
VLSI Cell Placement Techniques

K. SHAHOOKAR AND P. MAZUMDER

Department of Electrical Engineering and Computer Sc~ence,

University of Michigan, Ann Arbor, Michigan 48109

VLSI cell placement problem is known to be NP complete. A wide repertoire of
heuristic algorithms exists in the literature for efficiently arranging the logic cells on

a VLSI chip. The objective of this paper is to present a comprehensive survey of the

various cell placement techniques, with emphasis on standard ce11and macro

placement. Five major algorithms for placement are discussed: simulated annealing,

force-directed placement, rein-cut placement, placement by numerical optimization,

and evolution-based placement. The first two classesof algorithms owe their origin to

physical laws, the third and fourth are analytical techniques, and the fifth class of
algorithms is derived from biological phenomena. In each category, the basic algorithm

is explained with appropriate examples. Also discussed are the different

implementations done by researchers.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design
Aids—placement and routing

General Terms: Design, Performance

Additional Key Words and Phrases: VLSI, placement, layout, physical design, floor

planning, simulated annealing, integrated circuits, genetic algorithm, force-directed

placement, rein-cut, gate array, standard cell

INTRODUCTION

Computer-aided design tools are now

making it possible to automate the entire

layout process that follows the circuit

design phase in VLSI design. This has

mainly been made possible by the use of

gate array and standard cell design

styles, coupled with efficient software

packages for automatic placement and

routing. Figure la shows a chip using

the standard cell layout style, which in-

c]udes some macro blocks. Standard cells

(Figure lb) are logic modules with a pre-

designed internal layout. They have a

fixed height but different widths, de-

pending on the functionality of the mod-

ules. They are laid out in rows, with

routing channels or spaces between rows

reserved for laying out the interconnects

between the chip components. Standard

cells are usually designed so the power

and ground interconnects run horizon-

tally through the top and bottom of the

cells. When the cells are placed adjacent

to each other, these interconnects form a

continuous track in each row. The logic

inputs and outputs of the module are

available at pins or terminals along the

top or bottom edge (or both). They are

This research was partially supported by the NSF Research Initiation Awards under the grant number
MIP-8808978, the University Research Initiative program of the U.S. Army under the grant number
DAAL 03-87-K-OO07,and the Digital Equipment Corporation Faculty Development Award. K, Shahookar
is supported by the Science and Technology Scholarship Program of the Government of Pakistan.

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
@1991 ACM 0360-0300/91/0600-0143 $01.50

ACM Computing Surveys, Vol. 23, No. 2, June 1991

144 “ K. Shahoohar and P. Mazumder

CONTENTS

[INTRODUCTION
Classification of Placement Algorithms
Wire length Estimates
1 SIMULATED ANNEALING

11 Algorithm
12 Operation of Simulated Annealing
13 TlmberWolf 32
1.4 Recent Improvements m Simulated Anneahng

z FORCE.DIRECTED pLAfJEMENT

2 1 Force-DwectedPlacement Techniques
2.2 Algorithm
2,3 Example
24 Goto’sPlacement Algorithm
25 Analysls

3 PLACEMENT BY PARTITIONING
3 1 Breuer’s Algorithms
32 Dunlop’s Algorithm and Termmal Propagation
33 Quadrlsectlon
34 Other Techmques
35 Analysls

4, NUMERICAL OPTIMIZATION TECHNIQUES
41 Eigenvalue Method
42 Resu%lveNetwork Optlmlzatlon
43 PROUD: Placement by Block Gauss-Seldel

Optlmlzatlon
44 ATLAS: Techmque for Layout Using

Analytlc Shapes

45 Algorithm for Block Placement by Size

Optlmlzatlon

46 Other Work in This Field

5 PLACEMENT BY THE GENETIC ALGORITHM

5.1 Geme: Genetic Placement Algorlthm

5.2 ESP: Evolution-Based Placement Algorlthm

53 GASP Genetic Algorlthm for Standard

Cell Placement

6 CONCLUSION

ACKNOWLEDGMENTS

References

connected by running interconnects or

wires through the routing channels. Con-

nections from one row to another are

done either through vertical wiring

channels at the edges of the chip or by

using feed-through cells, which are stan-

dard height cells with a few intercon-

nects running through them vertically.

Macro blocks are logic modules not in the

standard cell format, usually larger than

standard cells, and placed at any

convenient location on the chip.

Figure 2 shows a chip using the gate

array design style. Here, the circuit con-

sists only of primitive logic gates, such as

NAND gates, not only predesigned but

ACM Computing Surveys, Vol 23, No 2, June 1991

prefabricated as a rectangular array,

with horizontal and vertical routing

channels between gates reserved for in-

terconnects. The design of a chip is then

reduced to designing the layout for the

interconnects according to the circuit di-

agram. Likewise, fabrication of a custom

chip requires only the masking steps for

interconnect layout.

Figure 3 shows a third chip layout

style, which uses only macro blocks.

These blocks may be of irregular shapes

and sizes and do not fit together in regu-

lar rows and columns. Once again, space

is left around the modules for wiring. For

a detailed description of the layout styles,

see Muroga [1982] and Ueda et al. [1986].

The placement problem can be defined

as follows. Given an electrical circuit

consisting of modules with predefined in-

put and output terminals and intercon-

nected in a predefined way, construct a

layout indicating the positions of the

modules so the estimated wire length and

layout area are minimized. The inputs to

the problem are the module description,

consisting of the shapes, sizes, and termi-

nal locations, and the netlist, describing

the interconnections between the termi -

nals of the modules. The output is a list

of x- and y-coordinates for all modules.

Figure 4 provides an example of place-

ment, where the circuit schematic of

Figure 4a is placed in the standard cell

layout style in Figure 4b. Figure 4C illus-

trates the Checkerboard model of the

placement in which all cells are assumed

to be square and of equal size and all

terminals are assumed to be at the cen-

ter of the cells. Thus, the length of the

interconnect from one cell to the next is

one unit.

The main objectives of a placement al-

gorithm are to minimize the total chip

area and the total estimated wire length

for all the nets. We need to optimize chip

area usage in order to fit more function-

ality into a given chip area. We need to

minimize wire length in order to reduce

the capacitive delays associated with

longer nets and speed up the operation of

the chip. These goals are closely related

to each other for standard cell and gate

array design styles, since the total chip

Iz E&l

lnlnEam

❑ on ❑ 0[1

❑❑

❑

❑
❑

❑

❑

❑

❑

ACM Computing Surveys, Vol, 23, No 2, June 1991

146 . K. Shahookar and P. Mazumder

EIUUEIEIEI

❑
clclcl Elncincl nncl Elclcicl ❑ ull

clclnnn unnclclcl Elunn Elncl

❑ izlclntl nclnclclnclaclcl Elcln

❑
tlclclclnlzclclclclnnnn 0000

❑ lclnnnclclnnclclclcincl ❑ 00

ATE~aaDtlaaaDa 1317CICICIEIDCI

In ❑ lnnclciclncltlnnclclncl ❑ 00
PAD

❑ lnnnnclclclnclnnclclcl ❑ un

HORIZONTAL .tlnnnnnnclclnclnan ❑ oon

CHANNEL ~
❑ lclnclnnnciclclnnnn ❑ non

❑

❑

•1

❑ nnnclcl13clnnnDlJnn ❑ un
❑ clcinElnElclnElclrJnclcl ❑ un
❑ lnnnclclnclclnncluclcl ❑ 00

clnnclcllJnnclnclclucln Elan

❑ nclnclclnclnElclclclclcl ❑ un
❑ lnclclnclnclnnclclclclcl ❑ on
❑ lclclclclclnclclnclnucicl ❑ clrl

❑ lclclclclclncl ❑ nnncloncln

EIEIEI ❑ on
vERTIciLCHANNEL

Figure 2. Gate array layout style

area is approximately equal to the area

of the modules plus the area occupiedby

the interconnect. Hence, minimizing the

wire length is approximately equivalent

to minimizing the chip area. Inthe macro

design style, the irregularly sized macros

donotalwaysfit together, and some space

is wasted. This plays a major role in

determining the total chip area, andwe

have atrade-off between minimizing area

andminimizingthe wire length. In some

cases, secondary performance measures,

such as the preferential minimization of

wire length of a few critical nets, may

alsobe needed, at the cost ofan increase

in total wire length.

cl

•1

❑

•1

•1

❑

Another criterion for an acceptable

placement is that it should be physically

possible; that is, (1) the modules should

not overlap, (2) they should lie within

the boundaries of the chip, (3) standard

cells shouldbe confined to rows inprede-

termined positions, and (4) gates in a

gate array should be confined to grid

points. It is common practiceto define a

cost function or an objective function,

which consists of the sum of the total

estimated wire length andvariouspenal-

ties for module overlap, total chip area,

and so on. The goal of the placement

algorithm is to determine a placement

with the minimum possible cost.

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques ● 147

HOR

❑ on nan

n L___.d WASI’EI)

mu-=

.$PACE

CHANNEL

❑

n

[n

!

C—3

[1

El

-1
❑ pnclncl

❑

•1

❑

❑

❑

•1

VERTICALCHANNEL

Figure 3. Macro block layout style

Some of the placement algorithms de- used synonymously to represent an as-

scribed in this paper are ‘suitable for

standard cells and gate arrays, some are

more suitable for macro blocks, and some

m-e suitable for both. In this paper, the

words module, cell, and element are used

to describe either a standard cell or a

gate (or a macro block, if the algorithm

can also be used for macros). The words

macro and block are used synonymously

in place of macro block. Their usage also

depends on the usage in the original pa-

pers. Similarly, net, wire, interconnect,

and signal line are used synonymously.

The terms configuration, placement, and

solution (to the placement problem) are

signment of modules to ‘physical loca-

tions on the chip. The terms pin and

terminal refer to terminals on the

modules. The terminals of the chip

are referred to as pads.

Module placement is an NP-complete

problem and, therefore, cannot be solved

exactly in polynomial time [Donath 1980;

Leighton 1983; Sahni 1980]. Trying to

get an exact solution by evaluating every

possible placement to determine the best

one would take time proportional to the

factorial of the number of modules. This

method is, therefore, impossible to use

for circuits with alny reasonable number

ACM Computing Surveys, Vol. 23, No 2, June 1991

148 ● K. Shahookar and P. Mazumder

A

B~

D

<
Nethst:

<t [A, 1,2, 3,4),
(B, 1,2,3,4, 11, 12),
(C, 6, 10, 11, 12, 13),
[1,8), (2,5),

() (3,7), (4, lo),
(11, 13], (12, 14),
(5, 6), {6,8),

co

1 >lb

(8,9), [7,9),
1? 13<* (9, 15), {lo, 15),

(13, 16), (14, 16),
[D, 15), (E, 16).

12

?

OE

[a)

T 1 I i 1 J i I
,

1 1
550—

I I I

11: v ‘ I I I
)

dB
2 3 14 13

b

GND

400 — I I
I

I I
I

[
I

,

350—
I I I I

r I
I

I

❑ 5 7 10 16
!-Kl

E

d’“’”w~ :h
150 —

c
6 8 9 15 D

(0, o;~
—_ —400

Placement
(cell, x, y):

(1, O,600)
(2, o,400)
(3, 100,400)
(4, 100,600)
(5, o, 200)
(6, O,O)
(7, 75, 2(Y3)
(8, 100, O)
(9, 200, o)
(lo, 150, 200)
(11, 300, 600)
(12, 200, 600)
(13, 300, 400)
(14, 2CH3,4fw)
(15, 300, o)
(16, 250, 200)

(b)

Figure 4. Cell placement: problem definition (a) Input: Nethst; (b) Output: module coordinates; (c)

checkboard model

ACM Computing Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques “ 149

Q o 0 D o

A- - 1
0

4 12 11

0 0

?

6 0
“ +

B“
0 6 0

2 3 14 13

0 0 0

0 0 0 .F

()

5 7 10 ?6—

T 7

0

0 .3

co
0

6 8 9 15

0 0 0 e 0- * —

[c)

Figure 4. Continued,

of modules. To search through

number of candidate dacement

a large

conficu -.
rations efficiently, a heuristic algorithm

must be used. The quality of the place-

ment obtained depends on the heuristic

used. At best, we can hope to find a good

placement with wire length quite close to

the minimum, with no guarantee of

achieving the absolute minimum. The

objective of this paper is to introduce the

reader to the various heuristic algo-

rithms developed for solving this comput -

ationally intractable problem and to

analyze their performance.

The placement process is followed by

routing, that is, determining the physical

layout of the interconnects through the

available space. Finding an optimal rout-

ing given a placement is also an NP-

complete problem. Many algorithms work

by iteratively improving the placement

and, at each step, estimating the wire

length of an intermediate configuration.

It is not feasible to route each interme-

diate configuration to determine how

good it is. Instead we estimate the wire

length as described in the Introduction,

“Wire Length Estimates. ”

Classification of Placement Algorithms

Placement algorithms can be divided into

two major classes: constructive placement

and iterative improvement. In construc-

tive placement, a method is used to build

up a placement from scratch; in iterative

improvement, algorithms start with an

initial placement and repeatedly modify

it in search of a cost reduction. If a modi-

fication results in a reduction in cost, the

modification is accepted; otherwise it is

rejected.

Early constructive placement algo-

rithms were generally based on primitive

connectivity rules. For example, see

Fukunaga et al. [1983], Hanan [1972a],

Kambe et al. [1982], Kang [1983], Kozawa

et al. [19831, Magnuson [19771, and Per-

sky et al. [1976]. Typically, a seed mod-

ule is selected and placed in the chip

ACM Computing Surveys, Vol. 23, No. 2, June 1991

150 “ K. Shahookar and P. Mazumder

layout area. Then other modules are se-

lected one at a time in order of their

connectivity to the placed modules (most

densely connected first) and are placed at

a vacant location close to the placed mod-

ules, such that the wire length is mini-

mized. Such algorithms are generally

very fast, but typically result in poor lay-

outs. These algorithms are now used for

generating an initial placement for itera-

tive improvement algorithms. The main

reason for their use is their speed. They

take a negligible amount of computation

time compared to iterative improvement

algorithms and provide a good starting

point for them. Palczewski [19841 dis-

cusses the complexity of such algorithms.

More recent constructive placement algo-

rithms, such as numerical optimization

techniques, placement by partitioning,

and a force-directed technique discussed

here, yield better layouts but require sig-

nificantly more CPU time.

Iterative improvement algorithms typ-

ically produce good placements but re-

quire enormous amounts of computation

time. The simplest iterative improve-

ment strategy interchanges randomly se-

lected pairs of modules and accepts the

interchange if it results in a reduction in

cost [Goto and Kuh 1976; Schweikert

1976]. The algorithm is terminated when

there is no further improvement during a

given large number of trials. An im-

provement over this algorithm is re-

peated iterative improvement in which the

iterative improvement process is re-

peated several times with different

initial configurations in the hope of

obtaining a good configuration in one of

the trials. Currently popular iterative

improvement algorithms include simu-

lated annealing, the genetic algorithm,

and some force-directed placement tech-

niques, which are discussed in detail in

the following sections.

Other possible classifications for place-

ment algorithms are deterministic algo-

rithms and probabilistic algorithms.

Algorithms that function on the basis of

fixed connectivity rules or formulas or

determine the placement by solving si-

multaneous equations are deterministic

and will always produce the same result

ACM Computmg Surveys, Vol 23, No 2, June 1991

for a particular placement problem.

Probabilistic algorithms, on the other

hand, work by randomly examining

configurations and may produce a dif-

ferent result each time they are run.

Constructive algorithms are usually

deterministic, whereas iterative im -

provement algorithms are usually proba-

bilistic.

Wire Length Estimates

To make a good estimate of the wire

length, we should consider the way in

which routing is actually done by routing

tools. Almost all automatic routing tools

use Manhattan geometry; that is, only

horizontal and vertical lines are used to

connect any two points. Further, two lay-

ers are used; only horizontal lines are

allowed in one layer and only vertical

lines in the other.

The shortest route for connecting a set

of pins together is a Steiner tree (Fig-

ure 5a). In this method, a wire can branch

at any point along its length. This

method is usually not used by routers,

because of the complexity of computing

both the optimum branching point, and

the resulting optimum route from the

branching point to the pins. Instead,

minimum spanning tree connections and

chain connections are the most com-

monly used connection techniques. For

algorithms that compute the Steiner tree:

see Chang [1972], Chen [1983], and

Hwang [1976, 19791.

Minimal spanning tree connections

(Figure 5b), allow branching only at the

pin locations. Hence the pins are con-

nected in the form of the minimal span-

ning tree of a graph. Algorithms exist for

generating a minimal spanning tree

given the netlist and cell coordinates. An

example of the minimal spanning tree

algorithm is Kruskal [1956].

Chain connections (Figure 5c) do not

allow any branching at all. Each pin is

simply connected to the next one in the

form of a chain. These connections are

even simpler to implement than span-

ning tree connections, but they result in

slightly longer interconnects.

VLSI Cell Placement Techniques “ 151

Figure 5.

/x[,,,:.
(a)

4
x

x Q

~~

(c)

Some wiring schemes. (a) Steiner tree-

)

t+

(d)

wire length = 10; (b) minimal spanning tree —wire
length = 11; (c) chain c~nnection–wire length = 12; (d) sour;e-to-sink connections–wire length = 19, 0:
source; X, sink

Source-to-sink connections (Figure 5d),

where the output of a module is con-

nected to all the inputs by separate wires,

are the simplest to implement. They,

however, result in excessive interconnect

length and significant wiring congestion.

Hence, this type of connection is seldom

used.

An efficient and commonly used

method to estimate the wire length is the

semiperimeter method. The wire length is

approximated by half the perimeter of

the smallest bounding rectangle enclos-

ing all the pins (Figure 6). For Manhat-

tan wiring, this method gives the exact

wire length for all two-terminal and

three-terminal nets, provided the routing

does not overshoot the bounding rectan-

gle. For four-terminal nets, in the worst

case the semiperimeter estimate predicts

a wire length 3370 less than both the

actual chain connection and spanning

tree wire lengths. For nets with more

pins and more zigzag connections, the

semiperimeter wire length will generally

be less than the actual wire length. Be-

sides, this method provides the best esti-

mate for the most efficient wiring scheme,

the Steiner tree. The error will be larger

for minimal spanning trees and still

larger for chain connections. In practical

circuits, however, two- and three-

terminal nets are most common. More-

over, among the more complex nets, not

all will be worst case, so the semiperime -

ter wire length is a good estimate.

Some of the algorithms described in

Section 4 use the euclidean wire length

or squared eucliclean wire length. The

squared wire length is used to save the

time required for computing a square root

and for floating point computations as

compared to integer processing. Opti-

mization of the sc[uared wire length will

ensure that the e uclidean wire length is

optimized.

1. SIMULATED ANNEALING

Simulated annealing [Kirkpatrick

et al. 1983] is probably the most

ACM Computing Surveys, Vol 23, No 2, June 1991

152 ● K. Shahookar and P. Mazumder

well-developed method available for mod-

ule placement today. It is very time con-

suming but yields excellent results. It is

an excellent heuristic for solving any

combinatorial optimization problem, such

as the Traveling Salesman Problem

[Randelman and Grest 19861 or VLSI-

CAD problems such as PLA folding

[Wong et al. 19861, partitioning [Chung

and Rao 19861, routing [Vecchi and

Kirkpatrick 19831, logic minimization

[Lam and Delosme 1986], floor planning

[Otten and van Ginnekin 1984], or place-

ment. It can be considered an improved

version of the simple random pairwise

interchange algorithm discussed above.

This latter algorithm has a tendency of

getting stuck at local minima. Suppose,

for example, during the execution of the

pairwise interchange algorithm, we en-

counter a configuration that has a much

higher cost than the optimum and no

pairwise interchange can reduce the cost.

Since the algorithm accepts an inter-

change only if there is a cost reduction

and since it examines only pairwise _in -

tima, we need an algorithm that periodi-

cally accepts moves that result in a cost

increase. Simulated annealing does just

that.

The basic procedure in simulated an-

nealing is to accept all moves that result

in a reduction in cost. Moves that result

in a cost increase are accepted with a

probability that decreases with the in-

crease in cost. A parameter T, called the

temperature, is used to control the accep-

tance probability of the cost increasing

moves. Higher values of T cause more

such moves to be accepted. In most im-

plementations of this algorithm, the ac-

ceptance probability is given by

exp (–AC/ T), where AC is the cost in-

crease. In the beginning, the tempera-

ture is set to a very high value so most of

the moves are accepted. Then the tem-

perature is gradually decreased so the

cost increasing moves have less chance of

being accepted. Ultimately, the tempera-

ture is reduced to a very low value so

that only moves causing a cost reduction

are accepted, and the algorithm con-

verges to a low cost configuration.

1.1 Algorithm

A typical simulated annealing algorithm

is as follows:

PROCEDURE Simulated_ Annealing;

initialize;

generate random configuration;

WHILE stopping. criterion (loop. count, temperature) = FALSE

WHILE inner.loop.criterion = FALSE
new_configuration + perturb(configuration);

AC + evaluate(new_con figuration, configuration);
IF AC <0 THEN new.configuration + configuration

ELSE IF accept(AC, temperature) > random(O, 1)

THEN new_configuration - configuration;

ENDIF
ENDIF

ENDWHILE
temperature + schedule(loop_count, temperature);
loop_ count + loop_ count + 1;

ENDWHILE
END.

terchanges, there is no way of progress- Perturb generates a random variation

ing further from such a configuration. of the current configuration. This may

The algorithm is trapped at a locally op- include displacing a module to a random

timum configuration, which may be quite location, an interchange of two modules,

poor. Experience shows that this hap- rotation and mirroring within the re -

pens quite often. To avoid such local op - strictions of the layout geometry, or any

ACM Computmg Surveys, Vol 23, No. 2, June 1991

VLSI Cell Placement Techniques g 153

TiI!+:
--------------------,

~
v--t,----------..---------

Y

Figure6. Semiperimeter wire length =X+Y.

other move likely to change the wire

length. For standard cells, usually mir-

rorirw about the vertical axis is allowed.

whereas for macro blocks, rotation in

steps of 900 or mirroring about either

axis is allowed. A range-limiting func-

tion may be implemented, which may

first select the module to be moved, then

select a destination within a specified

range from the target location. This is

usually done to increase the acceptance

rate of the moves.

Evaluate evaluates the change in cost,

using the semiperimeter method. To save

CPU time, the change in wire length can

be calculated incrementally. That is, the

computation is done only for those nets

that are connected to the cells that were

moved.

Accept is the probabilistic acceptance

function that is called when the cost is

increased by a perturbation. It deter-

mines whether to acce~t a move or not.

depending on the cost increase and tem~

perature. Usually it is the exponential

function described above. but it can be

any other function.

Schedule is the temperature schedule,

which gives the next temperature as a

function of the number of iterations or

the previous temperature. For example,

the function T,+ ~ = 0.1 T, may be used

for exponential temperature decrease.

Inner_ loop_ criterion is the criterion

that decides the number of trials at

each temperature. Usually the num-

ber of moves attempted per cell at each

temperature is fixed.

Stopping_ criterion terminates the al-

gorithm when the temperature or the

number of iterations has reached a

threshold value.

There are no fixed rules about the ini-

tial temperature, the cooling schedule,

the probabilistic acceptance function, or

the stoplping criterion, nor are there any

restrictions on the types of moves to be

used— displacement, interchange, rota-

tion, and so on. The quality of placement

and the execution time depend on these

parameters. A good choice of parameters

can result in a good placement in a rela-

tively short run time. The greatest chal-

lenge in tuning a simulated annealing

algorithm lies in finding a single set of

parameters and functions that consis-

tently give very good solutions for a wide

variety of circuits, while using a mini-

mum of computation time. Initially, re-

searchers chose these parameters and

functions arbitrarily. Recently, however,

several researchers have done a rigorous

statistical analysis of the annealing pro-

cess in order to derive more appropriate

functions. Section 1,3 gives the parame-

ters and functions used in TimberWolf, a

well-known place and route package.

Section 1.4 discusses other alternatives

for these parameters and functions.

1.2 Operation of Simulated Annealing

If simulated annealing is run for a suffi-

ciently 1ong time and with the appropri-

ate cooling schedule, it is guaranteed to

converge to the global minimum [Mitra

et al, 1985; van Laarhoven and Aarts

1987]. This section explains in intuitive

terms why this is so. Two analogies are

given to illustrate the operation of this

algorithm.

In the first analogy, from which the

algorithm gets its name, simulated an-

nealing is compared to the annealing

process in metals. If a metal is stressed

and has imperfect crystal structure, one

way to restore its atomic placement is to

heat it to a very high temperature, then

cool it very slowly. At high temperature,

the atoms have sufficient kinetic energy

to break loose from their current incor-

rect positions. As the material cools, the

atoms sl[owly start getting trapped at the

correct lattice locations. If the material

ACM Computing Surveys, Vol. 23, No. 2, June 1991

154 “ K. Shahookar and P. Mazumder

is cooled too rapidly, the atoms do not get

a chance to get to the correct lattice loca-

tions and defects are frozen into the crys-

tal structure. Similarly, in simulated

annealing at high temperature, there are

many random permutations in the initial

configuration. These give the cells at in-

correct locations a chance to get dis-

lodged from their initial position. As the

temperature is decreased, the cells slowly

start getting trapped at their optimum

locations.

In the second analogy, the action of

simulated annealing is compared to a

ball in a hilly terrain inside a box [Szu

1986]. Without any perturbation, the ball

would roll downhill until it encountered

a pit, where it would rest forever al-

though the pit may be high above the

minimum valley. To get the ball into the

global minimum valley, the box must be

shaken strongly enough so that the ball

can cross the highest peak in its way. At

the same time, it must be shaken gently

enough so that once the ball gets into the

global minimum valley it cannot get out.

It must also be shaken long enough so

that there is a high probability of visit-

ing the global minimum valley. These

characteristics translate directly into al-

gorithm parameters. The strength or

gentleness of the vibrations is deter-

mined by the probabilistic acceptance

function and the initial temperature, and

the duration of the vibrations depends on

the cooling schedule and the inner loop

criterion.

1.3 Tim berWolf 3.2

TimberWolf, developed by Carl Sechen

and Sangiovanni-Vincentelli is a widely
used and highly successful place and

route package based on simulated an-

nealing. Different versions of Timber-

Wolf have been developed for placing

standard cells [Sechen 1986, 1988b;

Sechen and Sangiovanni-Vincentelli

1986], macros [Cassoto et al. 1987], and

floor planning [Sechen 1988al. Version

3.2 for standard cells will be described

here.

TimberWolf does placement and rout-

ing in three stages. In the first stage, the

cells are placed so as to minimize the

estimated wire length using simulated

annealing. In the second stage, feed

through cells are inserted as required,

the wire length is minimized again, and

preliminary global routing is done. In

the third stage, local changes are made

in the placement wherever possible to

reduce the number of wiring tracks re -

quired. In the following discussion we

will primarily be concerned with stage 1

—placement. Details about the rest of

the algorithm are given in Sechen [1986,

1988b] and Sechen and Sangiovanni-

Vincentelli [19861.

The simulated annealing parameters

used by TimberWolf are as follows.

1.3.1 Move Generation Function

Two methods are used to generate new

configurations from the current configu-

ration. Either a cell is chosen randomly

and displaced to a random location on

the chip, or two cells are selected ran-

domly and interchanged. The perfor-

mance of the algorithm was observed

to depend upon r, the ratio of dis-

placements to interchanges. Exper-

imental results given in Sechen and

Sangiovanni-Vincentelli [1986] indicate

that the algorithm performs best with

3~r <8.

Cell mirroring about the horizontal

axis is also done but only when a dis-

placement is rejected and only in approx-

imately 1O$ZOof those cases selected at

random. In addition, a temperature-

dependent range limiter is used to limit

the distance over which a cell can move.

Initially, the span of the range limiter is

twice the span of the chip, so for a range

of high temperatures no limiting is done.

The span decreases logarithmically with

temperature:

log T
LWV(T) = LwV(TJ-———

log TI

LWH(T) = LwH(TJ~

where LWV(TI) and LWH(TI) are the de-

sired initial values of the vertical and

ACM Computing Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques ● 155

horizontal window span Lw V(T) and

LW~(T), respectively.

1.3.2 Cost Funct/on

The cost function is the sum of three

components: the wire length cost, Cl, the

module overlap penalty, Cz, and the row

length control penalty, C3.

The wire length cost Cl is estimated

using the semiperirneter method, with

weighting of critical nets and indepen-

dent weighting of horizontal and vertical

wiring spans for each net:

L’l = ~ [x(i) WH(i) +y(i)WV(i)],
nets

where %(i) and y(i) are the vertical and

horizontal spans of the net bounding

rectangle, and W~(i) and WV(i) are the

weights of the horizontal and vertical

wiring spans. Critical nets are those that

need to be optimized more than the rest,

or that need to be limited to a certain

maximum length due to propagation de-

lay. If they are assigned a higher weight,

the annealing algorithm will preferen-

tially place the cells connected to the

critical nets close to each other in an

attempt to reduce the cost. If the nets

still exceed the maximum length in the

final placement, their weights can be in-

creased and the algorithm run again.

Independent horizontal and vertical

weights give the user the flexibility to

favor connections in one direction over

the other. Thus, in double metal technol-

ogy, where it is possib [e to stack feed

throughs on top of the cells and they do

not take any extra area, vertical spans

may be given preference (lower weight).

During the routing phase, these cells are

connected using feed throughs rather

than horizontal wiring spans through the

channels, and precious channel space is

conserved. On the other hand, in chips

where feed throughs are costly in terms

of area, horizontal wiring is preferred

and horizontal net spans are given a

lower weidt. This minimizes the num-

ber of fee~throughs required.

The module overlap penalty, Cz,

parabolic in the amount of overlap:

C, = W,~ [O(i, j)]2,
L#l

is

where 0(i, j) is the overlap between the

ith and jth cell, and W2 is the weight for

this penalty. It was observed that Cz

converges to O for Wa = 1. The parabolic

function causes large overlaps to be pe-

nalized and hence discouraszed more than

small ones. Although cell overlap is not

allowed in the final placement and has to

be removed by shifting the cells slightly,

it takes a large amount of computation

time to remove overlap for every pro-

posed move. Recall that wire length is

computed incrementally. If too many cells

are shifted in an attempt to remove over-

lap, it would take too much computation

to determine the change in wire length.

This is whv most al~orithms allow over-

lap during”the anne~ling process but pe-

nalize it. Overlap only causes a slight

error in the estimated wire lerw-th. As

long as the overlap is small, th~s error

will be small. In addition, small overlaps

tend to get neutralized over several iter-

ations. Thus, it is advantageous to ~enal-

ize large overlaps more heavily than

small overlaps by using a quadratic

function.

The row length control penalty C~ is a

function of the difference between the

actual row length and the desired row

length. It tends to equalize row lengths

by increasing the cost if the rows are of

unequal lengths. Unequal row lengths

result in wasted space, as shown in Fig-

ure la. ‘The penalty is given by

C3=W3~l Ln-iR\,
rows

where L,~ is the actual row length, L~ is

the desired row length, and Wa is the

weight for this penalty for which the de-

fault value of 5 is used. Experiments

show that the function used provides good

control, with final row lengths within

3-5% of the desired value. Results of two

experiments are given by Sechen and

Sangiovanni-Vincentelli [19861, showing

a reduction in wire length when the row

length control penalty was introduced.

1.3.3 Inner Loop Criterion

At each temperature, a fixed number of

moves per cell is attempted. This number

ACM Computing Surveys, Vol. 23, No. 2, June 1991

100 0
.--

K. Shahookar and P. Ma.zumder

900000

800000-

700000-

600000 r , ,
0 100 200 300 400 500

Moves per cell

(a)

,.9

4b
,.8

No. of mnfigurations exammed
,.7

,.6

,.5

,.4

,.3
{1

,.2 Recommended no. of moves per cell

,.1.

,.O

0 1000 2000 3000

cells

(b)

Figure 7. (a) Quality versus CPU time tradeoff in TlmberWolf (b) Recommended number of moves per
cell

is a parameter specified by the user. The

final wire length decreases monotoni-

cally as the number of moves per cell is

increased. As the number of moves grows,

however, the reduction in the final wire

length diminishes, and large increases in

CPU time are incurred. The optimal

number of moves per cell depends on the

size of the circuit. For example, for a

200-cell circuit, 100 moves per cell are

recommended in Sechen [1986], which

calls for the evaluation of a total of 2.34

million configurations (in 117 tempera-

ture steps). For a 3000-cell circuit, 700

moves per cell are recommended, which

translates to a total of 245.7 million at-

tempts. Figure 7a shows the final wire

length as a function of the number of

moves per cell for a 1500-cell problem.

As the number of moves per cell is in-

creased beyond the recommended point,

the curve flattens out, thus causing little

further improvement with tremendous

increases in computation. Figure 7b

ACM Computmg Surveys, Vol 23. No 2, June 1991

VLSI Cell Placement Techniques ● 157

,.7

,.6

T
,.5

,.4

,.3

,.2

10’

,.O

]\

~:;Lr \~~
o 20 40 60 80 100 1

Heration No.

Figure 8. TimberWolf 3.2 cooling schedule.

shows the recommended number of moves

per cell as a function of the problem size.

1.3.4 Cooling Schedule and Stopping Criterion

The cooling schedule can be explained by

an analogy to the process of crystalliza-

tion. To achieve a perfect crystal struc-

ture, it is important tl-lat around the

melting point the temperature is reduced

very slowly. The annealing process is

started at a very high temperature, ~1 =

4,000,000, so most of the moves are

accepted. The cooling schedule is

represented by

T2+1= CY(T)~,>

where CY(T) is the cooling rate parame-

ter, which is determined experimentally.

At first, the temperature is reduced

rapidly [a(T) = 0.8]. Then, in the

medium temperature range, the temper-

ature is reduced slowly [a(T) = 0.95].

Most processing is done in this range. In

the low temperature range, the tempera-

ture is reduced rapidly again [Q(T) =

0.8]. The resulting cooling schedule is

shown in Figure 8. The algorithm is ter-

minated when T < 0.1. This consists of

117 temperature steps.

o

1.3.5 Per~ormance

Figure 9 shows a typical optimization

curve. In the first few iterations there is

so much random perturbation that the

cost increases. During the first half of

the run, there is al,most no improvement.

This perturbation is necessary to avoid

entrapment at local optima. When the

temperature is reduced, the cost begins

to decrease. The performance of Timber-

Wolf was compared to a commercially

developed placement program based

partly on the rein-cut algorithm. Timber-

Wolf achieved 1~-sy’%. smaller wire

length for industrial circuits ranging

from 469 to 2500 cells. The 2500-cell cir-

cuit required 15 hours of CPU time on an

IBM 3081K. Compared to manual layout

for an 800-cell circuit, TimberWolf

achieved a 24% reduction in wire length

using 4 h of CPU time on an IBM 3081K.

1.4 Recent Improvements in Simulated

Annealing

Recently researchers have begun to ana-

lyze the performance of the algorithm

and control its operating parameters us-

ing statistical techniques. A tenfold

speedup has been reported compared with

previous versions.

ACM Computmg Surveys, Vol 23, No 2, June 1991

158 “ K. Shahookar and P. Mazumder

1.4.1 Effect of Probab/1/stic Acceptance

Functions

Nahar, Sahni, and Shragowitz [1985]

experimented with the 20 different prob-

abilistic acceptance functions and tem-

perature schedules listed here. In the list,

&?k is the acceptance function, C, and CJ
are the previous and new costs, and Th is

the k th temperature step.

(1) Metropolis

(2) Six temperature Metropolis

(3) Constant

(See Nahar [19851 for the details of

implementation of this function.)

(4) Unit step

(5) Linear

(6) Quadratic

(7) Cubic

(8) Exponential

(9) Six temperature linear

(10) Six temperature quadratic

(11) Six temperature cubic

(12) Six temperature exponential

(13) Linear difference

(14) Quadratic difference

(15) Cubic difference

(16) Exponential difference

(17) Six temperature linear difference

(18) Six temperature quadratic difference

(19) Six temperature cubic difference

heuristics of Goto [1977] and Cohoon and

Sahni [1983]. The best performance was

exhibited by the six temperature anneal-

ing, constant, and cubic difference

functions.

1.4.2 Statistical Control of Annealing Parameters

If we have a method for deriving the

cooling schedule parameters by a

gl = exp[–(CJ – Cz)/Tll

gk = exl?–(c~ – 6’,)/ Tk]; 1< k <6

gl=l

exP(cL/Th)–l; ~<k<6
gk =

e–1

gl = T, /(cJ – c,)
g, = T1 I(C, – C,)2
gl = T1/(c, – C,)3

exP[~l/(c, – CL)] – 1
gl =

e–1

L?k=Tk/(c, -c,); l=k=6

gk=Tk/(cJ–c,)2; l=k=6

L7k=T1/(cJ-c,)3; l=k=6

exp[Tk/(C, – CL)] – 1.
(20) Six temperature exponential difference gk =

e–1

For the unit step function and the six

temperature functions, equal computa-

tion time was given to each step.

These functions were tried on the Net

Optimal Linear Arrangement problem,

which is the one-dimensional equivalent

of the cell placement problem. All func-

tions were given equal computation time,

and the reduction in cost was compared.

The results are shown in Figure 10. The

figure also shows a comparison with the

statistical analysis of the problem itself,

then the cooling schedule, instead of be-

ing fixed, can be adapted for each prob-

lem to be solved, and the annealing can

proceed rapidly. Such approaches are

termed adaptiue simulated annealing al-

gorithms. Aarts et al. [1985, 1986] and

van Laarhoven and Aarts [1987] use the

theory of Markov chains to derive the

ACM Computmg Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques ● 159

3e+6

s

‘g
~

2e+6
a)
&

.-

%

u
al
%
E.-
Z
a 1e+6

=

z
1-

Oe+O

Oe+O 2e+6 4e+6 6e+6

No. of configurations

Figure 9. Optimization curve for TimberWolf 3.2.

8e+6 1e+7

examined

800T———— I

34567 8 910111213141516171619202122

g function ussd

Figure 10. Comparison of various acceptance functions. ■ , 6 see; U, 9 see; ❑ 12 sec.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

160 ● K. Shahookar and P. Mazumder

cooling schedule. Similar expressions

were developed by Huang et al. [1986].

Notation

R = {rl, rz, . . . ,rl~l} is the configura-

tion space, the set of all possible place-

ments, where

i is a configuration label, which identi-

fies a configuration uniquely,

r, is the ith configuration vector, giv-

ing the coordinates of all modules in the

ith placement,

e, is the ith unit vector in [0, 1] IR I

lR={ilr, eR}={l,2, i...., IRI}

is the set of configuration labels,

C : R + R is the cost function, which as-

signs a real number C(rt) to each config-

uration i c lR such that the lower the

value of C, the better the corresponding

configuration.

The algorithm can be formulated as a

sequence of Markov chains, each chain

consisting of a sequence of configurations

for which the transition probability from

configuration i to configuration j is given

by

pwv’z, ifi+j

where P,J is the perturbation probabil-

ity, that M, the probability of generating

a configuration j from configuration i

(independent of T); A ,J(T) is the accep-

tance probability, that is, the probabil-

ity of accepting configuration j if the

system is in configuration i; and T is

the temperature.

The perturbation probability is chosen

as

if J”+ IRL,

where R, is the configuration subspace

for configuration i, which is defined as

the space of all configurations that can

be reached from configuration i by a sin-

gle perturbation. This is a uniform prob-

ability distribution for all configurations

in the subspace.

The acceptance probability is chosen as

{()
–AC,~

A,,(T) = ‘Xp T
if AC,l > 0

1 if ACC~ s O,

where ACZ7 = C(r~) – C(r,). This ex-

pression is known as the Metropolis

criterion.

From the theory of Markov chains it

follows that there exists a uni ue
?equilibrium vector q(T) e [0, 1] R I

that satisfies

for all i e IR: lim e~@(T) = q~(T).
L~m

If we start from any configuration, i, and

perform L perturbations, with L + co,

then the probability of ending up in state

j is given by the component qJ(T) of the

equilibrium vector. Thus, the equilib-

rium vector q(T) gives the probability

distribution for the occurrence of each

state at equilibrium. For the values of

P,J and A ,J(T) given above,

()
–AC,ti

qj(T) = qO(T)exp
T’

where i. is the label of an optimal con-

figuration and qo(T) is a normalization

factor given by

1

%(T) = IRI

()
AClok “

~exp-y
k=l

Further,

lim (e,@(T))J
::om-

= J~~_qJ(T)

[

= IROI-’ ifjGIRO

o if J“~IRO,

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques ● 161

where R ~ is the set of optimal configura-

tions, that is, RO = {r, e R I C(rL) =

C(rJ}. Thus, for Markov chains of infi-

nite length, the system will achieve one

of the optimal configurations with a uni-

form probability distribution, and the

probability of achieving a suboptimal

configuration is zero.

Initial Temperature. A fixed initial

temperature TI is not used. Instead, the

initial temperature is set so as to achieve

a desired initial acceptance probability,

xo. If ml and mz are the number of

perturbations so far that result in cost

reduction and cost increase, respectively,

and if the m2 cost-increasing perturba-

tions are accepted according to the

Metropolis criterion, the total number of

configurations accepted is ml +

mz exp (–AC/T). This gives x. as

ml + mzexp(– AC/T)
X. =

ml + m2

This equation can be rewritten to calcu-

late the initial temperature from the

desired value of xo:

[()1

–1

TI = AC(+) in
vz,xo - ~- Xo)ml ‘

where AC(+) is the average value of all

increases in cost, ignoring cost reduc-

tions. The initial system is monitored

during a number of perturbations before

the actual optimization process begins.

Starting with TI = O, after each pertur-

bation a new value of TI is calculated

from the above expression.

According to Huang et al. [19861, the

system is considered hot enough when

T>> a, vvhere u is the standard devia-

tion of the cost function. Hence the start-

ing temperature is taken as TI = k u,

where k = – 3 /ln(P). This allows the

starting temperature T to be high enough

to accept with probability P a configura-

tion whose cost is 3U worse than the

present one. A typical value of k is 20 for

P = 0.9. First, the configuration space is

explored to determine the standard devi -

ation of the cost function; then the start-

ing temperature is calculated.

Temperature Decrement. Most other

implementations used predetermined

temperature decrements, which are not

optimal for all circuit configurations.

Such a cooling schedule leads to variable

length Markov chains. Aarts et al. [19861

recommend the use of fixed length

Markov chains. This can be achieved

using the foIlowing temperature

decrement:

()
ln(l + 6)T, ‘1

Ti+l =T, l+ sg ,

z

where o, is the standard deviation of the

cost function up to the temperature T,,

and 6 is a small real number that is a

measure of how close the equilibrium

vectors q. of two successive iterations

are to each other:

Huang et al. [19861 use the average

cost versus log-temperature curve to

guide the temperature decrease so that

the cost decreases in a uniform manner.

Hence,

T,AC

()
Ti+l = T, exp —

U2 “

This equation has been derived by equat -

ing the slope of the annealing curve to

02/T2. To maintain quasiequilibrium,

the decrease in cost must be less than

the standard deviation of the cost. For

AC= –Ao, h<l,

T 2+1 ()=Tlexp –3 .
u

Typically, A = 0.7. The ratio T,+ ~ / T, is

not allowed to go below a certain lower

bound (typically 0.5) in order to

ACM Computing Surveys, Vol. 23, No. 2, June 1991

162 “ K. Shahookar and P. Mazumder

prevent a drastic reduction in tempera-

ture caused by the flat annealing curve

at high temperature.

Stopping Criterion. The stopping cri-

terion is given by Aarts et al. [19861 as

where e, is a small positivgnumber called

the stop parameter, and C(TI) is the av-

erage value of the cost function at T1.

This condition is based on extrapolating

the smoothed average cost C~(T,) ob-

tained during the optimization process.

This average is calculated over a number

of Markov chains in order to reduce the

fluctuations of ~(T,).

Run-Time Complexity and Experimen-

tal Results. The Aarts et al. [1986] algo-

rithm has a complexity 0(I R I In I R I),

where I R I originates from the length of

the Markov chains, and the term in I R I

is an upper bound for the number of

temperature steps. The perturbation

mechanism can be carefully selected so

that the size of configuration subspaces

is polynomial in the number of variables

of the problem. Consequently, the simu-

lated annealing algorithm can always be

designed to be of polynomial time com-

plexity in the number of variables.

The Huang et al. [19861 algorithm has

been tested on circuits of size 183-800

cells. It results in 16–57% saving in CPU

time compared to TimberWolf for approx-

imately the same placement quality.

CPU times reported are of the order of 9

h on a VAX 11/780 for an 800-cell cir-

cuit, whereas the same circuit requires

11 h with TimberWolf 3.2.

1.4.3 Improved Annealing Algorithm in

TimberWolfSC 4.2

Sechen and Lee [1987] implemented a

fast simulated annealing algorithm as

part of TimberWolfSC version 4.2, which

is 9–48 times faster than version 3.2, As

a consequence of this algorithm, place-

ment of up to 3000 cells can be done on a

Micro VAX II workstation in under 24 h

of CPU time. The parameters they use

are as follows.

Cost Function. The standard cost

function consisting of semiperimeter wire

length, with adjustable weights for verti-

cal and horizontal nets and penalty terms

for overlap and row length control has

been implemented. The coding, however,

is much more efficient. For example,

moves that cause a large penalty are

rejected without wasting CPU time on

extensive wire length calculation.

Overlap Penalty. Each row is divided

into nonoverlapping bins. The overlap

penalty Cz is equal to the sum of the

absolute differences between the bin

width, W(b), and total cell width inter-

secting the bin, WC(b). The overlap

penalty is given by C~ = W2 Po, where

the amount of overlap is given by

f’o= x Iw.(b) - w(b)].
bms

This function can be evaluated quickly

because the algorithm does not need to

search through all the cells in order to

determine the overlap. WC(b) is known

for all bins. Whenever a cell is moved,

WC(b) is updated for the bins affected.

The simulated annealing process is

strongly dependent on the weight, Wz,

given to this penalty in the overall cost

function. Hence a negative feedback

scheme has been incorporated to control

this parameter dynamically as the an-

nealing progresses:

(W2(i + 1) = max O, WJi) +
PO – P:

)LR ‘

where P. and P: are the actual and

~arget values of the overlap penalty, and

L~ is the desired row length. This in-

creases the penalty if the overlap is

greater than the target value; otherwise

ACM Computing Surveys, Vol 23, No, 2, June 1991

VLSI Cell Placement Techniques “ 163

reduces it. The ideal target value of over-

lap has been empirically determined:

[“1

P:= 1.4 – 1.15: LR,
i ~.X

where i is the current iteration, and i~ax

is the number of iterations (temperature

values) used. This gives a target value

1.4 L~ at high temperature, when i <<

i ~ax. As the temperature decreases, the

control is tightened and the target

overlap is reduced uanti 1 at the final

temperature it is 0.25 L~.

Row Length Control Penalty. A simi-

lar negative feedback dynamic control

has been used for the row length control

penalty function C3 = W3 P~, where PR

gives the difference between the actual

and desired row lengths. Industrial de-

signers recommend that the maximum

variation in row lengths from the desired

value should be within 3!Z0. The program

tries to achieve this limit by constantly

varying the weight W~. The negative

feedback control function is similar to

that for the overlap penalty:

(
PR – P;

i

W~(i+ 1) = max 0, Wa(i) + p~ ,

R

where PR and P: are the actual and

target values of the penalty, and

p; .

where 1 is the

tion. Here the

P: are

[‘15–4~ (LR ,
i ~~,

average row length varia-

initial and final values of

Early Rejection of New Moves. While

evaluating mo~es, the penalty is com -

puted before the wire length. If a move

incurs too much penalty, it is likely the

move will be rejected. Hence there is no

point in calculating the wire length for

such moves. The calculation of the

penalty takes a fraction of the time re-

quired for wire length computation; hence

early rejection of such moves signifi-

cantly reduces co reputation time. For

early rejection, the change in penalty A P

is computed:

AP= ACZ +ACa = AC– ACI.

The acceptance probability exp (- AC/T)

is less than a lower limit ~ when

where A Cl ~,. is the largest reduction of

wire length expected in the current itera-

tion. If the calculated penalty satisfies

this inequality, the evaluation is termi-

nated. It would be desirable to maximize

the number of early rejections in order to

save CPU time. This, however, also in-

creases the number of early rejection er-

rors—moves that were erroneously

terminated, although they should have

been accepted. For this purpose, a good

estimate of the expected reduction in wire

length ACI ~,. is required. If the largest

value of A Cl ~,. in the previous iteration

is used as the estimate, the error is quite

large, since ACI fluctuates substantially

from iteration to iteration. For

IAC1 ~,~(i)l

=lAC1(i - 1)1+ 1.3a(i - 1),

the early rejection error is less than 1%,

where ~Cl(i – 1) and u(i – 1) are the

mean and standard deviation of all nega-

tive values of AC before iteration i.

With this value of ACI ~,.(i) and with

6 = 1/3, we get the inequality for the

early rejection test

AP>lACl(i– Ill + 1.3a(i– 1) + T.

Move Generation. The previous

method of maintaining a constant ratio

of displacements to interchanges has been

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

164 * K. Shahookar and P. Mazumder

discontinued. The following procedure is

used for move generation.

A cell is selected randomly, and a ran-

dom location is selected as the destina-

tion. If the destination is vacant, a

displacement is performed; otherwise

an interchange is performed. A new

range-limiting function has been used,

which restricts the motion of a cell to its

neighborhood. This has caused a dra-

matic improvement in the move accep-

tance rate, thus saving the time being

wasted on evaluating moves that would

be rejected.

Temperature Profile. The tempera-

ture profile is the key feature of this

algorithm. The dramatic improvement in

the acceptance rate of new moves due to

the improved move generation function

has made it unnecessary to start the al-

gorithm at a very high temperature. The

temperature profile used is

T1 = 500

T2+1= 0.98TC, l<i <120

(Compare with TimberWolf 3.2, where

T1 = 4,000,000.) Thus, about the same

number of temperature steps are concen-

trated in a smaller range. The final

temperature is unchanged.

Acceptance Rate Control. Due to the

wide variety of the circuits to be placed,

a fixed temperature schedule does not

always produce an appropriate value of

the rate of acceptance of new configura-

tions. It was observed that the ideal ac-

ceptance rate was 5070 in the beginning

(i = O) and was reduced to zero at low

temperatures (i = i~,x). To achieve this

accept ante rate profile, negative feed-

back control has been provided. The ideal

acceptance rate profile is given by

P: (‘).501–=
i ~ax

This profile is achieved by scaling the

change in cost, AC:

AC’ = sAC,

where

where p, and p: are the actual and tar-

get values of the percentage acceptance

rate. This changes s by 2.5910 for l$ZO

deviation in p, and p:.

The algorithm was tested on six indus-

trial circuits and was found to be 9-48

times faster than TimberWolf 3,2, with a

slightly better placement. It was also

tested on the MCNC benchmarks, and

the wire length obtained was 10-20%

better than other algorithms. The time

required to achieve this improvement,

however, is not given.

Some other important contributions to

cell placement by simulated annealing

are Bannerjee and Jones [19861, Gidas

[19851, Greene and Supowit [1984],

Grover [1987], Hajek [1988], Lam and

Delosme [1988], Lundy and Mees [1984],

Mallela and Grover [1988], Romeo and

Sangiovanni-Vincentelli [1985], Romeo et

al. [1984], and White [1984].

2. FORCE-DIRECTED PLACEMENT

Force-directed placement algorithms are

rich in variety and differ greatly in

implementation details [Hanan and

Kurtzberg [1972a]. The common denomi-

nator in these algorithms is the method

of calculating the location where a mod-

ule should be placed in order to achieve

its ideal placement. This method is as

follows.

Consider any given initial placement.

Assume the modules that are connected

by nets exert an attractive force on each

other (Figure 11). The magnitude of the

force between any two modules is di-

rectly proportional to the distance be-

tween the modules. as in Hooke’s law for

the force exerted by stretched springs,

the constant of proportionality being the

sum of weights of all nets directly con-

necting them. If the modules in such a

system were allowed to move freely, they

ACM Computing Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques * 165

‘T 7’
El=

I 1

1A t---m

Resultant force

Figure 11. Force-directed placement.

would move in the direction of the force

until the system achieved equilibrium in

a minimum energy state, that is, with

the springs in minimum tension (which

is equivalent to minimum wire length),

and a zero resultant force on each mod-

ule. Hence the force-directed placement

methods are based on moving the mod-

ules in the direction of the total force

exerted on them until this force is zero.

Suppose a module M, is connected to

the module MJ by a net n,J having

weight w,]. Let s,~ represent the dis-

tance from M, to MJ. Then the net force

on the module is given by

J

If the x- and y-components of the force

are equated to zero,

x%,(x, - x,) = 0,

h(m) =o.
J

Thus, tlhe coordinates for the zero force

target point for the module M, are given

by

ACM Computmg Sm veys, Vol. 23, No 2, June 1991

166 “ K. Shahookar and P. Mazumder

These equations resemble the center of

gravity equations; that is, if the modules

connected to M, are assumed to be masses

having weight w,,, then the zero force

target location of M, is the center of

gravity of these modules.

2.1 Force-Directed Placement Techniques

The early implementations of the force-

directed placement algorithm were in the

1960s [Fisk et al. 1967]. There are many

variations in existence today. Some are

constructive; some are based on iterative

improvement.

In constructive methods, no initial

placement exists; the coordinates of each

module are treated as variables, and the

net force exerted on each module by all

other modules is equated to zero. By si-

multaneously solving these equations, we

get the coordinates of all modules. In

such an implementation, care must be

taken to avoid the trivial solution x, = x~

and y, = y~ for all i, J“, which, consider-

ing the spring model, obviously satisfies

the zero force condition. Another prob-

lem in this approach is that the zero

force equations are nonlinear, because

the force depends on distance, and the

euclidean distance metric involves a

square root; while the Manhattan dis-

tance metric involves absolute values.

Antreich et al. [1982] give an example of

the equation-solving method.

In iterative methods, an initial solu-

tion is generated either randomly or by

some other constructive method. Then

one module is selected at a time, its zero

force target point is computed from the

above equations, and an attempt is made

to move the module to the target point or

interchange it with the module previ-

ously occupying the target point. Such

algorithms are also called force-directed

relaxation or force-directed pairwise

relaxation algorithms,

Here, one problem is to decide the or-

der in which to select the modules for

moving to the target location. In most

implementations, the module or seed

module with the strongest force vector

is selected. In other implementations,

the modules are selected randomly. In

still others, the modules are selected

on the basis of some estimate of their

connectivity.

Another problem is where to move the

selected module if the slot nearest to the

zero force target location is already occu-

pied, as it most probably will be. One

solution is to move it to the nearest

available free location. But the nearest

free location may be very far in some

cases. This is an approximate method

and, at best, will need more iterations to

achieve a good solution.

The second solution is to compute the

target location of a module selected as

described above, then evaluate the

change in wire length or cost when the

module is interchanged with the module

at the target location. If there is a reduc-

tion in the wire length, the interchange

is accepted; otherwise it is rejected. It is

necessary to evaluate the wire length

because it is possible that in an attempt

to interchange the selected module with

the module previously at the target point,

we are moving that other module far

away from its own target point; hence

the move can result in a loss instead of a

gain.

The third solution is to perform a rip-

ple move; that is, select the module pre-

viously occupying the target point for the

next move. This process is continued un-

til the target point of a module lies at an

empty slot. Then a new seed is selected.

The fourth solution is to compute the

target point of each module, then look for

pairs of modules such that the target

point of one module is very close to the

current location of the other. If such

modules are interchanged, both of them

will achieve their target locations with

mutual benefit.

The fifth solution uses repeated trial

interchanges. If an interchange reduces

the cost, it is accepted; otherwise it is

rejected. The cost function in this case is

the sum of the forces acting on the mod-

ules. An example of the use of two types

of force functions for pairwise inter-

change is given in Chyan and Breuer

[1983].

ACM Computmg Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques 0 167

Hanan et al. [1976a, 1976b, 1978] dis-

cuss and analyze seven placement algo-

rithms, including three force-directed

placement techniques. Experimental re-

sults are given in Hanan [1976a], and the

algorithms are discussed in Hanan

[1976bl. Johannes et al. [19831, Quinn

[19751, and Quinn and Breuer [1979]

are implementations of the force-directed

algorithm.

moved next. When a module has been

moved to its target point, it is necessary

to lock it for the rest of the current itera-

tion in order to avoid infinite loops. For

example, suppose two modules, A and B,

are competing for the same target loca-

tion and we move A to the target loca-

tion. Then we select B for the next move

and compute the same target point for it.

If we move B to the target location, it

2.2 Algorithm

Here is an algorithm for one version of

the force-directed placement technique

described above:

PROCEDURE (Force _directed_placement)

Generate the connectivity matrix from the netlist;

Calculate the total connectivity of each module;

WHILE (iteration_ count < iteration_ limit)

Select the next seed module, in order of total connectivity;

Declare the position of the seed vacant;
WHILE NOT (end_ ripple)

Compute the target point for selected module and round off to the nearest integer;

CASE target point:
LOCKED

Move selected module to nearest vacant location;

end_ripple + TRUE;

Increment abort count;

IF abort count > abort_ limit

THEN

Unlock all modules;

Increment iteration _count;

ENDIF;

OCCUPIED:

Select module at target point for next move;

Move previous selected module to target point and lock;

end.ripple + FALSE;
abort_ count * O;

SAME:

Do not move module;

end_ripple + TRUE;

abort _count + O;

VACANT:

Move selected module to target point and lock;

end_ripple + TRUE;

abort _count + O;

ENDCASE;

ENDWHILE;

END.

This implementation uses ripple moves will displace A and we will have to com-

in which a selected module is moved to pute the new target point for A, which

the computed target point; if the target will be the same again. Hence A and B

point was previously occupied, the mod- will keep displacing each other. When

ule displaced from there is selected to be the number of locked modules exceeds a

ACM Computing Surveys, Vol. 23, No 2, June 1991

168 “ K. Shahookar and P. Mazumder

limit (depending on the size of the

netlist), there will be too many aborts.

At that time all modules are unlocked

again, another seed is selected, and a

new iteration is started.

2.3 Example

Consider a circuit consisting of nine mod-

ules, with the following netlist:

netl= {13489}

net2= {156789}

net3= {245679}

net 4 = {3 7}

The lower bound on the wire length for

this example is 15, assuming each hop of

a net from one terminal to the next is 1

unit (e. g., net 1 must be at least 4 units

in order to connect five terminals). To

demonstrate how force-directed place-

ment works, we start with a random

placement with a wire length of 20, as

shown in Figure 12a. Table I gives the

connectivity matrix. Two iterations are

shown in detail in Table 2. In the first

iteration, module 9 is selected as the seed

module, since it has the largest connec-

tivity, 14. The target point is (1.1, 1),

using the center of gravity formula with

the entries in Table 1 as weights. Hence

module 9 is moved to location (1, 1), leav-

ing its original location (O, 1) vacant. The

last column of Table 2 gives the interme-

diate placement. Module 8, which was

previously located at (1, 1), is selected for

the next move. The target point is

(0.9, 0.9), but we cannot place it at (1,1)

since we already placed module 9 there.

Hence, it is placed in the nearest vacant

slot (0, 1). Then module 7 is selected as

the seed, and the process is repeated. The

final solution is shown in Figure 12b.

The result is an improvement in wire

length of 3 units.

2.4 Goto’s Placement Algorithm

Goto proposed a somewhat unique force-

directed placement algorithm [Goto 1981;

Goto and Matsuda 1986]. This algorithm

consists of an initial placement part and

(a)

I 1

(b)

Figure 12. Force-directed placement example. (a)
Random initial placement with wire length 20; (b)
final placement after two iterations with wwe
length 17.

an iterative improvement part. The ini-

tial placement part selects modules for

placement on the basis of connectivity.

When selected, a module is placed at the

location that yields the minimum wire

length. It is not moved during the rest of

the initial placement phase.

The iterative improvement part uses a

generalized force-directed relaxation

technique in which interchanges of two

or more modules in the ~-neighborhood of

the median of a module are explored.

The median of a module is defined as the

position at which the wire length for the

nets connected to the module is mini-

mum. The e-neighborhood of the median

ACM Computing Surveys, Vol 23, No. 2, June 1991

VLSI Cell Placement Techniques

Table 1. Connectwity Matrix for the Force-Directed Placement Example

e 169

Modules 1 2 3 4 5 6 7 8 9 X

1

2

3

4

5

6

7

8

9

0011111 22 9
0001111 01 5
1001001 11 5
1110111 12 9
1101022 1210
1101202 1210
1111220 1211
2011111 02 9
2112222 2014

Table 2. First Two Iterations for the Force-Directed Placement Example

Selected Target
Iteration Module Point Case Placed at Result

1 9 (Seed) (1.1, 1) Occupied (1, 1)

8 (0.9, 0.9) Locked (1, o)

7 (Seed) Locked (1.1, 1.2) Abort

6 (Seed) Locked (1.2,0.9) Abort

2 9 (Seed) (1.1, 0.9) Same Not moved

7 (Seed) (1.1, 1.2) Occupied (1, 1)

9 (0.9, 1) Locked (2, o)

6 (Seed) Locked (1.2, 0.9) Abort

5 (Seed) Locked (1.2, 0.7) Abort

323

496

1-7

325

496

187

325

496

187

325

496

187

325

496

187

325

476

18-

325

476

189

325

476

189

325

476

189

of a module is defined as the set of c neighborhood is separable in x and y,

positions for the module, where the wire and hence the x- and y-coordinates of the

length associated with it has the small- median can be calculated independently

est e values. Goto shows that the prob - of each other using the algorithm of

lem of finding the median and its e Johnson and Mizoguchi [19781.

ACM Computiug Surveys, Vol 23, No 2, June 1991

170 “ K. Shahookar and P. Mazumder

The ~-neighborhood of a given configu-

ration in the configuration space is de-

fined as the set of configurations that can

be obtained from the given configuration

by circularly interchanging not more

than X modules. A configuration is said

to be h-optimal (locally optimal) if it is

the best one in such a neighborhood. The

process of replacing the current configu-

ration with a better configuration from

its h-neighborhood is called local

transformation.

The complete placement algorithm is

as follows. An initial placement is gener-

ated. Generalized force-directed relax-

ation is performed to obtain a h-optimum

configuration. If the given amount of

computation time is not exhausted, this

procedure is repeated with another ini-

tial placement. The best result of all the

trials is accepted. The heuristic search

procedure used for finding h-optimum

configurations is now described.

The procedure consists of module inter-

change cycles, iterated until there is no

further improvement. At the beginning

of each interchange cycle, a seed module

(M) is selected and interchanged on a

trial basis with all modules M(i) in its

~-neighborhood (1 < i < ~). If there is a

reduction in wire length, the interchange

yielding the maximum reduction is ac-

cepted, and the interchange cycle is ter-

minated. If there is no reduction in wire

length, a triple interchange is tried be-

tween the seed module M, a module M(i)

in its c-neighborhood, and a module M(ij)

in the c-neighborhood of M(i) (1 < i, j <

e). This results in 62 trials in which the

modules are interchanged in the cyclic

order M + M(i) -+ M(ij) + M. If there is

a reduction in wire length, then the in-

terchange giving the minimum wire

length is accepted, and the interchange

cycle is terminated. Otherwise for each i,

the j = j, giving the minimum wire

length is chosen for further processing.

The next step is to try quadruple inter-

changes between M, M(i), M(zj,) and the

modules M(ij, k) in the e-neighborhood of

M(~,) (1 < i, k < e). This once again

results in 62 interchanges of the form

M+ M(i) ~ M(ij,) + M(ij, k) - M. We

choose the k that results in the mini-

ACM Computmg Surveys, Vol. 23, No 2, June 1991

mum wire length for further processing.

This process is repeated until inter-

changes of i elements have been consid-

ered. The possible interchanges are

shown as a tree in Figure 13a. The inter-

changes that result in the minimum wire

length at each step are represented by

the solid lines and are pursued further,

whereas those represented by the dotted

lines are abandoned. There is only one

solid line under any node, except the root

node M.

The parameter ~ represents the

breadth of the search tree, and A repre-

sents its depth. As e and A are increased,

the h-optimal configuration gets better,

but there is also a large increase in com-

putation time. Goto observed that e =

4-5 and h = 3-4 is the best compromise

between placement quality and computa-

tion time. These results were obtained

from experiments on a 151 module cir-

cuit. For satisfactory placement of larger

circuits, a higher value of ~ and h may be

necessary.

2.5 Analysis

It can be shown that the minimum en-

ergy state of the force model does not

always yield the optimum wire length

and vice versa. Consider the example in

Figure 14a, where a module is connected

by two nets to the left and by one net

toward the right. The zero force position

would be at a distance 10 units from the

left and 20 units from the right, yielding

a wire length of 40. For optimal wire

length, the module should be positioned

to the extreme left, yielding a wire length

of only 31. Similarly, consider a module

connected by one net each toward the left

and right (Figure 14b). Although the

module may be positioned anywhere and

its x-coordinate does not affect the wire

length, force-directed placement methods

will unnecessarily constrain it to the cen-

ter location, perhaps displacing some

other module that really ought to be at

that location.

Because of the inherent nature of the

center of gravity formula used, force-

directed methods tend to place all mod-

ules in the center of the circuit. The

VLSI Cell Placement Techniques “ 171

nM

—————————m
M(1) M(2)

,

“ f

M(3)

‘(”) ‘hub ti”iM!i13kl)Ah
E ‘::;‘FE‘(22’)f$!i’i d“ifl~”i

(a)

M M(222) M(311) M(31) M(32)

?~ ‘,

M(221) M(223) ,M(312) M(313) M(33)

M(12) M(21) M(2)

\

\

M(l~

/ ----% .~

M(22) %M(l) M(3)

M(13) M(23) M(lll) M(112) M(113)

(b)

M M(222) M(311) M(31) M(32)

xl \

\
M(221) M(223 (312) M(313) M(33)

\

M(12) M(21) M(2)

/~ +Y

M(n) M(22) M(1) M(3)

M(13) M(23) M(lll) M(112) M(113)

(c)

Figure 13. Force-directed relaxation. (a) Search tree; (b) exchange h = 3; (c) exchange k = 4,

result is too many ties and aborts, with into densely connected subcircuits such

all modules constantly displacing the

center modules.

On the whole, this is a moderately good

method of module placement. When fine

tuned properly and combined with other

strategies discussed above, it gives good

results. But it is inferl~or in solution

quality to simulated annealing.

3. PLACEMENT BY PARTITIONING

Placement by partitioning is an impor-

tant class of placement algorithms based

on repeated division of the given circuit

that the nu”mber of nets cut by the parti-

tion is minimized. Also, with each parti-

tioning of the circuit, the available chip

area is partitioned alternately in the hor-

izontal and vertical direction (Figure 15).

Each subcircuit is assigned to one

partition of the chip area. If this pro-

cess is carried on until each subcircuit

consists of only one module, then each
module will have been mapped to a un-

ique position on the chip. Most place-

ment by partitioning algorithms, or

Min-cut algorithms, use some modified

form of the Kernighan-Lin [1970] and

ACM Computing Surveys, Vol 23, No. 2, June 1991

172 - K. Shahookar and P. Mazumder

Mln]mum Force, wire length = 40

*1~29 b

0- —
0 0

& — (a)

Mlmmum Wire length = 31

0 ‘o 0 0

(b)

Figure 14. Problems with force-directed placement

11111--
I I

I

I I I I

I
1 I I

I

II I
Figure 15. Chip area partitioned alternately in
the vertical and horizontal direction,

Fiduccia-Matthey ses [1982] heuristics for

partitioning; see also Schweikert and

Kernighan [1972].

The Kernighan-Lin partitioning algo-

rithm is as follows. Start with a random

initial partition that divides the set of

modules into two disjoint sets A and B.

Evaluate the net cut (the number of nets

connecting modules in A to modules in

B and are therefore cut by the partition).

For all pairs (a, b), a cA, b e B, find the

reduction g in the net cut obtained by

interchanging a and b (moving a to set

B and b to A). g is called the gain of the

interchange. If g >0, then the inter-

change is beneficial. Select the module

pair (al, bl) with the highest gain gl.

Remove al and bl from A and B, and

find the new maximum gain gz for a

pairwise interchange (az, bJ. Continue

this process until A and B are empty.

Find a value k such that the total gain

G=~g,
L=l

is maximized, and interchange the cor-

responding module pairs (al, bl),

(a~, b~). Repeat this process until

G~Oandk>O.

Figure 16 shows an example of place-

ment by partitioning. Figure 4 shows the

circuit to be placed and the desired loca-

tions of pads. This circuit is repeatedly

partitioned as shown in Figure 16. At

each step, the number of nets intersected

by the cut line is minimized, and the

subcircuits are assigned to horizontally

ACM Computing Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques “ 173

4 1 6
------ -- ----- ---- ----- ----, - ----- ----- ---- ----- ----- I
I I i
I I I
1

~
1

1 1

T
Id 1

B:
I

8I - --- ---
I

[
t
I
1
1 2

.4

:4
--------.

I
I

I
I

I -- ---10 --

I

I
I

I

I 4
I
I
,

I I
1 I
I I
1 i
I

9
I

I
- -. ,-------

1
I I
I
I
[
I
I
I
I
I
1

.----- ----- -

1

[

I
I
I
I
I
I
I
I
I

-1
I
I
I
1
I
1
1

I I
1

.~ !
11 I

I
1

I t
I
I

I
I I
I t
I I
I I

------- ---- --------------
1
I I

I
I

E

1
I

I
I

I ‘ -11--14--1-! -----15----i
-----1 1-----;

I
1
1
I
I
I
I----- -----

I
I i

I !

I I

I I

I I
I

----- ----- ----- -- L-

5

Figure 16. Min-cut partitioning

or vertically partitioned chip areas. The

resulting placement (Figure 4c) yields a

total wire length of 43 (for chain connec-

tions).

3.1 Breuer’s Algorithms

Breuer’s algorithms [1977a, 1977bl are

among the early applications of parti-

tioning for placement. They minimize the

number of nets that are cut when the

circuit is repeatedly partitioned along a

given set of cut lines. Consider a set of

modules connected by a set of nets. Let c

i
I
I
I
I

----- ----- - 1------

7

of the circuit in Figure 4a.

I
I
1
I
1

t

------ --- I

be a line crossing the surface of the chip.

If one or more elements connected to a

net s are on one side of c and one or

more elements are on the other side, then,

while routing the net, at least one con-

nection must cross line c. The cut line c

is said to cut the net s. For a given

placement, the value of c, denoted by

U(c) is the total number of nets cut by c.

The following objective functions have

been developed for rein-cut placement:

(I) Total net-cut. This objective func-

tion considers the total number of

nets cut by all the cut lines

ACM Computing Surveys, Vol 23, No. 2, June 1991

174 “ K. Shahookar and P. Mazumder

partitioning the chip,

N,(u) = ~u(c),

where the sum is over all vertical

and horizontal cut lines. Consider a

canonical set of cut lines as the col-

lection of cut lines between each row

and each column of slots. Then, mini-

mizing the total number of nets cut

using this set of cut lines is equiva-

lent to minimizing the semiperimeter

wire length. For a formal proof, see

Breuer [1977a, 1977bl.

(2) Min-max cut value objective function.

In standard cell and gate array tech-

nologies, the channel width, and

therefore the chip area, depend on

the maximum number of nets being

routed through a channel at any point

or the maximum net-cut for any cut

line across the channel. The form of

this objective function is

NC(mM) = ~ maxv(c),
channels CCC,

where CL is a set of cut lines defined

across channel i. Note that for this

objective function, only the net-cut in

the congested region of the routing

channel is significant, and the algo-

rithm will try to minimize this maxi-

mum net-cut, even at the expense of

increasing the net-cut in other vacant

regions of the channel.

(3) Sequential cut line objective function.

Although the above objective func-

tions better represent the placement

problem, it is computationally diffi-

cult to minimize them. A third objec-

tive function is therefore introduced,

which is easy to minimize but does

not give a globally optimal place-

ment. As the name implies, the objec-

tive is to make one cut and minimize

the net-cut, then to cut each group

again and minimize the net-cut with

respect to these cut lines and subject

to the constraints already imposed by

the previous cut, and so on. Note that

because of the sequential (greedy) na-

ture of this objective function, it does

not guarantee that the total number

of nets cut by all cut lines will be

minimized. Hence, minimizing this

objective function is not equivalent to

minimizing the semiperimeter wire

length.

3. 1.1 Algorithms

Breuer has explored two basic placement

algorithms. Each of these algorithms re-

quires a given sequence of cut lines that

partition the chip, so that each section

contains only one slot. To be consistent

with Breuer’s notation, in the following

discussion the subsections of the chip cre-

ated by the partitioning process are called

blocks. These should not be confused with

macro blocks.

Cut Oriented Min-Cut Placement Algo-

rithm. Start with the entire chip and a

given set of cut lines. Let the first cut

line partition the chip into two blocks.

Also partition the circuit into two subcir -

cuits such that the net-cut is minimized.

Now partition all the blocks intersected

by the second cut line, and partition the

circuit correspondingly. Repeat this pro-

cedure for all cut lines. This process is

shown in Figure 17a.

This algorithm realizes the sequential

objective function described above. In

practice, however, this algorithm does not

always give good results because of two

problems associated with it. Consider

Figure 17a. While processing cut line C2,

we must partition blocks A and B cre-

ated by c1 simultaneously. First, if there

is a way to partition them sequentially,

computation time would be saved as a

result of a reduction in the problem size.

Besides, a conflict can arise when we try

to bisect blocks A and B using the same

cut line. lf the modules of A to be placed

above C2 require a larger area than the

corresponding elements in B, then it is

impossible to bisect A and B with the

same cut line, and a less optimal parti-

tion has to be accepted. To avoid both of

these problems, another algorithm is pre-

sented in which each block is partitioned

using a separate cut line.

ACM Computmg Surveys, Vol 23, No. 2, June 1991

VLSI Cell Placement Techniques “ 175

C5

C2

c1 C3 C4

(a)

Bll

B21

B2—

—B1

B12
B22

- 1

Em
B2111 B2112

Bill

--B211 -
-- B212--

B2112 B2122

B112

B221 1 B2221

Figure 17. Breuer’s rein-cut algorithms.
placement.

(b)

(a) Cut-oriented rein-cut placemen~; (b) block-oriented rein-cut

Block-Oriented Min-Cut Placement Al-

gorithm. In this algorithm, we select a

cut line to partition the chip into two

regions. Then we select a separate cut

line for each region and partition the

regions further. !l%is process is repeated

until each block consists of one slot only.

Here, different regions cam have different

cut lines, as shown in Figure 17b. PJote

that we are no longer minimizing the

sequential objective ftmction, since we

are not making uniform cuts through the

entire chip.

The cut lines for partitioning the chip

may be selected in any sequence. 13reuer

has given three sequences (Figure 18),

which are most suitable for three differ-

ent types of layout. These are as follows:

(1) Quadrature Placement Procedure.

In this algorithm the partitioning

(2)

process is carried out breadth first,

with alternate vertical and horizon-

tal cuts. This process is illustrated in

Figure 18a. With each cut, a region

is subdivided into two equal subre -

gions. This method is suitable when

there is a high routing density in the

center. E3y first cutting through the

center and minimizing the net-cut,

the congestion in the center is re-

duced. This is currently the most

popular sequence of cut lines for

rein-cut algorithms.

Bisection Placement Procedure. In

this procedure, the chip is repeatedly

bisected (divided into two equal sub-

regions) by horizontal cut lines until

each subregion consists of one row.

This process assigns each element to

a row withotk fixing its position.

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

176 “ K. Shahookar and P. Mazumder

Figure

4a 2 4b

(a)

18. Cut sequences

3a

2a

3b

1

3C

2b

3d

6a 5a 6b 4 6C 5b 6d

(b)

1

2

3

4

5

6

7

10a 9a10b 8 10c 9b 10d

(c)

used in Breuer’s algorithms. (a) Quadrature placement;

ment; (c) slice/bisection placement.

Then each row is repeatedly bisected

until each resulting subregion con-
tains only one slot, and thus all

movable modules have been placed

(Figure 18b). This is a good method

for standard cell placement. It does

not, however, guarantee the mini-

mization of the maximum net-cut per

channel.

(3) Slice Bisection Procedure. Another

placement strategy is to partition a

suitable number of modules from the

rest of the circuit and to assign them

to a row (slicing) by horizontal cut

ACM Computing Surveys, Vol 23, No. 2, June 1991

(b) bisection place-

lines. This process is repeated until

each module has been assigned to a

row. Then the modules in each row

are assigned to columns by bisecting,

using vertical cut lines (Figure 18c).

This technique is most suitable when

there is a high interconnect density

at the periphery.

3.2 Dunlop’s Algorithm and Terminal

Propagation

When partitioning a circuit or a section

of the circuit into two parts, it is not

VLSI Cell Placement Techniques ● 177

(a)

(b)

A

x

c

(c) (d)

Figure 19. Terminal propagation. 0, real module; 0, dummy module.

sufficient to consider only the internal

nets of the circuit, which may intersect

the cut line. Nets connecting external

terminals or other modules in another

partition (at a higher level) must also be

considered. Dunlop and Kernighan [19851

do this by a method called terminal prop-

agation. Figure 19 illustrates the need

for terminal propagation. Figure 19a

shows the First division of the entire cir-

cuit into two sections. If a module is

connected to an external terminal on the

right side of the chip, it should be prefer-

entially assigned to the right side of the

chip, and vice versa. If this constraint

was not considerecl, then each half of the

circuit could have been assigned to either

side of the chip. Figure 19b shows the

result after several levels of partitioning.

A particular net has cells connected to it

in sections A, B, and C as shown. When

these sections are partitioned further, it

would be preferable to place these cells

in the bottom half of A but in the top

half of ~. The assignment in B does not

affect the wire length. Dunlop and

Kernighan [1985] implement terminal

propagation as follows.

Consider the situation when A is be-

ing partitioned vertically and the net

ACM Computing Surveys, Vol. 23, No. 2, June 1991

178 ● K. Shahookar and P. Mazumder

connecting cells 1, 2, and 3 in A also

connects other cells in B and C. Such

cells in other partitions are assumed to

be at the center of their partition areas

(points X and Y in Figure 19c) and are

replaced by dummy cells at the nearest

points on the boundary of A (e. g., at

X’, Y’). Now, during partitioning, the

net-cut would be minimized if the cells 1,

2, and 3 are placed in the bottom half of

A. A similar process for B does not yield

any preference (Figure 19d), as predicted

above.

To do terminal propagation, the parti-

tioning has to be done breadth first.

There is no point in partitioning one

group to finer and finer levels without

partitioning the other groups, since in

that case no information would be avail-

able about which group a module should

preferentially be assigned to.

The algorithm is in production use as

part of an automated design system. The

algorithm has been tested on a chip with

412 cells and 453 nets. It yields areas

within 10–20% and track densities

within 3% of careful hand layouts. CPU

time of the order of 1 h on a VAX 11/780

has been reported. The CPU time can be

significantly improved using the

Fiduccia-Mattheyses [1982] linear-time

partitioning heuristics.

3.3. Quadrisection

Suaris and Kedem [1987] have suggested

the use of quadrisection instead of bipar -

titioning to divide the chip vertically and

horizontally in a single partitioning step

(Figure 20a), resulting in a truly two-di-

mensional placement procedure, rather

than adapting a basically one-dimen-

sional partitioning procedure to solve the

two-dimensional placement problem. The

quadrisection algorithm used is an ex-

tension of the Kernighan-Lin [1970] and

Fiduccia-Matthey ses [1982] heuristics.

Unlike the Kernighan-Lin algorithm

described above, a module in one quad-

rant can be interchanged with modules

in any of the other three quadrants. This

gives 12 gain tables, each corresponding

to a pair of quadrants. At each step, the

pairwise interchange giving the highest

gain is selected.

The cost function is computed as fol-

lows. Let the cells connected to net n and

placed in quadrant K be denoted by

a~(n). Then the cell-distribution vector

for the net n is

a(n) = (al(n), az(n), a~(n), aq(n)).

Associated with each net is a resident

flag vector,

~(n) = (~l(n), ~,(n), ~,(n), ~,(n)),

such that

PK(n) =
{

1 ifa~(n) >0

0 otherwise.

Thus, the Kth component of B(n) indi-

cates whether any cells connected to net

n are in quadrant K.

The cost function is defined as

W= ~~N~n(B(n)),

where w.(/3(n)) is the cost of net n. If two

or more components of /3(n) are nonzero,

then there are cells connected to that net

in the corresponding quadrants, and the

net is being cut. The weights w~ and w,,

are associated with horizontal and verti-

cal net-cuts, respectively. The relative

values of these weights indicate the pref-

erence in wiring direction. According to

Suaris and Kedem [1987], in double- and

triple-metal technology, where almost the

entire space over the cells can be used for

wiring, we would prefer vertical (over

the cell) wiring. This would conserve

channel space, which would otherwise be

needed for horizontal wiring spans.

Hence, in such technologies, Wu is usu-

ally set much less than w~.

If all modules connected to a net are in

horizontally adjacent quadrants, then the

cost w.(P(n)) = wk. Similarly, if they are

in vertically adjacent quadrants, then

w.((3(n)) = Wu. If the modules are in di-

agonally opposite quadrants or if they

are distributed over any three quadrants,

then w~(/3(n)) = Wh + WU. If the rnodu]es

connected to a net n are distributed over

ACM Computmg Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques 9 179

B ?2 621

B*

’23 B
24

B3 z
631

—-r-——+,—j

E1332 ~

L
B 342 ~

B341
6331

-----A -----
,34

---”B33----

~333 : 6334
6343 : B344

CHIP

—B1—

B
1:3 % 4

B
42 f341

_B4 ;
I

!-t :

B
’432 / 0431 442: B441

----B44--

------ %5------

0433 / B434
E1443 ~B444

&B14m-!---lf---f+-=+FL
11

+ :l:;B:+q:ltB4;+T;r, ,

’331 ‘3: KB333B334B341 ‘342 B343B344B431 E432B433B434 B441E442B443F444

Figure 20a. Quadrisection.

all four quadrants, there are two possible

interconnection patterns— one with one

horizontal and two vertical cuts and the

other with one vertical and two horizon-

tal cuts. If WU< w~ as described above,

we choose the first pattern and w.((3(n))

=2WU+ w~.

If the cost function w~(~(n)) is such

that it can be computed from 6(n) in

linear time, it can be proved that the

quadrisection algorithm also runs in lin-

ear time. The rest of the partitioning

algorithm is the same as in Fiduccia and

Mattheyses [1982] and Kernighan and

Lin [1970].

The terminal propagation method in-

troduced by Dunlop and Kernighan [1985]

has bee n extended for quadrisection as

shown in Figure 20b. The figure shows

regions 5 and 6 about to be partitioned

ACM Computing Surveys, Vol. 23, No. 2, June 1991

180 . K. Shahookar and P. Mazumder

‘1 2 5 ,
,
1
1
t
,
1
1
#
1

3 4
L----------- ,------

B~
0

D
1

A x 1
,
I

61 7

I
1
1
I D1 c
1--- .--1---,111,I1
1

Figure 20b. Terminal propagation in quadrisection.

along the dotted lines and cells 1? and ~

in these regions connected to cells A and

C in other regions. In this example, it

would be beneficial to assign ~ to the

lower left quadrant of region 5, as shown,

and l) to the upper or lower right quad-

rant of region 6 (since the exact position

of C has not been determined yet). Ter-

minal propagation is done by inserting

two kinds of dummy cells—fixed and par-

tially fixed at appropriate locations.

Thus, in region 5, the influence of A is

represented by a dummy cell X fixed in

the lower left quadrant. The dummy cell

will bias 1? into the same quadrant in

order to reduce net-cut. In region 6, the

cell c is represented by a partially fixed

dummy cell Y, which is restricted to the

upper and lower right quadrants. This

will bias D into one of these quadrants.

Global routing information is also used
to improve the efficiency of terminal

propagation. For example, in Figure 20b,

cells connected to the same net are lo-

cated in all four quadrants and are to be

connected as shown. Here, A and B

should influence each other’s position

through terminal propagation, and so

should B and C’. Since there is no direct

connection between A and C, however,

there is no need for propagating them.

After each partitioning step, the cells in

different quadrants are connected in a

pattern that gives the minimum cost, as

discussed above. As the partitioning pro-

ceeds, these connection patterns give a

global routing tree for each net. In the

terminal propagation phase, only those

modules that are directly connected to

each other are propagated. The arrows

show the effect of terminal propagation.

For example, cell C will be biased to-

ward the upper left quadrant when re -

gion 7 is quadrisectioned.

The algorithm has been implemented

as part of the VPNR place and route

package. Preliminary experiments show

that this algorithm compares favorably

with TimberWolf 3.2. For various stan-

dard cell circuits, this algorithm yielded

an area within + 5~o of the area yielded

by TimberWolf. This algorithm, how-

ever, achieved this layout quality 50-200

times faster than TimberWolf. Run times

reported are of the order of 1.4 min for a

304-cell circuit and 1 h for a 2907-cell

circuit on a VAX 8600.

3.4 Other Techniques

Many variations of the rein-cut place-

ment algorithm have been suggested.

Lauther [19791 applies this method for

the placement of macro cells and uses

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 181

repeated partitioning to generate mutu-

ally dual placement graphs. His imple -

mentation also includes an improvement

phase in which module rotation, mirror-

ing, and other compression techniques

are used.

corrigan [19791 has developed another

implementation of placement based on

partitioning. Wipfler et al. [19821 dis-

cusses a combined force and cut algo-

rithm for placement. Shiraishi and

Herose [1980] have developed a rein-cut

based algorithm for master slice layout.

3.5. Analysis

The strength of rein-cut algorithms is

that they partition the problem into

semi-independent subproblems. The con-

cept of minimum net-cut implies a mini-

mum amount of interaction between the

parts that are placed independently. Di-

viding the problem into small parts

brings about a drastic reduction in the

factorial search space.

Partitioning can be thought of as a

successive approximation method for

placement. At each level of partitioning,

the modules are localized in the region of

the chip in which they ought to be finally

located, but their exact position is not

fixed. As the circuit is further parti-

tioned and the smaller groups of modules

are assigned to smaller chip areas, we

get a better approximation of their final

coordinates. This algorithm is less sus-

ceptible to local minima because the co-

ordinates of all modlules are being

approximated simultaneously, with

mutual benefit.

The problem with this technique is that

partitioning is itself an NP complete

problem and, therefore, is computation-

ally intensive. This method is used for

placement because heuristics developed

so far for partitioning are much better in

terms of speed and performance than

those for placement. Note, however, that

obtaining an optimal partitioning does

not guarantee an optimal placement, al-

though it would be close.

Overall, the results obtained from

placement by partitioning algorithms are

second only to simulated annealing. Be-

side, these algorithms take much less

CPU time.

4. NUMERICAL OPTIMIZATION TECHNIQUES

Grouped together in this section are some

computationally intensive deterministic

techniques based on equation solving and

eigenvalue calculations or on numerical

optimization, such as the Simplex

method. So far these techniques have

mainly been used for macro blocks. The

main problem encountered in using these

techniques is that the placement problem

is nonlinear. Two different approaches

are used to overcome this obstacle. One

method is to approximate the problem by

a linear problem, then use linear pro-

gramming. The other method is to use

the various nonlinear programming

methods [Walsh 19751. Examples of both

methods are give n in the following sec-

tions.

4.1 Eigenvalue Method

Quadratic Assignment Problem

[Gilmore 1962]. Given a cost matrix CZJ

representing the connection cost of ele -

ments i and J and a distance matrix dk 1

representing the distance between loca-

tions k and 1, find a permutation func-

tion, p, that maps elements i, j, . . . to

locations k = p(i), 1 = p(j), . . . such that

the sum

@ = x f% dP(2)P(J)

L,J

is minimized. Consider the placement

problem, where c,~ is the connectivity

between cell i and cell j and dkl is the

distance between slot k and slot 1. The

permutation funcbion p maps each cell to

a slot. The wire length is given by the

product of the connectivity and the dis-

tance between the slots to which the cells

have been mapped. Thus, @ gives the

total wire length for the circuit, which is

to be minimized. Hall [19701 has formu-

lated the cell placement problem as a

quadratic assignment problem and de-

vised a novel method to solve it by using

eigenvalues.

ACM Computing Surveys, Vol. 23, No 2, June 1991

182 - K. Shahookar and P. Mazumder

Let C be the connection matrix. Let c,

be the sum of all elements in the ith row

of C. Define a diagonal matrix D such

that

dZJ =
{

o, i # J“,

c ~> i =J”.

The matrix 1? is defined as

B= D–C.

Further, let XT = [xl, XZ, x.] and

YT=[yl, y2, ..., y.] be row vectors rep-

resenting the x- and y-coordinates of the

desired solution. Then it can be proved

[Hall 19701 that

@(X,Y) = X~BX+ Y~BY.

Thus the problem is reduced to minimiz-

ing *(X, Y) subject to the quadratic

constraints

XTX= 1 and YTY=l.

These constraints are required to avoid

the trivial solution x, = O for all i. The

minimization is done by introducing

the Lagrange Multipliers a and b and

forming the lagrangian

L = XTBX+ YTBY

— Q!(x~x- l)-o(Y~Y -1).

Equating the first partial derivatives of

L with respect to X and Y to zero, we

get

2BX–2a X=0 2BY–2~Y=0

or

(B-cYI)X=O (B-(31)Y=0.

These equations yield a nontrivial solu-

tion if and only if a and 6 are eigenval-

ues of the matrix B and X and Y are

the corresponding eigenvectors. Premul -

tiplying these equations by XT and Y ~,

respectively, and imposing the con-

straints X ‘X = 1 and Y T Y = 1, we get

@(X,Y) = XTBX+ YTBY= a +6.

Thus, in order to minimize the value of

the objective function @, we must choose

the smallest eigenvalues as a solution

for a and (3. The corresponding eigen-

vectors X and Y will give the x- and

y-coordinates of all the modules. If O = Al

< Az < Aa < “ “ “ < Am are the distinct

eigenvalues of B, then taking a = 6 = Al

will give the minimum value @ = O, xl

will be proportional to y,, all x, will be

equal, and all y, will be equal. If it is

desired that X not be proportional to Y

(i.e., we require a two-dimensional solu-

tion with all modules not placed along a

straight line), we must select different

eigenvalues for a and (3. Further, if it is

desired that not all x, or all Y, be equal,

we should ignore Al = O. Thus, a near

optimal nontrivial solution is a = Az, 6

= As. The components of the eigenvector

associated with the second-smallest

eigenvalue give the x-coordinates of all

the modules, and the components of the

eigenvector associated with the third-

smallest eigenvalue give the y-coordi-

nates of all modules.

4.1.1 Example

An example is given in Figure 21. The

netlist for the problem is

IVl = {1,3}; Nz= {1,4}; N~= {2,4};

NL= {2,3}; N~= {2,3},

The C, D, and B matrixes are

[1

0011
~=oo21

1200

1100

r20001

r20 -1-11

B= _~ 3 ‘2 ‘1
–2 3 0

1-1 -1 0 2j

The eigenvalues of B are O, 2, 2.586,

and 5.414. The eigenvectors correspon-

ding to the eigenvalues 2 and 2.586 are

[1 -1 -1 11 and [1 -0.414 0.414 -1]

(Table 3). These eigenvectors give the x-

and y-coordinates, respectively, for all

four modules.

ACM Computmg Surveys, Vol. 23, No, 2, June 1991

VLSI Cell Placement Techniques o 183

1

3 4

(a)

4

1 *1

3*

, I e
-1

1

2*

-1 *4

(b)

5(3’
12 ~-l 4 7

! I I

(c)

Figure 21. Placement by the eigenvalue method:

An example. (a) Example circuit; (b) placement in

the euclidean plane determined by the eigenvec-

tore; (c) assignment to regularly spaced slots.

Table 3. Eigenvectors of Matrix B, Giving

the Solution in Euclidean Space

Module x-Coordinates y-Coordinates

1 1
2 –1 – :.414
3 –1 0.414
4 1 –1

Eigenvalues 2 2.586

4. 1.2 Analysis

This is an 0(n2) algorithm. A weakness

of the algorithm is that it does not take

module size, shape, and routing channel

width into account. It assumes that the

modules are zero-area points. Therefore,

it does not correspond very well to the

module placement problem, where the

modules must be placed at grid points or

in rows. After this algorithm has deter-

mined the placement that minimizes the

total wire length, mapping the modules

form this placement to grid points can be

very difficult for large circuits, with many

ties requiring arbitrary decisions. The

wire length is often increased signifi-

cantly while converting the result of this

algorithm to a legal placement.

4.2 Resistive Network Optimization

Cheng and Kuh [19841 have devised a

novel technique folc placement. They have

transformed the placement problem into

the problem of minimizing the power dis-

sipation in a resistive network. The ob-

jective function (squared euclidean wire

length) is written in matrix form, which

yields a representation similar to the

matrix representation of resistive net-

works. The placement problem is solved

by manipulating the corresponding net-

work to minimize power dissipation us-

ing sparse matrix techniques.

4.2.1 Objective Function and Analogy to

Resistive Networks

The wire length is taken as the square of

the euclidean distance between con-

nected modules:

@(x, Y)

—— : f,+,- X,)2+(yL-yJ)’],

where c,~ is the connectivity between

modules i and j. This can be written as

@(X,Y) = XTBX+ Y~BY,

where B = D – C as defined in the

eigenvalue method described in Sec-

tion 4.1. If this equation is compared to

ACM Computing Surveys, Vol. 23, No. 2, June 1991

184 “ K. Shahookar and P. Mazumder

Tabla 4. Analogy Between the Placement Problem and Power Dissipation

m a Resistwe Network

Resistive network Placement problem

Power, P Wire length, @

Nodes Modules

Active voltage sources, U2 Fixed module coordinates, X2

Passive node voltages, UI Movable module coordinates, xl

Admittance, Y Connectivity, B

the equation for power dissipation in a

resistive network,

P= vTYnv,

we find that B is of the same form as the

indefinite admittance matrix Y. of an

n-terminal linear passive resistive net-

work. The coordinate x, is analogous to

the voltage at node i. The connectivity

c is analogous to the mutual conduc -

t~nce between nodes i and j, and d,, is

analogous to the self-admittance at node

i. If the given netlist contains some fixed

modules, such as pads located at the chip

boundary, then that will be equivalent to

having a fixed voltage at the correspond-

ing nodes in the resistive network. Thus,

fixed modules are equivalent to voltage

sources. This analogy is summarized in

Table 4, In a resistive network (Fig-

ure 22), the current always distributes

itself so as to minimize the power dissi

pation. Hence the problem reduces to

solving the network equations for cur-

rent. This current will then give the opti-

mal power dissipation and hence optimal

placement. If there are no pads or other

fixed modules, that case would be analo-

gous to a passive resistive network with

no voltage sources. All currents would be

zero, which would yield a placement with

all modules placed at the center of the

chip. Hence fixed modules, preferably at

the periphery, are required to spread the

other modules out. Even then, modules

are mostly clustered near the center. This

algorithm uses scaling and relaxation as

described below to spread them out over

the entire chip.

4.2.2 Slot Constraints

Slot constraints are required to guaran-

tee module placement at grid points or

legal values. A permutation vector p is

ACM Computing Surveys, Vol. 23, No 2, June 1991

1

2

m

m+l

~ Linear passive ~+~

resistive

network

=

(a)

—m+l

Linear passive

resistive m+2

n

W
+++———

v

(b)

Figure 22. Cell placement by resistive network

optimization. (a) n-terminal linear resistive net-

work with m terminals floating and n-m terminals

connected to voltage sources; (b) resistive network
with linear constraints.

defined such that the ith component p,

is the ith legal value or slot available for

a module to occupy:

P= [Plj P2, Pm]T.

Let the position vector be

ul=[xl,.x2,..., xm]T.

VLSI Cell Placement Techniques ● 185

The placement problem then consists of

mapping each module to one slot; that is,

associating each x, with a pj. The fol-

lowing slot constraints are necessary to

yield a legal solution:

,$1xi = ,$,p,
m m

i=l ~=1

. m

The proof is given in Cheng and Kuh

[19841. As a simple example, consider a

four module placement problem, with

four given slot coordinates, pl, Pb.

Then the assignment

xl=p~; x2=p4;

X3 =p~; X4= pl

is a legal placement. It is easy to see that

all the above constraints are satisfied. If

two modules overlap, however,

the above constraints will not be satis-

fied. Using all of the above constraints in

the optimization process is not easy com-

mutationally. If we use only the first few

constraints, we will get a solution that

satisfies the corresponding properties, but

the modules will not be located at the

exact slot locations. For example, the first

constraint helps align the center of grav-

ity of the modules with that of the slots.

Hence, using only this constraint will

cause the resulting placement to be

centered in the chip area.

4.2.3 Procedure

The overview of the placement procedure

is as follows. First, the given circuit is

mapped to a resistive network, where the

fixed modules and pads are represented

as fixed voltage sources. The power dissi -

pation in the network is minimized, us-

ing only the first slot constraint. This

causes al 1 the modules to cluster around

the center of the chip. The next step is

scaling, in which the second slot con-

straint ia used to spread the modules.

Then repeated partitioning and relax-

ation are ~erformed. This rn-ocess aligns

the

(1)

(2)

modul~s with the slot lhcations. -

Optimization. The power dissipa-

tion in the network is optimized us-

ing t:he linear slot constraint. The

optimization is done by applying the

Kuhn-Tucker formula,

u, = Y;/[-Y12U2+ i,],

where

The goal of the optimization method

is to reduce the euclidean wire length;

that goal is best achieved by cluster-

ing all the modules close to each

other. The use of the first constraint

only centers the module placement in

the chip area. If there are no fixed

coordinates around the periphery of

the chip, the optimization step will

yield a trivial solution with all mod-

ules located at the center. With some

modules at the periphery, a mini-

mum wire length solution like the

one shown in Figure 23a is obtained

(for the netlist of Figure 4a).

Scaling. In order to spread out the

modules, the higher order slot con-

straints are required. In the second

step, Cheng and Kuh [1984] repeat

the optimization procedure using the

second (parabo lie) constraint. This

will increase the power dissipation

compared to the optimal but imprac-

tical solution of the previous step.

The objective now is to find a config-

uration that results in a minimum

increase in power dissipation. Using

this objective, ~heng and Kuh [19841

ACM Computing Surveys, Vol. 23, No. 2, June 1991

186 “ K. Shahookar and P. Mazumder

(a)

(b)

(c)

Figure 23. The partitioning step in resistive net-

work optimization.

have derived the following equations,

which give module coordinates that

are more spread out:

x
01

— co
x T2L= a. + c~,

a.

where XO, denote the solution after

optimization, x~z denote the new so-

(3)

(4)

lution after scaling,

[

1/2

an= + ,~1 (PL - c.)’
1

co= ; :1XOL

L

[1

1/2

ao= ;-,(%-co)’ .
L

Relaxation. In this part of the algo-

rithm, optimization and scaling are

repeatedly done on subregions of size

(3 specified by the user. First, opti-

mization and scaling are done on one

end region of size ~, then on the other

end region, and finally on the middle

region. While doing optimization and

scaling on one subregion, the rest of

the modules are assumed to be fixed.

By this process, the module positions

are iteratively fine tuned.

Partitioning and assignment. After

the above steps, the modules are still

not located exactly at the given slot

locations. The next step is iterative

partitioning into smaller and smaller

regions. At each step, optimization

and seal ing are performed on the

subregions according to the above

equations. Every time, the linear slot

constraint aligns the center of grav-

ity of the group of modules with the

center of the region in which it is

being placed. At the last level of par-

titioning, when each section consists

of only one module, the module is

aligned to the center of the slot. This

process is illustrated in Figures 23b

and c.

4.2.4 Complexity and Results

Since linear network computations are

required and sparse matrix techniques

are used, the computation complexity is

0(ml 4)log2 m, where m is the number

of movable modules.

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 187

The algorithm has been tested on the

34 module example given by Steinberg

[1.9611, and Hall [19701 and its perfor-

mance compared against Steinberg’s

assignment algorithm and Hall’s

eigenvalue method. The wire length was

10% less compared to the eigenvalue

method and 30% less compared to the

Steinberg algorithm. A run time of 13.1

s was reported on a VAX 11/780. The

performance was also compared to the

algorithms of Stevens [1972] and Quinn

and Breuer [19791 for a 136 module prob-

lem. The improvement m wire length

was 9.5% over Stevens and 21 YO over

Quinn and Breuer, and the CPU time

WaS 104.2 S.

4.3 PROUD: Placement by Block Gauss-Seidel

Optimization

Tsay et al. [19881 recently proposed an

improved algorithm based on the resis-

tive network analogy. The method con-

sists of repeated solution of sparse linear

equations. The slot constraints described

above are bypassed, and the partitioning

scheme is simplified. Block Gauss-Seidel

(BGS) iteration is used to resolve the

placement interactions between the

blocks, The algorithm proceeds in two

phases. First, global placement is done

by the Successive Over Relaxation

Method (SOR). This results in an optimal

solution. The modules, however, are con-

sidered as zero-area points and are not

confined to the grid points, Then, module

shape and area are taken into considera-

tion, and the chip is partitioned alter-

nately in the vertical and horizontal

direction. At each step BGS iteration is

performed on each subregion in order to

remove module overlap and successively

approximate the module positions with

the grid points. This process is repeated

until each subregion consists of only one

module.

4.3.1 Global Placement

First, the equations given in Section 4.4.2

are solved using SOR, which is a gener-

alization of the BGS method. The method

is as follows. To solve the equation

Axl = b,

A= A(L+I+ U),

where A is a diagonal positive definite

matrix and L and U are lower and upper

triangular matrices, respectively. The

vector x ~ is solved iteratively by the

recursive formula

Xl(k + 1) = Mxl(k) + a,

where

M = (I+ ZUL)-l[(l - w) I - UJU]

and

a = ZU(I+ wL)-l A-lb.

The parameter w is in the range O to 2.

With w = 1, the SC)R method is reduced

to the BGS method.

This method gives the global optimum

solution because, in the absence of slot

constraints, the objective function (the

euclidean wire length) is convex and has

a unique global minimum, which can

be determined by solving the matrix

equations.

4.3,2 Partitioning and /3GS Iteration

The object of the partitioning and BGS

iteration step is to ensure that for each

subregion the total area of the modules

placed on one side of the center line is

equal to the total area of the modules

placed on the other side of the center

line. The partitioning is done as follows.

Each cut is placed so that the total area

of the modules on either side of the cut

(as given by the global placement) is

equal. If the cut line coincides with the

center of the layout area, then the parti-

tion process is continued to the next hier-

archy level; otherwise, the following

method is used to align the cut with the

center of the subregion.

Let the cut be to the right of the cen-

ter. Then all modules to the right of the

center line are projected to the center

line, only those modules that lie between

the cut line and the center line are con-

sidered as movable, and the global place-

ment phase is repeated in the left half

ACM Computing Surveys, Vol 23, No. 2, June 1991

188 “ K. Shahookar and P. Mazumder

plane. Then the modules in the left half

plane are projected on the center line as

fixed modules, and the global placement

problem is solved for the right half plane.

This procedure will align the cut line

with the center line of the subregion be-

ing divided. The partitioning is repeated

alternately in the horizontal and vertical

directions until each subregion contains

only one module.

In order to explain the intuitive con-

cepts behind this method, Tsay et al.

[19881 gave an analogy with rein-cut al-

gorithms. This algorithm can be consid-

ered as a form of rein-cut algorithm,

which uses quadratic assignment instead

of the Kernighan–Lin heuristics for par-

titioning. An optimal placement results

in a rein-cut partition at any cut line

through it. Thus, we can repeatedly de-

termine the optimum but irregular

placement of point modules in the eu-

clidean plane by solving the quadratic

assignment problem and subdivide the

plane to get a rein-cut partition. If this

process is repeated until each partition

consists of only one module, we get a

near-optimal placement with no over-

laps, and the modules constrained to grid

locations, just like in the rein-cut algo-

rithm. The quadratic assignment prob-

lem can be solved using powerful sparse

matrix techniques.

4.3.3 Complexity and Results

The algorithm has been implemented in

the Proud-2 placement system. It was

tested on nine circuits consisting of

1000-26,000-modules. In all cases, the

results were superior to those of Timber-

Wolf 3.2 and comparable to those of

TimberWolf 4.2. The time required to

achieve these results was about 50 times

less compared to TimberWolf 4.2. For

example, a 26,000-module circuit re -

quired a run time of about 50 min on a

VAX 8650. For a 1438 module example,

Proud-2 required 50 s, TimberWolf 3.2

required 7200 s, and TimberWolf 4.2 re-

quired 3260 s. Compared to the wire

length achieved by Proud-2, the results

of TimberWolf 3.2 were 7. l% worse, and

the results of TimberWolf 4.2 were 9.6%

better.

4.4 ATLAS: Technique for Layout Using

Analytic Shapes

Sha and Blank [19871 (and earlier Sha

and Dutton [19851) used the Penalty

Function Method (PFM), a nonlinear nu-

merical optimization method, for block

placement. They devised a modified ob-

jective function for macroblocks, which

allows computationally efficient rotation

and mirroring. They also made an excel-

lent comparison between simulated an-

nealing and numerical techniques.

4.4.1 Objective Function

The objective function used to estimate

the wire length is the same as that de-

scribed in Sha and Dutton [19851, with

modifications to accommodate block rota-

tion and mirroring. The original objec-

tive function is as follows:

Let Sk be a net connected to mk blocks,

with centers at Cl(xl, Y1), . . ., C2(X2,

Yz), ...> C~~ Xn,, y~,) and the center of

gravity of the net Sk be Gk (~h, ~h),

where

The squared wire length of the net Sk

(Figure 24a) is defined as

If m, is the total number of nets, the

objective function is defined as

m’.

w= E-wk

= ,:1,:1{(~t - %)2+ (Yz- z)’}.

In macro placement, block orientation

is important besides block position be-

cause of two reasons. In order to fit the

irregularly shaped blocks together while

minimizing the wasted space, all possible

ACM Computing Surveys, Vol 23, No 2, June 1991

(x,,

VLSI Cell Placement Techniques

Module pln

/ /,

A

— Net center of gravity

(a)

.

(X’p, y~)

(Xp, yp)
,----

-%;----- ‘--- -------------------:
:
I ‘.

‘.
I
It ‘. I

u ‘. 1I h! ‘“J3
‘.& (X12, Y17) \

Y ;-----------~----:’il
------ ------ ------. ---+

(X f,yj)

‘:----+- 1’

. 189

I
h,

?

(b)
‘w’

Figure 24. Squared euclidean wire length function, Wk = AG2 + BG2 + CC,2 + DG2; (b) pin position

after rotation in Atlas.

orientations should be allowed. Besides,

rotation and mirroring have a significant

effect on the wire length. If the pins on

one side (left, say) of a large block are

connected to other blocks placed on the

other side (right), then the nets are forced

to go around the block. Flipping the block

over reduces the wire length.

Block Rotation. If a block is rotated

through an angle 6’, the pin coordinates

(~~, y:) relative to the block center are

given by

x; = XPCOS6 –yPsin6,

y~=yPcos O+xPsin O,

where x and yP are the original coordi -

f“nates re atlve to the block center (Fig-

ure 24b). Let the block axis be defined by

the pair of coordinates (X,l, y,l) and

($,Z, Y,z) and the block center be denoted

ACM Computing Surveys, Vol 23, No 2, June 1991

190 “ K. Shahookar and P. Mazumder

by (+, Y,). Let

AY, =IY,l– Y,217

d, = ~-

Xp
al=—,

d,

Yp
()+—.

d,

Then, we get the absolute pin position

after rotation:

x jJL = XL + alAx, – azliy,,

The new parameters introduced in the

objective function are constants XP

and yp. Since no new variables are

introduced, there is little increase in

computation time.

Mirroring. The mirroring operation is

realized by introducing an extra vari -

able, u,, such that u, = 1 means normal

orientation and u, = – 1 means mirrored

orientation. The pin position is now given

by

x pL = x, + alAxZ – Uzcy2fiyL,

These pin coordinates are used along with

the block coordinates in order to calcu-

late the wire length more accurately.

During optimization, u, is treated as a

continuous variable that can vary with-

in the bounds I UZI = 1. A constraint

(u, – l)(uZ + 1) = O is imposed during
the optimization process. This constraint

makes u converge to either + 1 or – 1.

4.4.2 Constraint Conditions

In addition to the above objective func-

tion, some constraints are imposed dur-

ing the solution process in order to

ensure a legal placement. These

constraints are only summarized here.

For a detailed discussion, see Sha and

Dutton [1985].

Let the block width be w, and the block

height be h,, with 1, = w, – h,, and Ax,,

A y,, and d, be as defined above. The

constraint that prevents block overlap is

given by

gl(i,~) = r,+ r~ – d(i, ~) = 0;

r,, rJ are the block radii (half the block

height), and d(i, j) is the distance be-

tween the axes of the blocks i and j. For

the derivation, see Sha and Dutton

[19851.

Only two block orientations, vertical

and horizontal, are allowed. To ensure

this, the orientation constraint is used:

gz(i) = Ax, Ay, /lt=O

for i=l,2,m.

It is obvious that if the block is not verti-

cal or horizontal, both Ax, and A y, will

be nonzero, and the constraint will not be

satisfied.

The constraint for the desired block

size is given by

gs(i) = Z,– d, =0.

Let the desired chip aspect ratio be q,

with the vertical and horizontal dimen-

sions y~ and x~ = qyn, respectively.

Then, the boundary constraints are

g41z(i) = r, – Xtz~O,

g42z(i) = r, – YLz~O,

g43~(i) = x,z + r, – .r~=o,

g..l(i) = Y,, + T-c- ym~o,

forl=l,2; i=l,2,m.

4.4.3 Penalty Function Method

The penalty function method consists of

the following procedure:

(1) Select an increasing series Ck,

typically

co = 1; Ck+l = lock.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques “ 191

(b)

(a)

(c)

n

D
Figure 25. PFM optimization process: Intermediate results as Cfi is increased.

(a) Construct a new unconstrained objec- and a solution is obtained. Fimre 25a

tive function P(x, c~) such that -

P(x, y, Ch) = objective function

+ Ck~ constraints.

(3) Use an unconstrained optimization

technique such as Newton’s method

to minimize P(x, y, c~) for k =

0,1,2,. ... until the coordinates of

the modules satisfy the constraints

within the required accuracy.

Thus, in PFM during the first itera-

tion, the constraints are reemphasized

shows the result of the first iteration,

with c~ = 1. Then, in each iteration the

weight of the constraints is increased and

the objective function minimized. This

causes the constraints to be satisfied more

and more accurately, at the expense of

an increase in the value of the objective

function. An intermediate result is shown

in Figure 25b. As c~ is increased, the

modules attain the proper orientation and

overlap is reduced. The process is termi-

nated when the ccmstraints are satisfied

within the desired accuracy. Figure 25c

shows the final result, with all modules

ACM Computing Surveys, Vol. 23, No. 2, June 1991

192 ● K. Shahookar and P. Mazumder

in either vertical or horizontal orienta-

tion and no overlap.

4.4.4 Comparison with Simulated Annealing

PFM uses numerical techniques, whereas

simulated annealing uses a statistical

approach. Although the techniques of

nonlinear programming and simulated

annealing are very different, some simi -

larities exist. The parameter c~ in PFM

behaves like the reciprocal of tempera-

ture (1/ 7’) in simulated annealing. In

simulated annealing, moves are ran-

domly generated, whereas in PFM moves

are deterministic and are in the direction

that minimizes the penalty function

P(x, y, c~). The important feature of PFM

is that all blocks move simultaneously,

not one at a time as in simulated anneal-

ing.

PFM has been tested on two chips with

23 and 33 macro cells, and the results

have been compared to those of Timber-

Wolf and industrial placement. A 50%

improvement over industrial placement

and 23% improvement over TimberWolf

were reported. The CPU time reported is

of the order of 2 h on a VAX station II for

a 33-block circuit.

4.5 Algorithm for Block Placement by Size

Optimization

One example of linearization is provided

by Mogaki et al. [19871. They presented

an algorithm for the placement of macro

blocks to minimize chip area under con-

straints on block size, relative block posi-

tion, and the width of the available

interlock routing space. This algorithm

iteratively determines the optimum block

size and relative block placement in or-

der to reduce the wasted space and mini-

mize the total chip area. Channel widths

are also considered during the optimiza-

tion process. This is a quadratic integer

programming problem, which has been

reformulated as a linear programming

problem and solved by the Simplex

method. This algorithm is the extension

of the work of Kozawa et al. [1984], and

uses their Combined and Top Down

Placement (CTOP) algorithm for the ac-

tual block placement. This is coupled

with block resizing by linear program-

ming. This algorithm is suitable only

where block sizes are not yet fixed and

macro blocks can be generated with a

range of possible aspect ratios. Hence,

choosing the block aspect ratios to fit

together nicely in the placement, then

generating the macro blocks results in a

compact layout.

The first step is to generate an initial

placement by the CTOP algorithm. This

algorithm works by repeatedly combin-

ing two blocks to form a hyper-block

until the entire chip consists of one

hyper-block. At each step, blocks are

paired so as to minimize the wasted space

and maximize their connectivity to each

other. Repeated combining of blocks gen-

erates a combine tree with the entire

chip as the root node and the individual

blocks as leaves. This tree is then tra-

versed top down, such that for each hy -

per-block, a good placement is deter-

mined for its component blocks. This

gives the relative placement of the blocks.

The relative placement is converted to

a Block Neighboring Graph (BNG), as

shown in Figure 26. Each block is repre-

sented as a node in the BNG, and each

segment of a routing channel between

two blocks is represented by an edge con-

necting the nodes. Formally,

BNG = G(V, E)

such that

V= {u} U{ L, R, B, T};

EC VXVX{X, Y} X{6},

where u represents a block, L, R, B, T

are the simulated blocks corresponding

to left, right, top, and bottom edges of the

chip, X or Y represent whether the

channel is vertical or horizontal, and 8 >

0 represents the minimum channel

width.

The next step is the linear program-

ming formulation for block size optimi-

zation. This consists of the objective

function and the constraints.

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques . 193

7

-k
Y.

u F1
En El
t–– ‘“ --+j~uvy
x“ xv

Figure 26. Example macro-block layout and its block neighboring graph. ❑ , Block; o, simulated block;
+ , vertical edge; ---> , horizontal edge.

4.5.1 Objective Function aspect ratio. Let the minimum and maxi-

mum desirable values of the chip aspect
The primary objective is to minimize the ratio be ~.

chip area. Wire length is considered indi -
and r+:

rectly through its effect on the chip area. Y

There is a user-specified limit on the chip
r–~ — <r+.

x

ACM Computing Surveys, Vol. 23, No. 2, June 1991

194 “ K. Shahookar and P. Mazumder

4.25

3.25

2.25

1.25

0

:::::: :::

25 0.35 0.45 0.55 0.65

x

Figure 27. Linear programming: objective function,

If r- and r+ are sufficiently close, we

get

r=~=-.
x

The chip area is given by

Ar[rx+ y)’.A=xy=~

Since the function (rx + y)2 increases

monotonically with (rx + y) for x, y > 0,

the chip area function can be replaced by

rx + y, which is a linear function, be-

cause r is a constant. Thus, in order

to minimize chip area xy, the linear

programming problem is formulated to

minimize rx + y. The effect of this lin-

earization is shown in Figure 27. The

shaded region represents the allowed

values of chip width and height. This

region is bounded by the maximum and

minimum chip area constraints and the

maximum and minimum aspect ratio

constraints. Within a small aspect ratio

range, the linearized area is a good ap-

proximation to the actual area.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

4.5.2 Constraints

(1) Block size constraint. Each block

has a given range of candidate sizes

given by (wU(i), h“(i)), where i =

1,2,. ... Nu. Nu is the number of pos-

sible sizes for block u. The object of

the linear programming approach is

to choose the aspect ratio that results

in the minimum wastage of chip area.

Let AU(i) be the selection weight for

the ith candidate block size such that

~ Au(i) = 1, O<hU(i)S1.
1=1

Au(i) represents the probability dis-

tribution for selection of each candi-

date block size. The expected block

width and height are therefore given

as

w. = 5 Au(i) wlu(i)
&=l

hu = ~ AU(i) hU(i).
L=l

These are the block size constraints.

VLSI Cell Placement Techniques * 195

(2) Channel width constraints. ILet

XU, yU, x., yu be the coordinates of

blocks u and U, respectively, and WU

and h ~ be the width and height of

block u. If block u is to the right of

block u, with a channel of width 6UU

between them, we have

$“– (Xu+r.uu) ~~.u

for each edge

(u,u>x,~uu)=~,

as shown in Figure 26. Similarly, if

block u is below block U, we get the

corresponding constraint

Y“– (Yu + Wu) =6.”

for each edge

(u, u, Y,8Uu]e E.

These constraints make it possible to

determine an appropriate block

size when the channel widths are

specified.

Thus, the objective of the linear pro-

gramming formulation is to determine

XU, yU, WU, hU for all blocks u so that the

linearized area r-x + y is minimized, sub-

ject to the above constraints.

4.5.3 Procedure

The algorithm can be summarized as

follows:

(1)

(2)

Determine the relative block place-

ment by the CTCDP algorithm

[Kozawa et al. 1984].

Determine the absolute block place-

ment by the following repetitive

procedure:

(2.1)

(2.2)

Determine the channel width by

global routing.

Optimize block size using the

following optimization algo -

rithm:

(2.2.1)

(2.2.2)

Generate the BNG from

the relative block posi-

tions.

Eliminate redundant

constraints and convert

the rest into an LP con-

dition matrix.

(2.2.3) Solve the LP problem by

the Simplex method.

(2.2 .4) Select the block size

closest to the LP scdu-

tion.

(2.3) (]0 to 2.1

The algorithm has been tested on two

chips with up to 40 macro blocks. Experi-

mental results indicate that 690 saving of

area can result over manual designs and

5-10% over other algorithms. This sav-

ing is achieved, however, at the cost of

10-12 times the computation time com-

pared to other algorithms.

4.6 Other \(Vork in This Field

Blanks [1985a, 1985b] has exploited the

mathematical properties of the quadratic

(sum of squares) distance metric to de-

velop an extremely fast wire length eval -

uation scheme. He uses the eigenvalue

method to determine the lower bound on

the wire I ength in order to evaluate his

iterative improvement procedures. He

has also given a theoretical model to

explain the observed deviation from

optimality.

Markov et al. [1984] have used

Bender’s [1962] procedure for optimiza-

tion. Blanks [1984] and Jarmon [1987]

have used the least-squares technique.

Akers [1981] has used linear assignment.

He has given two versions-constructive

placement and iterative improvement.

Further work on the eigenvalue method

has been done by Hanan and Kurtzberg

[1972bl. Hillner et al. [19861 has pro-

posed a dynamic programming approach

for gate array p Iacement (see also

Karger and Malek [19841). Herrigel and

Fichtner 11989] have used the Penalty

Function Method for macro placement.

Kappen and de Bent [1990] have pre-

sented an improvement over Tsay et al.’s

algorithm discussed in Section 4.3.

5. PLACEMENT BY THE GENETIC

ALGORITHM

The genetic algorithm is a very powerful

optimization algorithm, which works by

emulating the natural process of evolu-

tion as a means of progressing toward

ACM Computing Surveys, Vol. 23, No. 2, June 1991

196 * K. Shahookar and P. Mazumder

the optimum. Historically, it preceded

simulated annealing [Holland 1975], but

it has only recently been widely applied

for solving problems in diverse fields, in-

cluding VLSI placement [Grefenstette

1985, 1987]. The algorithm starts with

an initial set of random configurations,

called the population. Each individual in

the population is a string of symbols,

usually a binary bit string representing

a solution to the optimization problem.

During each iteration, called a genera-

tion, the individuals in the current popu-

lation are eualuated using some measure

of fitness. Based on this fitness value,

individuals are selected from the popula-

tion two at a time as parents. The fitter

individuals have a higher probability of

being selected. A number of genetic oper-

ators is applied to the parents to gener-

ate new individuals, called offspring, by

combining the features of both parents.

The three genetic operators commonly

used are crossover, mutation, and inver-

sion, which are derived by analogy from

the biological process of evolution. These

operators are described in detail below.

The offspring are next evaluated, and

a new generation is formed by sel-

ecting some of the parents and off-

spring, once again on the basis of

their fitness, so as to keep the

population size constant.

This section explains why genetic algo-

rithms are so successful in complex opti-

mization problems in terms of schemata

and the effect of genetic operators on

them. Informally, the symbols used in

the solution strings are known as genes.

They are the basic building blocks of a

solution and represent the properties that

make one solution different from the

other. For example, in the cell placement

problem, the ordered triples consisting of

the cells and their assigned coordinates

can be considered genes. A solution

string, which is made up of genes, is

called a chromosome. A schema is a set

of genes that make up a partial solution.

An example would be a subplacement,

consisting of any number of such triples,

with ‘don’t cares’ for the rest of the cells.

A schema with m defining elements and

‘don’t cares’ in the rest of the n – m

positions (such as an m-cell subplace -

ment in an n-cell placement problem)

can be considered as an (n – m)-

dimensional hyperplane in the solution

space. All points on that hyperplane (i. e.,

all configurations that contain the given

subplacement) are instances of the

schema. Note here that the subplace -

ment does not have to be physically con-

tiguous, such as a rectangular patch of

the chip area. For example, a good sub-

placement can consist of two densely con-

nected cells in neighboring locations.

Similarly, a good subplacement can also

consist of a cell at the input end of the

network and a cell at the output end that

are currently placed at opposite ends of

the chip. Both of these subplacements

will contribute to the high performance of

the individual that inherits them. Thus,

a schema is a logical rather than physi -

cal grouping of cell-coordinate triples that

have a particular relative placement.

As mentioned above, the genetic opera-

tors create a new generation of configu-

rations by combining the schemata (or

subplacements) of parents selected from

the current generation. Due to the

stochastic selection process, the fitter

parents, which are expected to contain

some good subplacements, are likely to

produce more offspring, and the bad

parents, which contain some bad sub-

placements, are likely to produce less off-

spring. Thus, in the next generation, the

number of good subplacements (or high-

fitness schemata) tends to increase, and

the number of bad subplacements (low-

fitness schemata) tends to decrease. Thus,

the fitness of the entire population im-

proves. This is the basic mechanism of

optimization by the genetic algorithm.

Each individual in the population is an

instance of 2‘ schemata, where n is the

length of each individual string. (This is

equivalent to saying that an n-cell place-

ment contains 2” subplacements of any

size.) Thus, there is a very large number

of schemata represented in a relatively

small population. By trying out one new

offspring, we get a rough estimate of the

fitness of all of its schemata or subplace -

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 197

FB:!:~J Cug
1,1,,1,,

Chromosomal Rep. Physical Layout

Figure 28. Traditional method of crossover. A segment of cells is taken from each parent. The coordinate

array is taken from the first parent. With this method, cells B and F are repeated, and cells H and I are

left out.

ments. Thus, with each new configura-

tion examined, the number of each of its

2 n schemata present in the population is

adjusted according to its fitness. This ef-

fect is termed the intrinsic parallelism of

the genetic algorithm. As more configu-

rations are tried out, the relative propor-

tions of the various schemata in the pop-

ulation reflect their fitness more and

more accurately. When a fitter schema is

introduced in the population through one

offspring, it is inherited by others in the

succeeding generation; therefore its pro-

portion in the population increases. It

starts driving out the less fit schemata,

and the average fitness of the population

keeps improving.

The genetic operators and their signifi-

cance can now be explained.

Crossover. Crossover is the main ge-

netic operator. It operates on two in-

dividuals at a time and generates an

offspring by combining schemata from

both parents. A simple way to achieve

crossover would be to choose a random

cut point and generate the offspring by

combining the segment of one parent to

the left of the cut point with the segment

of the other parent to the right of the cut

point. This method works well with the

bit string representation. Figure 28 gives

an example of crossover. In some applica-

tions, where the symbols in the solution

string cannot be repeated, this method is

not applicable without modification.

Placement is a typical problem domain

where such conflicts can occur. For ex-

ample, as shown in Figure 28, cells B

and F are repeated, and cells H and I

are left out. Thus, we need either a new

crossover operator that works well for

these problem domains or a method to

resolve such conflicts without causing

significant degradation in the efficiency

of the search process. The performance of

the genetic algorithm depends to a great

extent on the performance of the

crossover operator used. Various

crossover operators that overcome these

problems are described in the following

sections.

When the algorithm has been running

for some time, the individuals in the pop-

ulation are expected to be moderately

good. Thus, when the schemata from two

such individuals come together, the re -

suiting offspring can be even better, in

which case they are accepted into the

population. Besides, the fitter parents

have a hligher probability of generating

offspring. This process allows the algo-

rithm to examine more configurations in

a region of greater average fitness so the

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

198 ● K. Shahookar and P. Mazumder

4 +

CELL ABC DE FGHIJ
x 020507590030507095
Y 00 00 05050505050

SERIALNO O , 23456709

J1
CELL AFCDEBGI+I,J

x 020507590030557095
Y 10 0 0 0 0 50 505050W umhan.ti

SERIALNO0 1 2 3456789 J

Chromosomal Rep.

Figure 29.

optimum may be determined and, at the

same time, examine a few configurations

in other regions of the configuration space

so other areas of high average perfor-

mance may be discovered.

The amount of crossover is controlled

by the crossover rate, which is defined as

the ratio of the number of offspring pro-

duced in each generation to the popula-

tion size. The crossover rate determines

the ratio of the number of searches in

regions of high average fitness to the

number of searches in other regions. A

higher crossover rate allows exploration

of more of the solution space and reduces

the chances of settling for a false opti-

mum; but if this rate is too high, it

results in a wastage of computation time

in exploring unpromising regions of the

solution space.

Mutation. Mutation is a background

operator, which is not directly responsi -

ble for producing new offspring. It pro-

duces incremental random changes in the

offspring generated by crossover. The

mechanism most commonly used is pair-

wise interchange as shown in Figure 29.

This is not a mechanism for randomly

examining new configurations as in other

iterative improvement algorithms. In

genetic algorithms, mutation serves the

crucial role of replacing the genes lost

from the population during the selection

process so that they can be tried in a new

context or of providing the genes that

were not present in the initial popula-

Pm
ABCDE

F GHIJ

Mutation.

Physical Layout

tion. In terms of the placement problem,

a gene consisting of an ordered triple of a

cell and its associated ideal coordinates

may not be present in any of the individ-

uals in the population. (That is, that

particular cell may be associated with

nonideal coordinates in all the individu-

als.) In that case, crossover alone will not

help because it is only an inheritance

mechanism for existing genes. The muta-

tion operator generates new cell-coordi-

nate triples. If the new triples perform

well, the configurations containing them

are retained, and these triples spread

throughout the population.

The mutation rate is defined as the

percentage of the total number of genes

in the population, which are mutated in

each generation. Thus, for an n-cell

placement problem, with a population

size NP, the total number of genes is

nNP, and nNP R ~ /2 pairwise inter-

changes are performed for a mutation

rate R ~. The mutation rate controls the

rate at which new genes are introduced

into the population for trial. If it is too

low, many genes that would have been

useful are never tried out. If it is too

high, there will be too much random per-

turbation, the offspring will start losing

their resemblance to the parents, and the

algorithm will lose the ability to learn

from the history of the search.

Inversion. The inversion operator

takes a random segment in a solution

string and inverts it end for end

ACM Computmg Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques “ 199

n
CELL A B C%- H I J

x 020507590030557095

‘i 0000050 Y35050EQ

SERIAL NO 0 1 23456789

c)

u Each mll c..rd!na!e

, wle unchanged >

/

IIIll
.,,, ABC GFEDHIJ

x 0205030 0 9075557095

‘t
000550005050S0

SERIAL NO, 0126543789

Chromosomal Rep.

Figure 30.

(Figure 30). This operation is performed

in such a way that it does not modify the

solution represented by the string; in-

stead, it only modifies the representation

of the solution. Thus, the symbols com-

posing the string must have an interpre-

tation independent of their position. This

can be achieved by associating a serial

number with each symbol in the string

and interpreting the string with respect

to these serial numbers instead of the

array index. When a symbol is moved in

the array, its serial number is moved

with it, so the interpretation of the sym-

bol remains unchanged. In the cell place-

ment problem, the x- and y-coordinates

stored with each cell perform this func-

tion. Thus, no matter where the cell-

coordinate triple is located in the pop-

ulation array, it will have the same

interpretation in terms of the physical

layout.

The advantage of’ the inversion opera-

tor is the following. There are some

groups of properties, or genes, that would

be advantageous for the offpsring to in-

herit together from one parent. Such

groups of genes, which interact to in-

crease the fitness of the offspring that

inherit them, are said to be coadapted.

For example, if cells A and B are densely

connected to each other and parent 1 has

the genes (A, xl, Yl) and (B, X2, Y2),

where (xl, yl) and (X2, Y2) are neighbor-

ing locations, it would be advantageous

for the offspring to inherit both these

genes from one parent so that after

crossover cells A and B remain in

Em
ABCDE

FGt+l J

‘ E!i%d
>ABCDE

FGHIJ

Physical Layout

[nversion.

neighboring locations. If two genes are

close to each other in the solution string,

they have a lesser probability of being

split up when the crossover operator di-

vides the string into two segments. Thus,

by shuffling the cells around in the solu-

tion string, inversion allows triples of

cells that are already well placed relative

to each other to be located close to each

other in the string. This increases the

probability that when the crossover oper-

ator splits parent configurations into

segments to pass to the offspring, the

subplacements consisting of such groups

will be passed intact from one parent

(or another). This process allows for

the formation and survival of highly

optimized subplacements long before the

optimization of any complete placement

is finished. The inuersion rate is

the probability of performing inversion

on each individual during each gener-

ation. It controls the amount of

group formation. Too much inver-

sion will result in the perturbation

of the groups already formed.

Selection. After generating offspring,

we need a selection procedure in order to

choose the next generation from the com-

bined set of parenk and offspring. There

is a lot of diversity in the selection func-

tions used by various researchers. This

section briefly lists some of them. The

following sections give the specific func-

tions used in particular algorithms. The

three most com]monly used selection

ACM Computing Surveys, Vol. 23, No. 2, June 1991

200 “ K. Shahookar and P. Mazumder

methods are competitive, random, and

stochastic.

In competitive selection, all the parents

and offspring compete with each other,

and the P fittest individuals are se-

lected, where P is the population size.

In random selection, as the name im-

plies, P individuals are selected at ran-

dom, with uniform probability. Some-

times this is advantageous because that

way the population maintains its diver-

sity much longer and the search does not

converge to a local optimum. With purely

competitive selection, the whole popula-

tion can quickly converge to individuals

that are only slightly different from each

other, after which the algorithm will lose

its ability to optimize further. (This con-

dition is called premature convergence.

Once this occurs, the population will take

a very long time to recover its diversity

through the slow process of mutation.) A

variation of this method is the retention

of the best configuration and selection of

the rest of the population randomly, This

ensures that the fitness will always

increase monotonically and we will

never lose the best configuration

found, simply because it was not

selected by the random process.

Stochastic selection is similar to the

m-ocess described above for the selection

if parents for crossover. The probability

of selection of each individual is propor-

tional to its fitness. This method includes

both competition and randomness.

Comparison with Simulated Anneal-

ing. Both simulated annealing and the

genetic algorithm are computation inten-

sive. The genetic algorithm, however, has

some built-in features, which, if exploited

properly, can result in significant sav-

ings. One difference is that simulated

annealing operates on only one configu-

ration at a time, whereas the genetic

algorithm maintains a large population

of configurations that are optimized si-

multaneously. Thus, the genetic algo-

rithm takes advantage of the experience

gained in past exploration of the solution

space and can direct a more extensive

search to areas of lower average cost.

Since simulated annealing operates on

only one configuration at a time, it has

little history to use to learn from past

trials.

Both simulated annealing and the ge-

netic algorithm have mechanisms for

avoiding entrapment at local optima. In

simulated annealing, this is done by oc-

casionally discarding a superior con@-u-

ration and accepting an inferior one. The

genetic algorithm also relies on inferior

configurations as a means of avoiding

false optima, but since it has a whole

population of configurations, the genetic

algorithm can keep and process inferior

configurations without losing the best

ones. Besides, in the genetic algorithm

each new configuration is constructed

from two previous configurations, which

means that in a few iterations, all the

configurations in the population have a

chance of contributing their good fea-

tures to form one superconfiguration. In

simulated annealing, each new configu-

ration is formed from only one old con-

figuration, which means that the good

features of more than one radically dif-

ferent configurations never mix. A con-

figuration is either accepted or thrown

away as a whole, depending on its total

cost .

On the negative side, the genetic algo-

rithm requires more memory space com-

pared to simulated annealing. For

example, a 1000 cell placement problem

would require up to 400Kb to store a

population of 50 configurations. For mod-

erate sized layout problems, this memory

requirement may not pose a significant

problem because commercial worksta-

tions have 4Mb or more of primary mem-

ory. For circuits of the order of 10,000

cells, the genetic algorithm is expected to

have a small amount of extra paging

overhead compared to simulated anneal-

ing, but it is still expected to speed up

the optimization due to the efficiency of

the search process.

The genetic algorithm is a new and

powerful technique. This method de-

pends for its success on the proper choice

of the various parameters and functions

that control processes like mutation,

ACM Computing Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques - 201

selection, and crossover. If the functions

are selected properly, a good placement

will be obtained. The major problem in

devising a genetic algorithm for module

placement is choosing the functions most

suitable for this problem, A great deal of

research is currently being conducted on

it. In this section, three algorithms due

to Cohoon and Paris [19861, Kling [19871,

and Shahookar and hkzumder [1990] are (z)

discussed. More work has been done in

this field by Chan and Mazumder [19891. —

chosen, and the process is repeated.

Experimental observations of Cohoon

and Paris show that the initial popu-

lation constructed by clustering is

fitter, but it rapidly converges to a

local optimum. Hence, in the final

algorithm, they have used a mixed

population, a part of which is con-

structed by each method.

Scoring function. The scoring func-

tion determines the fitness of a place-

5.1 Genie: Genetic Placement Algorithm

The Genie algorithm was developed by

Cohoon and Paris [1986]. The pseudocode

is given below:

PROCEDURE Genie:

Initialize;

NP F population size;
No+- & pi;

/* where P+ is the desired ratio of the number of offspring to the population size “/

Construct_ population(NP);

FOR i -1 TO NP score(population[i]);

ENDFOR;
FOR i + 1 TO Number_ of_ Generations

FORj-l TONo

(Z, y) e Choose _Parents;
offspring[j] - generate _Offspring(x, y);

Score(offspring[j]);

ENDFOR;

population e Select(population, offspring, NP);

FORj-l TONP
With probability PWNlutate(population[j]);

ENDFOR:

ENDFOR; ‘

Return highest scoring configuration in population;
END.

The following is a description of some

of the functions used in Cohoon and Paris

[19861 and their results.

(1) Initial population construction. Co-

hoon and Paris [1986] proposed two

methods for generating the initial

population. The first one is to con-

struct the population randomly. The

second is to use a greedy clustering

technique to place the cells. A net is

chosen at random, and the modules

connected to it are placed in netlist

order. Then, another net connected

to the most recently placed module is

ment. The scoring function u used in

Genie uses the conventional wire

length function based on the bound-

ing rectangle. [t does not account for

cell overlap or row lengths, owing to

the gate array layout style. It does,

however, acccmnt for nonuniform

channel usage. This is done as

follows: Let

L, be the perimeter of net i,

r and c be this number of rows and

columns, respectively,

ACM Computing Surveys, Vol 23, No. 2, June 1991

202 “ K. Shahookar and P. Mazumder

(3)

h, be the number of nets intersecting

the horizontal channel i,

U, be the number of nets intersecting

the vertical channel i,

.s~ be the standard deviation of h,,

SUbe the standard deviation of v,,

~ and U be the mean of h, and U,

respectively,

{

_ h,–~–s~ if ~+s~<h,.

0 otherwise

=Jv,-;-su if ~+sU<vZ

(0 otherwise

Then,

This scoring function penalizes all

channels th~t have a wiring density

more than one standard deviation

above the mean. Thus, it encourages

a more uniform distribution of the

wiring.

Parent choice function. The parent

choice function chooses the parent

pairs. Four alternatives were consid-

ered here. (1) Pair a random string

with the fittest string, (2) choose both

parents randomly, (3) select parents

stochastically, where the probability

of each individual being selected as

parent is proportional to its fitness,

and (4), which is the same as (3) but

allows only individuals with above-

average fitness to reproduce. The fit-

ness function used here is

w(s) = =,
u(s)

which is equivalent to taking the re -

ciprocal of the cost and normalizing

it so that the lowest fitness is 1. If

the best configuration is paired with

a random one, the population quickly

loses diversity and the algorithm

converges to a poor local minimum.

At the other extreme, if parents are

(4)

(5)

chosen randomly, there is little im-

provement after several generations

and hence no convergence to a good

placement. The stochastic functions

(3) and (4) produced the best results.

Crossover operator. The crossover

operator generates offspring from the

parents. Two crossover operators

have been described. The first selects

a random module es and brings its

four nearest neighbors in parent 1

into neighboring slots in parent 2

while minimally perturbing the other

modules. In order to do this, the mod-

ules occupying the neighboring loca-

tions of es in parent 2 are shifted

outward by one location at a time in

a chain move until a vacant location

is found (Figure 3 la). The result of

this is that a patch consisting of mod-

ule es and its four neighbors is copied

from parent 1 into parent 2, and the

other modules are shifted by one po-

sition in order to make room. The

second operator selects a square con-

sisting of k x k modules from parent

1, where k is a random number with

mean 3 and variance 1, and copies it

to parent 2. This method tends to

duplicate some modules and leave out

others. To avoid this conflict, the

modules that are in the square patch

of parent 2, but not in the patch of

parent 1, and that are going to be

overwritten are copied to the loca-

tions of modules that are in the patch

of parent 1 but not in the patch of

parent 2, which are thus prevented

from being duplicated (Figure 31b).

Experiments favor the second opera-

tor.

Selection function. The selection

function determines which configura-

tions will survive into the next gen-

eration. The three functions tried are

(1) select the best string and p -1

random strings for survival into the

next generation, where p is the pop-

ulation size; (2) select p random

strings; (3) select strings stochasti -

cally, with the probability of selec-

tion being proportional to the fitness.

The results are similar to those for

ACM Computing Surveys, Vol. 23, No, 2, June 1991

VLSI Cell Placement Techniques 8 203

B

Ae~C

D

Parent 1

II
ABC

DEF

GHI

Parent 1

(a)

‘c

Parent 2

\

‘D

I

Parent 2

(b)

Figure 31. Crossover in Cenie. (a) Crossover operator 1. The modules surrounding c. in parent 1 are
inserted in locations around :,. in parent 2. The displaced modules are shifted one slot at a time so as to
cause a minimum disruption m the layout. Thus, parent 2 inherits the e, AECD patch from parent 1. (b)

Crossover operator 2. Copy the rectangular patch from parent 1 to parent 2. But this would cause the
modules M, N, P, W, X, which are in the segment of parent 2 but not in the segment of parent 1, to be

overwritten and lost. Hence, first copy these elements to the locations of A, C, D, E, F, which are in the

segment of parent 1 but not in the segment of parent 2. This would also prevent these modules from being

duplicated.

ACM Computing Surveys, Vol 23, No. 2, June 1991

204 e K. Shahookar and P. Mazumder

‘=0
,-es x

n---------.........,
c

p+B

n

L- o
et

Figure 32. The greedy mutation operator Select

the net et BCe~ (dotted line) and the target module

e,. Mutate by moving et to the location of X, that

is, adjacent to es, and sliding X one location. Con-

tinue sliding the displaced modules until a vacant

location is found. This operation reduces the

perimeter of the net bounding rectangle.

(6)

the parent choice function. If the best

configuration and p – 1 random ones

are chosen, the population quickly

loses diversity and converges to a

poor local minimum. The function

that chooses any p configurations at

random or the one that probabilisti -

cally favors the choice of the higher

scoring configurations perform much

better.

Mutation function. Two alterna-

tives are (1) perform a series of ran-

dom interchanges and (2) use a

greedy technique to improve the

placement cost. The greedy operator

chooses a module e, on a net Z and

searches for a module et on the same

net that is farthest from e,.

et is then brought close to es, and the

displaced modules are shifted one lo-

cation at a time until a vacant loca -

tion is found (Figure 32). Thus, the

perimeter of the bounding rectangle

of net Z is reduced while minimally

perturbing the rest of the placement.

Experimental Results. The compara-

tive performance of different variations

of the genetic operators has been de-

scribed above. The algorithm was tried

on five circuits with 36–81 cells. The

performance was compared against a

simulated annealing algorithm also de-

veloped by Cohoon and Paris. Genie ob-

tained the same placement quality in two

cases and up to 7~0 worse in the other

three cases. The number of configura-

tions examined, however, was only 28%

for one circuit, 50% for two circuits, and

75% for two circuits. The actual CPU

time was not given.

5.2 ESP: Evolution-Based Placement

Algorithm

Kling [1987] and Kling and Bannerjee

[19871 developed an evolution-based algo-

rithm that iteratively uses the sequence

mutation, evaluation, judgment, and

reallocation. The algorithm operates on

only one configuration at a time. The

modules in the configuration are treated

as the population. A mutation is a ran-

dom change in the placement. Evalua-

tion determines the goodness of place-

ment of each module, that is, the individ-

ual contribution of the module to the

cost. Kling used this measure of good-

ness instead of the traditional fitness

measure in genetic algorithms. The judg-

ment function probabilistically deter-

mines whether a module is to be removed

and reallocated or not on the basis of its

goodness value. In the reallocation phase,

all the modules removed during the judg-

ment phase are placed at new locations.

The algorithms used for performing these

functions are described in detail below.

Mutation. Mutation is done by ran-

domly interchanging a certain number of

module pairs without regard to their ef-

fect on the placement. The mutation pro-

cess is controlled by two user-supplied

parameters—the probability of occur-

rence of mutation and the percentage of

the total number of modules to be mu-

tated. These two parameters determine

the number of mutations performed

during each iteration.

Evaluation. Evaluation is a complex

process and is the critical step in this

algorithm. As mentioned above, it deter-

mines the goodness of placement of each

module so that the poorly placed modules

can be removed for allocation. Kling has

ACM Computing Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques g 205

proposed several procedures for evaluat-

ing the goodness value.

For gate arrays, the goodness of each

module is computed as the ratio of the

current value to the precomputed ideal

value. The estimate of the current value

is based on the product of the connectiv-

ity to other modules and the reciprocal of

distance from them. An evaluation win-

dow consisting of the normalized recipro-

cal Manhattan distances from the center

(called weights) is precomputed as shown

in Figure 33a. To evaluate the current

value of a module i, the evaluation win-

dow is centered over it. For all modules j

to which it is connected, the sum

is calculated, where C,J is the connectiv-

ity of the module being evaluated to the

jth module and WJ is the weight corre-

sponding to their dwta~ce. Figure 33b

shows an example of the computation of

the current value for a module. The pre -

computed ideal value is obtained by a

similar computation process, but here all

the modules connected to the module be-

ing evaluated are assumed to be placed

in its immediate neighborhood such that

the modules with the largest connectiv-

ity are placed closest to it (Figure 33c).

This is the upper bound on the current

value, which would be achieved only by

the best-placed modules, which have all

connected modules in adjacent positions.

For standard cells, three methods have

been proposed. In the first, the concentric

circle method (Figure 34), the area of the

modules connected to module i is com-

puted. Concentric circles are then de-

fined such that the nth circle covers n

times that area. Weights are assigned to

the circles from 1007o for the innermost

circle to O?iofor the area outside the out-

ermost circle. The current value of a cell

i is determined by the sum

r, = ~ c,lw~,

where ciJ is the connectivity with the jth

cell and WJ is the weight of the circular

region in which the pin of the jth cell is

located.

The second evaluation method for

standard cells is based on the minimum

possible bounding rectangle for a net.

The minimum pounding rectangle for

each net is computed by placing all mod-

ules connected to that net in nearest

neighbor locations. To calculate the

goodness value of a placed module, its

distance from the center of gravity of the

net is computed. If it lies within the

minimum bounding rectangle, its good-

ness value is 1009c. Otherwise, it is the

ratio of the boundalry of the net’s optimal

rectangle to the cell’s coordinate closest

to the net center.

The third method for standard cells is

based on the raticl of the current wire

length of the nets connected to a cell to

the corresponding optimal wire lengths.

The goodness is computed by averaging

this ratio for all the nets connected to the

cell being evaluated. The result is then

normalized in the O– 100% range. This

procedure gives the best results for stan-

dard cells.

Judgment. In the judgment phase,

ill-placed modules are removed for reallo-

cation. The probability of removal of a

module increases as its goodness de-

creases. The goodness of each module is

compared to a random number. If

the goodness is less than the random

number, it is removed.

Reallocation. Reallocation is a criti-

cal part of the al~orithm. The removed

modules should be reallocated at the freed

locations so as to improve the placement.

Modules to be reallocated are sorted ac-

cording to their connectivity and placed

one at a time. The goodness of each mod-

ule in all free locations is evaluated. The

module is placed [at the location giving

the best goodness value. Thus, the most

densely connected modules get the best

choice of location cluring reallocation.

Preliminary experimental results show

this algorithm to be an order of magni-

tude faster than simulated annealing,

with comparable placement quality.

ACM Computing Survsys, Vol. 23, No. 2, June 1991

206 e K. Shahookar and P. Mazumder

25

33

50

33

25

33

50

100

50

33

50 33

100 50

100

100 50

50 33

(a)

25

33

50

33

25

r . .. ____ ____ ------ ----1 r 1 r 1 r ___7_-__ r---

I

I
1---

I
I
I
~--.

I
I
I
L ---

I
I

C=2

w=25

I
L___

I
I +
I I

I I
I I
I I

G
C=4

W=50

C=l

W=loo

c=6

W=32

1
I I I
I 1 I
I I I

--- -l ____ L----l
I I I
I I I
I I I
I I I

_______ ---1 r 1
1 I I
I I I
I I

__- J_- __ L_--;
I I

I I I
I I I

I I
_--7 ---or___+

I I I
I I I

--1-
1 I i

-l L------- --- -1

,—-0 I

w=251 ! I I

r‘ ---+++++-+ --:----; ---4

I I I I
1

I I I I 1 I
I I I
L __-J--_-k-__i____l.

i

I I
_________________ L___A

i I I I I
I

I
I I I

I
I I I I

I I I
I

I I I
/

1 / I
I
~--- ~----~----;--------- ;--__;___;_-__;__-;
I I I I I I I
I I I

I I
I I I

I
1 I 1

I I I I i
L

i i
-1 L J

i
-- - - - - - -- - - --- !L---L__--L___J____ L__-J

(b)

Figure 33. Evaluation of goodness value in Kling’s algorithm. (a) Evaluation window showing weights of

neighboring locations; (b) calculation of current value r; r = X Czu, = 2*25 + 4*5O + 1*1OO + 6*33 +

5*5O + 2*25 = 848; (c) calculation of ideal value t, t = ZC, W, = 1*5O + 2*1OO + 2*5O + 5*1OO + 6*1OO +

4*1OO = 1850. Goodness value: r/t*100 = 848/1850*100 = 45.83%.

ACM Computing Surveys,Vol. 23,N0. 2, June 1991

VLSI Cell Placement Techniques “ 207

(c]

Figure 33. Continued

Figure 34. Concentric circle function for the evaluation of goodness of placsment of standard cells in

Kling’s algorithm.

ACM Computing Surveys, Vol. 23, No, 2, June 1991

208 “ K. Shahookar and P. Mazumder

5.3 GASP: Genetic Algorithm for Standard

Cell Placement

The authors of this paper have recently

implemented a genetic algorithm for cell

placement (GASP) [Shahookar and

Mazumder 1990] as follows.

5.3.1 Algorithm

The flow chart for GASP is given in Fig-

ure 35. First, an initial population of

configurations is constructed randomly.

Each individual in the population is rep-

resented by a set of four integer arrays

containing the cell number, the x- and

y-coordinates, and a serial number. The

coordinates of the cells are determined

by placing them end to end in rows. The

serial number is used to keep track of the

approximate slot in the physical layout

area to which each cell is assigned. The

population size is provided by the user

and determines the tradeoff between pro-

cessing time and result quality. From

experimental observation, it was found

that a small population of 24 configura-

tions gave the best performance. Each

individual is evaluated to determine its

fitness. The fitness is the reciprocal of

the wire length. Penalty terms for row

length control and cell overlap are not

used. Instead, after generating a new

configuration, cells are realigned

to remove overlap. This is done because

removing the overlap takes no more

computation time than determining the

overlap penalty, Since on average half

the cells are moved simultaneously, a

majority of the nets are affected. Thus,

the wire length has to be computed ex-

haustively, and no saving is achieved by

allowing overlap.

At the beginning of each generation,

inversion is performed on each individ-

ual, with a probability equal to the inuer-

sion rate. For this purpose, two cut points

are determined randomly, and the seg-

ment between them in the cell array is

flipped, along with the coordinates and

the serial numbers (Figure 31). Then

crossover takes place. Two individuals

are selected from the population at ran-

dom, with a probability proportional to

their fitness. Before crossover, the serial

numbers of the second parent are aligned

in the same sequence as those of the fh-st

parent, so cells in the same array loca-

tions correspond to approximately the

same locations on the chip. Then seg-

ments are exchanged between parents so

that for each location on the chip, the

child inherits a cell from one parent or

another. This process is repeated until

the desired number of offspring has been

generated, The number of offspring per

generation, N. is determined by the

crossover rate:

N, = NPRC

where NP is the population size and R ~

is the crossover rate. Since the number of

configurations examined is kept con-

stant, the actual number of generations

is increased as the crossover rate is re -

duced:

Ngo N,
Ng=—

N. ‘

where NP is the population size and NgO

is the number of generations specified by

the user.

Each offspring is mutated with a prob-

ability equal to the mutation rate. Muta-

tion consists of pairwise interchange.

Cells in two randomly picked array loca-

tions are exchanged, leaving the coordi-

nate arrays unchanged (Figure 30).

After crossover and mutation, the fit -

ness of each offspring is evaluated, and

the population for the next generation is

selected from the combined set of parents

and offspring. Three selection methods

have been tried: competitive selection, in

which the best of the parents and off-

spring are selected, random selection, and

random selection with the retention of

the best individual.

5.3.2 Crossover Operators

Crossover is the primary method of opti-

mization in the genetic algorithm and, in

the case of placement, works by combin-

ing good subplacements from two differ-

ent parent placements to generate a new

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques ● 209

r#&%?o%N8:%:%Ns; I
Read netllst and cell library files;

Read parameter values, crossover rate = Rc, mutation rate = Rm,

mverwon rate = Ri, population size = Np, no. of generations = Ng.

+

I Generate initial population randomly.

I
3

I Evaluate configuration j; I

FORi:=l TO NgDO

FOiRj:-l TO NpDO

Invert config. j with probability = Ni;

Make two random triafe and select two perant8 from

the population, with probability of selstctiort of eacl!
individual proportional to ite fiineew

Align serial Noa. of parent 2 with thoaa of parent I;

Perform specified type of croeeover operation,

store ruult in offspring array;

FOflk:. tTOn NpFfntr%?OO

Seloot a random Oortfiguretiofl and

make a random pair intemhange;

+
r From combined set of puente and offefning, chooee I

I the population for the next generetiono accordhg to
fho qmdfied selection criterion, end copy tlw poimere I

I to eeleoted indlviduab into the population array; I

FIrrd ths mdiitiuel wrth the highnst fimem

m the final population.
3

Figure 35. GASP flowchart.

ACM Computing Surveys,VO1.23, No 2, June 1991

210 “ K. Shahookar and P. Mazumder

placement. In order to deal with the con-

flicts that can occur in traditional

crossover, one must either find a way to

combine two different placements with-

out conflicts or use some method to

resolve the conflicts that arise. The per-

formance of three powerful crossover

operators have been compared experi-

mentally. Two of them, Order and PMX,

differ in their conflict resolution meth-

ods, whereas Cycle crossover is a conflict-

less operator.

Order Crossouer. The Order crossover

algorithm is as follows. Choose a cut

point at random. Copy the array segment

to the left of the cut point from one par-

ent to the offspring. Fill the remaining

(right) portion of the offspring array by

going through the second parent, from

the beginning to the end and taking those

modules that were left out, in order. An

example is shown in Figure 36a. This

operator conveys a subplacement from

the first parent without any changes,

then, to resolve conflicts, compresses the

second parent by eliminating the cells

conveyed by the first parent and shifting

the rest of the cells to the left, without

changing their order [Davis 19851. It then

copies this compressed second parent into

the remaining part of the offspring ar-

ray.

PMX. PMX [Goldberg and Lingle

1985] stands for Partially Mapped

Crossover. It is implemented as follows.

Choose a random cut point and consider

the segments following the cut point in

both parents as a partial mapping of the

cells to be exchanged in the first parent

to generate the offspring. Take corre-

sponding cells from the segments of both

parents, locate both these cells in the

first parent, and exchange them. Repeat

this process for all cells in the segment.

Thus, a cell in the segment of the first

parent and a cell in the same location in

the second parent will define which cells

in the first parent have to be exchanged

to generate the offspring. An example is

shown in Figure 36b.

cycle Crossover. Cycle crossover

[Oliver et al. 1987] is an attempt to elim-

ACM Computing Surveys, Vol. 23, No 2, June 1991

inate the cell conflicts that normally arise

in crossover operators. In the offspring

generated by cycle crossover, every cell is

in the same location as in one parent or

the other. For Cycle crossover, we start

with the cell in location 1 of parent 1 (or

any other reference point) and copy it to

location 1 of the offspring. Now consider

what will happen to the cell in location 1

of parent 2. The offspring cannot inherit

this cell from parent 2, since location 1 in

the offspring has been filled. So this cell

must be searched in parent 1 and passed

on to the offspring from there. Supposing

this cell is located in parent 1 at location

x. Then it is passed to the offspring at

location x. But then the cell at location

x in parent 2 cannot be passed to the

offspring, so that cell is also passed from

parent 1. This process continues until we

complete a cycle and reach a cell that has

already been passed. Then we choose a

cell from parent 2 to pass to the offspring

and go through another cycle, passing

cells from parent 2 to the offspring. Thus,

in alternate cycles, the offspring inherits

cells from alternate parents, and the cells

are placed in the same locations as they

were in the parents from which they were

inherited. An example is given in Figure

36c.

5.3.3 Experimental Results

In most cases, either PMX or Cycle

crossover performed best, whereas Order

crossover performed worst. Cycle

crossover was found to be slightly better

than PMX. The best compromise of pa-

rameters was crossover rate 3370, inver-

sion rate 15Y0, and mutation rate O.5$Z0.

These values were used in all subsequent

experiments.

In all cases, competitive selection of

the best of the parents and offspring to

be included in the next generation proved

to be better than all other strategies.

Figures 37a-c show the plots of the low-

est and average wiring cost in each gen-

eration as the optimization proceeds. The

reason for the poor performance of the

random selection methods can be clearly

seen. Just as it is possible to combine the

good features of two parents to form a

VLSI Cell Placement Techniques “ 211

.“
,’

,
/’

1’
I
I
1
\

t

\
\

\
\

.

~ Alli31ClDlEl~ IIHIJIG[

(a) (b)

Crossover point ,

(c)

Figure 36. Crossover operators in GASP. (a) Order crossover. Pass the Left segpent from parent 1.

Construct the right segment by taking the remaining cells from parent 2 in the same order. (b) PMX
crossover. The right segments of both parents act as a partial mapping of pairwise exchanges to be
performed on parent 1. Since the pairs (G, J), (H, B), and (Z, F) are situated at the same locations in both
parents, exchange these cells in parent 1 to generate the offspring. (c) Cycle crossover. Start by passing A

from parent 1 to the offspring. Since E is located at the same position in parent 2, it cannot be passed from

there. Therefore, pass E also from parent 1. D is located in the same position in parent 2 as E in parent 1.

Therefore, proceed similarly with D. Now A is in the same location, but it has already been processed.

This completes a cycle. Start another cycle from parent 2 by passing C to the offspring, and continue by

passing 1?, H, F, and Z from parent 2. The third cycle will again be from parent 1 and will pass G and J.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

212 “ K. Shahookar and P. Ma.zumder

better offspring, it is also possible to com-

bine the bad features to form a far worse

offspring. If these offspring are accepted

on a random basis, the best and average

cost in the population will oscillate, as

seen in Figure 37c. The losses involved

in the random process far outweigh any

advantage gained, and the algorithm

takes a much longer time to converge.

When we allow for the retention of the

best solution along with random selec-

tion, the cost of the best solution is seen

to decrease monotonically. The average

cost of the population still oscillates,

however, and the convergence is much

slower than for competitive selection.

Comparison with TimberWolfi The

performance of the algorithm was com-

pared against TimberWolf 3.3 for five

circuits ranging from 100 to 800 cells. It

achieved the same quality of placement

in about the same amount of CPU time.

There are two interesting differences,

however.

GASP achieves a very rapid improve-

ment in the beginning, then levels off, as

illustrated in Figure 38. On the other

hand, for TimberWolf the cost increases

for the first few high temperature itera-

tions, and little improvement is achieved

during the first half of the run. This

means that if a very high-quality place-

ment is not required, GASP will be

several times faster.

Another difference is that although the

CPU times were comparable, GASP ex-

amined 20– 50 times fewer configurations

for the same quality of placement. This

advantage was offset by the excessive

evaluation time, which is the bottleneck

of the algorithm. In simulated anneal-

ing, only two cells are moved at a time,

so only a few nets need to be evaluated to

determine the change in wire length. In

GASP, nearly half the cells are moved

simultaneously, and the wire length has

to be computed exhaustively. This takes

62-67% of the CPU time, whereas

crossover takes only 17’%0of the time.

6. CONCLUSION

This paper discussed five classes of VLSI

module placement algorithms. Simulated

ACM Computing Surveys, Vol. 23, No 2, June 1991

annealing is currently the most popular

among researchers and is the best algo-

rithm available in terms of the place-

ment quality, but it takes an excessive

amount of computation time. It is de-

rived by analogy from the process of an-

nealing, or the attainment of ordered

placement of atoms in a metal during

slow cooling from a high temperature.

We discussed the TimberWolf 3.2 algo-

rithm by Sechen, improvements made in

TimberWolf 4.2, and other recent devel-

opments such as the experiments on the

cooling schedule by Nahar et al. [1985]

and the Markov chain analysis by Aarts

et al.

Min-cut algorithms would rank second

in terms of placement quality but would

probably be the best in terms of cost/per-

formance ratio, since they are much

faster than simulated annealing. These

algorithms are based on a simple princi-

ple—the groups of cells that are densely

connected to each other ought to be placed

close together. Thus, by repeated parti-

tioning of the given network to minimize

the net cut and each time constraining

the subgroups to be placed in different

areas in the layout, the wire length is

minimized. The algorithms of Breuer

have been discussed in this paper, along

with improvements such as terminal

propagation by Dunlop and Kernighan

[19851, and quadrisection by Suaris and

Kedem [1987].

Force-directed algorithms operate on

the physical analogy of masses connected

by springs, where the system would tend

to come to rest in the minimum energy

state, with minimum tension in the

springs, or in terms of the placement

problem, the wire length minimized.

Force-directed algorithms have been

around since the 1960s and were among

the first algorithms to be used for place-

ment — mainly printed circuit board

placement in those days. A rich variety

of implementations have been developed

over the years, including constructive

(equation solving) methods for determin-

ing a minimum-energy configuration

from scratch and two types of iterative

techniques, one consisting of selecting

modules one at a time and determining

VLSI Cell Placement Techniques * 213

: l.4xlo5–

c I

~ I 2x Io5_ ;

:
1 OX105

Q
m
~

QJ O 8X105>
m
~

m O 6X105

G

; o 4X105 [Ll
2 ——

0 100 200 300 400 500

CPU-see

(a)

cpu-s~~

(b)

~ I,2x I05
c
-~

\

al

:
a

~ 08x105_
aJ

\ l\
,% / ,$ /,, II

/ \/_\=)\

: 0.6x105_
.

.
m

;
o 4X105

3 i
o 100 200 300 400 500

CPU-see

(c)

Figure 37. Comparison of selection methods in GASP. (a) Cycle crossover, competitive selection; (b) cycle
crossover, random selection, (c) cycle crossover, random + best selection. —, lowest Wire length;
. . ., average wire length.

ACM Computing Surreys, Vol. 23, No. 2, June 1991

214 ● K. Shahookar and P. Mazumder

Iterations (T[mberWoif)

=H=

240003-
;>
‘#f
Y ,

-240000

‘,!,
2COOIXI- . -200000

,
12QOQI- “1 -160000

12uow -
_ :

120000

SOCa 80000
0 1000 2000 3000

CPUSW(GASP)

Optimization characteristics of GASP compared to TimberWolf.

an ideal location for them from force con-

siderations and the other consisting of

random/exhaustive pairwise inter -

change, with acceptance of the good

moves and rejection of the bad moves,

once again on the basis of force consider-

ations. An overview of the various tech-

niques used has been given, along with a

sample algorithm and a network exam-

ple to illustrate the operation of the algo-

rithm. Goto’s GFDR algorithm has also

been discussed.

Placement is an optimization problem,

and methods such as Simplex, Quadratic

Programming, and the Penalty Function

Method have traditionally been used for

various linear and nonlinear optimiza-

tion problems. Further, the placement

problem can also be formulated in terms

of the quadratic assignment problem,

which can be solved by the eigenvalue

method. Accordingly, several papers that

use these techmques have been discussed

under the category of numerical opti-

mization techniques. The common fea-

ture of all these techniques is that they

do not constrain the modules to grid

points or rows, hence they are more ap-

plicable to macroblocks than to standard

cells or gate arrays, although the solu-

tion generated by numerical techniques

can be further processed to map the mod-

ules to the nearest grid points.

The final class of algorithms discussed

here are genetic algorithms, which, al-

though invented in the 1960s, were not

used for placement until 1986. The ge-

netic algorithm is an extremely efficient

search and optimization technique for

problems with a large and varied search

space, as well as problems where more

than one physical feature needs to be

optimized simultaneously. The genetic

algorithm processes a set of alternative

placements together and creates a new

placement for trial by combining sub-

placements from two parent placements.

This causes the inheritance and accumu-

lation of good subplacements from one

generation to the next. It also causes the

mixing of the good features of several

different placements that are being opti-

mized simultaneously for mutual benefit.

Thus, the search through the solution

space is inherently parallel. The place-

ment problem is represented in the form

of a genetic code, and the genetic opera-

tors operate on this code, not directly on

the physical layout. This is a major devi-

ation from the conventional placement

algorithms that directly apply transfor-

mations to the physical layout. This

intrinsic parallelism of the genetic

algorithm can, however, be a potential

problem, and unless a clever representa-

tion scheme is devised to represent the

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 215

Table 5. Comparison of Placement Algorithms

Algorithm Result quality Speed

Simulated annealing Near optimal Ver,f slow

Genetic algorithm Near optimal Very slow

Force directed Medium. good Slow medium

Numerical optimization Medium. . . good Slow. medium

Min-cut Good Medium

Clustering and other

constructive placement Poor Fast

Table 6. Comparison of the Run Times of Placement Algorithms

No. of CPU Computer
Implementation algorithm cells hours hardware Performance Reference

Huang et al. Simulated 469 1.42 VAX 11/780 Wire lengths [Huang et al. 19861
TimberWolf 3.2 Annealing 469 3 within k 4~o

Huang 800 10.42

TimberWolf 3.2 800 10.7

Dunlop and
llernighan

Min-cut 412

Quadrisection

TimberWolf 3.2

Quadrisection

TimberWolf 3.2

Proud-2

Min-cut 173
173
796
796

Gauss- 1438

1 VAX 11/780

0.01 VAX 8600
0.53
0.135
17.8
0.014 VAX 8650

Proud-4 Seidel

TimberWolf 3.2

TimberWolf 4.2

Proud-2

Proud-4

TimberWolf 3,2

TimberWolf 4.2

Proud-2

Proud-4

ESP Evolution

1438 0.027

1438 2

1438 0.9

3816 0.09

3816 0.18

3816 –

3816 6.69

26277 0.85

26277 1,56

183 0.43 Sun 3/75

Comparable to [Dunlop and

manual layout Kernighan 19851

Chip area = 1.11 [Suaris and Kedem 19871
Chip area = 1.0

Chip area = 0.91

Chip area = 1.0

Wire length = 0.93 [Tsay et al. 19881

Wire length = 0.9

Wire length = 1.0

Wire length = 0.84

Wire length = 0.90

Wire length = 0.91

Wire length = 1.0

Wire length = 0.83

Wire length = 1.0

Wire length = 0.962

Wire length = 1.0 [Kling 19871

TimberWolf 3.2 183 2,7 Wire length = 1.0

GASP Genetic 469 11.0 Apollo- Wire length = 1.0 [Shahookar and

TimberWolf 3.2 469 11.3 DN4000 Wire length = 1.02 Mazumder 19901

GASP 800 12.5 Wire length = 1.0

TimberWolf 3.2 800 13.7 Wire length = 0.87

physical placement as a genetic code, the

algorithm may prove ineffective. In this

paper, three implementations of the

genetic algorithm that overcome these

problems in different ways were

described.

Table 5 is an approximate comparison

of the performance of the algorithms dis -

cussed here. Table 6 gives the run time

and performance of some of the algo-

rithms. The wire length or chip area in

the performance column has been nor-

malized. This data can only give partial

comparisons, since different papers have

reported results on different circuits and

have used different computer hardware.

An attempt has been made to group the

data according to the computer hardware

used.

Despite the bewildering variety of al-

gorithms available, efficient module

placement has so far remained an elusive

goal. Most of the heuristics that have

been tried take excessive amounts of CPU

ACM Computing Surveys, Vol. 23, No 2, June 1991

216 0 K. Shahookar and P. Mazumder

time and produce suboptimal results.

Until recently excessive computation

times had prohibited the processing of

circuits with more than a few thousand

modules. As fast simulated annealing

and rein-cut algorithms discussed above

are cast into fully developed place and

route packages, however, this situation

is expected to change. Preliminary re -

suits show that these algorithms have

the capability to produce near-optimal

placements in reasonable computation

time.

The following is a list of other surveys

and tutorials on cell placement in

chronological order: Hanan and

Kurtzberg [1972 al, Press [19791, Soukup

[19811, Chew [19841, Hu and Kuh [19851,

Hildebrandt [1985], Goto and Matsuda

[19861, Press and Karger [19861, Sangio-

vanni-Vincentelli [19871, Wong et al.

[19881, and Press and Lorenzetti [19881.

Robson [19841 and VLSI [1987, 19881

list exhaustive surveys on commercially

available automatic layout software.

These surveys indicate that force-

directed placement was the algorithm of

choice in systems available in 1984 [Rob-

son 1984]. In 1987 and 1988, we see an

even mix of force-directed algorithms,

rein-cut, and simulated annealing [VLSI

1987, 1988]. According to the 1988 sur-

vey, a few of these systems can be used to

place and route sea-of-gates arrays with

more than 100,000 gates, in triple metal,

using up to 8090 of the available gates

[VLSI 19881. Another trend immediately

obvious from these surveys is that almost

all the systems can be run on desktop

workstations—Sun, Apollo, or Micro-

VAX. Thus automated layout systems are

very widely available. They have made it

possible to transfer the task of designing

and laying out custom ICk from the IC

manufacturer to the client.

ACKNOWLEDGMENTS

This research was partially supported by the NSF

Research Initiation Awards under the grant num-

ber MIP-8808978, the University Research Initia-

tive program of the U.S. Army under the grant

number DAAL 03-87-K-0007, and the Digital

Equipment Corporation Faculty Development

Award. K. Shahookar is supported by the Science

and Technology Scholarship Program of the Gov-

ernment of Pakistan.

REFERENCES

AARTS, E. H. L , DEBONT, F. M. J., AND HABERS,

E. H. A. 1985. Statistical cooling: A general

approach to combinatorial optimization prob -
lems. PhilLps J. Res. 40, 4, 193-226.

AARTS, E. H. L., DEBONT, F. M. J., AND HABERS,

E. H. A. 1986. Parallel implementations of

the statistical cooling algorithm. Integration,

VLSI J. 4, 3 (Sept.) 209-238.

AKERS, S. B. 1981. On the use of the linear as-

signment algorithm in module placement. In

Proceedings of the 18th Des~gn Automation

Conference. pp. 137-144.

ANTREICH, K. J., JOHANNES, F. M., AND KIRSCH,

F H. 1982. A new approach for solving the

placement problem using force models. In Pro-

ceedings of the IEEE International Symposmm

on C%-cuits and Systems. pp. 481-486.

BANNERJEE, P., AND JONES, M. 1986. A parallel

simulated annealing algorithm for standard

cell placement on a hypercube computer. In

Proceedings of the IEEE International Confer-

ence on Computer Design. p. 34.

BENDERS, J. F. 1962. Partitioning procedures for

solving mixed variable problems. Numer,

Math. 4, 238-252.

BLANKS, J. P. 1984. Initial placement of gate ar-

rays using least squares methods. In Proceed-

ings of the 21st Design A utomatzon Conference.

pp. 670-671.

BLANKS, J, P. 1985a. Near-optimal placement

using a quadratic objective function. In Pro.

ceedmgs of the 22nd Deszgn Automation Con-

ference. pp. 609-615,

BLANKS, J. P. 19S5b. Use of a quadratic objective

function for the placement problem in VLSI

design. Ph.D. dissertation, Univ. of Texas at

Austin.

BREUER, M. A. 1977a. Min-cut placement, J. De-

sign Automation and Fault- Tolerant Comput-

ing 1, 4 (Oct.) 343-382.

BREUER,M. A. 1977b. A class of mm-cut place-

ment algorithms. In Proceedings of the 14th

Design Automation Conference. pp. 284-290

CASSOTO, A., ROMEO, F., AND SANGIOVANNI-

VINCENTELLI, A. 1987. A parallel simulated

annealing algorithm for the placement of stan-

dard cells. IEEE Trans. Comput.-Aided Design

CAD-6, 5 (May), 838.

CHAN, H. M., AND MAZUMDER, P. 1989. A genetic

algorithm for macro cell placement. Tech. Rep.

Computing Research Laboratory, Dept. of Elec-

trical Engineering and Computer Science, Uni-

versity of Michigan, Ann Arbor, Mich.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques ● 21’7

CHANG, S. 1972. The generation of minimal trees

with a steiner topology. J. ACM 19, 4 (Oct.),

699-711.

CHEN, N. P. 1983. New algorithms for steiner tree

on graphs. In Proceedings of the International

Symposium on Circuits and Systems. pp.
1217-1219.

CHENG, C. 1984. Placement algorithms and appli-

cations to VLSI design. Ph.D. dissertation

Dept. of Electrical Engineering, Univ. of Cali-

fornia, Berkeley.

CHENG, C., AND KUH, E. 1984. Module placement

based on resistive network optimization. IEEE

Trans. Comput.-Aided Design CAD-3, 7 (July),

218-225.

CHUNG, M. J., AND RAO, K. K. 1986. Parallel

simulated annealing for partitioning and rout-

ing. In Proceedings of the IEEE International

Conference on Computer Design. pp. 238-242.

CHYAN, D., AND 13REUER,M. A. 1983. A placement

algorithm for array processors. In Proceedings

of the 20th Design Automation Conference. pp.

182-188.

COHOON, J. P., AND SAHNI, S. 1983. Heuristics for

the board permutation problem. In Proceed-

ings of the 20th Design Automation Conference.

COHOON, J. P., AND PARIS, W. D. 1986. Genetic

placement. In Proceedings of the IEEE Interna-

tional Conference on Computer-Aided Design.

pp. 422-425.

CORRIGAN, L. I. 1979. A placement capability

based on partitioning. In Proceedings of the

16th Design Automation Conference. pp.
406-413.

DAVIS, L. 1985. Applying adaptive algorithms to

epistatic domains. In Proceedings of the Inter-

national Joint Conference on Artificial Intelli-

gence.

DONATH, W. E. 1980. Complexity theory and de-

sign automation. In Proceedings of the 17th

Design Automation Conference. pp. 412-419.

DUNLOP, A. E., AND KERNIGHAN, B. W. 1985. A

procedure for placement of standard cell VLSI

circuits. IEEE Trans. Comput. -Aided Design

CAD-4, 1 (Jan.), 92-98.

FIDUCCIA, C. M., AND MATTHEYSES, R. M. 1982. A

linear-time heuristic for improving network

partitions. In Proceedings of the 19th Design

Automation Conference. pp. 175-181.

FISK, C. J., CASKEY, D. L., m~ WEST, L. E. 1967.

Accel: Automated circuit card etching layout.

Proc. IEEE 55, 11 (Nov.) 1971-1982.

FUKUNAGA, K., YAMADA, S., STONE, H., AND KASAI,

T. 1983. Placement of circuit modules using a

graph space approach. In Proceedings of the

20th Design Automation Conference. 465-473.

GIDAS, B. 1985. Non-stationary Markov chains

and convergence of the annealing algorithm.

J. Stat. Phys. 39, 73-131.

GILMORE, P. C. 1962. Optimum and suboptimum

algorithms for the o~uadratic assignment prob.

lem. J. SIAM 10, 2 (June), 305-313.

GOLDBERG, D. E., AND LINGLE, R. 1985. Alleles,

loci and the traveling salesman problem. In

Proceedings of the International Conference on

Genetic Algorithms and them Appl~catlons.

GOTO, S. 1981. An efficient algorithm for the

two-dimensional placement problem in electri-

cal circuit layout. IEEE Trans. Circuits Syst.,

CAS-28 (Jan.), 12-18.

GOTO, S., AND KUH, E. S. 1976. An approach to

the two-dimensional placement problem in cir-

cuit layout. IEEE Trans. Circuits Syst. CAS-

25, 4, 208-214.

GOTO, S., CEDERBAUM, I., AND TING, B.S. 1977.

Suboptimal solution of the backboard ordering

with channel capacity constraint. IEEE Trans.

Circuits Syst. (Nov. 1977), 645-652.

GOTO, S., AND MATSUDA, T. 1986. Partitioning,

assignment and placement. In Layout Design

And Verification, ‘T. Ohtsuki, Ed. Elsevier

North-Holland, New York, Chap. 2, pp. 55-97.

GREENE, J. W., AND SUPOWIT, K. J. 1984. Simu-

lated annealing without rejected moves. In

Proceedings of the IEEE International Confer-

ence on Computer Design. pp. 658-663.

GREFENSTETTE,J. J., Ed. 1985. In Proceedings of

an International Conference on Genetic Algo-

rithms and their Applications. Pittsburgh,

Penn.

GREFENSTETTE,J. J., Ed. 1987. In Proceedings of

the 2nd International Conference on Genetic Al-

gorithms and their Applications. Cambridge,

Mass.

GROVER, L. K. 1987. Standard cell placement us-

ing simulated sinte ring, In Proceedings of the

24th Design Automation Conference. pp. 56-59.

HAJEK, B. 1988. Cooling schedules for optimal

annealing. Oper. Res. 13, 2 (May), 311-329.

HALL, K. M. 1970. An r-dimensional quadratic

placement algorithm. Manage. Sci. 17, 3

(Nov.), 219-229.

HANAN, M., AND KURTZ~ERG, J. M. 1972a. Place-

ment techniques. In Design Automation of Dig-

ital Systems, 1, M A. Breuer, Ed. Prentice

Hall, Englewood Cliffs, N. J., Chap. 5, pp.

213-282.

HANAN, M., AND KURTZBERG, J. M. 1972b. A re-

view of placement and quadratic assignment

problems. SIAM Reu. 14, 2 (Apr.), 324-342.

HANAN, M., AND WOLFF, P. K., AND AGULE, B. J.

1976a. Some experimental results on place-

ment techniques. In Proceedings of the 13th

Design Automation Conference. pp. 214-224.

HANAN, M., AND WOLFF, P. K., AND AGULE, B. J.

1976b. A study of placement techniques. J.

Design Automation and Fault-Tolerant Com-

puting 1, 1 (Oct.), 28-61.

HANAN, M., WOLFF, P. IK., AND AGULE, B. J. 1978.

Some experimental results on placement

ACM Computing Surveys, Vol. 23, No. 2, June 1991

218 “ K. Shahookar and P. Mazumder

techniques. J. Deszgn Automation and Fault-

Tolerant Computing 2 (May), 145-168.

HERRIGEL, A., AND FICHTNER, W. 1989. An ana-

lytic optimization technique for placement of

macrocells. In Proceedings of the 26th Design

Automation Conference. pp. 376-381.

HILDEBRANDT, T. 1985. An annotated placement

bibliography. ACM SIGDA Newsletter 15, 4

(Dec.), 12-21.

HILLNER, H., WEIS, B. X., AND MLYNSKI, D. A.

1986. The discrete placement problem: A dy-

namic programming approach. In Proceedings

of the Internat~onal Symposuim on Circuits and

Systems. pp. 315-318.

HOLLAND, J. H. 1975. Adaptation m Natural and

Artificial Systems. University of Michigan

Press, Ann Arbor, Mich.

Hu, T. C., AND KUH, E. S. 1985. VLSI Cwcuit

Layout. IEEE Press, New York.

HUANG, M. D., ROMEO, F., AND SANGIOVANNI-

VINCENTELLI, A. 1986. An efficient general

cooling schedule for simulated annealing. In

Proceedings of the IEEE International Confer-

ence on Computer-Aided Design. pp. 381–384.

HWANG, F. K 1976. “On Steiner Minimal Trees

with Rectilinear Distance,” SIAM J. Appl.

Math. Vol. 30, PP.104-114, 1976

HWANG, F. K. 1979. An O(n log n) algorithm for

suboptimal rectilinear steiner trees. IEEE

Trans. Cwcuits Syst. CAS-26, 1, 75-77.

JARMON, D. 1987. An automatic placer for arbi-

trary sized rectangular blocks based on a

cellular model. In Proceedings of the IEEE

International Conference on Computers and Ap-

plicat~ons. pp. 842-845.

JOHANNES, F. M., JUST, K. M., AND ANTREICH, K. J.

1983. On the force placement of logic arrays.

In Proceedings of the 6th European Conference

on Cmcuit Theory and Design. pp. 203-206.

JOHNSON, D. B., AND MIZOGUCHI, T. 1978. Select-

ing the kth element in X + Y and Xl + X2

+ . . . + Xm. SIAM J. Comput. 7, 2 (May),

141-143

KAMBE, T., CHIBA, T., KIMURA, S., INUFUSHI, T ,

OKUDA, N., AND NISHIOKA, I. 1982. A place-

ment algorithm for polycell LSI and its evalua-

tion. In Proceedings of the 19th De.wgn Au-

tomation Conference. PP 655-662

KANG, S. 1983. Linear ordering and application to

placement. In Proceedings of the 20th Deszgn

Automation Conference. pp. 457-464.

KAPPEN, H. J., AND DE BONT, F. M. J. 1990. An

efficient placement method for large standard-

cell and sea-of-gates designs. In Proceedings of

the IEEE European Design Automation

Conference. pp. 312-316.

KARGER, P. G., AND MALEK, M. 1984. Formula-

tion of component placement as a constrained

optimization problem. In Proceedings of the

International Conference on Computer Design.

pp. 814-819.

KERNIGHAN,B. W., ANDLIN, S. 1970. An efficient

heuristic procedure for partitioning graphs.

Bell Syst. Tech. J. 49, 2, 291-308.

KIRKPATRICK, S., GELATT, C D , AND VECCHI, M P.

1983. Optimization by simulated annealing.

Sczence 220.4598 (May), 671-680.

KLING, R. M, 1987. Placement by simulated evo-

lution. Master’s thesis, Coordinated Science

Lab, College of Engr., Univ. of Illinois at

Urbana-Champaign.

KLING, R., AND BANNERJEE, P. 1987. ESP: A new

standard cell placement package using simu-

lated evolution. In Proceedings of the 24th De-

sign Automation Conference. pp. 60-66.

KOZAWA, T., MIURA, T., AND TERAI, H. 1984. Com-

bine and top down block placement algorithm

for hierarchical logic VLSI layout. In Proceed-

ings of the 21st Design Automation Conference.

pp. 535-542.

KOZAWA, T , TERAI, H., ISHII, T., HAYASE, M., MIURA,

C., OGAWA, Y , KISHIDA, K., YAMADA, N., AND

OHNO, Y. 1983. Automatic placement algo-

rithms for high packing density VLSI. In

Proceedings of the 20th Design Automation

Conference. pp. 175-181

KRUSKAL, J. 1956. On the shortest spanning sub-

tree of a graph and the traveling salesman

problem. In proceedings of the American Math-

ematical Soczety, Vol. 7, No. 1, pp. 48-50.

VAN LAARHOVEN, P. J. M., AND AARTS, E. H. L.

1987. Simulated Annealing: Theory and Ap-

plications. D. Riedel, Dordrecht-Holland.

LAM, J., AND DELOSME, J. 1986. Logic minimiza-

tion using simulated annealing. In Proceed-

ings of the IEEE International Conference on

Computer-Aided Design. p. 378.

LAM, J., AND DELOSME, J. 1988. Performance of a

new annealing schedule. In Proceedings of the

25th Design Automation Conference. pp.

306-311.

LAUTHER, U, 1979. A rein-cut placement algo-

rithm for general cell assemblies based on a

graph representation. In Proceedings of the

16th Des~gn Automation Conference. pp. 1-10.

LEIGHTON, F. T. 1983. Complexity Issues m VLSI.

MIT Press, Cambridge, Mass.

LUNDY, M., AND MEES, A. 1984 Convergence of
the annealing algorithm. In proceedings of the

Szmulated Annealing Workshop.

MAGNUSON, W. G. 1977. A comparison of con-

structive placement algorithms. IEEE Region

6 Conf, Rec. 28-32.

MALLELA, S., AND GROVER, L. K. 1988. Clustering

based simulated annealing for standard cell

placement. In Proceedings of the 25th Design

Automation Conference. pp. 312-317.

MARKOV, L. A., Fox, J. R., AND BLANK, J. H. 1984.

Optimization technique for two-dimensional

placement. In Proceedings of the 21st Design

Automation Conference. pp. 652-654.

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 219

MITRA, D., RONIEO, F., AND SANGIOVANN1-VINCEN-

TELLI, A. 1985. Convergence and finite-time

behavior of simulated annealing. In Proceed-

ings of the 24th Conference on Deciston and

Control. pp. 761-767.

MOGAKI, M., MWRA, C., AND TERAI, H. 1987. Al-

gorithm for block placement with size opti-

mization technique by the linear programming

approach. In Proceedings IEEE International

Conference on Computer-Aided Design. pp.

80-83.

MUROGA, S. 1982. VLSI System Design. John Wi-

ley, New York, Chap. 9, pp. 365-395.

NAHAR, S., SAHNI, S., AND SHRAGOWITZ, E. 1985,

Experiments with simulated annealing. In

Proceedings of the 22th Destgn Automation

Conference. pp. 748-752.

OLIVER, I. M., SMITH, D. J., AND HOLLAND, J. R. C.

1985. A study ofpermutation crossover oper-

ators on the traveling salesman problem. In

Proceedings of the International Conference on

Genetic Algorithms and their Applications. pp.
224-230.

OmEN, R., ANDVANGINNEKIN,L. 1984. Floorplan
design using simulatecl annealing. In Proceed-

ings of the IEEE International Conference on

Computer-Aided Design. pp. 96-98,

F’ALCZEWSKI, 1984. Performance of algorithms for

initial placement. In Proceedings of the 21st

Design Automation Conference, pp. 399-404.

PERSKY, G., DEUTSCH, D. N., AND SCHWEIKERT,

D. J., 1976. LTX: A system for the directed

automatic design of LSI circuits. In Proceed-

ings of the 13th Design Automation Conference.

pp. 399-407.

PREAS, B. T. 1979. Placement and routing algo-

rithms for hierarchical integrated circuit lay-

out Ph.D. dissertation, Dept. of Electrical

Engr., Stanford Univ. Also Tech. Rep. 180,

Computer Systems Lab, Stanford Univ.

PREAS, B. T., AND KARGER, P. G. 1986. Automatic

placement: A review of current techniques. In

Proceedings of the 23rd Destgn Automation

Conference. pp. 622-629.

PREAS, B., AND LORENZETTI, M. 1988. Placement,

assignment and floorplanning. In 20Physical

Design Automation of VLSI Systems. The Ben-

jamin Cummings Publishing Co., Menlo Park,

Calif., Chap. 4, pp. 87-156.

QUINN, N. R. 1975. The placement problem as

viewed from the physics of classical mechanics.

In Proceedings of the 12th Design Automation

Conference. pp. 173-178.

QUINN, N. R., AND BREUER, M. A. 1979. A force

directed component placement procedure for

printed circuit boards. IEEE Trans. Circuzts

Syst. CAS-26 (June), 377-388.

RANDELMAN, R. E., AND GREST, G. S. 1986. N-city

traveling salesman problem: Optimization by

simulated annealing. J. Stat. Phys. 45,

885-890.

ROBSON, G. 1984. Automatic placement and rout-

ing of gate arrays. VLSI Design 5, 4, 35-43.

ROMEO, F., ANDSANGIOVANNI-VINCENTELLI, A. 1985.

Convergence and finite time behavior of simu-

lated annealing. In Proceedings of the 24th

Con ference on Decmlon and Control. pp.
761-767.

ROMEO, F., SANGIOVANNI-VINCENTELLI,A., AND

SECHEN, C. 1984. Research on simulated an-

nealing at Berkeley. In Proceedings of the IEEE

International Conference on Computer Des~gn.

pp. 652-657.

SAHNI, S., AND BHATT, A 1980. The complexity of

design automation problems, In Proceedmgsof

the 17th Design Automation Conference. pp.

402-411.

SANGIOVANM-VINCENTELM, A. 1987. Automatic

layout of integrated circuits. In Design Sys-

tems for VLSI Circuzts, G. De Micheli, A.

Sangiovanni-Vincenf,elli, and P. Antognetti,

Eds. Kluwer Academic Publishers, Hingham,

Mass., pp. 113-195.

SCHWEIKERT, D. G. 1976 “A 2-dimensional place-

ment algorithm for the layout of electrical cir-

cuits. In Proceedings of the Design Automat~on

Conference. pp. 408-416.

SCHWEIKERT, D. G., AND KERNIGHAN, B. W. 1972.
A proper model for the partitioning of electri-

cal circuits, In Proceedings of the 9th Design

Automation Workshop. pp. 57-62.

SEC~~N, C. 1986. The T~mberWol/3.2 Standard

Cell Placement and Global Routing Program.

User’s Guide for Version 3.2, Release 2,

SECHEN, C. 1988a. Chip-planning, placement, and

global routing of macro/custom cell integrated

circuits using simulated annealing. In Pro-

ceedings of the Desq~n A utomatzon Con ference.

pp. 73-80.

SECHEN, C. 1988b. VLSI Placement and Global

Routing Using Simulated Annealing. Kluwer,

B. V., Deventer, The Netherlands.

SECHEN, C. AND LEE, E .-W. 1987. An improved

simulated annealing algorithm for row-based

placement. In proceedings of the IEEE Interna-

tional Conference on Computer-Aided Design.

pp. 478-481.

SECHEN, C., AND SANGIOVANNI-VINCENTELLI, A.

1986. TimberWolt3.2: A new standard cell

placement and global routing package, In Pro-

ceedings of the 23rd Deszgn Au tomatzon Con fer-

ence. pp. 432-439.

SHA, L. AND BLANK, T. 1987. ATLAS: A technique

for layout using analytic shapes. In Proceed-

ings of the IEEE International Conference on

Compuler-Aided Des~gn. pp. 84-87.

SHA, L , AND DUTTON, R. 1985. An analytical al -

gorithm for placement of arbitrarily sized rec-

tangular blocks. In Proceedings of the 22nd

Design Automation Conference. pp. 602-607.

SHAHOOKAR,K., AND MAZUMDER,P. 1990. A ge-
netic approach to standard cell placement

ACM Computing Surveys, Vol. 23, No. 2, June 1991

220 “ K. Shahookar and P. Mazumder

using meta-genetic parameter optimization.

IEEE Trans. Comput.-Atded Design 9, 5 (May),

500-511.

SHIRAISHI, H , AND HmOSE, F. 1980 Efficient

placement and routing techniques for master-

slice LSI In Proceedings of the 17th Design

Automation Conference. pp. 458-464.

SOUKUP, J, 1981, Circuit layout. Proc. IEEE 69,

10(Oct,), 1281-1304.

STEINBERG, L 1961 The backboard wiring prob-

lem: A placement algorithm. SZAMReu. 3, 1

(Jan.), 37-50.

STEVENS, J. E. 1972. Fast heuristic techniques for

placing and wiring printed circuit boards.

Ph.D. dissertation, Comp. Sci. Dept., Univ. of

Illinois,

SUARIS, P , AND KEDEM, G. 1987. Quadrisection: A
new approach to standard cell layout In Pro-

ceedl ngs of the IEEE International Conference

on Computer-Aided Deszgn. pp. 474-477

Szu, H. 1986. Fast simulated annealing. In Pro-

ceedings of the AIT Conference. Neural Net-

works for Computmg, pp. 420-425.

TSAY, R., KUH, E. AND Hsu, C. 1988. Module

placement for large chips based on sparse lin-

ear equations. Znt. J Circuit Theory Appl. 16,

411-423.

UEDA, K., KASAI, R., AND SUDO, T. 1986 Layout

strategy, standardization, and CAD tools. In

Layout Destgn And Ver~ficatton, T, Ohtsukl,

Ed, Elsevier Science Pub. Co., New York,

Chap. 1.

VECCHI, M. P., AND KIRKPATRICK, S. 1983. Global

wiring by simulated annealing IEEE Trans,

Comput.-Atded Design CAD-2, 215-222.

VLSI SYSTEMSDESIGN STAFF. 1987. Survey of au-

tomatic layout software. VLSI Syst. De.mgn 8,

4, 78-89.

VLSI SYSTEMS DESIGN STAFF. 1988. Survey of au-

tomatic IC layout software. VLSZ Syst. Design

9, 4, 40-49

WALSH, G. R. 1975. Methods of OpttmLzatLon

John Wiley and Sons, New York.

WHITE, S. R. 1984. Concepts of scale in simulated

annealing In Proceedings of the IEEE Znterna-

honal Conference on Computer Design. pp.

646-651

WIPFLER, G. J., WIESEL, M.j AND MLYNSKI, D. A.

1982 A combined force and cut algorithm for

hierarchical VLSI layout. In Proceedings of the

19th De.!ngn Automat~on Conference. pp.

671-677.

WONG, D F., LEONG, H. W , AND LIU, C. L 1986.

Multiple PLA folding by the method of simu-

lated annealing In proceedings of the Custom

ZC Conference. pp. 351-355.

WONG, D. F,, LEONG, H. W., AND LIU, C, L. 1988.

Placement. In Szmulated Anneahng for VLSI

Design, Kluwer B. V., Deventer, The Nether-

lands, Chap. 2.

Recewed July 1988, final rewslon accepted April 1990

ACM Computmg Surveys, Vol 23, No 2, June 1991

