
748 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 2, MARCH 2001

VLSI Architectures for Iterative Decoders in
Magnetic Recording Channels

Engling Yeo, Student Member, IEEE, Payam Pakzad, Borivoje Nikolic´, Member, IEEE, and
Venkat Anantharam, Fellow, IEEE

Abstract—VLSI implementation complexities of soft-input
soft-output (SISO) decoders are discussed. These decoders are
used in iterative algorithms based on Turbo codes or Low Density
Parity Check (LDPC) codes, and promise significant bit error
performance advantage over conventionally used partial-response
maximum likelihood (PRML) systems, at the expense of increased
complexity. This paper analyzes the requirements for compu-
tational hardware and memory, and provides suggestions for
reduced-complexity decoding and reduced control logic. Serial
concatenation of interleaved codes, using an outer block code with
a partial response channel acting as an inner encoder, is of special
interest for magnetic storage applications.

Index Terms—Iterative decoders, LDPC codes, magnetic
recording, turbo codes, VLSI architectures.

I. INTRODUCTION

A TURBO encoder using serial concatenation of a con-
volutional code or Low Density Parity Check (LDPC)

code with a partial-response channel acting as the inner coder
is shown in Fig. 1 [1]. The iterative decoder (Fig. 2) uses a
combination of soft-input-soft-output (SISO) decoders sep-
arated by interleavers,, and the inverse, . We present
SISO decoder implementations that employ either the MAP
Algorithm (BCJR) [2], Soft Output Viterbi Algorithm (SOVA)
[3], or the LDPC decoding algorithm [5].

All systems considered in this paper assume an par-
tial response channel. The particular partial response target is
not essential to the following discussion, and is used
as an example because it presents a complexity equivalent to
contemporary read channel detectors. The outer code is either
a 16-state binary convolutional code or an LDPC code, imple-
menting a rate 8/9 coding. As is common with most magnetic
recording channels, the use of block codes and interleaver de-
sign is restricted to a sector size of 4096 user bits. The number of
bits used to represent the log-likelihood ratios or messages is a
tradeoff between the amount of hardware required and the BER
performance of the iterative decoder. Earlier systems using 4 to
6-bit representations [6], [7] have reported good performance
with respect to floating-point results.

Manuscript received June 20, 2000; revised Oct 11, 2000. The work of P.
Pakzad and V. Anantharam was supported by the National Science Foundation
through Awards IRI-97-12131 and SBR-9873086, and by ONR MURI through
Award N00014-1-0637 on “Decision Making Under Uncertainty.”

The authors are with the Electrical Engineering and Computer Sciences
Department, University of California, Berkeley, CA 94720 USA (e-mail:
yeo@eecs.berkeley.edu).

Publisher Item Identifier S 0018-9464(01)02388-3.

Fig. 1. Serially concatenated turbo encoder with a convolutional outer code.

Fig. 2. Iterative decoder using SISO decoders separated by interleavers.

Fig. 3. Pipelined decoder for serially concatenated turbo codes using outer
decoder D1 and inner decoder D2 separated by interleavers/deinterleavers,
�=� .

In order to achieve desired throughputs (above 1 Gbps) that
are in line with current trends in magnetic recording systems, a
fully unrolled and pipelined architecture [6] is needed (Fig. 3).
This results in a linear complexity increase with the number of
iterations.

In the following sections, structures for the building blocks
of an iterative decoder will be analyzed. Section II discusses the
implementation of an interleaver and deinterleaver. Section III
discusses a MAP decoder implementing the Windowed-BCJR
algorithm, using a minimal number of Add–Compare–Select
units and a highly regular memory access pattern. A realization
of a SOVA decoder by a simple extension of the register ex-
change method is presented in Section IV. Section V discusses
a pipelined LDPC decoder and proposes a message arrangement
in memory that lowers the complexity for address decoding.
Section VI compares the results and Section VII provides some
concluding remarks.

0018–9464/01$10.00 © 2001 IEEE

YEO et al.: VLSI ARCHITECTURES FOR ITERATIVE DECODERS IN MAGNETIC RECORDING CHANNELS 749

Fig. 4. Interleavers and deinterleavers implemented using alternating
read/write buffers.

II. I NTERLEAVER

The randomness of the interleaver output sequence makes
it difficult to realize in-place storage. A direct interleaver
implementation uses two banks of buffers alternating between
read/write for consecutive sectors of data (Fig. 4). The latency
through an interleaver is therefore equal to the block size.

The basic block interleaver design uses a minimal amount of
control logic. Using static random-access memory (SRAM) for
high-speed implementation, the interleaver inputs are written
row-wise in the memory array, while outputs are read column-
wise. For a block interleaver of size arranged as an by

matrix, such that , this assures that bits located
within a distance of before interleaving are separated
by a minimum distance of after interleaving. The sequential
write/read pattern along rows/columns allows the memory ac-
cess operations of this interleaver to make use of cycle counters
to activate both word (row) lines and bit (column) lines, thereby
eliminating the necessity to perform memory-address decoding.

More sophisticated interleaver designs [8], [9] yield improved
error rate performance, but result in increased implementation
complexity. Therefore, the implementation of the described
basic interleaver provides a lower limit on complexity.

III. MAP D ECODER

A MAP decoder implements the BCJR [2] algorithm. It is
used to obtain thea posterioriinformation for partial response
channel decoding, as well as outer decoding when a convolu-
tional code is employed as the outer code. Given the prior prob-
abilities, , and channel likelihood estimates, , the
log-domain computations of the BCJR algorithm are divided
into three groups:

1) Branch metric computation for each branch between
states to :

(1)

2) Forward/Backward iteration for each state,, assuming
a radix-2 trellis: Forward state metric; valid transitions are
(), ():

(2)

Backward state metric; valid transitions are (),
():

(3)

Fig. 5. Add-compare-select unit for an iterator (either forward or backward)
using the	 (.) operator as indicated within the box.

3) Depending on position (inner/outer) of decoder, the
required a posteriori probability, is either

or respectively.

(4)

The structures for both forward and backward iterations are
identical, and similar to the Add–Compare–Select units used in
Viterbi decoders. Thus only the forward iterator (Fig. 5) will
be described. The current branch metrics () are added to the
corresponding state metrics () from the previous iteration:

(5)

The logarithm of the sum of exponentials is then evaluated with
a new operator, . It uses a comparator, a lookup table, and
a final adder (Fig. 5) to approximate the second term in the
equation [10]:

(6)
The forward/backward iteration structures are therefore termed
the Add-Compare-Select-Add (ACSA) units. A number of
operators are also used in the computation of thea posteriori
values using a tree structure shown in Fig. 8.

To implement the original BCJR algorithm, the backward it-
eration can only begin after complete observation of the block
of 4k bits, resulting in large memory requirements and long la-
tencies. Variations of the BCJR algorithm avoid these effects by
windowing or limiting the number of backward iteration steps.

A. Backward Propagation of Windowed BCJR

An implementation of windowed BCJR with asymptotically
equivalent performance can be achieved using two overlapping
windows for the -computation. Each window spans a width of

, and overlaps with the other window in both trellis position
and time by steps, as shown in Fig. 6. The initialoutputs are
always discarded while the latteroutputs, having satisfied a
criterion for minimum number of steps,, through the trellis,
are retained and eventually combined with the appropriate

750 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 2, MARCH 2001

Fig. 6. Backward iteration using 2 overlapping windows,W andW for
BCJR algorithm. The shaded outputs are always discarded.

Fig. 7. State-slice of a MAP decoder structure.

values to obtain the soft outputs. This scheme results in lower
memory requirement and less computational hardware.

Fig. 7 shows a state-slice of the MAP decoder that is able
to maintain a throughput equal to the input arrival rate. The

-memory stores the branch metrics. An-ACSA performs the
forward iteration and stores its outputs in the-Memory. Two

-ACSA’s perform the backward iteration in accordance with
the overlapping window method.

Fig. 9 reproduces the timing diagram of a scheme that would
limit the interval between the production and 3 consumption
cycles to . The implementation partitions each-memory
block into 3 sections of length (3 sections of columns in
Fig. 9) and deliberately delays the first forward iteration by.
New data is cyclically written into each of the partitions while
the write/read access pattern within each partition is continu-
ously alternated between left-to-right and right-to-left directions
every periods. Each branch metric entry,, in memory is
read once by each of the three ACSA’s. After the third and final
read access, the memory location is immediately replaced with
new data. The repetitive nature of the memory access within
each partition promotes reduction in control logic, compared to

Fig. 8. � block makes use of a binary tree of	 (.) operators.

Fig. 9. Memory read and write access of branch metrics .

random access memory, and is implemented as a bi-directional
shift register.

Similarly, observations on the production and consumption
patterns of the values will indicate that each-Memory block
can be implemented with a bi-directional-word shift register.

Finally, evaluation of (4), thea posterioriresult, is performed
by summing the and values in a tree structure (Fig. 8), and
a final adder evaluates the log-likelihood ratios.

Although the maximum latency through each MAP decoder
is (80 cycles for), it remains insignificant compared
with that of the interleaver discussed in Section II.

IV. SOFT OUTPUT VITERBI ALGORITHM (SOVA) DECODER

The computational complexity of the BCJR algorithm can
be traded for reduced BER performance by replacing the MAP
decoders with SOVA decoders [3].

As in BCJR, a windowed SOVA is advantageous in terms of
its memory requirement and latency, when compared to the full
SOVA. Previous windowed SOVA implementations [12] made
use of a two-step algorithm (Fig. 10). The first stage is a regular

YEO et al.: VLSI ARCHITECTURES FOR ITERATIVE DECODERS IN MAGNETIC RECORDING CHANNELS 751

Fig. 10. Realization of a SOVA decoder by cascading a typical VA survival
memory unit with a SOVA section.� and� are the two most likely paths that
will arrive at statem .

Fig. 11. Example 4-state system block for SOVA.

-step windowed-Viterbi algorithm (VA) that obtains the most
likely state, , with a delay of . This is followed by another

-step traceback to find the two most likely paths arriving at
. Tracebacks are performed by recursively reading interme-

diate decisions that were stored in an SRAM.
The SRAM-based traceback has a costly implementation

complexity due to address decoder and sense amplifier over-
head. An implementation of SOVA combining the efficiency
of a register exchange pipeline with the two-stage SOVA is
presented in Fig. 11.

From each of the ACS’s, the difference between the two path
metrics, , arriving at time , state is retained. Additionally,
a modified register exchange (Fig. 12) provides EQ out-
puts indicating the equality between the competing decisions
at time , state , from which a traceback of depth is
initiated. Using the decisions from the VA-SMU, ’s and
EQ ’s corresponding to the most likely state,, are
multiplexed into the Reliability Measure Unit (RMU), which
uses comparators (minimizing function) and multiplexers in a
pipeline to select the minimum along the most-likely path.
The pipeline is initialized with the maximum reliability mea-
sure allowed by the particular binary representation (conceptu-
ally represented as “ ” in Fig. 11). Based on the EQ input, each
pipelined section outputs one of the following:

1) Equal decision—reliability measure from the previous
step.

2) Different decision—minimum of and reliability mea-
sure from the previous step.

Fig. 12. Example 4-state SOVA-Register Exchange Survival Memory Unit
with Compare-and-Mux (CAM) units to perform equivalence checking and
multiplexing. The outputs EQ indicate equality of decisions taken at step
i, statej, and traceback depthk.

Fig. 13. Block diagram of Compare-and-Mux (CAM) unit comprising an
XOR gate for equality checking and multiplexing function.

Compared with a hard-output Viterbi decoder implemen-
tation, the total size of the SMU’s is approximately doubled
(assuming the difference betweenand is small). The RMU
overhead consists of copies of 1 register, 2 multiplexers and
a 2-input comparator performing the minimization function.

The latency through the SOVA decoder is . This re-
mains insignificant compared with the overall latency in the
Turbo-SOVA system, which is dominated by the latency through
the interleavers.

V. LOW DENSITY PARITY CHECK CODE DECODERS[4]

An LDPC code with a parity check matrix will
be used as an example outer code. This parity check matrix has
columns of weight 4 and rows of weight 36, and comprises a
total of nonzero entries. The parity check
information is also commonly represented in a bi-partite graph
as 512 check nodes and 4608 bit nodes.

The following log-domain equations modified from [5]
exploit the large number of common terms in each group of
computations.

752 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 2, MARCH 2001

Fig. 14. Recursive pipelined implementation to compute check-to-bit
messages.

1) Check to bit messaging (parity check):

sgn sgn

(7)

where and are evaluated using lookup-tables:

(8)

A simple expansion of these terms will show that
, implying that the implemented

lookup-tables are identical.
2) Bit to check messaging:

(9)

where is the prior information for bit .

A. Check to Bit Message Computation

The example LDPC block code has a total of 512 parity
checks, where each parity checkcomputes using entries
from 36 bit nodes . The bottleneck in (7) is
the 36-input summation, .

In order to maintain a high throughput with a small number
of read ports, the computation is performed withcopies of
structures identical to Fig. 14. They are cascaded in parallel to
achieve a throughput of messages per cycle. A natural
choice for the value of would be the column weight (4 in our
example), such that all check-to-bit messages are computed in
approximately the same time it would have taken to acquire a
new block of inputs.

Using 2’s complement representation, the most-significant
bit (MSB) of the messages is a sign bit. Therefore, the product,

sgn , is equal to a collective XOR of the

Fig. 15. Binary adder tree to compute bit-to-check message in a 2-stage
pipeline.

MSB of all inputs. The result is fed into the output LUT to direct
an output with the appropriate sign. In addition, the final
lookup table could be precoded to account for the deterministic
term, , in (7).

B. Bit to Check Message Computation

Each of the 4608 bit nodes in the example LDPC decoder
computes using entries from 4 different check nodes

, , and . The bottleneck is the 4-input summation:
.

Unlike the earlier 36-input summation, the small number of
inputs makes it very suitable for a pipelined tree adder structure
as shown in Fig. 15. With a steady state throughput of four
messages per cycle, the total latency to compute all the messages
is again approximately the same time it would have taken to
acquire a new block of inputs.

C. LDPC Memory Design

While the computational complexity of an LDPC decoder
is very low compared with the MAP or SOVA decoders, the
memory requirement far exceeds those of the latter two. Due
to the irregularity in the parity check matrix, the two classes
of computations over a single block of inputs, bit-to-check and
check-to-bit, cannot be overlapped. In order to achieve fully
pipelined throughputs, each memory block in the LDPC decoder
is implemented as two buffers alternating between read/write.
Thus, for a single iteration of LDPC decoding (bit-to-check and
vice-versa) the required memory is words.
This section provides a proposal for structural indexing of the
messages to simplify the control logic.

The messages are indexed in a 2-D array withindices
that are ordered sequentially in the-direction and strictly in-
creasing indices in the -direction. Fig. 17 shows an example

matrix of messages. In general, the mes-
sages are not consumed in any particular order along thein-
dices (or -direction). With the described arrangement though,
entries along each row are consumed in a strictly left-to-right
manner. Thus each 36-entry row of the matrix is stored in a
first-in-first-out (FIFO) buffer, which also removes the require-
ment for the computation block to keep track of the column
index. Inputs are simply indexed by their row numbers, and

YEO et al.: VLSI ARCHITECTURES FOR ITERATIVE DECODERS IN MAGNETIC RECORDING CHANNELS 753

Fig. 16. Using FIFO’s to store rows ofR messages.

Fig. 17. Example512� 36 memory array forR values.

each read port can therefore be implemented as a 512-input
multiplexer.

Fig. 16 shows that each of the 4 parity check blocks outputs
to a quarter of all the FIFO’s. The demultiplexer-select is incre-
mented once every 36 cycles to switch to the next FIFO, which
stores the next row in the matrix.

Similarly, is indexed as shown in Fig. 18, with i indices
that are ordered sequentially in the-direction and strictly in-
creasing indices in the -direction. Each row of the ma-
trix is stored in a 4-entry stack. The 4 messages are produced
simultaneously by the tree adder structure described previously,
but consumed in a strictly left-to-right manner. The subsequent
parity check () computations only need to keep track of
the row numbers to pop the correct values from the appropriate
stack through a 4608-input multiplexer. A pipelined multiplexer
is necessary in order to meet Gbps throughtputs with such a
large number of inputs.

Fig. 18. Example4608� 4 memory array forQ values.

Fig. 19. Using 4-input stacks to store rows ofQ messages.

VI. COMPARISON OFSISO DECODERS

The number of computational units required for each of the it-
erative decoder modules is summarized in Table I. An
channel decoder is concatenated with either a 16-state binary
convolutional decoder or an LDPC decoder. As described in
Section IV, the BCJR decoder can be replaced with a SOVA de-
coder. The number of ACSA units is reduced from 3 to 1 per
state-slice, a 66% savings in structural computation units, while
memory savings is 30%. The SOVA algorithm trades off com-
plexity for predictable degradation in BER performance over the
BCJR algorithm.

The throughputs of both the MAP and SOVA decoders are
limited by the feedback loop that exists in the Add–Compare–
Select units. If area and power were not constrained, a 1 Gbps
iterative decoder based on MAP or SOVA decoding would be
achievable with current technology; however, due to mandatory
unrolling and pipelining, such a decoder will be between 10 and
15 times the area and power of any existing decoder implemen-
tation based on conventional Viterbi sequence detection.

On the other hand, the proposed LDPC decoder system is
strictly feedforward; therefore, introducing additional levels of
pipelining can alleviate delay issues, at the expense of register
area and negligible latency. It has been widely recognized that
LDPC decoders enjoy significant advantage in terms of com-
putational complexity compared to the trellis-based decoding in
MAP and SOVA decoders. This characteristic is reflected in our

754 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 2, MARCH 2001

TABLE I
COMPUTATIONAL UNITS AND MEMORY REQUIREMENTS FORITERATIVE DECODERMODULES

proposed implementation, which uses a small number of com-
putational units: 16 adders and 8 LUT’s.

However, the lack of any structural regularity in the parity
check matrix results in memory requirements that are 2
orders of magnitude larger than those in the MAP or SOVA
decoders. It was shown by example in Section V-C that a single
LDPC iteration would have a memory requirement upwards of
73 000 words. To make an LDPC decoder implementation more
feasible, it will be necessary to introduce regularity into the
parity check matrix. Recent publications, [13], [14], suggesting
the construction of LDPC-like codes based on difference-set
cyclic codes may provide the necessary foundation for building
a practical LDPC decoder with reduced memory requirement.

The memory problem is not restricted to LDPC decoders. In-
terleavers, which are necessary between concatenated convolu-
tion decoders, also require significant memory due to the ran-
domness of the output sequences. Interleavers that allow some
form of ordered permutation and compact representation will
permit efficient implementations of Turbo decoders with no per-
formance loss.

Finally, an iterative decoder implementation for magnetic
storage application requires timing recovery methods that can
tolerate the increased latencies through multiple decoding
iterations.

VII. CONCLUSION

We have proposed datapath-intensive architectures as well as
timing and data arrangement schedules for each kind of SISO
decoder in order to minimize the critical path delay and simplify
the control logic.

Unrolling and pipelining of iterative decoders is necessary
to sustain high throughputs, but leads to a linear increase in
implementation complexity; however, it provides an excellent

opportunity for reduced complexity implementations. Since
decisions become increasingly confident after each stage,
decoders that are later in the pipeline can trade off some BER
performance for reduced complexities. A number of choices are
available, ranging from replacing MAP decoders with SOVA
decoders or using shorter window lengths to trellis pruning in
the trellis-based decoders [15].

The immediate difficulty with LDPC decoders lies in the
memory requirement, which should be addressed by designing
structured LDPC codes. Without removing the memory bot-
tleneck, further reduced-complexity LDPC decoding, such as
approximating the summations in (7) and (9) with minimum
and maximum functions respectively, would have little effect
on the overall decoder implementation.

REFERENCES

[1] T. Souvignier, M. Oberg, P. Siegel, R. Swanson, and J. Wolf, “Turbo
decoding for partial response channels,”IEEE Trans. Commun., vol. 48,
no. 8, Aug. 2000.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Rajiv, “Optimal decoding of linear
codes for minimizing symbol error rate,”IEEE Trans. Inform. Theory,
vol. IT-20, pp. 284–287, Mar. 1974.

[3] J. Hagenauer and L. Papke, “Decoding turbo codes with the soft output
viterbi algorithm (SOVA),” in Proc. IEEE ISIT 1994, Trondheim,
Norway, June 1994, p. 164.

[4] R. G. Gallager, “Low density parity check codes,”IRE Trans. Inform.
Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[5] J. Fan and J. Cioffi, “Constrained coding techniques for soft iterative
decoders,” inProc. GLOBECOM ’99, vol. 16, Rio de Janeiro, Brazil,
Dec. 1999, pp. 723–727.

[6] G. Masera, G. Piccinini, M. Roch, and M. Zamboni, “VLSI architectures
for turbo codes,”IEEE Trans. VLSI Systems, vol. 7, no. 3, Sept. 1999.

[7] Y. Wu and B. Woerner, “The influence of quantization and fixed point
arithmetic upon the BER performance of turbo codes,” inProc IEEE
VTC 1999, Houston, TX, USA, May 1999, pp. 1683–1687.

[8] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using
random and nonrandom permutations,” JPL, TDA Progress Rep., Aug.
1995.

YEO et al.: VLSI ARCHITECTURES FOR ITERATIVE DECODERS IN MAGNETIC RECORDING CHANNELS 755

[9] K. Andrews, C. Heegard, and D. Kozen, “Interleaver design methods
for turbo codes,” inProc. IEEE ISIT 1998, Cambridge, MA, USA, Aug.
1998, p. 420.

[10] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
Proc. IEEE ICC 1995, Seattle, WA, USA, Jun. 1995, pp. 1009–1013.

[11] A. Viterbi, “An intuitive justification and a simplified implementation
of the MAP decoder for convolutional codes,”IEEE J. Select. Areas
Commun., vol. 16, no. 2, pp. 260–264, Feb. 1998.

[12] C. Berrou, P. Adde, E. Angui, and S. Faudeil, “A low complexity soft-
output viterbi decoder architecture,” inProc. IEEE ICC 1993, Geneva,
Switzerland, May 1993, pp. 737–740.

[13] D. J. C. Mackay and M. C. Davey, “Evaluation of gallager codes for
short block length and high rate applications,” inProc. IMA Workshop on
Codes, Systems and Graphical Models 1999, Minneapolis, MN, USA,
Aug. 1999.

[14] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low density parity check codes
based on finite geometries: A rediscovery,” inProc. IEEE ISIT 2000,
Sorrento, Italy, Jun. 2000.

[15] B. Frey and F. Kschischang, “Early detection and trellis splicing: Re-
duced-complexity iterative decoding,”IEEE J. Select. Areas Commun.,
vol. 16, no. 2, pp. 153–159, Feb. 1999.

