 98,
where Cout ctri = m(Cypp, +Cinv) = 6m is the size of the output controller. We as-

sume that the diminished—1 adder in Figure 6.19 is the carry look-ahead adder
of Figure 6.7.

The CP through Sunder’s array multiplier is the dotted path in Figure 6.18

from the ﬁm 1-input node to the (%m-output node. With the inputs taken di-
rectly from registers, the minimum clock cycle time of the complete multiplier
in Figure 6.19 is proportional to the length

'CCP,SHHdeF,aFFay = ’Creg + rreg(m anp T fFA,cany) + ’CAND + Tanp fFA,signal
—I_ mEFA,sum —I_ (m - ]‘)T.FA fFA,carry —I_ TFA fHA —I_ EHA,carry
—I_ r fFA,carry —I_ mEFA,carry —I_ (m - ]‘)T.FA fFA,carry

HA carry
‘I’ TFA freg
= 36m 4 52.
of this path.
Remark: The carry input fan-in f, .. of a full adder element (the one in Fig-
ure 4.10) is less than its signal input fan-in f;, ... Therefore, in order

to minimise the overall propagation delay, we assume that the sum out-
put of the full adder element in each FA; cell is fed to the carry input of
the full adder element in the subsequent FA; cell. Then the CP passes
through the full adder element of each FA; cell from the carry input to
the sum output. The smallest propagation delay through a FA, cell is ob-
tained when the 3;-input signal is connected to the carry input of the full
adder element.

The desired product 7'(3- v) is obtained in an output register after three clock
cycles. Hence, the total multiplication time 7' is proportional to

ESunder,mult = 3ECP,Sunder,array = 108m + 1567

which implies that the area-time performance A7 is proportional to

A 2
CSunder,mult('C'Sunder,mult)

= (34m® + 116m + 98)(108m + 156)* = O (m*) .

CESunder mult
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Ashur’s Parallel Multiplier

Quite recently, Ashur et al. [10] presented an architecture for bit-parallel di-
minished-1 multiplication that is based on Sunder’s architecture in Figure
6.19. They obtain a smaller area-time performance for their architecture inter
alia by including the negation step in the array multiplier. Below, we analyti-
cally describe how Ashur’s algorithm works: For nonzero NBC factors 4 and
~, i.e for the diminished—1 numbers 0 < A, 4 < 2™ —1, the general multiplica-
tion T'(3- ) = Bim=14m=1) 4 lm=1) 4 5(m=1)  (mod 2™ 4+ 1) can be expanded
as

= 273 2 T —2m(2m - 1)
=0
= 549" -2 (mod 2™ +1), (6.32)
where
) = or=hylm=1) 4 n=1) 4 gmgm _ 1) (6.33)

isa (2m+1)-bit NBC integerand § = 7" §,,,,2 isan (m+1)-bit NBC integer.
Again, by (5.5) we get —6 = § +3  (mod 2™ + 1). Using this congruence and
the congruence 2™ (2" — 1) = —(—1 —1) = 2 (mod 2" + 1), (6.32) can be
written as _

T(B-y) =0 4§41 (6.34)

Figure 6.20 shows a block diagram of Ashur’s diminished-1 multiplier. Ashur
et al. have modified Sunder’s array multiplier (the one in Figure 6.18) in the
following way: The rightmost column of half adder elements, which performs
an addition by one, is excluded. Instead, the addition by 2 (2" —1) in (6.33) is
carried out by exchanging the half adder elements in the leftmost column for
full adder elements (i.e. exchange the HA; cells for FA; cells) and let each re-
dundant full adder input be equal to one. The so far grounded input of the left-
most full adder element in the bottom row of Sunder’s array multiplier should
now also be equal to one.

Furthermore, the resulting m full adder elements in the bottom row of the ar-
ray forms an m-bit carry ripple adder. The output of this adder is the (m + 1)-
bit integer §, which is defined above. The output § can be formed by the sum
§ = i + i, where in turn the m-bit integer it = (-1, flm—2, flm—3,---, flo)2 1S
formed by the carry outputs and the m-bitinteger /7 = (7, -1, Jm—2,---, M1)2
is formed by the sum outputs of the row of full adder elements prior to the
carry ripple adder (see Figure 6.20). Hence, (6.34) can be further expanded as
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Figure 6.20: A block diagram of a modified m x m diminished—1 multiplier over
Zymy1, based on Sunder’s multiplier (from Ashur et al. [10, Fig. 1]). The dotted
line is the CP through the array multiplier.
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T(B-7) = 0"V i+l
= ) 2 1) — (4 9) + 1
= 9D L (2" ) — a4 (27— 1) =+ 2
= I VLA 4F 42 (mod 2™ +1). (6.35)

—_ = = =

The addends /i and 7 are formed by the row of inverters below the array mul-
tiplier in Figure 6.20. Carry-save adders are preferably used when more than
twonumbers are to be added together. For example, array multipliers (like the
ones described in the present section) generally comprise rows of carry-save
adders that perform the summation of the partial products. The final addition
is performed using a carry ripple or carry look-ahead adder.

Ashur et al. efficiently adds the m-bit addends 9(™~Y, /i, and 7 in (6.35) by
using a carry save adder. These three addends are the inputs of the carry-
save adder which is subsequent to the row of inverters in Figure 6.20. Let
p =0V 4 7+ = ¢+ &, where the (m + 1)-bit integer ¢ = >.I" &2 =

mt 20— ¢, (mod 27 +1) and the m-bitinteger & = 37" ! 5,21 are formed
by the carry outputs ¢; and sum outputs &;, respectively, of the carry-save
adder. Hence, (6.35) can be written as the diminished—1 sum

TB-v) = p+2 (mod2™+1)=¢+6+2
m—1

G2+ (1—ép)+64+1

1

&6 (mod 2™ + 1), (6.36)

Qo

I 1 oag . . ... .
where ¢ = > """ ¢,2' + ¢, is an m bit integer, i.e. we have

m—1 ~ =
i wher {7
=0

qbi:éi; forl§z§m—1

The addition by ¢,, is thus carried out by inverting the most significant carry
output ¢, of the carry-save adder and feeding it into the vacant least signifi-
cant bit position of the register that holds ¢. For consistency, we have intro-
duced our notations for Ashur’s multiplier in Figure 6.20. As for Sunder’s
multiplier in Figure 6.19, we have modified the output controller in order to
obtain the correct outputwhen 3, v | (2" +1)and T(3-v) = 2™ (mod 2™ +1)
(i.,e. when 8y =0 (mod 2™ + 1)).

The chip area A occupied by Ashur’s multiplier is proportional to its size

CAshur,mult — m(CFAl + (m - 1)CFA2 + 2Cinv + CFA) + (2m + 1)Creg
+ Cdimadd,l + Cout,ctrl + QCOR + Cinv
= 34m® 4 94m + 26
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The CP through the array multiplier (see the dotted line in Figure 6.20) de-
termines the maximum clock frequency. The maximum clock frequency is in-
versely proportional to the CP length'?

’CCP,AShuF,aFFay = ’Creg + rreg(m anp T fFA,cany) + ’CAND + Tawp fFA,signal
+ (m - 1)(’CFA,sum + Tra fFA,cany) + ’CFA,cany
T Tpa fiHV + rianFA,signal + ’CFA,sum AN freg
= 22m + 60

Because Ashur’s multiplier computes the product 7'(/ - v) in only two clock
cycles, the total computation time 7" is proportional to

EAshur,mult = 2ECP,Ashur,array = 44m ‘I’ 120

and the AT? performance is proportional to the product

A 2
CAshur,mult (EAshur,mult)

= (34m® + 94m + 26)(44m + 120)* = O (m*) .

2
CEAshur,mult

Benaissa’s Parallel Multiplier

Regarding the second of Leibowitz” multiplication procedures (see page 130),
the diminished-1 product 7'(/ - v) can be written as

TpB-vy) = py-1

=0
= 9" Y _X—1 (mod2"+1),
where § = (37 is a (2m + 1)-bit NBC integer and A = > 0,42 is an (m + 1)-
bit NBC integer.'* By (5.5) we get —A = A +3 (mod 2™ + 1) and therefore
T'(f - ) can be formed by the diminished-1 sum

TB-y) = 0V (A+1)+1
0"V 3 (X+1) (mod 2™ +1),

where ) + 1 equals diminished-1 negation of ).

Benaissa et al. [11] have implemented a bit-parallel multiplier which is based
on this multiplication procedure. Figure 6.21 shows a block diagram of their

13The CP starts with the output path of a register.
14Leibowitz [58], however, erroneously stated that A is an m-bit NBC integer. The procedure
described in his article gives an incorrect answer for 5 = v = 2™.
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pipelined multiplier. The translation blocks translate the inputs 3 and 4 to 3
and 7, respectively, which are multiplied in the array multiplier. The realisa-
tion of the translation blocks are shown in Figure 6.4 of Section 6.3.1. Benaissa
et al. use a standard (m + 1) x (m + 1)-bit square-version array multiplier, see
Benaissa etal. [11, Fig. 6] or Weste and Eshraghian [113, Fig. 8.37], which com-
prises m*—1 full adder elements, m+ 1 half adder elements, and (m+1)* AND
gates. Hence, the size of the this array multiplier equals

CBenaissa,array — (m2 - 1)CFA + (m + 1)CHA + (m + 1)QCAND
= 34m? +30m — 4,
which is slightly less than the size Csunder,array Of Sunder’s array multiplier in
Figure 6.18. Using the same types of m-bit parallel registers R, and (m + 1)-bit

registers R, and the same type of carry look-ahead adder as in Figure 6.19, the
size of the complete multiplier of Figure 6.21 equals

CBenaissa,p—mult = CBenaissa,array + (2m + 4(m + 1))Creg

+ Cdimneg + Cdimadd,1 + 2Cpimanee + 2C 5
= 34m? + 222m + 88.

The CP of the array multiplier is similar to the CP of Sunder’s array multi-
plier in Figure 6.18. It runs from a register output into the AND gate in the
top-leftmost position of the array and then diagonally through the array of
full adder elements and finally to the left along the bottom carry-chain row
to the register holding the most significant output bit 5,,. The length of this
CP equals

Lcp Benaissaarray = Lreg + Treg - (M + 1) o + Loxp + Tano Jua
+ ’CHA,sum + rHA,sum fFA,carry + (m - 1)’CFA,sum
+(m = 2)re, fon carey T Toafra T Lt canny
+ rHA,carry fFA,carry + (m - 2)(’CFA,cany + LN fFA,cany)
+ 'CFA,sum AN freg
= 36m 4 28.

The product 7'(5-+v) is obtained in the output register subsequent to the dimin-
ished—-1 adder after four clock cycles. Hence, the time 7' required to multiply
using Benaissa’s array multiplier architecture is proportional to

EBenaissa,p—mult — 4ECP,Benaissa,array = 144m + 1127

which means that the AT performance of the multiplier is proportional to the
product

>

2
CBenaissa,p—mult('CBenaissa,p—mult)

= (34m® + 222m + 88)(144m + 112)* = O (m?) .

2
CEBenaissa,p—mult



140 Chapter 6. The Diminished-1 Representation
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Figure 6.21: A block diagram of Benaissa’s [11, Fig. 4] diminished—1 pipelined array
multiplier.

Remark: If the multiplier (or the multiplicand) is available as an NBC number
3 (or 7), one of the translation circuits in Figure 6.21 can be excluded.
This reduces the total size Cienaissa,p—mute- 1f both the multiplier and the
multiplicand are NBC numbers, the translation part and the two input
registers (R;) can be excluded. Consequently, the initial clock cycle is
then excluded. This reduces the total computation time as well as the
total circuit size. Note also that a simple additional modification of the
multiplier (in Figure 6.21), makes it applicable for general multiplication
with respect to the NBC symbol representation.

6.3.6.2 Bit-Serial/Parallel Multipliers

Probably the most frequently used diminished-1 multiplier is the bit-serial /
parallel multiplier.'” In general, serial/parallel multipliers are known to oc-

15The multiplication scheme adopted is often referred to as the iterative shift-and-add
technique.
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cupy less chip area than the corresponding parallel multipliers, but to the cost
of a poorer time performance.

Several algorithms for serial/parallel diminished-1 multiplication have ap-
peared in the literature. They mainly differ in how the multiplicand and the
multiplier are represented and which initial values have to be computed. The
registers needed in the corresponding architectures are loaded with the ini-
tially computed values.

Chang’s Serial/Parallel Multiplier

Chang et al. [32] were among the first to publish a VLSI implementation of a
serial /parallel diminished—-1 general multiplier. It is based on a diminished-1
representation of the multiplicand and an NBC representation of the multi-
plier. Let 3 and 4 be the multiplicand and the multiplier, respectively, in their
diminished-1 form of representation. The multiplication algorithm is valid
only for 3, v # 0, i.e. for 3,4 # 2m. Situations where either 3 or v (or both)
equals zero are handled separately. The algorithm of Chang et al. is based on
the following expansion of 7'( - v) (here, we use our notations):

T(B-7) = By=1=8) %2 -1

= > @B+ v —1+m—m
1=0

=0

(zm: wT(2'3) + m) + (2™ —-1-D)+1

= (ﬁ: %T(Tﬂ)> ®&D  (mod 2™ 4 1), (6.37)

where D = m — 3.7 ~; and where > and & denote diminished-1 addition.
Because v € Zjmyq we get D € Z,,44, which is represented as an m-bit NBC
integer.

Chang et al. [32, Fig. 1] presented a simple architecture which computes (6.37)
using an recursive shift-and-add technique, where the modulus reduction is
simultaneously carried out during each recursion. Thus, (6.37) can be ex-
pressed on the recursive form

Pli+1)=PH)@v%T(2'8) (mod 2™ +1);  for0 <i<m,

where P(0) = D. For: = m we then get P(m + 1) = T(j3 - 7). Chang et al.
present a slightly modified algorithm to compute the desired product
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T(3-~)in m+2 clock cycles. The algorithm, however, suffers principally from
two drawbacks. Firstly, the multiplier v needs to be translated from its dimin-
ished-1 representation to its NBC representation. Secondly, an initial compu-
tation of D must be performed before the shift-and-add procedure can begin.

A simplified block diagram of a general diminished-1 general multiplier,
based on Chang’s multiplier and an MC68000 microprocessor, can be found
in Shakaft’s PhD. thesis [89, Fig. 3.21(a)]. Shakaff concludes that the main dis-
advantage of the above multiplication procedure is the need to compute the
initial value D. He instead proposes the multiplier by Benaissa et al. [12] as
a competitive alternative. Benaissa’s multiplier, which needs no precomputa-
tions, is presented below.

Benaissa’s Serial/Parallel Multipliers

For the diminished-1 representation, the parameters £ and [ in (6.1) are equal
to 1 and —1, respectively. Hence, the diminished—1 form of the general multi-
plication formula in (6.13) is

)= (v ) = ﬁ: T(2'8) +7:2™) (mod 2™ +1). (6.38)

=0 =0

The multiplication algorithm suggested by Benaissa et al. [12] is based on this
congruence. In their formulation of 7'(3 - ) they have omitted the term 7;2™.
They express the product as » v,7(2'3) (see [12, Eq. (6)]) and only mention
that for v; = 0, the addend is set equal to the diminished-1 zero (i.e. the inte-
ger 2™). The correct expression for 7'(3 - v), however, is given in (6.38). The
congruence (6.38) can be expressed on the recursive form

Pli+1)=P0H)® (%T(2'8)+72™) (mod 2™ +1);  for0 <i<m,

where the initial value P(0) equals 2™ (diminished-1 zero). Moreover, for
i =mwehave P(m+1)=T(5- 7).

A block diagram of Benaissa’s multiplier is shown in Figure 6.22. The control
signals are not shown in the figure. The registers R, R,, and R are all m + 1
bits wide.

During an initial clock cycle, 6 is loaded into register R; and the translated
integery =4+ 1 (mod 2™ + 1) is loaded into register R,. Also, the (m + 1)-
bit integer 2™ is loaded into Rs. After the subsequent clock cycles, R; con-
tains 7'(203), T'(2*8), T(2°3), etc. We assume that the output 7'(3 - ) is directly
stored in an (m + 1)-bit parallel register. The CP is the dotted path in Fig-
ure 6.22, from the output of the shift register R, through on an AND gate and
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Figure 6.22: A block diagram of Benaissa’s diminished—1 serial/parallel multiplier
(essentially from Benaissa et al. [12, Fig. 1]).
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the carry look-ahead adder to the input of the parallel register Rs. The length
ﬁCP,Benaissa,s/p—mult of this path equals

ﬁCP,Benaissa,s/p—mult — Ereg + Treg * (m + 1)fAND + EAND + T sxD fdimadd,l
+ Ldimadd,1 + Tdimadd,1 * 2freg
= 18m + 8log, m + 120.

The initial clock cycle is followed by m + 1 clock cycles, during which the par-
tial products are computed and recursively added together. Hence, the total
computation time 7' is proportional to

EBenaissa,s/p—mult = (m + 2)£CP,Benaissa,s/p—mult
= 18m? + 8mlog, m + 156m + 16 log, m + 240.

The desired product P(i + 1) = T'(3 - v) is shifted into an output parallel reg-
ister during the final clock cycle. In order to make a fair comparison with the
parallel diminished—1 multipliers described above, we again assume that the
diminished-1 adder in Figure 6.22 is the carry look-ahead adder of Figure 6.7.
Then, the chip area A occupied by the multiplier in Figure 6.22 is proportional
to its size

= 3(m + 1)Creg + Coimanse + mCyp
+ 2CNAND/NOR + Cinv + Cdimadd,l
= 128m + 72.

CBenaissa,s/p—mult

Hence, the area-time performance AT of the multiplier is proportional to

A 2
CBenaissa,s/p—mult(/:'Benaissa,s/p—mult)

= (128m + 72)
-(18m?* + 8m log, m + 156m + 16 log, m + 240)?
= O <m5> :

2
CEBenaissa,s/p—mult

If the multiplier in the multiplication operation is available as an NBC number
7, the translation circuit in Figure 6.22 can be excluded. This reduces the total
size of the multiplier architecture, but the computation time is not changed.

In their paper, Benaissa et al. [12, Ch. 3.2] also describes a procedure for dimin-
ished—1 multiplication which is a slight modification of the above procedure.
The procedure is based on (6.38), but it uses 4 as multiplier instead of ~. This
eliminates the need for the code translation from4 toy =441 (mod 2™ +41).
For nonzero v we can write (Y, Ym—-1s Ym—2,- -5 Y2, Y15 Y0)2 = (0, Ym—1, Ym—-2,
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s %2, %1, 0 + 1),. Benaissa et al. state that v can be replaced by 4 in (6.38)
by letting the least significant bit of the multiplier take on the value 4, + 1.
Actually, this can easily be analytically formulated by expanding (6.38) in the
following way:

T3 ) (3 T(2'8) +7:2™)

Il
i1]:

3
L

(%T(28) +3:2™) + (o + DT(B) + (1 — (3o + 1))2™ + 1

i1

3
L

(3T(2'8) +3:2™) +T(3)+1

1]

3
L

= (AT (28) +32™) @ T(3)  (mod 2™ + 1), (6.39)

1=

o

which can be expressed on the recursive form
Pli+1)=P6H)® (%T(2'8)+%2™) (mod 2™ +1);  for0<i<m—1,

where P(0) = T(8) = 3. We thus have P(m) = T(j3-v). Figure 6.23 shows the
modified multiplier by Benaissa et al. It is a modified version of the multiplier
in Figure 6.22. During an initial clock cycle, ¥ is loaded into register R, and
B is loaded into both register R, and Rs. After the subsequent m clock cycles,
register R; will contain the product P(m) = T'(3-+v). Anadditional clock pulse
shifts the product to an output register. If 3 = 0 (Bm =1Dory =00, = 1),
the output controller sets the correct output 7'(5 - v) = 2™ (see page 131)*°.

The chip area A occupied by Benaissa’s modified multiplier is proportional to
its size

CBenaissa,s/p—mult,Q — 3(m + l)creg + mCAND + 2CNAND/NOR + 2COR

+ Cinv + Cdimadd,l + Cout,ctrl
= 116m + 82.

The CP of the multiplier is marked by the dotted line in Figure 6.23. It only
slightly differs from the CP of the multiplier in Figure 6.22. The length of the
CP equals

ﬁCP,Benaissa,s/p—mult,? = ﬁCP,Benaissa,s/p—mult - rdimadd,lfreg
= 18m + 8log, m + 116.

15Benaissa et al. [12, Fig. 3] use a row of AND gates instead of a row of inverters and NOR
gates.
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Figure 6.23: A block diagram of Benaissa’s [12, Fig. 3] modified diminished—1

serial/parallel multiplier.
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As described above, the modified multiplier needs m + 2 clock cycles to com-
pute a product, i.e. the same number of clock cycles as was required for the
non-modified multiplier. Hence, the computation time 7" is proportional to

EBenaissa,s/p—mult,? — (m + 2)£CP,Benaissa,s/p—mult,?
18m? + 8m log, m + 152m + 16log, m + 232

and the product AT*? is proportional to

>

CBenaissa,s/p—mult,?(EBenaissa,s/p—mult,Z)2
= (116m + 82)

(18m* + 8mlog, m + 152m + 16log, m + 232)*
= 0 <m5> )

2
CEBenaissa,s/p—mult,?

Shyu’s Serial/Parallel Multiplier

The final serial /parallel diminished—1 multiplier to be considered here is the
one suggested by Shyu et al. [92]. Theorem 1 in their paper says that dimin-
ished-1 multiplication can be calculated in Zym; as follows:'”

T(3-~) = (E T(W@)) &6 (mod 2™ +1). (6.40)

This congruence can be written on the recursive form
Pli+1)=PH) @ T(32'8) (mod 2™ +1);  for0 <i<m,
where P(0) = (3 and for which we have P(m + 1) = T(3 - 7).

Note that this equation can also be derived from the more general expression
in (6.11) by letting & = —/, which is the case for the diminished-1 representa-
tion ((k, [) = (1, —1)). Because(6.39) and (6.40) are quite similar, the two asso-
ciated architectures have about the same structure. Figure 6.24 shows a mod-
ified version of Shyu’s [92, Fig. 1] multiplier. It is based on the serial /parallel
multiplier proposed by Chang et al. [32]. In Figure 6.24, we have exchanged
most of Shyu’s nMOS pass transistors for transmission gates. We have also
modified their multiplier such that the output product is correct also when ei-
ther of the diminished-1 operands (or both) are equal to 2. Such a situation
is handled inter alia by the “output controller” circuit.

The multiplication algorithm works as follows: During an initial clock pulse,
the (m + 1)-bit registers A and D are loaded with 3 and 3™, respectively,

1"Here, we use our notations.
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Figure 6.24: A modified version of the multiplier proposed by Shyu et al.
[92, Fig. 1]. The paths Py and P; form the CP during one clock cycle.

and the (m 4 2)-bit registers B and C are loaded with 2! 4+ 4 and 2"+! — 1, re-
spectively. Also, the single D flip-flop is loaded with 4,,. After the subsequent
m + 3 clock cycles, the product 7'(5 - v) has been shifted through the output
controller and into an (m + 1)-bit parallel register. This output register is not
shown in Figure 6.24. The multiplication process is described more in detail
by Shyu et al. [92] and, to some extent, by Chang et al. [32].

The size of the multiplier in Figure 6.24 equals

CShyuvmu“ = (2(m + 2) + 2(m + 1) + 1)Creg + mCFA + CNAND/NOR
+ 2COR + 2Ciny + Cout,ctrl + (2m + 1)CTG +m
= 103m + 134.
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The CP is formed by the dotted paths P; and P, in the figure. The CP length
equals

ECP,Shyu,mult — Ereg + rreg(finv + me(}) + Tiny - m(fTG + 1)
—I_ (rreg —I_ 1)fFA,signal —I_ mEFA,carry —I_ (m - ]‘)(EFA,carry —I_ TFA fFA,carry)
—I_ EFA,sum —I_ (TFA —I_ 1)freg
= 18m 452

Because the desired diminished-1 product is shifted into the output register
during the last of a total of m + 4 clock cycles, the computation time 7" is pro-
portional to

EShyu,mult — (m + 4)ECP,Shyu,mult
= 18m?* 4 124m + 208.

Hence, the area-time performance A7? is proportional to

Cﬁ%hymmu]t é CShyu,mult(£Shyu,mult)2
= (103m + 134)(18m” + 124m + 208)> = O (m”) .

It is possible to obtain yet another algorithm for diminished-1 serial/parallel
multiplication, based on the general expression in (6.12). For k = 1, (6.12)
changes to

T(6-v)= E T(%2'3)  (mod 2" 41). (6.41)

This formula is also derived by Shyu et al. [92, Theorem 2]. An architecture
for multiplication based on (6.41) is suitably used when the multiplier (7) is
represented on NBC form. The architecture in Figure 6.24 may be modified to
be based on (6.41). However, such an architecture is not considered here.

6.3.6.3 Comparisons

In Table 6.4 we have listed the sizes and the total CP lengths of the dimin-
ished-1 general multipliers presented in the thesis. It is clear that the multi-
plier proposed by Ashur et al. [10] has the smallest size and CP length among
the bit-parallel architectures. It is also clear that the multiplier proposed by
Shyu et al. [92] has the smallest size and CP length among the bit-serial /paral-
lel architectures.

The sizes, total CP lengths, and AT performances of Ashur’s and Shyu’s mul-
tipliers are plotted versus m, for m = 2, 1 < ¢ <8, in Figure 6.25.
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Figure 6.25: The sizes, total CP lengths, and AT? performances of Ashur’s and
Shyu's diminished—1 multipliers, see Figures 6.20 and 6.24, respectively. The
parameters are plotted versus m = 2' for 1 < <8.

From the figure we conclude that, for all m, the size of Ashur’s multiplier is
greater than the size of Shyu’s multiplier. On the other hand, with respect both
to their time performance and their AT? performance, Ashur’s multiplier is
preferable to Shyu’s multiplier.

Allin all, we conclude that the sizes, the total CP lengths, and the AT? perfor-
mances of the bit-parallel multipliers are O (m?), O (m), and O (m*), respec-
tively, while the corresponding parameters of the bit-serial multipliers are
O (m), O (m?),and O (m”), respectively. The choice of architecture for general
multiplication in Zym4; is further discussed in Section 8.1.5.
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6.3.7 Exponentiation of the Transform Kernel

For the diminished-1 element representation, the linear coordinate transfor-
mation parameters k& and / in (6.1) are equal to 1 and —1, respectively. Hence,
by (6.14) we get

")

(T(v)+1)" -1
" =1 (mod 2™ + 1),

which is also directly obtained from the general NBC-to-diminished-1 formula
T(y) =~v—1 (mod 2™+ 1). It seems as if the diminished-1 representation
does not provide a procedure for performing exponentiation in Zym,; which is
computationally simpler than the procedures for performing exponentiation
with respect to the normal binary coded element representation. Therefore,
for the computation of v" mod 2™ + 1 we refer to the exponentiation proce-
dures described in Section 5.1.6 of the previous chapter. When the modulus
2™ +1is prime, there are some properties of the prime field Zym,, which can be
applied such that exponentiation modulo 2™ + 1 can be performed in a sim-
plified way. This is further discussed in Section 7.2.1.

6.4 Summary

The complexity and performance parameters of the architectures considered
in this chapter are listed in Table 6.5. Regarding the parameters for the archi-
tectures for general diminished-1 multiplication, we refer to Table 6.4.
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6.4. Summary

| Operation | Figure | Subscript name || Size C | Fan-in f | Internal CP length £, |

NBC to dim.—1 transl. | 6.2 NBC2Dim dmlog, m +8m — 6 8 dm 4+ 8log, m
Dim.—1 to NBC transl. | 6.4 Dim2NBC 18m + 2 2 10m — 2
Negation 6.6 dimneg dm | ny, + 2m —
Addition (carry l.-a.) 6.7 dimadd,1 56m + 12 12 14m + 8log, m + 20
Addition (carry-r.) 6.9 dimadd,2 50m + 2 6 18m
Multiplication by 2 6.12 dimmult2 41 np,+4 —
Multiplication by 2" 6.15 seqmult2n 28m — 4 — 38 (or 40)
General multiplication See Table 6.4

Table 6.5: Complexity parameters of the architectures in the present chapter.

| Norm. output res. r,

| Total CP length £ (including registers) | Area-time perf. CL? |

1 4m + 8log, m + 40 O (m?log, m)
2 10m + 28 O (m?)
2 4m + 30 O (m?)
2 14m + 8log, m + 70 O (m?)
3 18m + 40 O (m?)
2 42 7056
— 40(n{*=Y +2) (or 4m + 42) O (m?)
—
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Chapter 7

The Polar Representation

In Chapter 6, we considered the diminished-1 representation of the elements
in Fermat integer quotient rings Z,»,;. The code translation 7'(y) = v — 1

(mod 2™ + 1), where v is an NBC integer of Zymy, and 7'() is the dimin-
ished-1 representation of v, belongs to the set of linear coordinate transforma-
tions given by (6.1).

There exist many forms of nonlinear coordinate transformations, i.e. mappings
P from the NBC representation of integers v € Zymy; to P(v), where P is a
nonlinear function of ~. In this chapter we investigate the properties of one
such form of representation, namely the polar representation.! A restriction of
the polar representation, however, is that it is only applicable in finite fields.

7.1 Introduction

Form =1, 2, 4, 8, 16 the Fermat number 2™ +1 is prime and hence the integer
quotient ring Zym,, is a field. Let o be a primitive element of a prime field Z,,
i.e. an element of Z, with maximum order p— 1. It is well known [60, Th. 1.15,
Th. 2.8] that the multiplicative group of nonzero elements of Z, can be formed
by the cyclic group {a°, a',..., a?7% o?72}2 Let the symbol * be defined by

!In the literature, the polar representation is sometimes referred to as the index representa-
tion, see for example Niederreiter [60, Ch. 10.1] and Rosen [84, Ch. 8.4].

? Actually, for any finite field, its multiplicative group can be formed by its powers of a
primitive element.
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the equation o = 0. Then, any integer of Z, can be expressed as some power
of a.

Definition 7.1 Consider the Fermat prime fields Ziymy1; m = 1, 2, 4, 8, 16. In the
polar representation of Zym 1, each element (integer) v € Zamyq is represented by
its associated power P(~v) of a primitive element « of the field.

Accordingly, we have

v=af™  (mod 2™ +1), (7.1)

P(y) € Zym; 7 #0
P(0) = % '
An element in the polar representation is referred to as a polar element.

where

In the diminished-1 representation, the zero element is represented by the in-
teger 7'(0) = 2™, which we called the zero indicator, see Section 6.2. We suitably
use the integer 2™ as a zero indicator also in the polar representation, i.e. we

have P(0) = * = 2. Similar to the diminished-1 representation, by letting all
integers P () be (m+1)-bitnormal binary coded integers, the zero representa-
tive P(0) is the only integer P(~) for which its most significant bit equals one.
Situations where one of the operands in an arithmetic operation is the zero el-
ement are handled separately. For nonzero integers v we have P(y) € Zgam
and the order of the primitive element o modulo 2™ + 1 equals 2. Conse-
quently, for nonzero integers v we can use an m-bit binary arithmetic modulo 2™ for
the associated exponents P(~) of c.

The general properties of arithmetic operations in finite fields, with respect to
the polar representation, are well known. However, the particular properties
of arithmetic operations in Fermat prime fields, with respect to the polar repre-
sentation have not been studied before. An investigation of such properties is
carried out in this chapter. Henceforth, we generally refer to Zyn, as a Fermat
prime field.

7.2 Arithmetic Operations

Occasionally, we have denoted diminished-1 elements 7'(y) by 4. In the polar
representation we conveniently use the same kind of notation, i.e. the
(m + 1)-bit polar integer P(~v) is denoted by the normal binary coded integer
F =2 + 27 o+ 4+ 200+ o
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In the present section we describe the arithmetic operations involved in the
computation of the Fermat number transform with respect to the polar repre-
sentation. Later, in Section 7.6, we also consider VLSI architectures for some
of these arithmetic operations.

7.2.1 Discrete Exponentiation

The code translation from a polar number P(v) to its corresponding normal
binary coded number 7 is carried out using a discrete exponentiation modulo
2™ +1, as given by (7.1). In Section 5.1.6 we considered some procedures for
general exponentiation modulo 2™ + 1. The integer v = o) (mod 2™ + 1)
may be computed using any of those procedures. For example, by using the
well known binary method, which is briefly described in Section 5.1.6, expo-
nentiation can be performed using m — 1 squarings and at most m — 1 multipli-
cations modulo 27 + 1. By performing a squaring as a general multiplication,
atmost 2(m—1) general multiplications modulo 2™ +1 of normal binary coded
numbers are required to compute v from P(~v) in (7.1).

In Section 7.4 we consider a new procedure [5] for discrete exponentiation in
Fermat prime fields using some properties of Zech'’s logarithms.

7.2.2 The Discrete Logarithm

By taking the a-logarithm of both sides of (7.1) we get the congruence
P(y) =log,vy (mod 2™), (7.2)

which is called the discrete logarithm to the base a modulo 2. The problem of
computing (7.2) is generally known as the discrete logarithm problem. In gen-
eral, it is quite hard to compute the discrete logarithm in a large prime field Z .
Several algorithms suggested in the literature require O (,/p) multiplications
to compute the logarithm.

The Pohlig-Hellman Algorithm

In 1978, Pohlig and Hellman [72] presented an algorithm for computing the
discrete logarithm in Z, which only requires O (log” p) multiplications mod-
ulo p. In particular, for Fermat primes p = 2™ + 1 their algorithm computes
(7.2) by recursively determining the binary digits 4; of T'(v) = 4 = (§m-1, Ym—-2,
Am—3y -+ -y Jo)2 such that ¥ = ¥ (mod 2™ + 1) holds. The algorithm, which
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is based on the fact that the order of the primitive element & modulo 2™ + 1
equals 2, works as follows (see [72, Sec. III]):

The least significant bit 4, of 4 is determined by raising the nonzero integer
7 to the 27~ 'th power and identifying whether the result equals 1 or —1. Let

v(0) = yand §(0) = a™'  (mod 2" + 1). Then we have

7(0)2’"—1 — (Oﬁ)Qm_l :Oz(@m—l2m_2+ﬁm—22m_3+~'+%)2m+%2m_1

(_1)% _ I (mod 2™ +1); if4% =0
—1 (mod 2" +1); iff=1"

= (a2 )0

(7.3)

Only m — 1 squarings are required to compute v(0)>""" mod 2" 4 1. The digit
4o is set to either 0 or 1, depending on whether v(0)2"™" mod 2™ + 1 is evalu-
ated to 1 or —1, respectively. Now, let v(1) = v(0) - §(0)* (mod 2™ +1). The
digit 41 can be determined in the same way as above from the congruence

7(1)

2m=2 Am—12T 7 A 2 2M T 48 ) 25 2L

I (mod 2™ +1); if4% =0
—1 (mod 2™ +1); if4H=1"

a(

(1) = (7.4)

which can be computed using m — 2 squarings. Next, compute (1) = §(0)?

(mod 2™ + 1) and v(2) = v(1)-6(1)" (mod 2™ + 1) and determine 4, from
7(2)27"_1 mod 2™ 4 1, etc., until the most significant bit 4,,_; has been deter-
mined.

In order to determine the digit 4;; 2 < ¢ < m — 1, one squaring is required
to compute 6(i — 1) =46(¢ — 2)* (mod 2™ + 1), one multiplication is required
to compute the product v(:) = v(: — 1) - 6(: — 1) (mod 2™ + 1), and m —
i — 1 squarings are required to compute ()" ~*~! mod 2™ + 1. Hence, if §(0) is
precomputed and squarings are performed as multiplications, the algorithm
requires approximately 2m 4 327 "¢ = m(m + 3)/2 general multiplications
modulo 2™ + 1. Assuming that each multiplication can be carried out using at
most m additions, the Pohlig-Hellman algorithm requires at most m?*(m+3)/2
additions modulo 2™ + 1.

New Algorithms

In 1993, we [5] presented a new algorithm for computing the discrete loga-
rithm in Fermat prime fields Zym,. The algorithm, which is based on some
properties of Zech’s logarithms in Fermat prime fields, requires at most 2" /2m
additions modulo 2™ + 1.

Recently, we [7] proposed another algorithm for computing the discrete loga-
rithm, which in turn is based on the algorithm in [5]. By using a look-up table
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of size 27" /2m x m bits, we show how to compute the logarithm using at most
2m — 1 binary shifts (rotations), one table look-up, and one addition and one
simplified multiplication modulo 2m.

Our two algorithms are thoroughly described in Sections 7.4 and 7.5, respec-
tively.

7.2.3 Modulus Reduction

Modulus reduction in the polar representation is a very simple operation.
When v is nonzero, the least positive residue of ¥ modulo 2™ equals 4™,
which is instantaneously obtained from 4. When + is congruent to zero mod-
ulo 2™ + 1 we have 4 = 2™.

Because we use an (m + 1)-bit normal binary coded representation of the ex-
ponents ¥ of «, there are only two cases that have to be considered:

Exponent Reduced exponent (mod 27)
y#E = P(y #0) =400
y=2" = P0)=*=2"

7.2.4 Negation

Like modulus reduction, negation is also simply carried out in the polar repre-
sentation. Because the order of the primitive element « modulo 2™ + 1 equals
2" we have o™ = —1 (mod 2™ 4 1). For § = P(y)and ¢ = P(—v) we
therefore get

o — —y — azm—l_l_,ﬁ/ (mod 2m) = O{¢ (mod 2m _I_ 1)

Hence, because in the polar representation all arithmetic operations are car-
ried out in the exponent of «, the polar element P’(—~) is obtained from the
congruence

P(—y)=¢=2""144 (mod 2™), (7.5)

which, for 0 <4 <2™ — 1, we expand as
S‘a = 2m—1 —I'FA)/m—l(Qm _ 2m—1) ‘I’FA)/(m_z)

’A)/m—IQm —I' (1 - :Ym—l)Qm_l ‘I’ ’A)/(m_z)
A1 27 4 4m=2 (mod 2M). (7.6)
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For4 = 2™,iefory = 0, welet p = 4 = 2”. In Section 7.6.3 we consider a
VLSI architecture for negation based on (7.6).

7.2.5 Addition and Subtraction

Addition

When considering addition in the polar representation we need the following
definition (see for example Conway [34, Ch. 6]).

Definition 7.2 Zech’s logarithm? of the polar element 0 is denoted by Z(0) and de-
fined by the congruence

1+ ol = a?0) (mod 2™ 4+ 1).

For nonzero 3, v € Zgmy, let 3 = P(#)and 4 = P(y). The function evaluated
when performing addition in the polar representation is found in the exponent
of o in the congruence

w = [3—|—’yEozB(1—|—oﬁ_B)
= PH(F) (mod2™) — (& (od 2™ 4 1), (7.7)
i.e. we have

P(B+1)=4=5+7(3-0) (mod2"), 7.8)

where Z is Zech'’s logarithm. Using the congruence —3 = (2™ — 1) — 3 + 1

= 3m=1) 41 (mod 2™), where 3("1) is the one’s complement of 3("~1), we
rewrite (7.8) as

5= B0 4 g <:y + B 4 1) (mod 2™). (7.9)

Hence, according to (7.9), addition in the polar representation may be carried
out using two additions and one discrete logarithm modulo 2™. The direct

N

computation of Z(6), as expressed by the congruence

Z(0) = log,(1+ ") (mod 2™), (7.10)
requires one discrete exponentiation and one addition modulo 2 +1 followed
by one discrete logarithm modulo 2™, which makes it quite an intricate func-
tion. Some researchers, like for instance Conway [34], Imamura [53], and Hu-
ber [51] have considered different methods of computing Zech’s logarithms

3Zech’s logarithm is also referred to as Jacobi’s logarithm [60, Exc. 2.8].
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in GF(p") in a simplified way. In particular, the researchers consider fields of

characteristic p = 2. In order to speed up the computation of Z(#), the men-
tioned methods all involve the use of look-up tables.

Remark: The particular properties of Zech’s logarithms in Fermat prime fields
Zymyy are investigated in Section 7.3. The main purpose of the investiga-
tion is to find an area-time efficient way of computing Zech'’s logarithms
in Zomy.

The case when either of the addends 3 and + (or both) equals zero is handled
separately. For o = 3+~ (mod 2™ +1), where 5 = 0 or 7 = 0, we can simply
do the following:

If3=0(3=2m), thenlety =r,ie. lets =4
Ify=0(5=2m), thenlety =3, ie letg =4

Subtraction

The polar integer P(3 — A), for which 5 and A are nonzero integers of Zym,,
can be derived by letting v = —\ in (7.7). Then, by (7.8) we get

PB—-N=p3+7 <P(—)\) - B) (mod 2). (7.11)

Consequently, subtraction in the polar representation can be carried out in a
conventional way as a (polar) negation followed by a (polar) addition.

7.2.6 General Multiplication

For nonzero 5 and v, the product ¢ = 3y (mod 2™ + 1) can be expanded as

=0y = QP (med2™) — @ (mod 2™ 4+ 1). (7.12)

By this congruence we get

P(By)=¢=3+4 (mod27), (7.13)

which is a well known property of the polar representation; general multipli-
cation in a finite field G F'(p™) turns into addition modulo p” — 1 when using a
polar representation. When either of the factors 3 and v (or both) equals zero,
P(B~) is set to P(0) = 2.
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7.2.7 Multiplication by Powers of w

The computation of the Fermat number transform of length N involves mul-

tiplication by powers of the transform kernel w of order N. Let 3 = w" med¥
(mod 2™ + 1), where P(w) = @. Then, by (7.12) and (7.13) it follows that

P(w"y) =44 (n mod N)w (mod 2™). (7.14)

Multiplication by 2"

The Fermat number transforms most commonly used are the ones of lengths
N = 2m and 4m, with transform kernels w = 2 and w = 2 = 2% 4+ 25Tm,
respectively. The main reason is that, with respect to the diminished-1 and
the NBC representations of the integers of Z,»,, multiplication by powers of
w can then be carried out as binary shifts (rotations) (see Sections 2.3.2, 5.1.4,
and 6.3.5).

Multiplication by powers of two can be carried out in a simple way in the polar

m —

representation as well. By the congruence o*"~ = —1 = 27 = (1 + a%)" =
a™?  (mod 2™ 4 1), where a is a primitive element of Zyn,,, we get

mZ(0) =271 (mod 2™). (7.15)

Because m is a power of two; m = 2%;t = 0, 1, 2, 3, 4, by Theorem 3.4 of Rosen
[84] we can rewrite (7.15) as

Z(0) =2° (mod 2°T), (7.16)

where c is defined by the equation

2m
20 = —. (7.17)
2m
Consequently, for some integer k£ we can write
Z(0) = k2°T! 4 2° = §2°, (7.18)

where § = 2k + 1. Because § is an odd (¢ + 1)-bit normal binary coded integer,
where ¢t = log, m, it follows that k£ € Z,,. Thus, depending of the primitive
element « chosen, the corresponding Zech’s logarithm of zero is of the form
given in (7.18) forsome k =0, 1, 2,..., m — L.

Theorem 7.1 For each k € Z,, there exist 2° primitive elements o of Zam4y such
that the equality Z(0) = (2k + 1)2° holds.
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Theorem 7.1 may also be formulated as follows. The primitive elements of
Zymyy can be partitioned into m sets, each comprising 2° elements, such that
the primitive elements in each set all have the same Zech’s logarithm of zero
on the form given by (7.18).

Proof: Let o and & be two primitive elements of Z,m,,. By Corollary 8.4.1
of Rosen [84] we know that o is a primitive element of Z,n,; if and only if
ged(u, 2™) = 1, which is true for all odd integers . Hence, for some integer
r € Zym-1, & can be written on the form & = o**'  (mod 2™ 4 1). By (7.10)
we have Z(0) = log, (1 + o) (mod 2™). Suppose that & has the same Zech’s
logarithm of zero as o, i.e. suppose Z(0) = log;(1 + &) (mod 2™). Then it

follows that

Z(0) Z(0)

& (2r+1)Z(0) (mod gm 4 1)
(

«
and hence wehave Z(0) = (2r+1)Z(0) (mod 2™), where Z(0) = §2°. Because
27 [ ged(29, 2) = 2m, by [84, Th. 3.4] it follows that § = (2r +1)§ (mod 2m).
Consequently, @ and & = o/**!)  (mod 2™ + 1) have the same Zech’s log-
arithm of zero only if 2r = 0 (mod 2m), or equivalently if m is a divisor
of r.

From the above reasoning we conclude that there exist exactly m Zech’s loga-
rithms of zero on the form given by (7.18). By [84, Th. 8.5] we know that there
are ¢(¢(2™ + 1)) = 2™~ primitive roots of Zyn, ;. Hence, these primitive ele-
ments can be partitioned into m sets of 27! /m = 2¢ elements, which all have
the same Zech’s logarithm of zero. a

Forw =2wegetw = Z(0) and N = 2m in (7.14). By Theorem 7.1, there exist
2¢ primitive elements for which the associated Zech’s logarithms of zero are
all equal to 2° (§ = 1in (7.18)). Consequently, by appropriately choosing such
an o, multiplication by a power of two can be computed in the polar represen-
tation as in (7.14), with w = o*  (mod 2™), i.e. we get

P(2"y) =4 + (n mod 2m)2° (mod 2™). (7.19)
Let 0 = (n mod 2m)2° = n(92°. This binary coded integer may be computed as
¢ = m— (t+ 1) binary shifts of nY). However, because the factor (Y isa (t +1)-
bit NBC integer, no reduction modulo 2™ is needed for the m-bit NBC integer
n(2¢. The shifts can therefore be carried out instantaneously and hence the
evaluation of (7.19) only requires one addition. Furthermore, since o= =g,
i.e. the ¢ least significant bits of § are zero, this addition modulo 2™ simplifies
to a (¢ + 1)-bit addition of n*) by the ¢ + 1 most significant bits of 4. The sum
is reduced modulo 2. This computational procedure is generalised and fur-
ther explained below.

An Optimal Choice of w
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The main results in the remainder of the present section (7.2.7) can also be
found in [6]. Because the transform length NV is a power of two, i.e. we have
N = 2% for 0 < b < m, we can write (7.14) as

P(w"™y) = 4+ (nmod 2°)& = 4+ n® Vo (mod 27™). (7.20)

By choosing an appropriate kernel w, it is possible to compute P(w"y) with
a complexity that is smaller than the complexity of performing one general
multiplication followed by one addition modulo 2™, i.e. according to the di-
rect computation of (7.20). We showed above that for some bases « and for
w = 2, P(2"~) can conveniently be computed using only one addition modulo
2m = 2!, That simple way of computing P(2"v) is actually a special case of
a general procedure for computing P(w"~) which only requires one addition
modulo N for all possible transform lengths N = 2° in Zym4.

Theorem 7.2 Letw = o' (mod 27+1)and P(w™y) = 44n~D&  (mod 27),
where o is a primitive element of the prime field Zam.1, n is a nonnegative integer, and
0 < b < m. Then the order of w modulo 2™ +1 equals 2" and P(w"~) can be computed
using only one b-bit addition modulo 2°.

om—b

The choice of w = « (mod 27 +1) as the kernel of a Fermat number trans-
form of length 2° was also considered in Section 2.3.2 (page 15). In the proof
of Theorem 7.2 we need the following notation.

Definition 7.3 Let (3 be an m-bit polar integer. By B(i) we denote the NBC integer
which is formed by the m — 1 most significant bits of 3 such that, for 1 < <m,
can be written on the form 3 = 332" + B0,

Proof: (Theorem 7.2) The order of the primitive element o modulo the prime
2" + 1 equals ¢(2™ + 1) = 2. By Theorem 8.4 of Rosen [84], for 0 < b < m
the order of """ modulo 2™ + 1 equals 2™/ ged(2™, 27"} = 2°. Hence, the
element
w=a2"" (mod 2™ 4 1)

can be used as the kernel of a Fermat number transform of length N = 2. Sim-
ilar to the notation used above, let! § = n®=Y%, where we now have
& = P(w) = 2™, Thus, using this definition of § we can write

Pw'y) =4+ 0 (mod 2™), (7.21)

“Forb =t + 1 we get N = 2° = 2t+1 = 2m, which is the order of the transform kernel
g
w = 2 used above.
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where 0 = n(*=D27-t_Because n*~1) is a b-bit NBC integer, § is an m-bit NBC
integer for which 0m==1 = 0, ie. the m — b least significant bits of 0 equal
zero. Hence, P(w"v) in (7.21) can be computed as a b-bit addition modulo 2°.
By Definition 7.3 we can write 4 = 4(,,_52" " + 4(™~"~1) and

P(w™y) 2 ¢ = Gmpn2™ ™" + @m=t=1), (7.22)
where ) )
Pty = Am-p + 1Y (mod 2°)
(7.23)
S‘a(m—b—l) — ,.Ay(m—b—l)
Obviously, P(w"~) canbe computed using only one b-bit addition of ¥, and
n(®=1 modulo 2°. O

Theorem 7.2 leads immediately to the following corollary.

Corollary 7.1 Consider a Fermat number transform in the prime field Zym,, and
of arbitrary transform length N = 2°, such that 0 < b < m. By letting w =
o™ (mod 2™ 4 1) be the kernel of the transform, in the polar representation each
transform multiplication by a power of w can be computed using only one addition
modulo 2".

Proof: The proof follows directly from Theorem 7.2. O

7.3 Zech’s Logarithm

In Section 7.2.5 we saw that polar addition involves the evaluation of a Zech’s
logarithm. The computational complexity of polar addition depends heavily
on the complexity of computing the Zech logarithm. Zech’s logarithms are de-
fined in Definition 7.2 (page 160). In this section we investigate some proper-
ties of Zech’s logarithm over Fermat prime fields, with the purpose of finding
an (area-time) efficient way of computing the logarithm.

We mentioned in Section 7.2.5 that some researchers have considered different
methods of computing Zech’s logarithms in finite fields, in particular fields of
characteristic two. To the authors knowledge, their methods all involve the
use of a look-up table. See for example Huber’s [51] technique for comput-
ing Zech’s logarithm in G'F'(2"). He uses a restricted set of elements which,
together with their Zech’s logarithms, are stored in a look-up table. Arbitrary
Zech’s logarithms in the field can then be computed by using this table and
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some properties of Zech’s logarithms in fields of characteristic two. However,
some of the properties used by Huber for computing Zech'’s logarithms do not
apply to prime fields. In this chapter, we present new methods of computing
Zech’s logarithms which only apply to Fermat prime fields.

In Appendix C, we investigate some special properties of Zech’s logarithms
in Fermat prime fields. Using these properties we show that the integers of
Zam \ {2™7'} can be partitioned into (2 + 2)/6 subsets of six integers each,’
such that the Zech logarithm of any integer of a subset can be computed from
any of the other integers of the set and its Zech’s logarithm. Consequently, a
method of computing Zech'’s logarithm could be the following;:

Select one integer /3 from each subset and store the associated Zech’s loga-
rithms Z () in a look-up table (of size (2™ + 2)/6 x m bits). Given 4, suppose
we want to compute Z(¥).

1. The first step is to find which subset contains 4. We know that the Zech
logarithm Z(3) of one of the integers 3 of this subset is stored in the table.
Thus, the first step of the method is to find (3 and then obtain Z(3) from
the look-up table.

2. The remaining integers of the subset are subsequently computed using
the equations in Theorem C.2 until ¥ is found.

3. The desired logarithm Z(¥) is computed using the appropriate equation
in Theorem C.1.

In step 2, at most one addition modulo 2™ is required to compute, from 3 and

Z((3), an arbitrary integer of the subset. In step 3, Z(#) can also be computed
using at most one addition modulo 2.

There is, however, a major drawback of this procedure for computing Zech'’s
logarithms. We have not yet discovered a straightforward way of finding a
simple connection between an arbitrary integer of Z» \ {2”7'} and the asso-
ciated subset to which it belongs. Thus, in the above step 1 we are not able to
find the subset which contains 4, or equivalently, find the associated integer
3 in the table, without searching the whole table. Therefore, the above proce-
dure is not further considered in this section. The properties of the integers
of the mentioned subsets (and their Zech’s logarithms) are thoroughly inves-
tigated in Appendix C.

In the following section we consider properties of Zech'’s logarithms which
lead to procedures for computing Zech’s logarithms, either with or without

*However, one of the subsets only contains three integers.
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the use of look-up tables. When using look-up tables, the tables required are
smaller than the table of size (2" +2)/6 x m bits used in the above-mentioned
procedure. The main contents of Sections 7.4 and 7.5 has recently been pre-
sented by the author in [5] and [7].

7.4 Properties of the D,, Matrix

Definition 7.4 Let 4 be a polar integer, i.e. ¥ € Zym U {x}. We define the jth Zech
logarithm of 4 as 4 4
203 =2(2903): jel,

where 711 (5) = 4.

From Definition 7.2 of Zech’s logarithm in Fermat prime fields we have (see
also (C.1) and (C.2) in Appendix C)

Z(2™ 1) = % (mod 2™)
Z(*) = 0 (mod 2™),

which, together with the fact that there exists an integer of Z,» whose Zech
logarithm equals 2™, implies ZU+2"+V}(3) = Z{7}(4). Hence, we have

Z{J’}(:y) — gl mod2’"+1}(:y)_

In Section 7.2.7 we saw that Z(0), the Zech logarithm of zero, is involved in
the computation of multiplication by powers of two. As seen below, we ob-
tain several interesting properties of Zech’s logarithms in Fermat prime fields
which are related to Z(0). Henceforth, each Zech’s logarithm Z(%) in Zam
is generally considered as a jth Zech logarithm of zero, for some j. In Fig-
ure 7.1, we visualise the sequence of jth Zech’s logarithms by drawing lines
from Z17}(0) to ZU+1(0) for j = 0, 1, 2, 3,..., 2*. From the figure we can de-
rive some special properties of Zech’s logarithms in Z,n, ;. This is further dis-
cussed in Appendix C.

Theorem 7.3 Let o be a primitive element of the Fermat prime field Zomy, and let
Z133(0) be the jth Zech logarithm of zero. Also, fori, k € Z, let

a; = 2(ap+1)—1
= 2a;1+1 (mod 2™ 4+ 1); ag € Zagm (7.24)
dk = Ozk —1

= oady-1 +a—1 (mod 2™+ 1). (7.25)



168 Chapter 7. The Polar Representation

Figure 7.1: The sequence of Zech’s logarithms 72" +1(0) = 71°(0) = Z(x) = 0,
7000y = 2(0) = 14, 2U3(0) = Z(14) = 1, zBH0) = Zz(1) = 12,...,
Z{zm}(()) =Z(2" Y)Y =% (mod 2™), for m = 4.

Then we have

O = 541 (mod 2" 4 1) (7.26)
70y = 71N 0)+i2(0)

= z-3(0) + Z(0) (mod 2™) (7.27)
Z130) = k  (mod 2™) (7.28)
mZ(0) = 27" (mod 2™). (7.29)

Proof: The expansions of a; and dj, in (7.24) and (7.25), respectively, follow eas-
ily from the definitions of «; and dj.
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e Equation (7.26): By Definitions 7.2 and 7.4 we get

aZ{J}(O) =14+14+---+1 +aZ{O}(0) =j+1 (mod2™ +1).
——

J

e Equation (7.27): By combining (7.26) and (7.24) and using the congru-
ence
2=0a?0 (mod 2™ + 1) we get
o2t = a; +1
(2i(ao+ 1) — 1) + 1 = o2 OHZO)  (1mod 2™ 4 1)
(201 + 1) + 1 = oZ "7 O+Z20) (mod 27 + 1)

from which we get (7.27).
e Equation (7.28): By letting 7 = d; in (7.26) we get
MO =g —1=ab—1+4+1=0F (mod 2™ +1),
from which we get (7.28).

e Equation (7.29) was obtained on page 162 (see the congruence leading to
(7.15). It is repeated here only for the sake of completeness.

4

The recursive part of (7.24) is on the same form as diminished-1 multiplication
by two. Therefore, a; can very simply be obtained from «;_; using an m-bit
teedback shift register with an inverter in the feedback loop (see page 127 —
the last paragraph concerning multiplication by 2 —in Section 6.3.5).

Theorem 7.4 Let a; = 2'(ag+ 1) — 1 (mod 2™ + 1), where i € Z and ag € Zym.
Then, the sequence . . ., a;,_1, a;, Giy1, ... 15 cyclic with period 2m, i.e. we have
a; = @ mod2m (mod 2™ 4 1).
For ap = 2™ and i € Z, we have a; = ap  (mod 2™ + 1).
Proof: The cyclic property of the sequence ..., a;_1, a;, ¢;11, ... follows sim-

ply from the fact that the order of 2 modulo 2™ 41 equals 2m. By letting a; = aq
(mod 2™ +1)in (7.24) we getag = 2'(ap+1)—1 (mod 2™+ 1), which implies

(2" = 1)(ag+1) =0 (mod 2™ 4 1).
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This congruence has the solutions 2 =1 (mod 2™ +1),i.e.: =0 (mod 2m),
and ap = —1 = 2™ (mod 2" 4 1). However, because we have ag € Zyn, the
only valid solutionis ¢ =0 (mod 2m). Consequently,

a; Zag (mod 2™ 4+ 1); for2m [
a;, = ag (mod 2™+ 1); for2m |

4

For k € Z wehave o* £ 0 (mod 2™ + 1) which, by (7.25), implies d; # —1 =
2" (mod 2™ 4 1) and thus di € Zgan. By Theorem 7.4 it follows that when
representing each Zech’s logarithm in Z,n,; on the form given by (7.28), i.e.
as some dyth Zech logarithm of zero, the set { Z{%J(0) : k € Zyn} can be par-
titioned into 2¢ = 2™ /2m distinct cyclic groups. Each subgroup can be gene-
rated using (7.24) and (7.27) and with the knowledge of only Z(0) and Z{*}(0),
for some integer a, associated with the group.

The sequence dy, d1, ds,, ..., dom_y of indices can be arranged to form a matrix
D,, of size 2¢ x 2m, which we define [5, Sec. 2] as

do dye o e dgm-1)2e
dy digoe  diyosae -+ dipm—1)e

D, 2| da dotoe  dayasae -+ dagam—1)2e , (7.30)
dye_y  dawgey dzugey o+ dym_y

where 2° = 27 /2m (see (7.17)). Thus, the matrix D,, is formed such that, by
writing £ on the form £ = p + «2°, the element dj, is in row p and column & of
D,,, where ) < p < 2°—1and 0 < « < 2m — 1. Because k is an m-bit NBC
integer, the NBC integer p is in turn formed by the ¢ = m —1—1 least significant
bits and the NBC integer « is formed by the ¢ 4+ 1 most significant bits of .

Theorem 7.5 The set of 2m elements in row p of D,, equals the cyclic group
{2(ag+1) =1 (mod 2™ +1): i =0, 1,..., 2m — 1}, where aq is any
element of the row.

The theorem is simply proved using the following lemma.

Lemma 7.1 Denote by a;|, the integer a; = 2'(ag + 1) — 1 (mod 2™ + 1), where
ag = a. Let & be the multiplicative inverse of 6 modulo 2m, where ¢ is defined by the
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Zech logarithm Z(0) = §52e, Also, let r € Zy,, and dy, = a;l,, (mod 2™ + 1) for
some k, i, and aq. Then we have

dk—|—7’2° = Gitrs |a0 (mod 2m + 1) (7.31)

Proof: It follows from (7.25) that
diproe = ™ — 1= (dp + 1)(dpye +1) =1 (mod 2™ 4 1).
From the congruence 66 =1 (mod 2m) it follows that 2m | (66—1) and hence
2¢0.2m = 2™ | (2°66 —2°) = (6Z(0) —2°), which implies 2° = 6Z(0) (mod 2™).
Hence
dige =’ —1=a?0 1 =27 _ 1 =q.s]p (mod 2™ + 1),

and consequently

diprze = (ailag +1)(aslo+1) =1 =24 (ag+1) — 1
= Gitrsla, (mod 27 4 1).

4

In the following proof of Theorem 7.5 we consider row p of D,,, which we de-
note by D,, ,.

Proof: (Theorem 7.5) Let d;,, where k = p 4 x2°, be the integer in position « of
D, ,. Then we can write

Dm,p = (dp dp+2c T dp+(ﬁ—1)2° dp-I-H?C dp+(ﬁ+1)2° T dp+(2m—1)2c )
= (di—rze di—(u-1y2e -+ dp—ge dy, dpy2e oy (eg1)2e )
Let d, = ails, (mod 2™ + 1) for some ¢ € Zs,, and ag € Zym. Because

ged(6,2m) = 1, the set {aiqrs|a; =0, 1,..., 2m —1 (mod 2m)} forms the
cyclic group of order 2m which contains «; |,,. Hence, by Lemma 7.1 (Equation
(7.31)), D, , can be written on the form

(ai—ﬁfr |a0 Ai—(k—1)6 |a0 MR ¢ P |a0 a; |a0 Uitrs |a0 T Qi (k+1)6 |a0 )7

where « is the integer in column x — &7 mod 2m. (Since a; |40 1S in column &, the
integer « is in column « +r mod 2m, where r is obtained from the congruence
i+r6=0 (mod2m). Thus, wehaver = —67% = —é: (mod 2m).) O

Henceforth, for each row of D,,, we generally let ¢, be the element in the first
(leftmost) position of the row. Thus, for the row vector D,, , we have a¢ = d,.
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In particular, in the first row D,, o of D,, we get ap = dy = 0 = (000---000),
(mod 2™ 4 1). By (7.24), the remaining elements of the row are a1 |y =
(000---001),, azlo = (000---011),, ..., dpeyo = (011---111),, aplo =
(111 111),, apyrfo = (111-+-110),, dmyalo = (111---100),, ..., dzm_1 o =
(100---000),. Hence, for 0 <1 < m — 1, the NBC integer a; |o is formed by a block
of m — 1 zeros followed by a block of i ones. For m <1 < 2m —1, a;|o is formed by a
block of 2m — 1 ones followed by a block of © — m zeros. Let d be an arbitrary NBC
integer of D,, o. Consequently, for a; |o = ¢, the subscript ¢ is simply obtained
as
i = €om + ng, (7.32)
where ¢ is the least significant bit of e and n. is the number of bits of ¢ which
are equal to e;. For example, for m = 8§ we have e = (00111111), = a; o, where
i =0-846=6ande=(10000000); = a;|o, where: =1-8+4+7 = 15.

So far, we have not said much about the multiplicative inverse & of § mod-
ulo 2m. In Table 7.1 we have listed the parameters Z(0), §,and & for m =
2, 4, 8, 16, with respect to the primitive element oo = 3. By definition, we have
& = 67" (mod 2m), where § is defined by Z(0) = §2° = log,2 (mod 2™).
Regarding ¢ we have observed the following property.

Observation 7.1 For m = 4, 8, 16 and o = 3 we can write $ on the form

S=m+11 (mod 2m). (7.33)

For m = 2 we simply have § = & = 3. We have not been able to show whether
the fact that Observation 7.1 holds can be derived from the definition of § or
if it is just some kind of coincidence. Anyhow, a consequence of (7.33) of Ob-
servation 7.1 is the following theorem.

Theorem 7.6 For m = 4, 8, 16, when the primitive element o equals 3, the multi-
plicative inverse ¢ of 6 modulo 2m can be written on the form

g=m+3 (mod 2m). (7.34)

Proof: By Observation 7.1, for m = 4, 8, 16 and a = 3 we have §=m+11
(mod 2m). The congruence

N

5(m—|—11)E(m—l—ll)(m—l—3):2m<%—l—7—l—g>—|—1El (mod 2m)
m

holds for m = (2,)4, 8, 16. Hence, the multiplicative inverse of §=m+11
modulo 2m equals m + 3. a



7.4. Properties of the D,, Matrix 173

m | 20| §| &
2 3] 3
4 4| 7|7
8| 48| 3|11
16 || 55296 | 27 | 19

Table 7.1: The parameters Z(0), S, and & form = 2,4, 8, 16 when the primitive
element o equals 3.

7.4.1 Discrete Exponentiation

The properties of the matrix D,, derived in the previous section can be utilised
to perform exponentiation and compute the discrete logarithm.

Theorem 7.7 Let P(y) = 4 € Zam be on the form 4 = p + k2°, where p and « are
c-bit and (m — c)-bit NBC integers, respectively. Then, the discrete exponentiation
y=a" (mod 2™ + 1) can be performed by first deriving the integer d; in position
(p, k) of Dy, and then computing v = d; + 1.

Proof: For 4 € Zj,m, v is a nonzero integer of Zymy1. By (7.1), (7.25) and (7.28)
we then have )
o'=1+dy =7~ (mod?2™+1), (7.35)

where 4 = Z{%3(0)  (mod 2™). From the definition of the matrix D,, in (7.30)
we know that for a given 4 = p + «2°, the associated integer d is located in
row p and column « of D,,. After finding this integer d; we get, from (7.35),
v =ds + 1. Because 0 < d; < 2™ — 1 we have ds + 1 € Zymy4,i.e. no modulus
reduction is needed when computing ~ from d;. a

The computational complexity of performing discrete exponentiation accord-
ing to the procedure described in Theorem 7.7 mainly depends on the com-
plexity of obtaining ds from 4 = p 4 x2°.

The discrete exponentiation v = o (mod 2™ + 1) can be computed in the
following way:

1. The first step is to compute d,.oc. By letting ap = dy = 0 it follows, from
Lemma 7.1 (Equation (7.31)), that d,.2c = a0 (mod 27 +1). Let: = ko
(mod 2m). The NBC integer «; |o is preferably computed in either of

the following two ways:
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(a) In the paragraph subsequent to the proof of Theorem 7.5, we de-
scribed how the elements of D, ¢, i.e. the top row of D,,,, are formed.
Consequently, if 0 < i < m — 1 welet a;|p = (00"~ 1(i))2 and if
m<i<2m—1weleta;|o = (1(2m_i) O(i_m))z.

(b) Asmentioned in the paragraph subsequent to the proof of Theorem
7.3, a;|o can simply be recursively computed in i clock cycles using a
feedback shift register of length m and with an inverter in the feed-
back loop. This computational procedure is based on the recursive
form of «; in (7.24).

2. The second step is to recursively compute dy = d,12c from dyoc = a;lo.
Thus, we compute d.2c from d,.zc, doyp2c from dyg .z, etc., until, after p
steps, dy = d, 42 is computed from d,_;4.2-. In each computation step,
dy is computed from d;_; using the recursive congruence d;, = ad;_1 +
a—1 (mod 2™ + 1) in (7.25).

3. In the third step we compute the desired result v = d; + 1.

In Figure 7.2 we illustrate which parts of the matrix D,, are associated with the
above Steps 1 and 2 of the procedure for performing discrete exponentiation.
The complexity of computing the recursive congruence d, = ady—1 + o — 1
(mod 2™ 4 1) strongly depends on which primitive element « is chosen. By
Theorem 2.5 of Section 2.3.2, the integer 3 is a primitive element of every Fer-
mat prime field Zymy1; m > 2. If the primitive element o equals 3, we get

dy = 3djp1 +2=2dp—y + 1)+ djy + 1
= (2dg—1+ 1)@ dk—r  (mod 2™ + 1), (7.36)

where 2d;_; +1 (mod 2™ + 1) is equivalent to diminished-1 multiplication
by 2 and where ¢ denotes diminished-1 addition. Figure 7.8 in Section 7.6.1
show how to compute (7.36) using a feedback parallel adder.

Remark: Step 2 (computations along a column) may be carried out prior to
Step 1(b) (computations along a row) as follows: Firstly, d, is recursively
computed from dj as in Step 2 using (7.25) (which for o« = 3 is equivalent
to (7.36)). Secondly, by letting ag = d,, the integer d; = a;|o (mod 2™ + 1)
is recursively computed as in Step 1(b) using (7.24).

Theorem 7.8 Let the matrix D,, be written on the form

Dn = (DY [ DY)
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dwze = a;lo (mod 2™ +1); i = ko (mod 2m)

GOZO

Figure 7.2: The computation steps for performing discrete exponentiation using
properties of the matrix D,,. Equations (7.24) and (7.36) are used in Step 1 and
2, respectively.

where DY and D are formed respectively by the m first and m last columns of D,,.

Also, let DLV denote the matrix obtained when exchanging each (m-bit) integer of D)
for its one’s complement. Then

In the proof of Theorem 7.8 we use the following properties: Because the mul-

tiplicative inverse $ of & modulo 2m is odd, it follows that & is also odd, i.e. we
have 6 = 2d + 1 for some nonnegative integer d. Hence, by Theorem 7.4 and
(7.24) we get

Ai4mé |a0 = az"—|—2m~d—|—m |a0 = d{4+m mod2m |a0 '
= 2+ (ag+1)—1=2" — 1 — (2i(ag+ 1) — 1)
= G lo, (mod 2™ 4+ 1), (7.37)

where @; |,, is the one’s complement of the m-bitinteger a; |,,, forany ag € Zgym.

Proof: (Theorem 7.8) Let a;|,, be the m-bit integer in an arbitrary position of
Dg). Then, by (7.31) in Lemma 7.1 and the definition of Déf), Aiyms |ay 1S the
m-bit integer in the corresponding position of D). Because the congruence

in (7.37) holds for every integer «; |,, of DY, we have D) = DIV, O
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As it is described on page 174, the computation of «; |y from aq = 0 in Step 1(b)
requires at most 2 — 1 clock cycles. One binary shift (rotation) is performed
during each clock cycle. Wehave: = k6 (mod 2m), whichimplies: < 2m—1.
In consequence of Theorem 7.8, when i > m, a; |y can be obtained in at most
m — 1 clock cycles: If i > m, let: = j 4 m for some integer ; € Z,,. From (7.37),
after j clock cycles we then get a;|o = @; |,, (mod 2™ +1).

Another way of reducing the number of shifts required in Step 1(b) is the fol-
lowing: Let [ = 2m — i. Because the sequence {¢; |4, },c; is cyclic with pe-
riod 2m, we have a;|,, = a2m—i]ay = @-1l|s, (mod 2™ + 1). Hence, for 0 <
i mod 2m < m, a;|,, can be obtained by rotating the m-bit NBC integer ag |4, ¢
bits to the left (in the increased significant bits direction). As before, there is an
inverter in the feedback loop. For m + 1 <: mod 2m < 2m — 1, which implies
1 <Imod2m < m —1, a;|s, = ai]s, (mod 2™ + 1) is obtained by rotating
ao |a, [ bits in the opposite direction (to the right). The bits in the feedback loop
are inverted. This procedure requires either two feedback shift registers or just
one register which can rotate its contents in both directions. In any case, the
maximum number of shifts is m.

We preferably state the computational complexity of an algorithm in terms of
the number of additions required to perform the algorithm. Here, all additions
are carried out modulo 2™ + 1. We assume that the 7 binary shifts of Step 1(b)
(where ¢ can be maximised to m — 1) can be carried out as fast as one addition.
With o = 3, the above Step 2 requires at most 2° = 2™ /2m additions and about
half as many additions in average. Step 3 can be carried out using a simplified
adder.®

Consequently, the algorithm for performing discrete exponentiation described
in this section can be performed using at most 2° + 2 = 2™ /2m + 2 additions
(modulo 2™ 4 1). The algorithm requires about 2°~! +2 = 2™ /4m 4 2 additions
modulo 2™ + 1 in average.

As mentioned in Section 7.2.1, the binary method for discrete exponentiation
requires at most 2(m — 1) multiplications. Assuming that a binary multipli-
cation is computed using at most m additions, the binary method requires at
most 2m(m — 1) additions. The average number of additions required is about
m(m —1+4+m/2) = m(3m — 2)/2.

®In Figure 6.4 of Section 6.3.1, we see that addition by one can simply be carried out using
a row of m cascaded half adder elements.
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7.4.2 The Discrete Logarithm

Theorem 7.9 Let  be a nonzero integer of Zigmyy and ds = v — 1, where ¥ = P(7).
Then, the discrete logarithm 4 = log, v (mod 2™) can be obtained by first finding
the position (p, k) in D,, where d; is located and then forming 4 as 4 = p + x2°.

Proof: For 1 <y < 2™ 4 1, the integer d; = v — 1 is an element of Z;~. Then,
by (7.1), (7.25) and (7.28) we have

oﬁEl—l—d@:’y (mod 2™ + 1),

where 4 = Z{43(0) = p + x2° (mod 2™). Also, from the definition of the
matrix D,, in (7.30) we know that the integer d;, which is associated with ¥, is
located in row p and column « of D,,,. Hence, by finding the position (p, x) we
directly obtain the desired discrete logarithm 4. a

By Theorem 7.9, the problem of computing the discrete logarithm 4 = log,, v

(mod 2™) is equivalent to the problem of finding the position (p, ) in D,,
where d; is located. One way of finding this position is to compute ds.1, ds42,
ds43, etc., using (7.36)" until, for some 7, the integer d(,.41)2c = a;]o (mod 2™ + 1)
of the top row D,, 5 of D,, is obtained. As described on page 172, each NBC in-
teger of D,, o is formed either by a block of zeros followed by a block of ones or
vice versa. Hence, for j =1, 2, 3, ..., the recursive computation of ds; from
dsy4;-1 progress until such a binary word is detected. By (7.32), the subscript ¢
of a; | equals

1 = €gm + ne,

where ¢ is the least significant bit of a; |y and n. is the number of bits in a;|o
which are equal to ¢y. Because the integer d(,.41)2c = a; lo (mod 2™+ 1) isin
column « + 1 of D, it follows from Lemma 7.1 (Equation (7.31)) that
i =(k+1)6 (mod 2m). Consequently, d; is in column

k=it —1=ib—1 (mod 2m)

of D,,. The row position p is obtained from the number of recursions. This
gives the desired discrete logarithm 4 = p + x2°.

The above procedure for computing the discrete logarithm 4 = P(v) is sum-
marised in the following algorithm.

1. Letd =v—1and j = 2°.

"Or in general Equation (7.25). However, as in Section 7.4.1, by choosing o = 3 the recur-
sive congruence in (7.25) changes to (7.36).
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N

dint1yze = ailo (mod 27 4+ 1); k=16 —1 (mod 2m)

GOZO
k,k+1

N\

Step2 —

|
|
|
|
|
|
|
|
\

Figure 7.3: The procedure for computing the discrete logarithm using properties of
the matrix D,,. Equation (7.36) is used in Step 2.

2. If d € D,,, goto Step 3.
Otherwise, let 7 = 7 — 1, compute the next d using the recursive con-
gruence in (7.36) (i.e. dnext = (2d + 1) & d mod 2™ + 1), and goto
Step 2.

3. Letp=j (mod 2°).
Compute the subscript: = égm + n. of a;|o = d.
Also, let k = i6—1 (mod 2m).
Then we have 4 = p + x2°.

In Figure 7.3 we illustrate which elements of the D,, matrix are the computed
in the above algorithm.

The initial value of d is computed in Step 1 using one (simplified) addition. In
Step 2 we assume that the computation of d and the checking whether d is an
element of D,, o are concurrent operations.® Then, in total at most 2° — 1 ad-
ditions modulo 2™ + 1 are required in Step 2. Finally, assuming that the com-
putational complexity of the derivation of « in Step 3 equals the complexity

8This may be possible only if dney; is computed using a carry ripple diminished-1 adder.



7.4. Properties of the D,, Matrix 179

of performing one addition modulo 2™ + 1, the complete algorithm presented
above for computing the discrete logarithm requires at most 2°+1 = 2™ /2m+1
additions modulo 27 4 1. About 2" /4m+ 1 additions are required on average.

7.4.3 Zech’s Logarithm

Theorem 7.10 Let 0 = p;+r;2° for some integers p; and ;. The Zech logarithm of
0 can be obtained by first finding the integer dj, which is in position (p;, x4) of Dp,,
and then finding the position (ps, rs) of D, where ds = d; + 1 is located. Then we
have Z(0) = p5 + r52.

Proof: By taking Zech'’s logarithm on both sides of (7.28) and letting & =  we
get

Z(0) = z1%(0)  (mod 2™). (7.38)
Let d; = d; + 1. Then, again by (7.28) it follows that Z{%+!}(0) in (7.38) equals
the subscript 4 = p; + #42° of d;. Consequently, we have Z(0) = p; + x42°
where, by the definition of the matrix D,, in (7.30), (p4, x+) is the position in
D,, where d; = d;+1islocated. Againby the definition of D,,, for 0 = p;+x;2°,
d, is the integer located in position (p;, x;4) of D,,. a

From Theorem 7.10 it follows that, using properties of the matrix D,,, we need
both the procedure in Section 7.4.1 for discrete exponentiation and the pro-
cedure in Section 7.4.2 for the discrete logarithm in order to compute Zech’s
logarithms. This should be compared with the direct computation of the Zech
logarithm, as expressed in (7.10), which also requires one discrete exponenti-
ation and one discrete logarithm (and one addition by one) over Zym;.

Consequently, in any case we need one discrete exponentiation, one addition
by one, and one discrete logarithm in order to compute a Zech logarithm. The
number of additions modulo 2™ + 1 required for performing discrete expo-
nentiation and computing the discrete logarithm are given in the end of Sec-
tions 7.4.1 and 7.4.2. In Table 7.2 we have listed these complexity numbers to-
gether with the resulting number of additions required for computing Zech’s
logarithm. For comparison, we have also listed the number of additions re-
quired when using the binary method for performing exponentiation and
Pohlig-Hellman'’s algorithm for computing the discrete logarithm. These al-
gorithms are described in Sections 7.2.1 (and 7.4.1) and 7.2.2.

In Figure 7.4 we have plotted the number of additions modulo 27 41 required
to perform discrete exponentiation (“Exp”) and compute the discrete loga-
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(b)

Number of additions
Number of additions

(c)
X ZeChavyl
n * Zechav’z
c o ZeChmax,l
9103 El o+ ZeChmaxz ]
= )
o]
T
(o]
G
o
5102
& L il
g
=)
Z
101 :
2 4 8 i
m

Figure 7.4: The number of additions modulo 2™ + 1 required to perform discrete ex-
ponentiation and compute the discrete logarithm and Zech’s logarithm, with re-
spect to different algorithms (see Table 7.2). The functions are plotted versus m

form =2, 4, 8, 16.
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| Operation | Algorithm | Average | Maximum |
Discrete | Algorithm in Sec. 7.4.1 2~ 42 2~ 42
expon. The binary method m(?’;”_Q) 2m(m —1)
Discrete | Algorithm in Sec. 7.4.2 241 41
logarithm | Pohlig-Hellman (P-H) M M
Zech’s Alg.sin Sec.s 7.4.1 & 7.4.2 214 244
logarithm | Binary method & P-H mtbm —dmt? | mOtTm—dmetd

Table 7.2: The average and maximum number of additions modulo 2™ + 1 required
to perform discrete exponentiation and compute the discrete logarithm and the
Zech logarithm, with respect to the algorithms in Sections 7.4.1 and 7.4.2 and
with respect to the binary method for exponentiation and Pohlig-Hellman's al-
gorithm for computing the discrete logarithm.

rithm (“Log”) and Zech’s logarithm (“Zech”). The functions plotted are the
ones in Table 7.2. The subscript “1” refers to the algorithms in Sections 7.4.1
and 7.4.2 for performing exponentiation and computing the discrete logarithm,
respectively. The subscript “2” refers to the binary method for exponentiation
and to Pohlig-Hellman’s algorithm for computing the discrete logarithm.

Figure 7.4(a) shows the average (“av”) number of additions required in the ex-
ponentiation and discrete logarithm algorithms. Figure 7.4(b) shows the max-
imum (“max”) number of additions required in the algorithms. We see that
in general, the algorithms presented in Sections 7.4.1 and 7.4.2 are superior to
the binary method and Pohlig-Hellman’s algorithm, respectively. However,
for m = 16 the binary method requires less additions than the algorithm in
Section 7.4.1.

Figure 7.4(c) shows both the average and maximum number of additions re-
quired to compute Zech'’s logarithm when using (“1”) the algorithms in Sec-
tions 7.4.1 and 7.4.2 and (“2”) the binary method and Pohlig-Hellman's algo-
rithm. Again, we conclude that in general the least number of additions are
required when using the algorithms in Sections 7.4.1 and 7.4.2. However, be-
cause for the number of additions required by the binary method is relatively
small m = 16 (see the previous paragraph), the maximum number of addi-
tions required by our algorithms for m = 16 is greater than the number of
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additions required by the binary method together with Pohlig-Hellman’s al-
gorithm.

7.5 The Mirror Sequence M,,

From Figure 7.4 we conclude that, for m < 8, the computational complexi-
ties (in terms of the required number of additions) of performing discrete ex-
ponentiation and computing the discrete logarithm and the Zech logarithm
using the algorithms proposed in the previous section are relatively low. For
m = 16, however, no significant reduction of the computational complexities
are made, compared with conventional algorithms.

The number of additions required when performing a discrete exponentiation
and computing a discrete logarithm is at most about 2° = 2 /2m for each op-
eration. These additions derive in both cases from the recursive computation
of di from dj;_, for some k. The mentioned additions along some column of
the matrix D,, can be avoided by using two look-up tables — one for exponen-
tiation and one for the discrete logarithm.

7.5.1 Discrete Exponentiation Using a Look-Up Table

When using a look-up table, we can define an algorithm for performing dis-
crete exponentiation, based on the algorithm proposed in Section 7.4.1 (see
page 174), in the following way.

The table used has size 2° x m bits and it contains the integers from the leftmost
column of the matrix D,,: For 0 < p < 2° — 1, location p of the table contains
d,. For ¥ = p 4+ k2° € Zym, the integer v = 1 + d; = o (mod 2™ + 1) can be
computed in the following way:

1. Let ap = d,, where d, is obtained from the look-up table at location p.

2. By Lemma 7.1 (Equation (7.31)) we have dy = d 4.2 = a;|q, (mod 27"+
1),where i = k6 (mod 2m). Thus, by loading an m-bit feedback shift
register (which has an inverter in the feedback loop) with d, and rotating
the contents of the register : steps, the resulting contents of the register
equals dx.

3. The desired result v = d; + 1 is obtained simply by adding a one to d.
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As described in Section 7.4.1, it is possible to bound the maximum number
of required shifts in the above Step 2 to m — 1. Consequently, we can perform
a discrete exponentiation using one table look-up followed by at most m — 1 binary
shifts and an addition by one. Hence, the complexity of performing a discrete ex-
ponentiation can be considerably reduced, compared with the computational
complexity obtained when using the procedure described in Section 7.4.1. This
holds particularly for exponentiation in Zsiey, i.e. for m = 16. The reduced
computational complexity is achieved to the cost of the look-up table of size
2™ [2m x m bits.

7.5.2 The Discrete Logarithm Using a Look-Up Table

When computing a discrete logarithm 4 = log,~ (mod 27) using the algo-
rithm proposed in Section 7.4.2, the most demanding part of the algorithm is
the procedure for finding the row p of the matrix D,, in which d; is located.
Depending on v, this procedures may require up to 2° = 2™ /2m — 1 additions
modulo 27 + 1. However, these additions can be avoided by using a look-up
table.

The look-up table considered here contains a number of m-bit subscripts k of
d;. For each c-bit integer p € Z., there is at least one (m — ¢)-bit integer « &
Zoym-c such that k = j + #2° is stored in table. In other words, there is at least
one integer d; in each row (D,, ;) of D,, for which its subscript k is stored in the
table.

Notation 7.1 We denote by 11 the set of integers d; whose respective subscripts k
form the contents of the look-up table used for computing the discrete logarithm.

A table of minimum size, i.e. whose size equals 2° x m bits, where ¢ = m —
log, m —1, is formed in such a way that its associated set Il only contains one
element from each row of D,,,. Hence, for each row of D,, we preferably would
like to find one suitable such element d; that in a simple way maps to a unique
entry of the look-up table. This table, which performs a one-to-one mapping
from d; to k, is in a sense some kind of inverse table of the above table used for
performing discrete exponentiation. However, each integer d, stored in the
table for exponentiation originates from some row position p in the leftmost
column of D,,, while the various integers d; (for which k is stored in the table)
used here may originate from an arbitrary column position in D,,.

The discrete logarithm 4 = p + k2° of a nonzero integer v = o”  (mod 2™ + 1)
can be computed using the look-up table of subscripts & in the following way:
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We know that the integer d; = v — 1 is in column « and row p of D,,. Starting
from the integer ay = d5, we use (7.24) to successively calculate a, |4, , az |4, - - .,
etc., until after : successions we obtain an integer ai|d& which is an element of
I1. The desired logarithm 4 = p + x2¢ can now be formed using the associated
table output k= p + £2¢, which is the subscript of d; = a;|4,. Because d; and
d; are in the same row of D,, we get p = 5. We therefore have

d]; = d’ﬁ/-l—jQC = dp+(ﬁ+j)20 (mod 2m —I‘ 1)7

for some integer j, and hence i =k +j (mod 2m),i.e.k =& —j (mod 2m).
Because we also have d;, = a;|q4, it follows by (7.31) that: = j& (mod 2m),
ie.j =i5 (mod 2m), where§ is the multiplicative inverse of 6 modulo 2m.
Consequently, we obtain x = & — i6  (mod 2m).

Thus, the above procedure for computing the discrete logarithm 4 = log, v
(mod 2™) using a look-up table can be summarised in the following algo-
rithm.
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1. Letap=~v—1and: = 0.

2. Ifa; o € 11, goto Step 3.
Otherwise, let ipex = ¢ + 1, compute «;|,, from a,_; |,, using (7.24),
and goto Step 2.

3. Perform the mapping from d; = «;|,, to a table address and
read k = p + £2° from the look-up table.

4. Let p = p and compute k = Kk — i6  (mod 2m).
Then we have 4 = p + x2°.

When using this algorithm to compute the discrete logarithm we need an ad-
dition by one (Step 1), at most 2 — 1 binary shifts (Step 2), one table look-up
(Step 3), and one multiplication by § and one addition modulo 2m (Step 4).
Hence,the computational complexity of computing the discrete logarithm us-
ing the above algorithm is considerably reduced compared with the compu-
tational complexity of the corresponding algorithm described in Section 7.4.2.
A similar reduction in complexity was obtained for exponentiation in Section
7.5.1, again to the cost of a look-up table of size at least” 2° x m bits.

In Step 2, we also need to check (at most 2m — 1 times) whether ¢, |,, is an
element of I1. The complexity of such a check and the complexity of obtaining
the table address from dj, depend strongly on the binary representation of the
integers of I1. The ideal 51tuat10n would of course be if the integers of Il were
consecutive numbers. The problem of finding a suitable set II is considered in
the following sections.

7.5.3 The Mirror Properties of M,,

The set 11 of integers d; from the matrix D,, was introduced in Notation 7.1 of
the previous section. In the remainder of Section 7.5 we consider the problem
of finding a suitable set IT such that the elements of II can be analytically de-
scribed in a simple way and such that we obtain a straightforward mapping
from each d; to its associated table entry. The forming of the set I is based on
the properties of an integer sequence M,,;:

For exponentiation, the size of the table used is exactly 2¢ x m bits.
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Definition 7.5 Let j € Zym and let ;1 be equal to the number of the row of D,, which
contains the integer j. We refer to the sequence

Mm:/lo, Hiye ooy Hjyeeey hom_1,

which has length 2™, as the mirror sequence associated with D,,.

From the definition follows that if j = dj for some k£ = p + x2°¢ then p; = p.
Consequently, each row number p € Z,. of D,, appears 2m times in M,,. The
following theorem describes the main connection between the subscripts of
the 2m integers i of M,,, which are all located in the same row of D,,.

Theorem 7.11 Let, for some j € Zqm, the integer 1i; be an element of the sequence
M,,. Then, for any i € Z, we have

i~

Proof: For ag = j € Zym and p € Zj, it follows by Theorem 7.5 that the 2m
integers j, a1 |;, az|;, .. .az,—1|; form the set of all elements in one of the rows
D,, , of D,,. Consequently, from Definition 7.5 it follows that any two elements
1y and pp, with subscripts ¢, h € D,, , are equal. O

Corollary 7.2 For j € Zam, we have

Ham—1-5 = Hj (7.39)
Hom—1_1_5 = [H2; (740)

Proof: The equalities follow by choosing some appropriate subscripts ¢ in The-
orem 7.11 and then using (7.24).

e For: =m and ap = j we get
am | =2"(j+1)—1=2"—=1—3 (mod 2™ + 1)
and hence we have pom_1_; = p;.

e For:=m —1and ap = 2j we get
Ut ;= 2772+ 1) =1 =27 — 1~ (mod 2™ + 1)
and hence we have piym-1_;_; = py;.
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By (7.39) of Corollary 7.2 it follows that the contents of the second half (the el-
ements in positions 2™~ to 2 — 1) of the sequence M, is a mirror image of its
first half (the elements in positions 0 to 2”~! — 1). Furthermore, (7.40) reveals
another kind of distributed “mirror” property of M,,: It follows from (7.40)
that the sequence 1o, pi2, fi4, 6, - . ., ptam_s (i.e. we take every second element of
M,,, starting from 1) equals the sequence piym-1_1, piam-1_9, flom—1_3, flom—1_4,

.., Ho (i.e. we take every consecutive element of M,,,, starting from jiom-1_; and
going in the opposite direction). It is mainly because of these and other similar
properties of M,, that we refer to M,, as a mirror sequence.

In Figure 7.5 we show the structure of the first half pq, i1, f2,. .., por—1 of the
sequence Ms, in which each row number appears m = 8 times.!” We have
plotted the row numbers versus their respective positions in Ms in the form
of checkerboard plots. The 128 cell columns of the two checkerboard plots are
associated with the 128 first positions (0 to 127) of Ms. In each column (posi-
tion) there is only one cell that is black. The row number p associated with the
black cell in column p equals the element y, of M,,. For example, the black
cells in columns 16 and 17 are located in the cell rows which are numbered 8
and 2, respectively. This implies 1116 = 8 and 117 = 2.

Figures 7.5(a) and (b) differ only in the ordering of the cell rows. In Figure
7.5(a), where the rows appear in a natural increasing order, the checkerboard
plot does not seem to reveal any particular structure. In Figure 7.5(b), how-
ever, it is quite easy to identify the mirror properties of M,,,. The ordering of
the rows of the checkerboard plot in Figure 7.5(b) is based on the following
rule:

1. Consider the positions 0, 1, 2,..., 2"t — 1 in M,,.

2. Pick row 0 (zero) as the first row.
The positions 0, 1, 3, 7,..., 2™~' —1 in the first half of M,,, which contain
zero are now ruled out.

3. Select the row number which is contained in the foremost position of
M., that is not ruled out. This row is the next row of the checkerboard.

4. All positions in M,, which contain the last selected row number are now
ruled out. Repeat from Step 3 until all rows have been selected.

By following this rule, the checkerboard plots of M, M3, and M, are all of
the same type as the plot in Figure 7.5. In fact, it shows that the sequences M,
M, and M are special cases of a more general class of mirror sequences. The

19This follows from the first “mirror” property (Equation (7.39)).
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(a)

Row number p

TR PR DD 0 0N Uk WN —O

! N

16 32 48 64 80 96 112 127

Position p

S

(b)

Row number p

— = L o —_

0 16 32 48 64 80 96 112 127

Position p

Figure 7.5: Checkerboard plots of the first half of the sequence Ms.
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sequences in this class all have checkerboard plots of the same type as the one
in Figure 7.5(b). Also, the general class, which is not further considered here,
contains one such sequence of length 2™ for every positive integer m.

7.5.4 Finding the Unique Distinct Positions in M,,

From the definition of the mirror sequence M,, we have the following;:

The problem of finding one unique matrix element in each row of D,,, as described in
Section 7.5.2, is equivalent to finding 2¢ positions in M, such that the contents in
these positions are the 2°¢ distinct row numbers of D,, which form the set 11.

This set II of 2° distinct row numbers of D,, was introduced in Notation 7.1
(page 184). Note that for m = 1 and m = 2, we have 2° = 2" /2m = 1, which
means that D; and D, are row vectors (i.e. M; and M, only contain the integer
zero). Therefore, the results in the remainder of Section 7.5 is valid only for
m > 4. When deriving the set IT we need the following mapping;

Definition 7.6 Let 'y = {po,..., po_1} be a set of n integers p; € Zom for j =
0,1,2,...,n— 1. The mapping f(Py) = P, is defined as

f(i) : Po=Apo,-- s pur} — P :2i(P0+1) —1= {ai|p0,..., ai|pn_1},
where a; |pj = Zi(pj +1)—1 (mod 2™ +1).
Theorem 7.12 Let P; = [U)(Py) an let M p, denote the set {1, . ... jt,,_, } of ele-

ments from the sequence M.,,. Then

MPi = MPm

where Mp, = {Mai le? "+ Ha |pn_1}.

Proof: By Theorem 7.5, the integers p; and «; |,, are located in the same row of

the matrix D,,. Therefore, from Definition 7.5 it follows that 11, equals s, =
K3 p]

Hence, for j = 0,1,2,....,n — 1, we have Mp, = {0, o)t} =
T R :
Using the above notations, the goal is to find a set I = {Fo, 15+, W1} Of

positions such that Mz = {0, 1,..., 2° — 1} and such that the size n > 2 of II
is preferably equal to 2°.
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Definition 7.7 The ordered set {so, so +t, so + 2t, so + 3t,..., s,_1 } of integers
from Zqm is denoted by {so, ..., s,—1},

Lemma 7.2 Every integer of the set {0, 1,..., 2" 2 — 1} = Zgm- maps, by {1,
into the set T1 = {2m=3 ... 27=% _ 1} of size 2.

Proof: First, we have f("2(0) = a, 2o = 27204+ 1) —1 = 272 — 1
(mod 2™ 4 1), which is an element of II. For: =0, 1, 2,..., m — 3, we then
apply the mapping ("2~ on the set P, = {2',..., 2°*! — 1}, which gives the
set P_a; = 2" (Po+ 1) —1 = {272 42737 — 1 . 277 — 1},
(mod 2™ 4 1). It is obvious that P,,_5_; € 1l O

Theorem 7.13 Let My = {piym-s, Hom=341, ..., lem-2_y } be the set of row num-
bers which is associated with the set 11 = {2m=3,2™=3 + 1 ..., 2™~2 — 1} of 2"~
positions in M,,. Then, we have

Mpy={0,1,...,2° =1} = Zye.

Proof: We prove the theorem by showing that all positions A € Z,~» map, via
£, into the set I1. We know by (7.39) that the second half of M,, is a mirror
image of its first half. This implies (see the proof of Corollary 7.2)

fom({emt o 2m =1 ={0,..., 2" = 1} (mod 2™ +1).

From Lemma 7.2 we get that all positions in {0,..., 2"~% — 1} map into II.
Hence, forevery A € {0,..., 272 — 1} J{2"!,..., 2™ — 1}, the row number
(y is contained in M.

Now, only the 27~ positions of A = {2772 ..., 2! — 1} remain. We par-
tition this set into m — 1 disjoint subsets A; in the following way. Let A =
U%,? Ay, such that

L fom=3=i  9m=i= 1} 40, for0<i<m—3

= :
O,_a; fori=m —2
where
5-20—2 Lo
i1 (342 1)2,)22, 5 —3 if 7 is even
O;=1+) ((-2)" +2") = —
= 3 92 _ 9
: if 7 is odd

3 ?
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Fori=0,1, ..., m—3,the set A; contains 27>~ elements. The set A,,_, only
contains one element. For 0 <: < m — 3, we have

f(i(m—l)—l) (Az) = Qi(m—l)—l <2i-|—1 {Qm—?)—i7 el 2m—2—i . 1} + 0, + 1) -1
= (2m)2 {2m—3—i7 e 2m—2—i o 1}

) 3 2(—1 7 2m—1 2m—1—i

—1 (mod 2™ +1).

3
If : is even, we get
(i(m-1)-1) m—3—1i m—2—1i 5.om-1 4 gm—1—i -
P () = iy DR RZ
2m—1 _ 2m—3—i Qm_l 2m—2—i

It can easily be checked that this set of integers is a subset of II.
If 7 is odd, we get

2m—1 + 2m—1—i

f(i(m—l)—l) (A) = — {Qm—:a—i7 o om=2-i _ 1} n 5 1
2m—1 o 2m—2—i 2m—1 2m—3—i
= { 3 ey +3 —1} (mod 2™ + 1),

which is also a subset of 11.
Furthermore, for i = m — 2, the mapping f(("~1=1 (A;) equals

m—2
FUm=2m=0=0) (\ ) = gm=2)(m-1)-1 <$+1>_1
5.9m2 4 G.ml

—2
3 + 3

2m=1 9
3

(mod 2™ + 1),

which is an integer of II. Hence, we have f((m=)=1) (A;) € I for0 <i < m—2,
which means that for every A € A = UZ;Q A;, the row number 1, is contained
in Mp. O

The conception of the partitioning of A into the disjoint subsets A; in the above
proof may at first be difficult to grasp. We prefer not to go into detail here
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o JMUMLEE L)

-

Subset A;

64 70 74 90 106 127

Position A

Figure 7.6: Checkerboard plots of the contents {64, 65,..., 127} of A = |J"5* A
form = 8.

about the forming of these subsets. However, the checkerboard plot of the con-
tents of A in Figure 7.6 may give some insight into the partitioning of A. The
black cells in a cell row indicate which positions are contained in the subset A;
which is associated with that particular cell row. For example, we see that A,
is formed by the positions 90 and 122.

Definition 7.8 If an element appears several times in a set, we say that the extra ele-
ments are redundant. By the relative redundancy of a set we mean the ratio of the
redundant elements to the total number of elements in the set.

For m > 4, the relative redundancy of the set My; equals (2777 — 2¢) /2773 =
(m —4)/m. Then, for m = 4 the relative redundancy equals zero, which means
that IT = {2'7%,..., 22 — 1} = {2, 3} is such a set II of unique positions
that we are looking for. The integers 2 = (0010), and 3 = (0011), of IT = II
are the only 4-bit NBC integers whose three most significant bits equal (001),.
Therefore, in Step 2 on page 185, the checking whether «; |, is an integer of 11 is
performed by checking whether the three most significant bits of «;|., equals
(001),. In Step 3 on the same page, the least significant bit of «; |,, can be used

to address the look-up table. If a;|,, = d,;o £ 9 the subscript ko is read from

table location 0 and if «; |,, = d,;l £ 3, the subscript 121 is read from table loca-
tion 1.
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For m = 8 and m = 16 the relative redundancy is 50% and 75% respectively.
It is desirable to reduce these redundancies even more. We therefore further
reduce the set M.

Theorem 7.14 Let 11,4, = 11, U 114, where

2(2m2 — 1
I, = {%,...,3-2%4—1}

5.2m73 — 1
e )
3

are disjoint subsets of I1. Also, let M, be the set of 2™~* + 1 integers of M., in the
positions given by the elements of 11,4. Then, for m = 8 and m = 16, we have

M, =1{0,1,...,2° =1} = Zy..

>

114

Proof: Let Il = Ule II;, where

m—=2 _
I, = {zm—3,...,u—1}
3
. m_3_
I, = {3.27)1—47”_752#1)_1}

and where I, and 114 are defined in the theorem. The equality M, = Z,- in
Theorem 7.14 holds if (and only if) the integers in the sets II; and II; map, by
@ into II, and/or 11, for some i. Let II5 = Uj’:l 115 ;, where

2(2m75 —1
H371 2 3'2m_4_|_{07_,,7%—1}
PaN —4 Q(Qm_G_l) -6
I3, = 3-27714 fzm —1
2m=t ]
I35 = 3.2m—4+{2m—6,...,T—1}

are disjoint subsets of II5. Then, using the function f(™*+?), we get

(m+2) _ 5 - 2m_3 —1 m—2 m
O () = {48, 27— (mod 27 4 1)
4

5-2m73 — 1
Fm(1L,) = {3.2%4,...,#_1} (mod 2™ + 1)
4

2(2m% — 1
fH) (Mss) = {% +2,...,3.2m1 4} (mod 2™ + 1),
4
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where clearly f72) (I13,) is a subset of T4, f™+2) (15 ,) is a subset of 115, and
fm+2) (115 3) is a subset of I1,. We again partition f("+2) (I3 ) into three dis-
joint subsets, say Ils, 1, ll322, and 1l3; 5, in the same way as we did with IIs.
Then, we get f(m-|—2) (H37271) C H4, f(m-|—2) (H37272) C H3, and f(m+2) (H37273) C HQ.
This process of partitioning I3, . C Il; into three disjoint subsets which
map (by f (m+2)) into Ily4, 115, and II,, respectively, is repeated until only two
integers remain. One of these integers map into II, and the other integer maps
into 1l4. Hence, for every integer A € 1l there is a positive integer ¢ such that
FED (0 € Ty,

In order to show that the set II; can be mapped into 1I,4 = II U II, we parti-
tion it into a number of disjoint subsets which map into Il,, in different ways.
This approach is used both in the proof of Theorem 7.13 and in the above proof
that 113 maps into Il,4. It shows that II; can be partitioned into m — 4 disjoint
subsets, say Il 1, II; 2, ..., II; ,,_4, such that

FUHD (I, ) € Tyq U T,

where 1 < 57 < m — 4. We have not yet been able to express the subsets II, ;
analytically, but they can easily be obtained as follows."

1. Letj = 0Oand P, = f® (II).
2. Letj=j+land P, =2P,_; +1 (mod 2™ +1).

3. Let I, ; be equal to the set of integers in F; which are also
contained in Iy, U I15.
LetP]‘ :P]‘\HL]‘.

4. If P; # () (ie.if 7 < m — 4), goto Step 2.
Otherwise, stop.

Hence, for every integer A € 11, thereis anintegeri;3 < i < m—2suchthat f)()) €
54 U II3. As shown above, the integers of 15 in turn map into Il,4. Conse-
quently, every integer of 1I; U IIs maps into Il,4, which means that My, =
MH = sz. U

Because II; contains (2™~* + 2)/3 elements and 11, contains (273 + 1)/3 ele-
ments, their union 11y, = II,UTl, contains (2774 +2) /34 (2"7*41)/3 = 2™~ 141
elements. Therefore, the relative redundancy of the set My, equals

2m_4+1—2m/2m_m—8 16 _{ 1/17; form =8

2m—4 4 1 om + m(2m =3 + 2) 0.5+ 1/8194; form =16 °

For example, for m = 8 we have II; ; = {37, 38, 39}, I, » = {34, 35}, 11, 3 = {33, 41},
and I, 5 = {32, 36, 40}.



7.5. The Mirror Sequence M, 195

In order to store 2™~* 4 1 integers of Z,», we need a table of size 273 x m
bits. Unfortunately, almost half of the locations in such a table would not be
used. In the next section we show that one of the elements in the set My,
is dispensable. This property makes it possible to reduce the size of the table
needed to 2™~* x m bits.

7.5.5 Addressing the Look-Up Table for Discrete Logarithm

The sets IT, = {2@’"3;‘1) 3. om—t _ 1} and T1, = {52’"% om—2 _ 1}
can be viewed as row vectors of m-bit NBC integers:
00101010---010 00110101 ---101
00101010---011 00110101 ---110
I, = : I, = :
00101111---110 00111111---110
00101111---111 00111111---111

We see that the four most significant bits in every NBC integer of 1I, and 11,
are equal to (0010), and (0011),, respectively. Hence, arbitrary integers p, € 11,

(m

and p; € II, can be written on the forms p, = 272 + p{™ ™ and p, = 273 +

(m

om=4 1 (") where

m— S 2(2m1 — 1
p(2 5)€H2 = H2_2m_3:{%7...,2m_4—1}

(m—5) 1 2 m—3 m—4 2mt —1 m—a
e P A e e N L e

are (m — 4)-bit NBC integers. Let I1, denote the set formed by the one’s com-
plements of the (m — 4)-bit NBC integers of II; + 1 mod 2"7*, i.e. we have

— A 4 N 2m—4_1
H2 — 2 —1—(H2+1): T—l,...,(),—l
-1

2m—4_1 4 4
0,y =1 U2 =1} (mod 277).

Hence, we have ﬁz UTl, = {0,..., 2"* — 1} with only one redundant element
— the integer 2"~* — 1 appears twice in the union set II, U TI,. Fortunately, we
can allow this overlap. For any p, € Il, let ¢, = p(zm_5) + 1. Then, we have

qgm_5) =2m4 1 — qgm_5) e 1, Using (7.24) we can write p, = 272 — 1 on
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the formpy = 2"72(0+ 1) = 1 = am_zls, (mod 2™ + 1), where ay = dy = 0.
Hence, we have p, = d,;4 for some k4 = py+ K42°, where py = 0 (i.e. py is in row
zero (the top row) of the matrix D,,). By (7.31) in Lemma 7.1 we also have

ps=dj, = azlo (mod 2™ + 1),

which consequently implies #46 = m — 2 (mod 2m). From this congruence
wegethy = (m—2)0 =m—22 (mod 2m). Hence, for py = d;, = 2" —1, the
subscript ks = (m +22)2°  (mod 2™) is stored in location P = gm=1 _q of

the look-up table.

Now, consider the integer p, = 3-2"* — 1 = 2742 4+ 1) — 1 = ap-aq
(mod 2™ + 1), where ap = d; = 2, and which maps to the same table entry
as p4 (note that here we generally use the primitive element o = 3 when com-
puting d;. in (7.25)). Thus, p; is in row p; = 1 of D,,. Again, for ky = P2 + Ro2°,
we have
p2 = dj, = s |2 (mod 2™ 4 1)

by (7.31). This gives 36 = m — 4 (mod 2m), from which we get 7y, =
(m—4)d =m—44 (mod 2m). Form = 8and m = 16, which are the cases con-
sidered here, we can write iy = m — 12 =m +20 (mod 2m)and ~4 = m + 10

(mod 2m). Hence, with &4 being the least nonnegative residue of m + 10
modulo 2m, we get £y = 2m — 2 — k4, which means that %, can be obtained from
R4 by inverting its log, m most significant bits. Also, p, = 1 can be obtained from
ps = 0 by inverting its least significant bit.

Consequently, by storing the subscript k4 of di, = ps = 2"7% — 1in the table,
the subscript ky of d,;2 = ps = 327" — 1 (which maps to the same table
entry as p,) can be obtained simply by inverting log, m + 1 of the table output
bits. Each inversion may be implemented as a 2-input XOR gate, with one of
its inputs coming from the table output and the other input coming from the
last carry of the (m — 4)-bit addition ¢, = p, 4 1. This carry is high only when
P2 =2""*—1,ie whenp, = 3-2™7* — 1, which therefore is the only case when
the table output is changed (from d;, to d;_ ) by the XOR gates. This is further
discussed in Section 7.6.2.

From the above reasoning we conclude that the 2"~* 4 1 elements of Iy, =
I, U 1I4 can be mapped onto the entries of a look-up table (memory) of size
2m=1 % m bits as follows:

e Each position p, € II, maps to table entry pim_5). The table output is the
m-bit NBC subscript k4 of d, = pa.
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e Each position p, € II, maps to table entry 4" ie. the one’s comple-

ment of qgm_5), where ¢, = p(zm_5) + 1. The table output is the m-bit NBC
subscript k, of d,;2 = p;. However, if p, = 3 - 2™~*, the table output is
the subscript k4 of dy, = 2"~% — 1. This table output is modified to the
desired value by a simple circuit.

Because we can handle the problem when 3-2™~* —1 and 2™~ — 1 both map to
the same table entry, the actual relative redundancy of the set My, is exactly
0% for m = 8 and 50% for m = 16. In the latter case, for m = 16, it is possible to
reduce the set 11, even further. However, we have not yet succeeded in reduc-
ing it by half to 2% elements. Such a set would have 0% relative redundancy.
If the number of elements in the reduced set obtained from I, is greater than
2m=%, we still need a look-up table (memory) of size 2™~* x m bits. Therefore,
for m = 8, 16 we let I = Iy, where II is the set introduced in Notation 7.1 in
Section 7.5.2. Note that for m = 4, we let IT = II (see the paragraph subsequent
to Definition 7.8 in Section 7.5.4).

7.6 Architectures for Arithmetic Operations

In this section we propose VLSI architectures for most of the arithmetic oper-
ations considered in Sections 7.2 — 7.5. The sizes, fan-ins, internal CP delays,
and output normalised resistances of the basic building blocks in the architec-
tures are given in Chapter 4. Note that these complexity parameters are sum-
marised in Table 4.2.

7.6.1 Discrete Exponentiation

An Architecture for Computing «; |,,

The respective algorithms in Sections 7.4.1 and 7.5.1 for performing discrete
exponentiation both involve the computation of ¢, |,, from some «; using a
feedback shift register of length m (see Step 1(b) on page 174 and Step 2 on
page 183). Such a shift register is shown in Figure 7.7. Generally, the circuit can
be used to compute «;|,,, which is defined in (7.24), from an arbitrary ao € Zym
by loading it with a, and shifting (rotating) the register contents : steps to the
left. The size of the circuit equals

Cai — mcreg + Cinv = 16m + 2
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CP D
/ ao

Shift register l L

a; |a0

Figure 7.7: Recursive computation of a; |,, from aq using a feedback shift register of
length m.

and the CP, which runs from the output of the register element in the most sig-
nificant bit position to the input of the element in its least significant bit posi-
tion, equals

ECP,ai = Ereg + rreg(finv + fnext) + rinvfreg
= 28+ 2f nexts
where fx: is the fan-in (seen from the most significant bit position of the reg-
ister) of the circuit subsequent to the register. For example, if the subsequent
circuit is another register, we get fuext = freg = 2 and thus Lop o = 32. Assum-
ing that an initial clock cycle is required to load the shift register with a,, the

register contains the desired result «; |,, after : additional clock cycles. Thus,
the total computation time 7" is proportional to

Lai =1+ 1)Lepai, (7.41)

where ¢ < 2m — 1.

An Architecture for Computing d;

When performing discrete exponentiation using the algorithm in Section 7.4.1,
we need to recursively compute dj, from d;_; (see Step 2 on page 174). The
architecture in Figure 7.8 for computing dj, is based on (7.36), i.e.

dp = 2dg—1+ 1)+ de—1 +1  (mod 2™ + 1),
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which was obtained from (7.25) by letting o = 3. The addend 2d;_; + 1 mod
2" 4+ 1, which equals «a; |4, _,, is obtained simply by inverting the most signifi-
cant bit (the wire labelled “msb” in the figure) of d;,_; and modifying the feed-
back wirings.!? Letdy = o +1 (mod 2™ 4 1), where 0 = (2d_; + 1)+ di_y =
3di_1 + 1 is the sum of the addend 2d;,_, 4+ 1 and the augend d;_, in Figure 7.8.
Ifo >27 ie.ifo,, = 1,wehaved, = 2™ + (™1 41 = glm=1) (mod 2™ +1).
In this case we set the first carry signal, which in the figure is denoted by ¢,
of the adder equal to zero. If o < 27, we have d;, = o(™~Y 41 (mod 27 +1).
Here, we set ¢ equal to one.

The carry signal ¢, can be generated using for example a comparator. From the
inequality o = 3dj_;+1 > 2" it follows that dy_; > (2" —1)/3 = (01010 - -- 01),.
A comparator can for example be implemented using a chain of full adder ele-
ments, where the carry out of the most significant bit position indicates wheth-
er one of the addends is greater than the other (see Weste and Eshraghian [113,
Fig. 8.26]). In our case, where one of the comparator addends is always (2™ —
1)/3, the comparator simplifies to a chain of m — 1 alternating OR and AND
gates."” With respect to the comparator propagation delay, this carry ripple
type of comparator is preferably used together with a parallel carry ripple
adder: By inserting the comparator prior to the register in Figure 7.8 and by
modifying its output circuitry, the resulting comparator do not have any effect on
the CP length of the total circuit.

If dy_y > (2™ — 1)/3, the comparator output equals 1, otherwise it equals 0.
Note that we do not refer to the output of the modified comparator (see the
tigure). The first carry ¢, of the adder equals the inverse of the comparator
output. In the architecture in Figure 7.8, this inversion is realised by exchang-
ing the output OR gate of the comparator for a NOR gate. In the figure, the
resulting NOR gate is moved outside the comparator.

With the m-bit parallel adder in Figure 7.8 being a standard carry ripple adder,
the size of the complete circuit equals

Cdk - mCFA + (m + 1)Creg + Ccomp + CNOR + Cinv
= 50m 4+ 10,

where Ceomp = (m—2)C, 1, o = 6(m—2)is the size of the modified comparator.
The CP through the circuit is the path from the output of the register element
in the least significant bit position along the carry chain of the parallel adder
to the input of the register element in the most significant bit position. This
path, which is marked by the dotted line in Figure 7.8, has length

2The procedure is based on the architecture in Figure 7.7.
13The resulting chain of gates both starts and ends with an OR gate.
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Figure 7.8: Recursive computation of dy. from dy—, when oo = 3. In order to con-
veniently label the sum output bits, say as Hm 1, Hm 3, Hm 3. 00, we only
temporarily define 6 = dy, in this figure.
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ECPvdk = Ereg —I_ rreg ) 2fFA,signal —I_ (m - ]‘)(EFA,carry —I_ TFA fFA,carry)
—I_ EFA,sum —I_ TFA freg
= 14m + 54.

Hence, after the register has been loaded with some integer d;, € Z,m, the time
T needed for each recursive computation of dyy1, dit2, diys, etc. is propor-
tional to Lcp ak. Note that in order to obtain the correct carry signal ¢, for these
computations, the initial integer dy, must also be fed to the modified comparator. If
not, the D flip-flop in Figure 7.8 may not be properly initiated.

The Look-Up Table

The algorithm in Section 7.5.1 for performing discrete exponentiation involves
the process of reading integers from a look-up table. Such a look-up table is
suitably implemented as a semiconductor memory. A look-up table of size
2 x 2" bits is usually implemented as a memory of size 2* x 2’ bits (2* rows
and 2’ columns), where @ + b = u + w and b > w. Figure 7.9 shows the block
diagram of a typical random-access memory (RAM) of size 2* x 2’ bits.

When reading from the memory, a of the u address lines select one of the 2°
rows of the memory array. The remaining « — « address lines select 2 of the
2" columns. The contents of the 2* corresponding memory cells in the accessed
row are detected and multiplexed to the data output. A memory cell and the
sense amplifier connected to the bit and bit lines of that cell is shown in Fig-
ure 7.10. The memory cell considered is a standard six-transistor static RAM
cell. The sense amplifier is used to sense the state of the memory cell.

The size of the (2* x 2°)-bit memory cell array equals 6 - 2°**. Using a NOR-
type row decoder [44, Fig. 9.10-2] and a standard column tree decoder [44, Fig.
9.10-3], the size of these (line) decoders together with the sense amplifiers is
roughly in the order of a2 +52°. Hence, using six-transistor memory cells, the
total chip area occupied by the (2% x 2°)-bit RAM in Figure 7.9 is proportional
to the size

Copng = 62" 4 027 4+ 52", (7.42)
In order to minimise the area complexity of the address decoding, the memory
array is usually organised as a square array, i.e. we have a = b (if a +bis even).
Note that we do not consider the chip area occupied by the address bus or the
word lines and data lines of the memory.

RAM

The critical path associated with the process of reading from the memory can
be separated into two main paths. The first path runs from the address input
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Figure 7.9: A block diagram of a typical random-access memory.

through the row decoder and along one of the word lines in the memory ar-
ray. The second path runs from inside an accessed memory cell along a data
bit line, through a sense amplifier, to the data output. The memory access time
is dominated by the time required to fully charge the word line plus the time
required to sense the state of an accessed memory cell. In order to minimise
the length of the first path, i.e. to speed up the charging of the word line, a col-
umn of drivers is usually inserted between the row decoder and the memory
array. The chip area occupied by these drivers is neglected here.*

The delay of a stage with capacitive load (', which is driven by an optimised
driver, is proportional to log, (C, /C,), where (|, is the (minimum size) transis-

'4An optimised driver on a word line is formed by a number of cascaded inverters of in-
creasing size. The total area occupied by the column of such drivers is actually greater than
the row decoder area, but it is less than the area occupied by the memory cell array.
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Figure 7.10: A memory cell and the sense amplifier for detecting the memory cell con-
tents.

tor gate capacitance. We refer to Mead an Conway [66, Sec. 1.5]. When using
the six-transistor static memory cell in Figure 7.10, the total capacitance (', at
each word line (not counting the wire capacitance) equals 2 - 2C,, where 2 is
the number of memory cells in one row of the memory array. Hence, the word
line delay is proportional to log, 2°*' = b + 1, which implies that the length
of the first part of the critical path is about £, = (b + 1)L, where L, is some
constant.

Prior to the driving of the word line, all b:¢ and bit lines of the memory array
are precharged to some suitable potential. When a word line opens the mem-
ory cells in a row, the potentials on the bit and bit lines start changing. The re-
sulting difference in potential is either positive or negative, depending on the
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data stored in the cell. When the difference in potential between the lines has
reached some specified voltage level AV, the memory state can be detected by
the (differential) sense amplifier. There exist various sense amplifiers, see for
example Bakoglu [14, Ch. 4.9] and Annaratone [8, Ch. 6.4.3].

By properly precharging the bit and bit lines and choosing a suitable type of
sense amplifier, the memory cell contents can be detected very quickly. Let {..;
denote the time needed for a memory cell to induce the potential difference
AV between the bit and bit lines and let ¢..,.. denote the sense amplifier delay
time. Then, the delay associated with the second part of the memory critical
path equals faetect = feell + Lsense- 1t can be shown that {geect can be minimised
to be approximately proportional to log, (Crit/Cy), where Ci, is the total ca-
pacitive load at a bit line and C,, is the transistor gate capacitance. We refer to
Svensson et al. [98], McCarroll et al. [64], and Mohsen and Mead [67].

Let C; denote the drain capacitance of a CMOS transistor. For a (2 x 2°)-bit
memory, where each memory cell has a transistor drain connected to the b:?
line (and another transistor drain connected to the bit line), we get’ Chip =
2°Cy. Assuming that the drain capacitance is approximately equal to the gate
capacitance C,;, we get

tdetect x log, 2% = a.

Then, the length of the second part of the critical path, which has delay time
detect, 18 about Lo = aL,, where L, is some constant.

Hence, the access time of the (2* x 2°)-bit memory in Figure 7.9 is proportional
to the length of its critical path, which in turn is approximately equal to

ERAM = El —|— £2 = (b —|— 1)L1 —|— CLLQ. (743)

The look-up table used in the algorithm described in Section 7.5.1 has size 2° x
m bits, where ¢ = m — ¢ — 1 and m = 2. Using the above notations, we have
u=cw=1log, m=t¢and thusa +b=c+t=m — 1. Because m — 1 is odd,
the memory array associated with the table can not be square. Instead, we let
a = b+ 1 (or alternatively ¢ = b — 1) which implies ¢ = m/2 and b = m /2 — 1.
Then, the size Cexp tab Of the memory in which the (2° x m)-bit look-up table is
stored is approximately equal to C,,,, |(a,5)=(m/2,m/2-1), 1.€. We get

Coxpyiab & (122772 4 3m — 2)2m/272 ~ 3. 2™, (7.44)
The critical path through the memory equals
,Cexp,tab ~ ,CRAM |(a,b):(m/2,m/2—1) = mLexp,tab7 (745)

where Lexptab = (L1 + L2)/2 is some constant.

5We do not include the wire capacitance.
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Remark: Note that the memory size C,,,, and the length £_,, of the critical
path trough the memory in Figure 7.9 are approximate reflections of the
true chip area occupied by the memory and its true access time, respec-
tively.

7.6.2 The Discrete Logarithm

In Section 7.4.2, the algorithm for computing the discrete logarithm without
using any table involves the recursive computation of dj, from d;_, (see Step 2
on page 178). An architecture for this computation was considered in Sec-
tion 7.6.1.

An architecture for computing «;|,, is needed in the algorithm described in
Section 7.5.1 (Step 2 on page 185). Such an architecture is also considered in
Section 7.6.1.

In Section 7.5.5, page 196, we describe how to correct an erroneous look-up ta-
ble output by letting each of the log, m most significant bits and the least sig-
nificant bit of the NBC output integer pass through an XOR gate. Figure 7.11
shows how the table output is modified by the XOR gates. When the con-
trol signal ctrl equals 1, each XOR gates inverts its signal taken from the ta-
ble. For ctrl = 0, the XOR gates do not change the table output bits. Let p,
and ¢, be defined as in Section 7.5.5. The erroneous table mapping occurs for
p2 = 3-2™~* — 1, which is the only case where the carry out, say c,, from the
most significant bit position of the sum ¢, = P 41 equals one (1).

Let p € 1l,4 be an integer which maps to an entry of the look-up table. Then,
Pm—a = 0if p € II; and p,,_4 = 1if p € 1l,. Hence, the control signal can be
formed by the Boolean function

ctrl = ¢3  pra—s = C3 + Pr—a.

Note that if we define ¢, = 0 whenever p ¢ II,, we simply get ctrl = c,.

For m > 8, the above-mentioned look-up table used when computing the dis-
crete logarithm has size 2"~* x m bits, see the end of Section 7.5.5. We do
not consider the simple look-up tables used when m = 2 and m = 4. When
log, m is even (i.e. whenm = 16) weleta = b = (m — 4 4 log, m)/2 in
(7.42) and (7.43) and when log, m is odd (i.e. when m = 8) we let (a, b) =
(b+1, (m — 5+ log, m)/2). Then, the size of the memory which realises the
(2m=* x m)-bit table and the length of the critical path through that memory
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Figure 7.11: Correcting the one case of erroneous output from the table used when
computing the discrete logarithm.

are equal to

Clog,tab ~ CRAM ~ 3m-2m73 (746)

'Clog,tab ~ ,CRAM ~ (m —4 + 10g2 m)LlO&tab 5 (747)

respectively, where Ljqg ¢a1, is Some constant.

7.6.3 Negation

From (7.6) we have ¢ = P(—v) = 3,,_12""' + 4m=2)  (mod 2™), where v is
a nonzero integer of Zym,;. Thus, for 4 € Z,m (i.e. for 4,, = 0), ¢ is obtained
from 4 simply by inverting the digit 4,,_1. If y = 0 welet $ =4 = P(0) = 2™.
Consequently we get

Pm = Ym
Pm—-1 = FA)/m : FA)/m—l - FA)/m + FA)/m—l

pD = 5D,
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S‘am S‘am—l Sa(m—?)
Figure 7.12: Negation in the polar representation.

Figure 7.12 shows an architecture for performing negation with respect to the
polar representation. The CP through the not so complicated circuit runs from
the most significant bit input to the output of the NOR gate. The size, fan-in,
and output normalised resistance of the circuit equal

CP01neg = CNOR =4
fpolneg = TNypolneg + fNOR = Npolneg + 2

Tpolneg = Tyor :27

respectively, where n,1ng is the fan-out of the circuit, with respect to the ¢,,-
output node. Assuming that the input 4 is obtained from a parallel register
and the output ¢ is also stored in a register,'® the time required for performing
negation in the polar representation is proportional to the length

Epolneg = Ereg + rregfpolneg + rpolnegfreg = 34
and hence the area-time performance of the architecture is proportional to

CL? e = Cpomneg(Lpolneg)’ = 4624.

polneg

15Like we did in Chapters 5 and 6.
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7.6.4 Addition

For nonzero 3, v € Zymy4, ie. for 6 ., ¥ € Z3m, the following congruence was
given in (7.9):

G=PB+7)=B+7 (34500 +1)  (mod 27), (7.48)

where 3(m=1) = 2m — 1 — 3(m=1) s the one’s complement of Bm=1)_ With re-
spect to area complexity, this congruence is preferably computed in two clock
cycles, using an m-bit feedback parallel adder. Let § denote the sum output
of the adder. During the first clock interval we compute the Zech logarithm

VA <’y(m_1) + Blm=1) 4 1>. The two adder inputs are 4™~ and $(m-1) and the

first carry input signal equals 1. The m-bit sum § = 4(m=1) 4 30m-1) 4 |
(mod 27) is the input of a circuit which outputs the m-bit Zech logarithm

7(0). However, because we have defined Z(2™~!) = % = 27, the Zech’s log-
arithm circuit will generate an erroneous output when the input § equals 2.
This situation is handled by defining an additional output signal, say Zina,
which indicates whether the logarithm output of the circuit is the correct Zech
logarithm of its input 4:

0 # 2"~ —  Correct output Z(é), Zina =0

) =2m! — Incorrect output Z(d), Zpq=1"
During the second clock interval, the new adder output # equals the sum
A=) 4 Z(8) mod 2™, i.e. fpeona = BV + Z(fgrsr). Thus, the adder input
signals are 5("~Y) and Z(f) and the carry input signal equals 0. If Z;,q = 0, the
desired sum ¢ equals the adder output 0. If Zinq = I,welet p =« = 2™ If
both (# and ~ are zero, i.e. if = ¥ = 2", wealsolet ¢ = 27. If only 3 (or 7)
equals zero, welet o = P(0 ++) =4 (or ¢ = 3).

Figure 7.13 shows an architecture for “polar” addition, which is based on the
procedure described above. The m-bit parallel registers R; and R, are initially
loaded with 3(™=1 and 4(m-1), respectively, and the D flip-flops D;, D,, and
D5 are loaded with 1, Bm, and #,,, respectively. The number of parallel wires
in every signal bus (“=") in the figure equals m. Consequently, the inverter
which has the m-bit contents of register R, as its input signal is actually a row
of m ordinary one-bit inverters.

The desired output signal ¢ is formed by the output controller circuit in the
bottom-leftmost part of Figure 7.13. Table 7.3 shows which output is gener-
ated for different values of Bm, Ym, and Zi,q. Based on this table, we form the
two Karnaugh maps in Figure 7.14 for ¢,, and ¢;, where 0 <: < m — 1.
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Figure 7.13: An architecture for addition using the polar representation. The

arrangement of the output controller circuit is shown in Figure 7.16.



210 Chapter 7. The Polar Representation

B | Am || Zind G | PV
111 0 |[A=08.=110
10| o0/1 Am =0 | 4m=1
011 o0/1 B =0 | Bm=1)
00| 1 110

0 0| fm-1)

Table 7.3: The output $ = $,2™ + ¢~V for the various values of 3, 4, and

Zind.
B B
00{01|11|10 00(01| 11|10
Zind 0 1 Zlnd 0 02 ﬁ;l 0 i
1 X 11| 08| X [
Pm Y 0< i <m—1

Figure 7.14: Karnaugh maps for ¢, and @;, where 0 <1 < m—1. X = "don’t care”.

From these maps, we obtain the Boolean functions

~

G = B - A Lind - 0: + )\ = (ﬁm + ) - (Zina + 92) i, (7.50)

for 0 <: < m — 1 and where )\ = [3 ﬁmfym + 9 ﬁmfy_m The Boolean function )\

can simply be generated using the reduced four-input multiplexer shown in
Figure 7.15. This multiplexer lets either 3; or 4; pass to the output );, depend-
ing on whether (3,,, 4,,) equals (0, 1) or (1, 0), respectively. According to the
Boolean function for ;, when (3,,, 4,) equals (0, 0) or (1, 1), we should have
\; = 0. Therefore, in order to always get the correct output, each output node \; of
the reduced multiplexer should be discharged (i.e. we set the logical level equal to zero)

before the control signals 4., and B3, and their inverses are present at the multiplexer
inputs. The circuitry for doing this, however, is not considered here.
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Figure 7.15: A reduced four-input multiplexer. (a) Symbolic description.
(b) Schematic description.

Figure 7.16 shows the structure of the output controller in Figure 7.13. For 0 <
i < m, the gates of the circuit generate the binary digits ¢; of » = P(5 + 7)
where, depending on ¢, ¢; is given either by (7.49) or (7.50). The size C.i, of
the output controller in Figure 7.16 equals

CCtFl = mCRMUX + (m + Q)Creg + (3m + 4)CNAND/NOR
+ (2m + 2)Cinv
= 40m + 20,
where C,,,,, = 81is the size of one reduced (four-input) multiplexer. The fan-

in, internal delay, and output normalised resistance of the output controller,
with respect to the dotted path P; in the figure, equal

fctrl - finv =2
Lo = rianNOR + TNORfNAND + Tyanp fNAND =10
rCtI‘l = TNAND = 27

respectively. The chip area A occupied by the entire “polar” adder in Figure
7.13 is proportional to its size

Cpoladd,l — CZeCh + Cmadd + (2m + 4)Creg + (m + 1)Cinv + Cctrl
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Figure 7.16: The output controller of Figure 7.13.
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— CZeCh + Cmadd + 74m + 867

where C,,.4q is the size of the m-bit parallel adder and Cz.. is the size of the
Zech'’s logarithm circuit in the bottom-rightmost part of the figure. The Zech
logarithm can be computed using one discrete exponentiation and one dis-
crete logarithm, which both can be efficiently computed using look-up tables,
see Sections 7.5.1 and 7.5.2. The size of such a Zech’s logarithm circuit is dom-
inated by the sizes of the look-up tables. For m > 8 we thus have'”

CZeCh ~ Cexp,tab + Clog,tab ~3-2" + Im - 2m—37 (751)

where Ceyp, tab and Ciog cab are given by (7.44) and (7.46), respectively. Assuming
that the parallel adder in Figure 7.13 is an ordinary carry ripple adder, consist-
ing of m full adder elements, we have C,,,44 = mC,, = 28m and thus

Cpoladd,l A~ 3-2m + 3m - 2m—3 + 102m.

The total CP of the “polar” adder architecture is formed by the two dotted
paths P, and P2 in the figure, where P, is the CP during the first clock inter-
val and P; is the CP during the second clock interval of the computation. The
length of path Py, which runs from the output of register R; through one in-
verter, along the carry chain of the carry ripple adder, and through the Zech’s
logarithm circuit to the input of register R,, equals

,Cpl = /:/reg + rregfinv + rinv(freg + fFA,signal) + (m — 1)(’CFA,carry + Ta fFA,carry)
+ 'CFA,sum + rFA(fCtI'l + fZech) + Lzech + rZeChfreg
— EZeCh —I' fZeCh —I' 2TZeCh —I' 14m ‘I’ 467

where Lyech, fzech, and rzeqn are the internal CP length, the fan-in, and the out-
put normalised resistance of the Zech’s logarithm circuit. Note that when the
path P, and P, are active we have (3,,, 4,.) = (0, 0), which means that the re-
duced multiplexers of the output controller are switched off. Hence, the out-
put controller does not affect the output stages of register R; and R,.

Assuming that the sum ¢ is stored in a parallel register, the length of path P,
which runs from the output of register R, through the carry ripple adder and
the output controller, equals

£P2 = Ereg —I_ rrengA,signal —I_ (m - ]‘)(EFA,carry —I_ TFA fFA,carry)
+ 'CFA,sum + rFA(fCtI'l + fZech) + Leg + rctrlfreg
= l4m + 52 + fZeCh-

1"The simpler cases for which m < 4 should be handled separately.
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~

If either /3, or 4, (or both) equals one, the m-bit NBC integer A= (5\m_1, Am—2,
..., ho)2 is loaded into register R; of the output controller in the beginning of
the first clock cycle. Then, in the beginning of the second clock cycle, the output
controller sets (™1 = A(m=1)_ Hence, if we do not include the time needed
for the initiation of the registers (and D flip-flops), the time 7' required to per-
form an addition using the polar representation is proportional to'®

Epoladd,l é £p1 + EPQ — EZeCh + 2fZeCh + 2TZeCh + 28m + 98.

As indicated above, a Zech’s logarithm can be computed using two look-up
tables — one for exponentiation and one for the discrete logarithm. The algo-
rithms for performing discrete exponentiation and computing the discrete log-
arithm are described in Sections 7.5.1 and 7.5.2, respectively. We conclude that
the worst-case time for computing a Zech’s logarithm using these algorithms
is approximately proportional to the length

EZeCh |max — ﬁexp,tab + Elog,tab + 2ﬁai |max
~ mLexp,tab + (m —4 + 10g2 m)Llog,tab + 128m7

where Lo ab and Liogcan are given in (7.45) and (7.47), respectively, and
Lai |max = 64m is the maximum value of £,; given in (7.41). Note that L.; |max
can quite simply be reduced to 32m, for example by using an architecture for com-
puting a; which allows shifting to the right as well as to the left. With Lzcn ~
L7ech |max and by assuming fze.n = 2 and rze.n = 1, we get

'Cpoladd,l ~ mLexp,tab + (m —4 + 10g2 m)LlO&tab + 156m + 104. (752)

The area-time product AT? performance of the adder architecture in Figure
7.13 is proportional to

2 A 2
Cﬁpoladd,l = CP01add,1([’poladd,1) .

Remark: The two clock intervals associated with the respective CP length P,
and P, are not equally long.

An Alternative Adder

Let 3 and « be nonzero integers of the prime field Zm,. Using the congruences
B=1+4d; (mod2"+1)andy =1+d; (mod 2™ +1) (see (7.35)in the proof
of Theorem 7.7), addition in Z,~4, can be expressed as
p = ﬁ—l—’yEl—l—dﬁA—l—l—l—d@Edé@d@—l—l
= dy+1=0a® (mod2™ +1), (7.53)

18The time for needed for initiating the registers is negligible in comparison with the first
and second clock cycle times.
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where
dy=d;ddy=a”—1 (mod 2" +1)

and where & denotes diminished-1 addition. Based on (7.53), we can perform
polar addition in the following way: First, we compute d; and d; from 3and
4, respectively. This can be done either using direct computations (see the al-
gorithm in Section 7.4.1) or using a look-up table and some binary shifts (see
the algorithm in Section 7.5.1). Then, the sum d; = d; & d; (mod 2™ + 1)
is formed by the output of a diminished-1 adder (see Section 6.3.4) with d;
and d; as its input signals. The desired result ¢ = P(3 + ~) is obtained from
d either by using direct computations (see the algorithm in Section 7.4.2) or

using a look-up table and essentially some binary shifts (see the algorithm in
Section 7.5.2).

Figure7.17 shows a block diagram of a polar adder which is based on the above
addition procedure. The adder in the figure is modified to work also for zero
addends (# = 0 and/or v = 0). Let

é = (BQO ‘|’ dé(m_l)) @ (BQO ‘|‘ dé(m_l)) (mod 2m —|— 1),

where d 31y and d (.-, are obtained from B0m=1 and 4(m=1), respectively, be
the output of the diminished-1 adder in Figure 7.17. Then, we have ¢,, = 0,,

and 4™~ is obtained from dom-1) = 0(m=1)_ This can be understood from the
following three special cases:

1. If 5,7 #0, ie. (Bm, Ym) = (0,0), 0< B(m—l)7 Alm=1) < 9m _ 1:

(a) If & = 2™, which occursif 3+~ = 0 (mod 2™ + 1), then ¢ = % =
2", Thus, we set ¢, = ém = 1. Also, ¢(m—1) = ( is obtained from
d¢(m_1) = é(m_l) =0.

(b) If 0 < § < 2™ — 1, which occursif ¢ = 3+~ £ 0 (mod 2™ + 1),
then we set ¢, = ém = 0. Also, ¢(m—1) € Zom is obtained from

dsm-1y) = é(m_l) € Ligm.

%)

2. Ifg#0andy =0, ie. (ﬁm, Ym) = (0,1),0 < Bm=1) < 9m _ 1 and
3m=1) =0 (or B =0and y#0,ie (3, dm)=(1,0), 3" =0,and
0 < Alm=1 < om _ 1)
Then § = djm-1y (oré = dym-1) and thus, we get ¢, = d,, = 0. Also,
("= = 3 (or p(™~Y = 4) is obtained from dym-1) = ("1,

3. 13,7 =0,ie (B, ) = (1, 1), and g0~V 3021 =
Then djm-1y = dym-1 = 0, which means that § = 2. We have p =




216 Chapter 7. The Polar Representation

B4+~ =0 (mod2” + 1) and thus ¢,, = 0,, = 1. Also, ("1 = 0 is

N

obtained from d -1 = 9(m=1) = . Hence, the output ¢ equals * = 2.

The polar adder in Figure 7.17 works as follows: The computation procedure
is split into two parts (clock cycles). During the first clock cycle, d(n-1) is com-
puted from the input 4™~ and is stored, together with 4,,, in the register.
During the second clock cycle, d .-y is first computed from the input Blm=1)
and the addends 3,,2™ +d 50m-1) and 9, 2™ +d;m-1) appears at the inputs of the
diminished-1 adder. Then, the desired sum ¢ = P( + v) is computed from
the adder output 0.

Assuming that the two translation circuits in Figure 7.17 are realised using
look-up tables, as described above, the sizes of the input and output transla-
tion circuits are approximately equal to Cexptan ~ 3 - 2™ and Ciogtan = 3m -
2773, respectively.'” The parameters Cexp tah and Ciog cab are given by (7.44) and
(7.46), respectively. Using the carry ripple adder in Figure 6.9, which has size
Caimadd,2 = D0m + 2, the total size of the polar adder in Figure 7.17 equals®

Cpoladd,? ~ Cexp,tab + Clog,tab + Cdimadd,Z + (m + 1)Creg
3.2 4+ 3m-2™7% 4 66m,

whereC,., = 16. Hence, the size of the polar adder in Figure 7.17 is less than the
size of the polar adder in Figure 7.13. Also, the overall structure of the former
architecture is simpler than the structure of the latter one.

The total critical path through the circuit in Figure 7.17 is formed by the paths
P, and P;, which correspond to the critical paths associated with the first and
second clock cycles, respectively. The length £, of path P; is approximately
equal to Lexptab + Lai |max= M (Lexptab + 64) and the length £, of path P, is
approximately equal to Lexp, tab+ Ldimadd,2 + Llog,tab + 2 Lai [max™ 1M Lexp tab =+ (m —
44log, m)Liog tab + 146m (see (7.45), (6.28), (7.47), and (7.41)). Hence, the total
time required to perform polar addition, using the architecture in Figure 7.17,
is approximately proportional to the length

Epoladd,Q = 'Cpl + £P2
~ 2mLexptab + (M — 4 4 logy, m) Ligg tab + 210m,

where Ly tab and Liog can are some constants, By comparing Lpoladd,2 With
Lyoladd,1, Which is given in (7.52), we conclude that the polar adder in Figure
7.13 is faster than the adder in Figure 7.17.

19Thus, the sum of the sizes of the two translation circuits is equal to Czecn (see (7.51)).
*Note that here we only consider the cases m = 8 and m = 16.



7.6. Architectures for Arithmetic Operations 217

Translation from

P1 k to dk
\ P,
' Register
\— \J L%(m—l) dgim-1)

(m + 1)-bit diminished-1 adder

J L é(m_l) = d¢(m—1)

0,
Translation from
d k to k
S‘am 95 (m—1)

Figure 7.17: The block diagram of an alternative polar adder. The paths P, and P,
form the CP through the circuit. We have k, di, € Zym.
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The AT? performance of the polar adder in Figure 7.17 is proportional to the
product

2 A 2
C’Cpoladdg = Cpoladd,Q(ﬁpoladd,Q) .

Remark: The two clock intervals associated with the respective CP length P,
and P, are not equally long.
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Subtraction

By (7.11) and (7.6) we get

P(3=1)= 3+ 7 (P(=9)+ 300 +1)  (mod 27),  (754)

where P(—7) = %,,-12"7' + 4(™=2  (mod 2™). Hence, by comparing (7.54)
with (7.48), we conclude that polar subtraction can be carried out by using
the adder architecture in Figure 7.13 but with the input bit 4,,_; exchanged for
its one’s complement 4,, ;. An XOR gate can be used to control whether the

input bit 4,,_; of 4 is to be inverted (when subtracting) or unchanged (when
adding).

Polar subtraction can also be carried out by using a modified version of the
polar adder in Figure 7.17. Similar to (7.53), we can write

A

B—y=l+dy—(1+ds)=dyg+2" —1—dsy+2
dydy+1=dy+1=a* (mod 2" +1), (7.55)

where d; is the one’s complement of the m-bit normal binary coded integer d;,
and d; = d; Gdy =a*—1 (mod 2" +1). Arow of m XOR gates can be placed
at the output of the k-to-d;, translation circuit in Figure 7.17 to control whether
the output is to be inverted (when subtracting) or unchanged (when adding).

7.6.5 General multiplication

From Section 7.2.6, we get

A1 £ 40m=1 (mod 27);if B, A = 0

(=) % = 2m; if 3,, =1 and/or 4, =1
(7.56)

which we compute as follows. Let § = 3"~ 4 4(=1  (mod 2™). Then, by

(7.56) and for 0 < ¢ < m — 1, each output bit ¢; of ¢ can be written as the

Boolean function

Y

@éP(ﬁV)E{

952' == (92'7'7 (757)

where 7 = B_m’y_m = B, + 4, indicates whether ¢ = (m=D 4+3(m=1)  (mod 2m)
(= 7=1)or¢ =2" (= 7 = 0). The most significant bit ¢,, of ¢ equals 7.
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2 2(m—1 A lm—
P Am plm=1) 4(m=1)

U U

m-bit parallel adder

T g(m=1)

Gm @(m—l)

Figure 7.18: A bit-parallel architecture for general multiplication using the polar
representation.

A Bit-Parallel Architecture

An architecture for general “polar” multiplication, which is based on the
above procedure, is shown in Figure 7.18. The AND gate in the figure rep-
resents a row of m AND gates, each which, for some: =0, 1,..., m — 1, gen-
erates the output bit ¢; according to the Boolean function in (7.57).

Assuming that the parallel adder in Figure 7.18 is an ordinary carry ripple
adder, which comprises m full adder elements, the chip area A occupied by
the general multiplier architecture is proportional to its size

Cpolmult,par — mCFA + mCAND + CNOR + Cinv
= 34m + 6.

The length of the internal CP, which is the path from the least significant bit in-
put of the parallel adder, through the chain of full adder elements to the output
of the AND gate in bit position m — 1. The length of this CP equals

ECP,POImHIMPaF = (m - ]‘)(EFA,carry —I_ TFA fFA,carry)
—I_ EFA,sum —I_ T.FA fAND —I_ EAND
= 14m + 4.
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The fan-in and the output normalised resistance of the architecture are equal
to

fpolmult,par - fFAysignal = 8

T'polmult,par — Taxyp = 17

respectively. Assuming as before that the circuit inputs are obtained directly
from some parallel registers and the output ¢ is directly stored in a parallel
register, the total computation time 7" is proportional to

Epolmult,par — Ereg + rregfpolmult,par + ECP,polmult,par + rpolmult,parfreg

= l14m 4 44.

Hence, the area-time product AT? is proportional to

2 A 2
C’C’polmult ,par - Cpolmult 7par(ﬁpolmult 7par)

= (34m +6)(14m + 44)*

A Bit-Serial Architecture

In the beginning of Chapter 4 we stated that, depending on the modulus, bit-
serial architectures are often impracticable for arithmetic operations in integer
quotient rings. However, when using the polar representation of the integers
of Zymy1, all computations are carried out modulo 2. Because the reduction
modulo 27 can be carried out instantaneously, bit-serial architectures may be
competitive for some arithmetic operations.

In Figure 7.19 we show a bit-serial architecture for general “polar” multipli-
cation, which is based on the parallel multiplier in Figure 7.18. The chip area
A occupied by this multiplier is proportional to its size

Cpolmult,ser — CFA + (2m + 3)Creg + CAND + CNOR + Cinv
= 32m -+ 88.

During an initial clock cycle, the m-bit shift registers R; and R, are loaded with
B (m=1) and ’y(m‘l), respectively, and the D flip-flops D;, D;, and Ds are loaded
with Bm, ¥m, and zero, respectively. Then, during the m subsequent clock cy-
cles, the digits o, ¢1, ..., $m_1 are shifted into the feedback shift register R,.
Hence, after a total of m + 1 clock cycles, the result 3("~% is contained in reg-
ister Rs.

The CP is the dotted path from the serial output of R; (or R,) to the serial input
of R,. The length of this path equals

’CCPvF’Olmlﬂtvser = ’Creg + rrengA,signal + ’CFA,sum T+ Tea fAND + ’CAND + Tanp freg
= B8,
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B Ym -1
.U o
D,| D, . ‘
’3/2' FA Cout
:y(m—l)
Cin D
o T R, 1\3

N Reset

cp

B ¢(m_1) \

Figure 7.19: A bit-serial architecture for general multiplication using the polar rep-
resentation.

which implies that the total computation time 7" is proportional to
Epolmult,ser — (m + 1)ECP,polmult,ser = 58(m + 1)

and the AT? performance is proportional to

2 A 2
C’Cpolmult ser Cpolmult 7ser(ﬁpolmult 7ser)

= (32m + 88)(58(m + 1))

In Figure 7.20 we have plotted the parameters Cp,oimult,pars Cpolmult,sers Lpolmult,pars
Lpotmuttsers CLo oimute parr AN CLE 1t ser VEISUS m for m = 2,4, 8, 16. Obvi-
ously, the bit-parallel architecture in Figure 7.18 is superior to the bit-serial ar-
chitecture in Figure 7.19 with respect to both chip area and computation time
and, consequently, also with respect to area-time performance. Note, how-
ever, that the size (area) of the bit-parallel architecture becomes greater than
the size of the bit-serial architecture if the input and output registers are in-

cluded in the size parameter Cpoimuis, par-



7.6. Architectures for Arithmetic Operations 223

, Area complexity ; Time complexity
10 10
© Cpolmult,par '_:1\ © Epolmult,pa
O X Upolmult,ser "5‘0 X A polmult,ser
g g
95 W)
o
1021 102
2 4 8 16 2 4 8 16
m m
Area-time performance
109 T T |

o CL?

Eolmult,par
108 = C polmult,ser

Figure 7.20: The sizes C, lengths L, and AT? performances CL* of the bit-parallel
and the bit-serial polar multipliers in Figure 7.18 and Figure 7.19, respectively.
The parameters are plotted versus m for m = 2, 4, 8, 16.

7.6.6 Multiplication by powers of w

One of the major attributes of the polar representation of the elements of Z;m 4
follows from Corollary 7.1: When computing a Fermat number transform of
length N = 2" using the transform kernel w = o?"~" (mod 2™ + 1), each
multiplication by w can be performed as one b-bit addition modulo 2°.

Let v be a nonzero integer of Z,m,; and 0 < b < m. By Definition 7.3, the polar
integer P(7) = 4 € Zym can be written on the form 4 = 4,27~ 4 4(m=b-1),
where 7(,,_ is formed by the b most significant bits and A(m=t=1) is formed
by the m — b least significant bits of 4. By (7.21), (7.22) and (7.23), the polar

representation of the product ¢ = vw"” = v0™"™"  (mod 2™ + 1) equals

P(yw") =@ = @uny2™ "+t
= 440 (mod?2™),
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m bits
b bits
Y(m—b) A (m=b=1) =%
1 (-1) 0 .y
_|_
St | plm=b=1) =

Figure 7.21: Computationof =45+ 6 (mod 2™), where § = n®=12m~?,

where
Pm=b) = Fm=b) + Om-py (mod 2°)
S‘a(m—b—l) — ,.Ay(m—b—l)
where in turn we have é(m_b) = n®*=Y. Obviously, P(w"v) can be computed

using only one b-bit addition of 4(,,_;) and n®=1 modulo 2°. This is illustrated
in Figure 7.21.

7.6.6.1 Fixed Architectures

An architecture which computes ¢ = P(w"v), for some fixed b € [0, m], is
shown in Figure 7.22. Let A = 4, +n*"1  (mod 2°) denote the b-bit output
of the parallel adder in the figure. Each digit of A and each digit of 4("~*~1 is
forwarded to one of the inputs of a two-input AND gate. The one’s comple-
ment 4, of 4, is the second input of each AND gate. If ¥ € Zym, ie. if ¥ = 0,
the desired product ¢ = (§(m-p) +n"H mod 2°)27f +-4(m=b=1) will be present
at the circuit output. If 4 = x = 2™, i.e. if ¥ = 1, the output (™Y is set equal
to zero by the row of AND gates. We always have ¢,, = ¥,,.

If the b-bit parallel adder in Figure 7.22 is an ordinary carry ripple adder, the
size of the architecture in the figure equals

Cmult,w,par — bCFA + mCAND + Cinv =6m + 28b + 2,

where 0 < b < m. The internal CP of the architecture, which is indicated by
the dotted path in the figure, has length
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"A)/m n(b_l) "A)/(m_b) ,.A)/(m—b—l)

U U

b-bit parallel adder
A
CP

2 (m—b—1)

Figure 7.22: A bit-parallel architecture for computing polar multiplication by pow-
ers of w; ¢ = P(yw") = 2™ + G2 "+ 4" where ordym 4 (w) =
2" for some fixed b € [0, m]. The output circuitry is formed by a row of
b+ (m — b) = m two-input AND gates.

’CCP,mult,wPar = (b - 1)(’CFA,cany + TFAfFA,carry) + ’CFA,sum + TFAfAND + ’CAND
= 1464 4.

The fan-in and the output normalised resistance , with respect to this CP, are
equal to

fmult,w,par = fFA,signal =8

Tmultw,par = Tayp = 17
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respectively. With the CP both starting and ending in a register, the total com-
putation time of the the architecture in Figure 7.22 is proportional to

Emult,w,par — Ereg + rregfmult,w,par + ECP,mult,w,par + rmult,w,parfreg

= 14b+44

and hence, the area-time performance is proportional to

2 A 2
Cﬁmult w,par Cmult 7w,par('cmult 7w,par)

= (6 + 28b + 2)(14b + 44)*.

Note that fOI' b=mwe have Emult,w,par — Epolmult,par and Cmult,w,par ~ Cpolmult,par-
For b < mwe have Emult,w,par < Epolmult,par and Cmult,w,par < Cpolmult,par-

A bit-serial architecture for polar multiplication by powers of w, can be de-
signed in a rather straightforward manner. It is derived from the bit-parallel
architecture in Figure 7.22 in the same way as the bit-serial general multiplier
in Figure 7.19 was derived from the bit-parallel multiplier in Figure 7.18. Such
an architecture would be rather similar to the universal bit-serial architecture
in Figure 7.24, which is described below. Therefore, it is not considered here.

7.6.6.2 Universal Architectures
A bit-serial/parallel architecture

So far, all architectures considered in the present chapter, except the one in Fig-
ure 7.22, can be used when computing the Fermat number transform of length
N = 2" in Zgmy, for some given m = 2, 4, 8, 16. The circuit in Figure 7.22 can
only be used for some fixed b € [0, m]. The bit-serial/parallel architecture in
Figure 7.23, however, is a universal circuit for multiplication by powers of w,
i.e. it is applicable for all possible transform lengths N = 2°, where b € [0, m].
The circuit works as follows.

e During an initial clock cycle, the parallel register R, is loaded with n(*~1),
shift register R, is loaded with 4(™~Y, and the D flip-flop is loaded with
4m. All registers in the architecture are m bits wide.

¢ During the following b clock cycles, the transmission gates subsequent to
the parallel adder are all closed and the b-bit NBC integer 4,,,s) is shifted
into both register R, and R;. The signal S (Shift enable) is a control signal
that either enables (5 = 1) or disables (S = 0) the shifting of the contents
of the shift registers. Consequently, during the b shifts just mentioned,
we have S = 1. Each clock interval is proportional to the length

£p1 = Ereg + Treg * 2freg =30
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n(-1)

U

\ R,
m-bit parallel adder 2 (m=1)

P; 7
R Moo= - - - Ao N~

e I
R3 ¢(m_b) : S‘a(m—b—l)
T \LJ/
g A B ¢(m_1) S

Figure 7.23: A universal bit-serial/parallel architecture for polar multiplication by
powers of w; p = P(yw™), where ordym 1 (w) = 2° for any b € [0, m].

of the dotted path P; in Figure 7.23.

e After the b shifts, the control signal S is set to 0 (zero). Let X denote the
NBC integer which is formed by the b least significant output bits of the
parallel (carry ripple) adder. Then wehave A = 4(,,_»+n*™"  (mod 2).
The m — b most significant output bits of the adder are redundant.

1. If 4, = 1, ie. if ¥ = 0, the transmission gates subsequent to the
adder remain closed, so that the contents 4(,,_;y = (0, 0,..., 0); in
the b least significant bit positions of R; remain unchanged.
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2. If 4, = 0,ie.if v # 0, the transmission gates are open®' and the
register R; is loaded with the adder output A.

The time needed to compute A = @ (m—by and load it into the b least sig-
nificant bit positions of R is proportional to the length??

£P2 = Ereg + rrengA,signal + (b - 1)(£FA,carry + "ra fFAvca”y)
—I_EFA,sum —I_ (TFA —I_ ]‘)freg
= 14b+ 40

of the dotted path P, in the figure. The maximum computation time is

obtained for b = m, i.e. we have £ = max £,, = 14m + 40.

P2,max

e Next, the control signal 5'is set to 1 (one). This transition closes the trans-
mission gates (if they were open) and enables shifting of the shift register
contents. For 4,, = 0, the time to close the transmission gates is propor-
tional to the length

’CPS = rs(fOR + 3fs,reg) + ’COR + TOR(fiHV + m) + Tiny © M
= r.(2+3f.,.) +2m+6,

where r_ is the normalised resistance from the S input node of the OR
gate to the supply voltage source and [, is the fan-in of the shift regis-
ters, with respect to the control input signal S. By assuming »_ = 2 and
Jors = 2, Weget L = 2m + 22.

e Finally, during m — b clock cycles, ("=~ = 4(m=t=1) j5 shifted from
R, into the m — b least significant bit positions of R; while 4,y = A is
shifted up to the b most significant bit positions of Rs.

We assume that the registers can be initialised during one cycle of the shift
register clock. Then, the total time needed to perform a polar multiplication
by a power of w, using the universal architecture in Figure 7.23, is proportional
to

'Cuniv,mulhwpar = (b + 1)’61:1 + ’CPz + ’CPS + (m - b)’cpl
= 32m + 14b 4 92

?IThe transmission gates have opened before the digit A,_; of \ is present at the adder
output.

#2We assume that, for all b < m, the length of path P, is always greater than the length of
path Ps. This is true in virtually all cases.
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which, for b = m, equals Lunivmultw,parmax = 46m + 92. The desired result
¢ = P(yw") is present at the output of register R; (and the D flip-flop). The
size of the universal architecture equals

Cuniv,mult,w,par — mCFA + (4m + 1)Creg + mCTG + COR + Cinv
— 9dm + 24,

which implies that its area-time performance is proportional to

2 A 2
Cﬁuniv,mult w,par Cuniv,mult 7w,par(ﬁuniv,mult 7w,par)

= (94m 4 24)(32m + 14b + 92)*.

A bit-serial architecture

In Figure 7.24 we show a universal bit-serial architecture for polar multipli-
cation by powers of w, which is based on the bit-serial /parallel architecture
in Figure 7.23. Also, it is quite similar to the bit-serial architecture for general
multiplication, see Figure 7.19. The size of the architecture in Figure 7.24, in
which the shift registers R, and R, are m bits wide, equals

Cuniv,mult,w,ser = CFA —I_ (2m —I_ Q)Cl“eg —I_ CAND —I_ QCiHV —I_ CTG —I_ 1
= 32m+ 73.

The control signal S is the same signal for shift enabling /disabling that is used
in the above universal bit-serial /parallel architecture. During an initial clock
cycle, S is set to zero, the registers R; and R; are loaded with n(®=Y and 4™,
respectively, and the D flip-flops D; and D, are loaded with %,, and zero, re-
spectively. During the following m — b clock cycles, 3" ~*~1 is shifted into
the most significant bit positions of shift register Ry, i.e. we simply perform an
(m — b)-bitrotation of the contents of R,. Then, S is set to one (this is done dur-
ing one clock cycle) and if 4,, = 0, the b-bit sum A = 4, ) +n*~1  (mod 2)
is shifted into register R,. If 4,, = 1, only zeros are shifted into the register
(¢ =P0-w")=P0)=2" = p»=) =0).

The CP of the multiplier is the dotted path from the serial output of register
R; to the serial input of register R, in Figure 7.24. The clock cycle time is pro-
portional to the length

ECP,univ,mult,w,ser — 'Creg + (rreg + 1)fFA,signa1 + ’CFA,sum

—I_ TFA fAND —I_ EAND —I_ TAND freg
= 066
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Figure 7.24: A universal bit-serial architecture for polar multiplication by powers of
w; ¢ = P(yw™), where ordym 41 (w) = 2° for any b € [0, m].

of the CP. Because the desired product ¢ = P(yw) is obtained in register R,
after 1 4+ (m — b) + 1 + b = m + 2 clock cycles, the total computation time is
proportional to

Euniv,mult,w,ser — (m + 2)ECP,polmult,ser = 66(m + 2)7

which implies that the AT? performance of the bit-serial architecture is pro-
portional to

>

2
C’Cuniv,mult,w,ser - Cuniv,mult,w,ser('Cuniv,mult,w,ser)

= (32m + 73)(66(m + 2))%.

The area and time complexities and the area-time performances of the above
universal bit-serial /parallel and strictly bit-serial architectures are plotted ver-
sus m in Figure 7.25. Note that for £niv,multw,par and C,Cini“mulwpar we have
actually set b = m, i.e we have plotted Luniv,multw,par,max and C,Cini“mulwpanmax.
As expected, for all m = 2, 4, 8, 16, the size of the bit-serial /parallel archi-
tecture is greater than the size of the bit-serial architecture, while we have the
opposite relation when considering their respective computation time. With
respect to their area-time performance, the bit-serial/parallel architecture is
preferable to the bit-serial architecture for m = 2, 4 with b < m and for m =
8, 16 with b < m/2 4 1. The bit-serial architecture is preferable to the bit-
serial/parallel architecture for m = 8, 16 with b > m/2 4 2. Note, however,
that the difference in area-time performance of the two architectures is rela-

tively insignificant.
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Figure 7.25: The sizes C, lengths £, and AT? performances CL? of the universal bit-
serial/parallel and bit-serial architectures in Figure 7.23 (for b = m) and Fig-
ure7.24, respectively. The parameters are plotted versus m form = 2, 4, 8, 16.

Remark: Forsimplicity, we have assumed that the shift registers in Figures 7.23
and 7.24, with shift enable control signal 5, have the same area and time
complexities as the other registers considered in the thesis.

7.7 Summary

In Sections 5.2 and 6.4 we summarised the complexity and performance para-
meters of the architectures considered in the respective chapters. In Table 7 .4,
we have summarised the corresponding parameters for the architectures con-
sidered in the present chapter.
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Operation | Figure | Subscript name || Size C | Fan-in / | Int. CPlength £, |
Computing a; |,, 7.7 ai 16m + 2 — 28 + 2 frext
Computing dj, 7.8 dk 50m + 10 — 14m + 54
Negation 7.12 polneg 4 | npolneg + 2 —
Addition 7.13 poladd,1 32"+ 3m-2m7% 4 102m — —
Addition 7.17 | poladd,2 R 3-2™ 4 3m - 2770 4 66m — —
General multipl. 7.18 polmult,par 34m + 6 8 14m + 4
General multipl. 7.19 polmult,ser 32m + 88 — 58
Multiplication by w™ | 7.22 multw,par 6m + 28b + 2 8 14b + 4
Univ. multipl. by w™ | 7.23 univ,mult,w,par 94m + 24 — —
Univ. multipl. by w” | 7.24 univ,mult,w,ser 32m + 73 — 66

| Norm. output res. r, | Total CP length £ (including registers) | Area-time perf. CL? ||
| A@ + C\(,om |
2 34 4624

— | ® MLexptab + (m — 4 + log, m)Ligg tab + 156m + 104 —
— ~ 2m Lexp tab + (m — 4 + log, m) Ligg tab + 210m —

1 14m + 44 O Ang
— 58m + 58 O (m?)
1 14b + 44 O (mb?)
— 32m + 14b + 92 O (m?)
— 66m + 132 O (m?)

Table 7.4: Complexity parameters of the architectures considered in the present chapter.



Chapter 8

Comparisons Between Element
Representations

The purpose of this chapter is to make brief comparisons between the element
representations in Chapters 5, 6, and 7, i.e. the normal binary coded (NBC),
the diminished-1, and the polar representation, respectively. We compare the
respective VLSI architectures for arithmetic operations which are considered
in these chapters.

8.1 Arithmetic Operations

Only the measure C of area complexity, the measure £ of time complexity, and
the measure CL* of combined area-time performance of each architecture are
considered here. Regarding the parameter £, we generally only consider the
total CP length (which is proportional to the total computation time) and not
the internal CP length (which for a bit-serial architecture is proportional to the
clock cycle time). For detailed characterisation of the architectures, we refer to
the mentioned Chapters 5, 6, and 7. In particular, see Tables 5.1, 6.5, and 7.4 in
the respective Summary sections 5.2, 6.4, and 7.7.

8.1.1 Modulus Reduction

One of the main advantages of the polar representation is that modulus reduc-
tion is an instantaneous operation: The residue of the normal binary coded

233
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Form of repr. Size C Total CP length £ cL?
NBC

¢ CR type 22m — 6 16m + 38 O (m?)
o CLA type 4mlog, m + 14m | 6m + 8log, m + 48 | O (m?®log, m)
Diminished-1 As in the NBC case

Polar 0 0 0

Table 8.1: Sizes C, total CP lengths L, and area-time performances CL* of the
architectures for modulus reduction, with respect to element representation.
“CR"” = carry ripple, “CLA” = carry look-ahead.

integer 4 € Z modulo 2" equals Alm=1) = (Ym-1y Ym—2---, Yo)2. In both the
diminished-1 and the polar representation, the integer 2™ is used as a rep-
resentative of zero, which means that we can use an m-bit arithmetic for the
nonzero integers of Zym, .

In Section 5.1.1 (see for example Figure 5.3) we concluded that, with respect
to the area-time performance A7 (and the time performance), the carry look-
ahead type modulus reduction architecture is preferable to the carry ripple
type architecture. From the CL* parameters in the rightmost column of Ta-
ble 8.1 one may conclude that the carry ripple type architecture (with CL* =
O (m?)) is preferable to the carry look-ahead type architecture (for which
CL? = O(m®log, m)). However, the product C£* is smaller for the former
architecture, compared to the latter one, only for very large m; m > 2%.

Anyhow, as seen in Chapters 5, 6, and 7, in most circuits performing arithmetic
operations, the modulus reduction part of the operation is preferably incorpo-
rated into each separate arithmetic operation.

8.1.2 Code Translation

The code translation from the NBC to the diminished-1 representation is sim-
ply carried out as a subtraction by one modulo 2™ + 1. As seen in Table 8.2,
the area-time product CL? is slightly less for the reverse translation (addition
by one modulo 2™ +1). The code translation from the NBC to the polar repre-
sentation and it reverse code translation involves the computation of the dis-
crete logarithm and discrete exponentiation, respectively. In Sections 7.4 and
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Form of repr. Size C Total CP length £ cL?

NBC _
Diminished-1
e NBC todim.—1 || 4mlog, m +8m —6 | 4m + 8logy, m+40 | O (m3 log, m)

e Dim.-1 to NBC 18m + 2 10m + 28 O (m?)
Polar

e NBC to polar One discrete logarithm

e Polar to NBC One discrete exponentiation

Table 8.2: Sizes C, total CP lengths L, and area-time performances CL* of the archi-
tectures for code translation, with respect to element representation.

Form of repr. | SizeC | Total CPlength £ | CL?

NBC 20m — 22 30m +20 | O(m?)
Diminished-1 4m 4m 430 | O (m?)
Polar 4 34 4624

Table 8.3: Sizes C, total CP lengths L, and area-time performances CL* of the archi-
tectures for negation, with respect to element representation.

7.5, we showed how to compute the discrete logarithm and perform discrete
exponentiation either without (Sec. 7.4) or with (Sec. 7.5) the use of look-up
tables.

It is obvious that both the area complexities and the time performances of the
code translations to and from the diminished-1 representation are less than
the corresponding complexities of the code translations to and from the po-
lar representation. Regarding the area and time complexities of the discrete
logarithm and discrete exponentiation, we refer to Sections 7.6.1 and 7.6.2.

8.1.3 Negation

Table 8.3 shows some complexity parameters related to the architectures for
negation using the NBC, diminished-1, and polar representations. The pa-
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Figure 8.1: Plots of the complexity parameters C, L, and CL* for negation when us-

ing the NBC, the diminished—1, or the polar representation. The parameters are
obtained from Table 8.3.

rameters C, £, and CL” are plotted versus m in Figure 8.1. With respect to
each of these parameters, it is clear that diminished-1 negation is generally
less complex than NBC negation. In Fermat prime fields, i.e. for m =1, 2, 4,
8, 16, negation in the polar representation is in turn less complex than nega-
tion in the diminished-1 representation.

8.1.4 Addition

As seen in Table 8.4, the complexity and the performance of performing addi-
tion in Z,m, are approximately the same when using the NBC representation
as when using the diminished—-1 representation. For a comparison between
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Form of repr. Size C Total CP length £ cL?
NBC (carry r.) 50m + 4 20m+58 | O (m3)
Diminished-1

e Carry ripple 50m + 2 18m+40 | O (m3)

e Carry l-a. 56m + 12 14m + 8log, m+ 70 | O (m?)
Polar

e Figure 7.13 A 32 4 3m2™ 73 | & mLexptab + (M — 4 —
+102m | +logy m) Liog tab + 1561 + 104
e Figure 7.17 || = 3-2™ +3m2™ 2 | & 2mLexp tab + (m — 4 —
+66m +logy m) Liog tab + 210m

Table 8.4: Sizes C, total CP lengths L, and area-time performances CL* of the archi-
tectures for addition, with respect to element representation. The sizes and CP
lengths for polar addition is valid for m = 8 and m = 16.

the carry ripple-type and the carry look-ahead-type diminished-1 adders, we
refer to Section 6.3.4.

One of the main disadvantages of the polar representation derives from the
fact that each polar addition involves the computation of one Zech’s logarithm
(see Figure 7.13), or essentially two discrete exponentiations and one discrete
logarithm (see Figure 7.17). We have considered realisations of these opera-
tions which involve look-up tables. As seen in Table 8.4, polar addition is a
much more complex operation than for example diminished-1 addition. Note,
however, that in order to get a correct/fair comparison between the polar rep-
resentation and the diminished-1 (or NBC) representation, polar addition should
be compared with diminished-1 (or NBC) general multiplication and polar
general multiplication should be compared with diminished-1 (or NBC) ad-
dition. This is further discussed in Section 8.1.7.

Remark: The complexity parameters for polar addition in Table 8.4 are ap-
proximate estimations. When using the delay model described in Sec-
tion 4.2, we have not been able to determine the values of the constants
Lexp tab and Liog ab-
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Form of repr. Size C Total CP length £ cL?

NBC (s/p) 4mlog, m + 121m | 24m?* + 132m + 180 | O (m”® log, m)
+57

Diminished-1

e Ashur’spar | 34m? + 94m + 26 44m 4120 O (m*)

e Shyu'ss/p 103m + 134 | 18m? + 124m + 208 O (m?)

Polar

e Bit-parallel 34m + 6 14m + 44 O (m?)

e Bit-serial 32m + 88 58m + 58 O (m?)

Table 8.5: Sizes C, total CP lengths £, and area-time performances CL* of the ar-
chitectures for general multiplication, with respect to element representation.
“s/p” = bit-serial/parallel. “par” = bit-parallel.

8.1.5 General Multiplication

The sizes C, total CP lengths £, and area-time products CL* of the architec-
tures for general multiplication considered in Chapters 5, 6, and 7 are listed in
Table 8.5. In Chapter 6 we considered six different diminished—1 general mul-
tipliers, of which three are bit-serial and the other three are bit-serial /parallel
multipliers. The sizes and total CP lengths of these multipliers were summa-
rised in Table 6.4 in the end of Section 6.3.6. Also, the complexity parameters of
the best bit-parallel multiplier (Ashur’s) and the best bit-serial /parallel multi-
plier (Shyu'’s) were plotted versus m in Figure 6.25. Among the diminished-1
multipliers, only these two are considered in Table 8.5.

In Figure 8.2, we have plotted the parameters C, £, and CL* of the NBC bit-
serial /parallel multiplier, Ashur’s diminished-1 bit-parallel multiplier, and
our polar bit-parallel multiplier. For m > 4, the complexity parameters of
Shyu’s multiplier are all slightly less than the corresponding complexity para-
meters of the NBC multiplier. Therefore, Shyu’s multiplier is not considered
in Figure 8.2. We see that the AT performance of Ashur’s multiplier is less
than the AT? performance of the NBC multiplier. In Fermat prime fields, the
polar multiplier is in turn superior to the other multipliers.
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Figure 8.2: Plots of the complexity parameters C, L, and CL> for
general multiplication with respect to the NBC, the diminished—1, or the
polar representation. The diminished—1 multiplier is Ashur’s bit-parallel
multiplier and the polar multiplier is the bit-parallel one. The parameters are
obtained from Table 8.5.

8.1.6 Multiplication by Powers of w

Multiplication by 2"

Multiplications by powers of two typically occur when computing Fermat
number transforms of lengths N = 2m and N = 4m using the NBC or the
diminished-1 representation. Then, the transform kernels most often used are
w =2 (for N = 2m)and w = /2 (for N = 4m), see Section 2.3.2. In Table 8.6 we
have listed some complexity parameters of architectures for multiplication by
2", n € Z,with respect to the NBC, the diminished-1, and the polar represen-
tation. The parameters of the architecture for polar multiplication (the bottom
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Form of repr. Size C Total CP length £ cL?

NBC 4mlog, m + 33m | < 20m? + 16mlog, m | O (m®log, m)
+ 15 + 148m

Diminished—1 28m — 4 < 40m + 40 O (m?)

Polar 6m + 28log, m 14log, m+58 | O (m log’ m)
+ 30

Table 8.6: Sizes C, total CP lengths L, and area-time performances CL* of the archi-
tectures for multiplication by 2", with respect to element representation.

row in the table) are obtained by letting' b = log, 2m = log, m + 1 in the cor-
responding parameters of the fixed architecture for polar multiplication by w”
in Table 8.7.

The parameters in Table 8.6 are plotted versus m in Figure 8.3. The complex-
ity and performance of the architecture for the NBC representation are rela-
tively high for all m. The architecture for the diminished-1 representation is
generally superior to the other architectures. However, for m = 2, 4, 8, 16,
the architecture for the polar representation has the smallest time complexity
and the smallest area-time performance. Hence, whenever applicable, the ar-
chitecture for polar multiplication by powers of two is preferable to the other
architectures performing the same operation.

Multiplication by Powers of w = o>

When using the diminished-1 representation (or the NBC representation), the
Fermat number transform is generally known to be applicable only for some
small transform lengths, because then the transform multiplications by pow-
ers of the transform kernel can be carried out using only binary shifts (rota-
tions) (we mentioned above the kernels w = 2 and w = /2, for which we get
the transform lengths N = 2m and NV = 4m). The restriction to relatively small
transform lengths, however, is still adequate in Fermat integer quotient rings
where the modulus 2™ + 1 is composite, because in such rings the maximum
possible transform length is relatively small, in comparison with the modulus.
In the Fermat prime fields Z,:,, and Z,is,;, however, i.e. where the modulus
2™ +1is prime, there exist transforms of much greater lengths than 2m and 4m:

' The equality follows from the fact that the order of w = 2 modulo 2™ +1 equals N = 2° =
2m.
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Figure 8.3: Plots of the complexity parameters C, L, and CL> for
multiplication by 2" when using the NBC, the diminished—1, or the polar
representation. The parameters are obtained from Table 8.6.

We know that for m = 1, 2, 4, 8, 16, there exist Fermat number transforms of
length N = 2" in Zymy,, where 0 < b < m.

Using the NBC representation or the diminished-1 representation, when com-
puting a transform of arbitrary length N = 2°, each nontrivial multiplication
by a power of the transform kernel w of order N modulo 2 +1 must generally
be carried out as a general multiplication. The powers of w which appear in the
computation of each transform may be precomputed and stored in a memory.
If not, they can be obtained using general exponentiations.

In Chapter 7 we showed how to compute multiplications by arbitrary powers
of the transform kernel w = o2™™" (mod 2™ +1) of arbitrary order 20 0<b<
m modulo 2™ + 1, using one simplified addition in the polar representation.
The complexity parameters of the architectures for polar multiplication by a
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Form of repr. Size C Total CP length £ cL?

NBC General (exponentiation and) multiplication needed
Diminished-1 General (exponentiation and) multiplication needed
Polar

o Fixed 38m + 44b + 34 28b + 83 O (mb?)
e Universal

— Serial /parallel 94m + 24 32m + 14b + 92 O (m?)
— Serial 32m + 73 66m + 132 O (m?)

Table 8.7: Sizes C, total CP lengths £, and area-time performances CL* of the ar-
chitectures for multiplication by " = ™2™~ (mod 2™ + 1), with respect to
element representation.

power of a?"~" mod 2™ + 1, is listed in Table 8.7. These parameters are also
plotted versus m in Figure 8.4. Some of the parameters are plotted twice in
the figure. For each such pair of curves, the upper curve is an upper bound
(for b = m) and the lower curve is a lower bound (for b = 1) on the parameter
in question.

For all b € [0, m], the fixed architecture is superior to the two universal archi-
tectures. However, the universal bit-serial architecture has the smallest size
among the architecture. Note that the complexity and performance of these
three architectures are less than the complexity and performance of the archi-
tectures for NBC and diminished-1 general multiplication.

8.1.7 Butterfly Computations

In Section 2.3.3, we considered some algorithms for computing the Fermat
number transform. In each of these algorithms, the transform computation is
subdivided into a number of butterfly computations. For example, in the well
known radix-2 decimation-in-time and decimation-in-frequency algorithms,
which are described in Section 2.3.3, a Fermat number transform of length
N = 2" is obtained by computing (N/2) log, N basicbutterflies. Each butterfly,
which performs a transform of length two, involves one negation, two addi-
tions, and one multiplication by some power of the transform kernel w. We
refer to Figures 2.1 and 2.2.
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Figure 8.4: Plots of the complexity parameters C, L, and CL> for
multiplication by w™ = o™?" " (mod 2™ + 1) when using the polar
representation. The parameters are obtained from Tnble 8.7. “Fixed” =the
fixed bit-parallel architecture. “Un. s/p” =the universal bit-serial/parallel
architecture. “Un. s” =the universal bit-serial architecture.

Next, we consider gross estimations of the total size and the total critical path
length of such a butterfly, with respect to the normal binary coded represen-
tation, the diminished-1 representation, and the polar representation. When
using the normal binary coded and the diminished-1 representations, we as-
sume that we have two adders in parallel. We use the following complexity
parameters:
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e The Normal Binary Coded Representation:

_ Coeg = 20m — 22
Negation:
Lneg = 30m + 20
Cadd = 50m +4
Addition: ad "
Loqqa = 20m + 58

General multiplication:

Crnute = 4mlogy, m + 121m + 57
Lot = 24m? +132m + 180

Chutt,NBC = Cneg + 2Cada + Cmule

= 4mlog, m + 241m + 43
Total complexity: &2

Louee NB¢ = Lneg + Ladd + Lmule
= 24m? + 182m + 258

e The Diminished-1 Representation:

. Cdimneg =4m
Negation:
Edimneg =4m + 30
Cdima =50m + 2
Addition: dimadd,2
Ldimadd,z = 18m + 40

SRT . CAshur,mult = 34m2 4+ 94m + 26
General multiplication:

EAshur,mult = 44m + 120

Chutt,dim = Cadimneg T 2Cdimadd,2 + Cashur,mult

, = 34m2 4 198m + 30
Total complexity:

Loutt,dim = Ldimneg T Ldimadd,2 + £ Ashur,mult
= 66m + 190

When using the polar representation, the two butterfly additions can not be
computed exactly in parallel, because then we would get a memory access
conflict. Therefore, the total critical path runs through the negater and the
two adders of the decimation-in-frequency butterfly in Figures 2.2. Multipli-
cation by a power of the transform kernel is carried out during the compu-
tation of the second addition. If the decimation-in-time butterfly is used, the
path through the multiplier must also be added to the total critical path length.
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Hence, for the polar representation (and when using decimation-in-frequency
butterflies), we use the following complexity parameters:

e The Polar Representation:

C olneg — 4
Negation: { polnce

Epolneg =34
Cpoladd,1 A 3+ 2" 4+ 3m - 2™7% 4+ 102m
Addltlon Epoladd,l ~ mLexp,tab + (m —4 + 10g2 m)Llog,tab
+ 156m + 104

Cmuwar:6 —|—28b_|_2
Multiplication by w"™: { 1t w,p m

Emult,w,par = 14b + 44

Cbutt,polar — Cpolneg + Cpoladd,l + Cmult,w,par
= 3:2" 4+ 3m-2""% +108m + 280+ 6

TOtal CompleXIty: Ebutt,polar < Epolneg + 2Cpoladd,l

2TnLexp,tab —I' 2(m —4 —I_ 10g2 m)Llog,tab
+ 312m + 242

%

The butterfly complexity parameters CpuetNBC, Lbute,NBC, Chutt,dims Lbutt,dim,
Chutt,polar, aNd Liute,polar are plotted versus m in Figure 8.5. For Chyt, polar and
Liute,polar We have set maximum b = m and Lexp tab = Liogtab = 1, respectively.
These complexity parameters, however, do not change significantly for other
(reasonable) values of b, Lexp tab, and Liog tab-

From Figure 8.5 we conclude that, for all m, the diminished-1 representation is
superior to the normal binary coded representation. Regarding the polar rep-
resentation, the complexity parameters Cpu polar aNd Liutt, polar Should be taken
with a pinch of salt. The reason for this is the inaccuracies of the modelled ar-
eas and access times of the memories used to perform discrete exponentiation
and compute discrete logarithms. In Sections 7.6.1 and 7.6.2, we only derived
approximate estimations of the parameters Cexp, tab, Lexp,tabs Clog,tab, ad Liog tab-
We can obtain more accurate estimations of these parameters by considering
all parts of the memory architecture in Figure 7.9. Such a complex modelling,
however, is not considered in this thesis.

As mentioned earlier in the thesis, the main disadvantage of the polar repre-
sentation is the relatively large chip area required when implementing polar
addition on the form which uses look-up tables. Still, some other nice proper-
ties of the polar representation may make up for this disadvantage. For
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Figure 8.5: Plots of the complexity parameters C, L, and CL> for
the complete decimation-in-frequency butterfly when using the NBC, the
diminished—1, or the polar representation.

example, we have proposed universal architectures for multiplication by pow-
ers of the transform kernel with favourable sizes and critical path lengths, see
Sections 7.6.6 and 8.1.6. Any of these universal architectures can be used in

the computation of a Fermat number transform of arbitrary allowed length in
a Fermat prime field.

8.2 Other element representations

We have focused on the normal binary coded, the diminished-1, and the po-
lar representation. A few alternative ways of representing the (binary coded)
integers of Fermat integer quotient rings Z,m; have been suggested in the lit-
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erature. For example, Agrawal and Rao [3]* describes an (m + 1)-bit binary
coded representation which uses one of the bits as a zero indicator. However,
none of these forms of representation have been considered in this thesis.

2See also references [6] and [7] in their paper.
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Chapter 9

Conclusions

The arithmetic operations considered in this thesis are essentially modulus re-
duction, code translation, negation, addition, subtraction, general multiplica-
tion, and multiplication by powers of the Fermat number transform kernel.
All operations are carried out in Fermat integer quotient rings. The properties
of these operations were thoroughly investigated with respect to the normal
binary coded representation, the diminished-1 representation, and the polar
representation of the binary coded integers of Fermat integer quotient rings.
The polar representation is applicable only when the Fermat number modulus
is prime.

Based on a linear switch-level RC' model for CMOS transistors we derived
area and time complexities and combined area x time? performances of the var-
ious architectures for the above arithmetic operations. The architectures were
mutually compared with respect to these measures of complexity and perform-
ance. To the authors knowledge, such a comparison has not been carried out
before.

Regarding the normal binary coded representation, we found that the area x
time? performance of some of the architectures considered was relatively poor.
This derives mainly from the relatively complex circuitry for performing the
modulus reduction of the corresponding arithmetic operations. In some archi-
tectures, the modulus reduction part of the circuit represented a rather large
part of the complete architecture.

With respect to the area and time complexities and the area x time® perform-
ance, we established the superiority of the diminished-1 representation over

249
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the normal binary coded representation. We also came to the general conclu-
sion that, mainly from a computational complexity point of view, the dimini-
shed-1 representation is in fact the one most efficient in the class of element
representations that can be expressed as a linear elementary function of the
normal binary coded representation.

Using properties of Zech’s logarithms, we derived an algorithm for efficiently
computing the discrete logarithm in Fermat prime fields, principally using
only a number of recursive diminished-1 additions. We also derived an al-
gorithm for performing discrete exponentiation using only a number of re-
cursive diminished-1 additions and some binary shifts. Based on these algo-
rithms, we then derived computational procedures for computing the discrete
logarithm and performing discrete exponentiation using look-up tables of ap-
propriate sizes (one table for each operation). Each resulting algorithm prin-
cipally only involves a number of binary shifts and a table look-up. Hence,
the complexity of computing the discrete logarithm and performing discrete
exponentiation was significantly reduced, to the cost of two look-up tables.

One of the main advantages of the polar representation concerns the complex-
ity of performing multiplication by powers of the transform kernel. We proved
that, for every possible transform length N = 2"; 0 < b < m, the polar repre-
sentation provides a suitable choice of the transform kernel for which mul-
tiplication by powers of the transform kernel can be carried out using only
one addition modulo 2°. We also designed universal architectures (one bit-
serial /parallel and one bit-serial) for performing such multiplications. Thus,
any of these universal architectures can be used in the computation of a Fer-
mat number transform of arbitrary allowed length in a Fermat prime field.



Appendix A

Proofs of Some Theorems

In this Appendix we present proofs of some theorems of the thesis. The proofs
themselves may not be of central importance for the results of the thesis, but
they are included mainly because they have great number theoretic signifi-
cance in the context of the thesis.

A.1 Proof of Theorem 2.1

The outline of the proof is essentially the same as the outline of the proof by
Agarwal and Burrus in [2, Th. 1]. The theorem is equivalent to

Theorem A.1 There exists an invertible NTT of length N in Z, if and only if
N | (pi — 1) for every prime p; that divides q.

Proof: According to Euler’s theorem (”if q is a positive integer and w is relatively
prime to q, then w*? = 1 (mod ¢)”), the order N of the transform kernel w
modulo ¢ must divide ¢(¢q) where ¢ denotes Euler’s totient function (see for ex-
ample Rosen, [84, Ch. 5.3]). It can be shown that for such an integer ¢ with
prime-power factorisation ¢ = pi' p3? - - - p,*, the totient function is

o(q) =P Hp — Dy (e — 1) (e — 1),

Hence, we get
NP o= 1)p ™ = 1) (e — 1)

251
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However, by the congruence w™ =1 (mod ¢) we get ¢ | (w" — 1), and hence

P (W —1),ie.
N = (mod p)
for every factor p;* of ¢q. Then, by Euler’s theorem, we get
N 1 o(pi*) = pi* " (pi = 1). (A1)

In order for the inverse transform to exist, N~! must exist in the ring. The con-
gruence N - N™' = 1 (mod ¢) implies that N and ¢ must be relatively prime,
which means that no prime factor p; of ¢ can be a factor of N. Therefore (A.1)
reduces to

N | (pi_l)v

fori =1, 2, ..., k, which can also be written as

N|ng(p1_17p2_177pk_1)

Conversely, if N | (p; —1) we know, by Theorem 8.8 of [84], that there are ¢(/V)
incongruent integers with order N modulo p;. For p; = 2 we get the solution
N =1 and the theorem becomes trivial. For odd primes p;, let ; be an integer
with ged(ay, p;) = 1 such that ord,, @; = p; — 1. Then, each nonzero integer
of Z,, is congruent to some power of «; modulo p; [84, Th. 8.3]. For such an
integer 0; = «* with ord,, 3; = N and some positive integer r;, it follows from
[84, Th. 8.4] that
pi—1
~oged(pi—1,1)°

By Theorems 8.9 and 8.10 of [84] we know that if ord,; o; = ¢(p;), the order of
a; modulo p! is ¢(p) = (p; — 1)pi " for all positive integers n;.

From the above reasoning we get

1

. . N
DT N pi—1 pﬁz_l cd(pi—1,7¢) ng—1 .
a(pz )P, _ oz»N( i—1)p, — [ af (pi—1,ri)-p; =1 (mod pl),

K3 K3

o

and consequently we can choose

w; = ozzgcd(pi—lvf’i)'p?i_l
as an integer with order N modulo p;*. By the Chinese reminder theorem [84,

Th. 3.12] we can find a unique solution w modulo g = py'py?* - - - p;* such that
w=w; (mod p")

for distinct primes p; and ¢ = 1, 2,..., k. Also, the order of w modulo ¢ is V.
Because gcd(N, p;) = 1 we have gcd(N, ¢) = 1 and thus there exists an inverse
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of N modulo ¢q. Hence, there exists an invertible NTT of length N in Z, for
which N | (p; — 1) for every prime factor p; of ¢.

4

A.2 Proof of Theorem 2.3

In most number theory books the author leaves the proof of Theorem 2.3 as an
exercise for the reader. In this section we present our solution to this exercise.

The proof involves the concept of quadratic residues.

Definition A.1 An integer a which is relatively prime to a positive integer q is said
to be a quadratic residue modulo q if there is an integer x such that the congruence
x* = a (mod q) has a solution. If the congruence has no solution, we say that a is

a quadratic nonresidue modulo q.

The Legendre symbol <%> is frequently used to indicate whether an integer «,
not divisible by the odd prime p, is a quadratic residue modulo p:

p

(a) A { 1 if a is a quadratic residue modulo p (A2)

~ | -1 ifaisa quadratic nonresidue modulo p -

Euler’s criterion is useful when deciding whether an integer is a quadratic resi-
due modulo a prime:

Lemma A.1 If p is an odd prime and a is a positive integer not divisible by p, then

(ﬂ) =4 (mod p). (A.3)
p
Proof: See the proof of Theorem 9.2 of Rosen in [84]. O

Now, we are ready for the proof of Theorem 2.3, which is equivalent to

Theorem A.2 Every prime divisor of the Fermat number F, = 22" 4+ 1, where t > 2,
is on the form k - 2'*2 4 1, for some natural number k.
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Proof: For every Fermat number F; we have 2*?' = (—=1)? = 1 (mod F}),

which implies F; | (22" — 1). Therefore, for every prime divisor p of F;, we
getp | (227 — 1) or equivalently

2T =1 (mod p). (A4)

Also, by Euler’s theorem we have 2°~! =1 (mod p) and therefore 2! | (p —
1), which means that p is of the form p = &’ - 2'*! + 1 for some positive integer
k'. Fort > 2 we see that p = k' - 272 - 2° 4+ 1 is congruent to 1 modulo 8.

By Proposition A.17(ii) of Stewart [95], 2 is a quadratic residue modulo p, i.e.

<%> = 1, and thus, from Euler’s criterion (Equation (A.3)) we get

p—1

27 =1 (mod p). (A5)
Hence, from (A.4) and (A.5), we see that

2t+1|p_1

2 2
which implies that p is on the form p = 2 - 2'+1 41 =212 4 1.

A.3 Proof of Theorem 2.5

The Legendre symbol, which was defined in (A.2), can be used to check wheth-
er an integer is primitive or not. It follows from Euler’s criterion (Equation
(A.3)), together with the definition of primitive elements, that a primitive ele-
ment in Zp, is a quadratic nonresidue modulo F}.

The quadratic reciprocity law, which was discovered by Euler and proved by
Gauss, can be of great help to calculate the Legendre symbol:

Lemma A.2 If p and q are odd primes, then
q p p=lg—1
=5} =7
(1) = () e

Proof: See for example Lang [57, pp. 76-78] or Rosen [84, Ch. 9.2]. a

We are now able to prove Theorem 2.5, which is equivalent to
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Theorem A.3 The integer 3 is a primitive element of each Fermat prime field Zp,
where t > 1.

Proof: (See for example the proof of Theorem 9.7 (Pepin’s test) in the book by
Rosen, [84]). Consider the primes among the Fermat numbers /} = 2™ + 1;
m = 2! for t > 1. The quadratic reciprocity law yields

3 _ 2m L1 ( 1)2"&21—1.32;1_ 2m L1
om 4+ 1) 3 B 3 ‘

241
3

By Euler’s criterion (A.3) we can write ( ) as

(2 +1>z(2m+1)%:2m+1z(—1)m+1:25—1 (mod 3),

3
3
=1,
(=51)

2m—1

3 =—1 (mod 2™ +1). (A.6)

and hence we have

or equivalently

By Euler’s theorem we know that the order of 3 modulo the prime £} divides
F,—1=2"1ie. ordg3 | 2", which means that ordf, 3 is a power of two. Fur-
thermore, since (A.6) implies that ord3 | 2™, we consequently get ordy,3 =
2™. Thus, the integer 3 is a primitive element of Zm, for 2™ + 1 > 5 (when-
ever 2™ + 1 is prime.

4
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Appendix B

A Table of Some Primes

=
=
|
—

N W
Do DD N
LR

o

5
13 22-3
3112-3-5
29 | 22.7
17 | 24
61 [2%-3-5
127 | 2-3%-7
113 | 2% 7
97 | 2°-3
241 | 2*-3-5
193 | 26-3
509 | 22 - 127
449 | 2.7
257 | 28
1021 | 22-3-5-17
1009 | 2*-32.7
769 | 28 -3

O O O 00 IIJO UlUlU bW WwRNS

10
10
10

PR INOANO R UG L NENF, NN R S

Table B.1: Prime numbers of the form ¢ = 2" — 2™ + 1 for 0 < m < n < 32. The
table continues on the next page.
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[n]m] glq-1 |
| 5 2017 | 20377

12| 2 4093 | 2231131
13| 1 8191 | 2-3%-5-7-13
13| 5 8161 | 2°-3-5-17
13| 8 7937 | 28 - 31

13| 9 7681 | 2735

14| 2| 16381 |22.32.5.7.13
14| 4| 16369 |2-3.11-31
1410 | 15361 [ 21035

14 (12| 12289 | 212.3

15| 9| 32057 |20.32.7

16| 4| 65521 |21.32.5.7.13
1610 | 64513 | 210327

16 | 12 61441 | 2'2-3 .5

171 1 131071 | 2-3-5-17 - 257
17| 5 131041 | 2°-3%-5-7-13
17| 6 131009 | 2°-23 -89

17| 8 130817 | 28 - 7-73

17 | 14 114689 | 2.7

17 | 16 65537 | 2'6

19| 1 524287 | 2-3%-7-19-73
191 5 524257 | 25 -3 -43-127
191 9 523777 | 2?-3-11-31

19 |12 520193 | 2'%. 127

20| 2| 1048573 |2*-3°-7-19-73
20 (14| 1032193 | 2'*.32.7

20 | 18 786433 | 2'% -3

22 | 2| 4194301 | 2%-3-5%-11-31-41
23 | 4 || 8388593 | 2 - 524287

23 | 13 || 8380417 | 2'*-3-11-31

23 |17 || 8257537 | 2'7.32.7
23120 || 7340033 | 2%°.7

24 | 2| 16777213 | 2% -3-23 -89 - 683
24 | 6 || 16777153 | 26-3°.7-19-73
24 | 8| 16776961 | 28 -3 -5 17 - 257
24 | 14 || 16760833 | 2'*-3-11-31

24 | 18 || 16515073 | 28 .32 .7

Table B.1: cont’: Prime numbers of the form q = 2" —2™ + 1 for 0 < m < n < 32.
The table continues on the next page.
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Ln]m] qlq—1 |
25|12 33550337 | 2'* - 8191
25| 14 33538049 | 2'* - 23 -89
25|18 33292289 | 28 . 127
26 | 12 67104769 | 2'% .3 -43 - 127
26 | 16 67043329 | 2'6-3-11-31
27 | 11 || 134215681 | 2''-3.5-17-257
27 | 21| 132120577 | 2*'-32.7
28 | 16 || 268369921 | 2'6.32.5.7-13
29 | 2| 536870909 | 2%-7-73 262657
29 | 6 || 536870849 | 26 .47 178481
29 | 8 || 536870657 | 2% -7*-127 - 337
29 | 9 || 536870401 | 22 -3-5%-11-31-41
29 | 18 || 536608769 | 2! .23 -89
29 [ 26 || 469762049 | 2*¢ .7
30 | 18 || 1073479681 | 2'# -32.5.7-13
31| 1| 2147483647 | 2-3%-7-11-31-151-331
31| 9 || 2147483137 | 22 -3 - 23 -89 - 683
31 | 17 || 2147352577 | 27 -3 -43 - 127
31 | 19 || 2146959361 | 2'9-32-5-7-13
31 | 24 || 2130706433 | 2** - 127
31 | 25 || 2113929217 | 2% .32 .7
31 | 27 || 2013265921 | 2*7-3 -5
32 | 20 || 4293918721 | 2%°-32-.5-7-13
32 | 30 || 3221225473 | 2%° -3

Table B.1: cont’: Prime numbers of the form q = 2" —2™ + 1 for 0 < m < n < 32.
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Appendix C

Further Properties of Zech'’s
Logarithms

Several properties of Zech’s logarithms in Fermat prime fields were consid-
ered in Chapter 7. In this appendix we present some additional properties of
such logarithms. These properties may be used to derive alternative ways of
computing Zech’s logarithms in Fermat prime fields.

Theorem C.1 Let P(v) = 4 be a polar representation of v € Zymyy. For P(0) = *
we have

Z(2™ Y = % (mod 2™) (C1)
Z(*)

0 (mod 2™) (C2)

For nonzero v, i.e. for 4 € Zqym, the following congruences hold.

Z(=4) = Z(3) =4 (mod2") (C3)

Z(ZF) +277) = 4+2™1 (mod 2™) (C.4)
22" =Z(7) = 4-2(3) (mod2™) (C5)
Z@" 45 -2(%) = —Z(3) (mod2") (C6)
Z(@2" ' =4+ 2(3) = 2" =4 (mod 2") (C7)

261
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Proof:
e Equation (C.1): From Definitions 7.1and 7.2 we get o”*" ™) = 1402 =
1—1=0=0a" (mod2™+1)andthus Z(2"') =+ (mod 2™).

¢ Equation (C.2): From a?™) =14+ a* =1 = a® (mod 2™ + 1) we get
Z(*)=0 (mod 2™).

e Equation (C.3): Taking the discrete logarithm of the congruence o?(=7) =
l+a™=(1+a")a™ =G (mod 2™ +1) yields Z(—4) = Z(7) — 4

(mod 2™).
e Equation (C.4): From the congruence a” (ZG4+2m71) = _ 0Z0) = 1 —
(1+a") =™ (mod 27 + 1) we get Z (Z(5) +2"""') = 4 427!
(mod 2™).

e Equation (C.5): By (C.3)wegetZ (2! — Z(3)) = Z(—(Z(%) + 2" 1)) =
Z(Z(#F)+ 2™ — Z(§) + 2771 (mod 2™). Using (C.4) we then get
22" = Z(3)) =5+ 2" = Z(3) + 2771 =4~ 2(3)  (mod 27).

e Equation (C.6): Using (C.3) and (C.5), we can write Z (2"~ ! + 4 — Z (%))
Z2" = Z(=A) = -4 Z(-9) === (Z()) —9) = Z(7) (mod 2™).

e Equation (C.7): Using (C.3) and (C.4), we canwrite Z (2"~ — 4 + Z(%))
Z@2m 4+ Z(=4)) = =4 +2™1  (mod 2™).

4

The set of all polar integers 4 € Z,n can be partitioned into subsets such that
the Zech logarithms of all integers in each subset can be computed using the
knowledge of only one logarithm in the subset. This property is demonstrated
in the following theorem

Theorem C.2 Let 4 € Zam \ {271} be a polar integer and let fi, fo, f3, fa, and fs
be mappings form Zym to Zom, given by

Ai) = 4 (mod2") (C8)
L(3) = Z(3)+27 (mod 27) (C9)
f(3) = 277 = Z(4) (mod 27) (C.10)
AA) = 2" 44— 2() (mod 2m) (C11)
f(3) = 2" =54 2() (mod 27) (C12)
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Let F(%) be a set of polar integers defined by F(5) = {4, f1(3), f2(3), f3(3),
(( )( );( )}(T?el)q) we have F'(7) = F(A(Y)) = F((3) = F((3) =
Ja(y

Proof: Let j € {1, 2, 3, 4, 5}. Then, by (C.8), (C.9), (C.10), (C.11), and (C.12)
we have

L) = =fi(8)  (mod 27)

L) = Z(f(3) +277 (mod 27)
F(fi(0) = 277 = Z(f;(7)) (mod 27)
L((3) = 277 1+f;(7) Z2(f;(%))  (mod 27)
(i) = — iy +2(f;(7))  (mod 27),

respectively. Depending on j, Zech’s logarithm of f;(¥) is given by either (C.3),
(C4),(C.5),(C.6),0r (C.7). By (C.8)and (C.3) it follows that Z( f,(¥)) = Z(—7) =
Z(¥)—4 (mod 2™). Therefore, for j = 1 we get

H(Ah() = —h(Y)
= 4 (mod 2™)
LAB) = Z(KE)+27 7 = Z2(5) =4+ 2"
= f5(4) (mod 2™)
f(A(F) = 2m — Z(hHi(7) = 2m — (Z(%) —=7)
= fi4(4) (mod 2™)
f(h(3) = 2774 [(B) = Z(A() =27 =4 = (Z(5) =)
= f3(4) (mod 2™)
Ss(fi(%)) " - A+ Z(AG) =2 H A+ Z(9) -

f2(%)  (mod 27)

and thus F(fi(7)) = {/i(Y), A(L(), L01(). f0/(9), fa(fi(9)),
f5(f1(ﬁ7))} = {fl(’AY)a of f5(’AY)a f4(’AY)a f3(’AY)a f2(’AY)} = F(’Y)

Forj = 2,3,4,5and: = 1, 2, 3, 4, 5, the integer f;(f;(¥)) can be obtained
in a way similar to the above derivation of f;(fi(¥)). All elements fi(f;(¥))
are shown in Table C.1. For example, f>(f4(%)) is found as the element f5(9)
in the intersection of the f;-row and the f;-column. The elements in the first
row of the table form the set F'(¥), the elements in the second row form the
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h
— | A J2 s Ja s

— Yo L) | LA | B | f() | f5(9) — F(9)

fo| A A [ BB | 00| () | fa(9) — F(H(Y))
g Lol LY | A v | a3 | )| AG) — F(LH))

S| )| () | R | f5(9) | f2(9) gl — F(f:(9))

fo | a0 | () [ () | A | A | () — F(fa(9))

s | s(0) | 200 | () |y | AG) | fs(9) — F(f5(9))

Table C.1: The table shows, for i, j = 1, 2, 3, 4, 5, all combinations of f;(f;(7)) =
g(h(¥)), where g and h denote f; and f;, respectively. The symbol '— indicates
that no mapping is carried out, i.e. if h '="— or g '=" — we get the mapping
g(%) or h(¥), respectively.

set F'(f1(%)), the elements in the third row form the set F'( f3(%)), etc. Further-
more, we see that each of the elements 7, f1(%), f2(%), f3(%), f4(¥), and f5(¥)
only appears once in every row (and column) of the table. Hence, we have

F(7) = F(h(7) = F(L() = F(fs(7) = F(J1(3) = F(:(7))- U

Thus, Theorem C.2 says that given two arbitrary elements 3 and \ of F(%), the
sets F'((3) and F()) are equivalent. Let 3 = f3(4) (mod 2™) and A = f5(%)

(mod 2™). Then, by Theorem C.2 we get I'(¥) = {7, DY U{-%, —8, =Al,
where —4 = fi(§) (mod 2™), =3 = f2(¥) (mod 2™), and —X = fi(¥)

(mod 27). Using these notations for the elements of F'(¥), we show in Fig-
ure C.1 how these elements are related to each other, via the mappings defined
in Theorem C.2. Table C.1 and Figure C.1 are equivalent descriptions of the re-
lations between the elements of F'(¥).

It can bee seen in Figure C.1 that the paths f; <> f5 associated with a set F'(¥)
(for some #) form a pair of triples. The paths f5; <+ f5 are marked with thicker
lines in the figure. The set of all integers of Zn, except the integer 2™~!, can be
partitioned into disjoint subsets of size six, which each can be viewed as such
a pair of triples. Note, however, that one of these subsets only comprises three
integers: It follows from (C.8), (C.9), (C.10), (C.11), and (C.12) in Theorem C.2
that f1(0) =0, f4(0) = f3(0), and f,(0) = f5(0). Hence, the subset /'(0) is equal
to {0, f3(0), f5(0)} = {0, 2"~ — Z(0), 2™~ + Z(0)}, which has size three (3).
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Figure C.1: Relations between the polar integers B, —B, ~, =4, 5\, and — ) modulo
2™, with respect to the mappings fi, f2, fs, f1, and fs.
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A
12
fs

>

The set of all Zech'’s logarithms, except Z(2™~!) = x, is also partitioned into
corresponding subsets of size six. This is illustrated, for m = 4, in Figure C.2.
The number of disjoint subsets of size six, as described above, equals

27 —1)/3-1 27712
2 N 3

Suppose the Zech logarithm of one integer, say ¥, from each of the above sub-
sets (of size six) is stored in a table. Then, the Zech logarithm Z(z) of an arbi-
trary integer « € Zom \ {277} can be computed in the following way:

1. Find the unique integer 4 which is contained in /() and whose Zech’s
logarithm Z(¥) is stored in the table. The set /' was defined in Theo-
rem C.2.

2. Read Z(%) from the look-up table.



266 Appendix C. Further Properties of Zech’s Logarithms

Figure C.2: The Zech logarithms in Z,, |, partitioned into pairs of triples.

3. Use the congruences in Theorem C.1 and C.2 to compute, from z, 4, and
Z(¥), the desired logarithm Z(x).

When 27! is added to an m-bit normal binary coded integer, the sum is sim-
ply obtained by inverting the most significant bit of the integer. Therefore,
apart from this simple operation, the computation of an integer f;(¥), or its
Zech’slogarithm Z( f;(%)), requires at most one addition modulo 2. The main
problem here is to carry out Step 1. We have not fully investigated how to se-
lect the integers 4 which in a unique way should map to the entries of the look-
up table. This problem is similar to the problem in Section 7.5.4 of finding the
unique positions in M,,.

We conclude this appendix by presenting two properties of the subset F'(xz).
These properties may be of help in Step 1, when trying to find the unique inte-
ger 7 of F'(x). Consider the set /() of integers, where x is an arbitrary integer
in any triple, as described above. Then, by the congruences in Theorems C.1
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and C.2 we straightforwardly obtain the two following properties:'

vt folw) + fs(z) = a4 (277 = Z(2) + (277 — 2+ Z(2))
= 0 (mod?2m) (C.13)
2+ 20e) + 2(s(2) = Z(e) + (2 — Z(2) + (27— 2)
= 277! (mod 2™). (C.14)

Remark: We have derived still more properties of Zech’s logarithms in Fermat
prime fields. However, these properties are not considered here.

1Al’cerna’tively, using the above notations, we can write ¥ + B +A =0 (mod 2™) and
Z(3)+ Z(B) + Z(A) = 21 (mod 2™).
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