
VLSI Decoder Architecture for High Throughput,
Variable Block-size and Multi-rate LDPC Codes

Yang Sun, Marjan Karkooti and Joseph R. Cavallaro
Department of Electrical and Computer Engineering

Rice University, Houston, TX 77005
Email: {ysun, marjan, cavallar}@rice.edu

Abstract— A low-density parity-check (LDPC) decoder archi-
tecture that supports variable block sizes and multiple code
rates is presented. The proposed architecture is based on the
structured quasi-cyclic (QC-LDPC) codes whose performance
compares favorably with that of randomly constructed LDPC
codes for short to moderate block sizes. The main contribution
of this work is to address the variable block-size and multi-
rate decoder hardware complexity that stems from the irregular
LDPC codes. The overall decoder, which was synthesized, placed
and routed on TSMC 0.13-micron CMOS technology with a core
area of 4.5 square millimeters, supports variable code lengths
from 360 to 4200 bits and multiple code rates between 1/4 and
9/10. The average throughput can achieve 1 Gbps at 2.2 dB SNR.

I. INTRODUCTION

Low-density parity-check (LDPC) codes have received
tremendous attention in the coding community because of
their excellent error correction capability and near-capacity
performance. Some randomly constructed LDPC codes, mea-
sured in Bit Error Rate (BER), come very close to the
Shannon limit for the AWGN channel (within 0.05 dB) with
iterative decoding and very long block sizes (on the order of
106 to 107). However, for many practical applications (e.g.
packet-based communication systems), shorter and variable
block-size LDPC codes with good Frame Error Rate (FER)
performance are desired. Communications in packet-based
wireless networks usually involve a large per-frame overhead
including both the physical (PHY) layer and MAC layer
headers. As a result, the design for a reliable wireless link
often faces a trade-off between channel utilization (frame size)
and error correction capability. One solution is to use adaptive
burst profiles in which transmission parameters relevant to
modulation and coding may be assigned dynamically on a
burst-by-burst basis. Therefore, LDPC codes with variable
block lengths and multiple code rates for different quality-of-
service under various channel conditions are highly desired.

In the recent literature, there are many LDPC decoder
architectures but few of them support variable block-size and
muti-rate decoding. For example, in [1] a 1 Gbps 1024-bit,
rate 1/2 LDPC decoder has been implemented. However this
architecture just supports one particular LDPC code by wiring
the whole Tanner graph into hardware. In [2], a code rate
programmable LDPC decoder is proposed, but the code length
is still fixed to 2048 bit for simple VLSI implementation. In
[3], a LDPC decoder that supports three block sizes and four

code rates is designed by storing 12 different parity check
matrices on-chip. As we can see, the main design challenge for
supporting variable block sizes and multiple code rates stems
from the random or unstructured nature of the LDPC codes.
Generally support for different block sizes of LDPC codes
would require different hardware architectures. To address this
problem, we propose a generalized decoder architecture based
on the quasi-cyclic LDPC (QC-LDPC) codes that can support
a wider range of block sizes and code rates at a low hardware
requirement.

II. STRUCTURED QC-LDPC CODES

DP

BP

P

P

.

.

Layer B-1

Layer 0

Layer 1

Permutation (Shift) Network

variable node
messages

check node
messages

(b) BP x DP generated PCM

(c) Factor graph representation of a BP x DP PCM

x
P x P Identity matrix
cyclically shifted by x Zero matrix= =

1 0 1 0 1 1 0 0

0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 1

1 1 0 1 1 0 0 1

(a) B x D seed matrix

Check node cluster (size P) Variable node cluster (size P)= =

c0
cluster

c1
cluster

c2
cluster

c3
cluster

v0
cluster

v1
cluster

v2
cluster

v3
cluster

v4
cluster

v5
cluster

v6
cluster

v7
cluster

Expand by P

v1 . . .

c1

v0

c0

.

.

.

Fig. 1. Parity check matrix and its factor graph representation

To balance the implementation complexity and the decoding
throughput, a structured QC-LDPC code was proposed in [4]
recently for modern wireless communication systems includ-
ing but not limited to IEEE 802.16e and IEEE 802.11n.

As shown in Fig. 1(a)(b), for a QC-LDPC code, the parity
check matrix (PCM) is constructed from a B×D seed matrix
by replacing each ’1’ in the seed matrix with a P×P cyclically
shifted identity sub-matrix, where P is an expansion factor.
A corresponding Tanner factor graph representation of this
BP × DP generated PCM is shown in Fig. 1(c). It divides

21041-4244-0921-7/07 $25.00 © 2007 IEEE.

the variable nodes and the check nodes into clusters of size P
such that if there exists an edge between variable and check
clusters, then it means P variable nodes connect to P check
nodes via a permutation (cyclic shift) network.

Generally, support for different block sizes and code rates
implies usage of multiple PCMs. Storing all the PCMs on-
chip is almost impractical and expensive. In this work, we
utilize the expansion factor P so that only one parity check
matrix needs to be stored for a given seed matrix. Denote
P0 as the largest possible expansion factor for a given seed
matrix, we can construct a QC-LDPC code of B × D array
of P0 × P0 sub-matrices, which are either zero matrices or
cyclically shifted identity matrices. The corresponding shift
values denoted as m(P0, i, j) are stored on-chip. For all the
other expansion factors Px, the shifted values are derived from
m(P0, i, j) by:

m(Px, i, j) = bm(P0, i, j) · Px

P0
c. (1)

Obviously, with the help of expansion factor Px, (Px <
P0), we are able to generate different size PCMs from the
same seed matrix to support different size codes. However, to
support different code rates, different seed matrices as well
as the shift values associated with each seed matrix must
be constructed. Table I presents the seed matrices needed to
support different code rate requirements. Each seed matrix can
be constructed by an algebraic construction method proposed
by Tanner in [4].

TABLE I
CODE RATE VERSUS SEED MATRIX

Rate Hseed Rate Hseed Rate Hseed

1/4 18× 24 3/5 10× 25 5/6 4× 24
1/3 16× 24 2/3 8× 24 7/8 3× 24
2/5 15× 25 3/4 6× 24 8/9 3× 27
1/2 12× 24 4/5 5× 25 9/10 3× 30

III. LDPC DECODER HARDWARE ARCHITECTURE

A. Layered partially parallel soft decoding algorithm

A good tradeoff between design complexity and decoding
throughput is partially parallel decoding by grouping a certain
number of variable and check nodes into a cluster for parallel
processing. Furthermore, the layered decoding algorithm [5]
can be applied to improve the decoding convergence time by
a factor of two and hence increases the throughput by 2X.

The structured QC-LDPC code makes it effectively suitable
for efficient VLSI implementation by significantly simplifying
the memory access and message passing. As shown in Fig.
1(b), the PCM can be viewed as a group of concatenated
horizontal layers, where the column weight is at most 1
in each layer due to the cyclic shift structure. The belief
propagation algorithm is repeated for each horizontal layer
and the updated APP (a posteriori probability) messages are
passed between layers. Let Rij denote the check node LLR
(Log-likelihood ratios) messages sent from the check node i to

the variable node j. Let L(qij) denote the variable node LLR
messages sent from the variable node j to the check node i.
Let L(qj) (j = 1, . . . , N) represent the APP messages for all
the variable nodes (coded bits) which are initialized with the
channel messages (assuming BPSK on AWGN channel) for
each code bit j by 2rj/σ2, where σ2 is the noise variance
and rj is the received value. For each variable node j inside
the current horizontal layer, messages L(qij) that correspond
to a particular check equation i are computed according to:

L(qij) = L(qj) − Rij . (2)

For each check node i, messages Rij , corresponding to all
variable nodes j that participate in a particular parity-check
equation, are computed according to:

Rij =
∏

j′∈N(i)\{j}

sign (L(qij′))Ψ

 ∑
j′∈N(i)\{j}

Ψ(L(qij′))

 , (3)

where N(i) is the set of all variable nodes from parity-
check equation i, and Ψ(x) = − log

[
tanh

(
|x|
2

)]
. The APP

messages in the current horizontal layer are updated by:

L(qj) = L(qij) + Rij . (4)

For QC-LDPC codes, the parity check matrix can be
viewed as a Brow cluster × Dcolumn cluster structure by
grouping variable nodes and check nodes into clusters of size
P . Now let i and j denote the row cluster index and the
column cluster index, a layered partially parallel decoding
algorithm is given by:

for iter = 0 : max iteration− 1
for layer (row cluster) i = 0 : B − 1

for column cluster j = 0 : D − 1
if PCMi,j is a non-zero sub-matrix {

Read a cluster of APP data L(qj) from APP memory
Read a cluster of Check data Rij from Check memory
Calculate shift value from (1) and permute APP data
Calculate equation (2)(3)(4)
Update new APP and Check data to memory

}

where the decoding will stop whenever all the parity check
constraints are satisfied or the max number of iterations is
reached.

B. Min-sum algorithm and fixed-point implementation

The belief propagation algorithm [6] is the most powerful
iterative soft decoding algorithm for LDPC codes. But due to
its high design complexity in (3), many implementations for
decoding LDPC codes are based on the modified (normalized
or offset) min-sum algorithm because of its satisfactory perfor-
mance and simple implementation [7]. By applying the offset
min-sum algorithm, equation (3) is reduced to:

Rij ≈
∏

j′∈N(i)\{j}
sign (L(qij′))× max

(
min

j′∈N(i)\{j}
|L(qij′)| − β, 0

)
(3

′
)

2105

For logic circuit design with finite precision, we consider the
received values to be quantized in the range of [−Z,Z] and
represented by W quantization bits. With a properly chosen
offset value β and Z, a 6-bit quantized min-sum algorithm
exhibits only about 0.1 dB of degradation in performance
compared with the unquantized standard BP algorithm [7].

C. Partially parallel decoder architecture

APP DATA IN

 CHECK DATA IN

APP Memory
(D x PW bits)

CHECK Memory
(E x PW bits)

Flexible
Permuter

PE 1 PE 2 PE P

CTRL

X P0...

PCMs

Addr
Gen

Shift

CHECK DATA OUT

APP DATA OUT

Partially Parallel Decoding

Rij in cluster

L(qj)_new from PEs Rij_new from PEs

L(qj)_new Rij_new

L(qj) in cluster

Fig. 2. Top level decoder architecture

Fig. 2 shows the block diagram of the decoder architecture
based on the layered partially parallel decoding algorithm.
In each sub-iteration, a cluster of APP messages and check
messages are fetched from APP and Check memory, and then
the APP messages are passed through a flexible permuter to
be routed to the correct Processing Engines (PEs) for updating
new APP messages and check messages. The PEs are the
central processing units of the architecture that are responsible
for updating messages based on (2)(3

′
)(4). The number of PEs

determines the parallelism factor of the design. For a certain
block-size code, only Px PEs are working while the rests are
in a power saving mode. As shown in Fig. 3, the PE inputs wr
elements of L(qj) and Rij , where wr is the number of nonzero
values in each row of the PCM. L(qij) is calculated based on
(2). The sign and magnitude of L(qij) are processed based on
(3

′
) to generate new Rij . Then the L(qij) are added to the

Rij to generate new L(qj) (wr of them) based on (4). The
outputs (L(qj) and Rij) of all the Px PEs are concatenated
and stored in one address of the APP and Check memories.
For each layer’s sub-iteration, it takes about 2wr clock cycles
to process, so the decoding throughput is:

Throughput ≈ D × Px × R × fclkmax

2 × E × iterations

where R is the code rate and E is the total number of edges
between all variable nodes and check nodes in the seed matrix.
Clearly, the throughput would be linearly proportional to the
expansion factor Px for a given seed matrix.

FIFOL(qj)

Rij

ABS FMIN

DFFXOR
XORsgn bit

unsign
2sign

L(qij) L(qij)_fifo

sgn

- + L(qj)_new

Rij_new
sgn

min1
min2 Rij

Fig. 3. Processing Engine (PE)

D. Flexible permuter

One of the main challenges of the LDPC decoder architec-
ture is the permuter (π) design that is responsible for routing
the messages between variable nodes and check nodes. How-
ever for QC-LDPC codes, the permuter is just a barrel shifter
network (size-P) for cyclically shifting the node messages to
the correct PEs. Fig. 4 gives an example of a size-4 barrel
shifter network. The hardware design complexity of this type
of network is O(P dlog2 P e) as compared to O(P 2) for the
directly connected network. For large size P (e.g. 128), the
barrel shifter network needs to be partitioned into multiple
pipeline stages for high speed VLSI implementation.

Traditionally a de-permuter (π−1) would be needed to
permute the shuffled data back and save it to memory, which
would occupy a significant portion of the chip area [2].
However, due to the cyclic shift property of the QC-LDPC
codes, no de-permuter is needed. We can just store the shuffled
data back to memory and for the next iteration we should
then shift this ”shuffled data” by an incremental value ∆ =
(shiftn − shiftn−1) mod P .

Switch Switch Switch

Switch Switch Switch

0

1

2

3

3

0

1

2
Barrel shifted by 1

Fig. 4. A 4× 4 Barrel shifter network

E. Pipelined decoding for higher throughput

The decoding throughput can be further improved by over-
lapping the decoding of two layers using a pipelined method.
The decoding of each layer of the parity check matrix is

XLayer i

Layer i+1

Index 0 1 2 3 4 5

R0 R2 R3 R5 W0 W2 W3 W5

R1 ST ST R3 W1 W3 W4

Clock cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Layer i

Layer i+1

Two memory read stalls due to data depency

R4

R = Read
W = Write
ST = Stall

(b) Two adjacent layers of the matrix

(c) Pipelining data hazard

X X X

X X X

Data depency

Write backRead/Min-sumLayer i

Layer i+1 Write backRead/Min-sum

(a) Two layer pipelined decoding

Fig. 5. Pipelined decoding

2106

performed in two stages: 1) Memory read and min-sum calcu-
lation and 2) Memory write back. However, due to the possible
data dependence between two consecutive layers (there is no
data dependency inside each layer because the column weight
is at most 1 in each layer), a pipelining data hazard might
occur. Fig. 5 shows an example of pipelined decoding. In
Fig. 5(c), at clock cycle 6, layer (i + 1) is trying to access
APP memory address 3 which will not be updated by layer
i until clock cycle 7, hence two pipeline stalls need to be
inserted. Moreover, a horizontal rescheduling algorithm can
also be applied to help reduce pipeline stalls. For example,
in Fig. 5, layer (i + 1)’s reading can be rescheduled from the
original sequence 1-3-4 to 1-4-3 to reduce pipeline stalls. This
way, the decoding throughput will be increased to

Pipelined Throughput ≈ D × Px × R × fclkmax

E × iterations

IV. PHYSICAL VLSI DESIGN

A flexible LDPC decoder which supports variable block
sizes from 360 to 4200 bits in fine steps, where the step size
can be 24 (at rate 1/4, 1/3, 1/2, 2/3, 3/4, 5/6 and 7/8), or
25 (at rate 2/5, 3/5 and 4/5), or 27 (at rate 8/9), or 30 (at rate
9/10), was described in Verilog HDL. Layout was generated
for a TSMC 0.13µm CMOS technology as shown in Fig. 6

Check Memory

APP
Memory PEs

Permuter

CTRL
PCM

Memory Glue Logic

Fig. 6. Flexible LDPC decoder VLSI layout (0.13µm)

V. PERFORMANCE ANALYSIS AND COMPARISON

Fig. 7 shows the FER performance and compares the two
cases that also exist in the IEEE 802.11n (WWiSE Proposal)
codes. Table II compares this decoder with the state-of-the-art
LDPC decoders of [1] and [2]. As we can see, the proposed
decoder shows significant performance in throughput, flexibil-
ity, area and power.

VI. CONCLUSION

A VLSI decoder architecture that supports variable block-
size and multi-rate LDPC codes has been presented. By
utilizing structured QC-LDPC codes, we proposed a pipelined
partially parallel decoding algorithm which is well suited for
VLSI implementation. The decoder has been placed and routed

1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

LDPC Codes, BPSK on AWGN Channel

Eb/No [dB]

Fr
am

e
Er

ro
r R

at
e

(F
ER

)

Proposed code
N=2400, R=3/4

802.11n code
N=1944, R=2/3

Proposed code
N=1944, R=2/3

Proposed code
N=1600, R=2/5

Proposed code
N=1296, R=1/2

802.11n code
N=1296, R=1/2

Fig. 7. FER performance comparison with IEEE 802.11n codes

TABLE II
COMPARISON OF PROPOSED DECODER WITH EXISTING LDPC DECODERS

Proposed Decoder Blanksby [1] Mansour [2]
Throughput 1.0 Gbps@2.2dB 1.0 Gbps 1.3Gbps@2.2dB

Area 4.5 mm2 52.5mm2 14.3 mm2

Frequency 350 MHz 64 MHz 125 MHz
Power 740 mW 690 mW 787 mW

Block size 360 to 4200 bit 1024 bit fixed 2048 bit fixed
Code Rate 1/4 : 9/10 1/2 fixed 1/16 : 14/16
Technology 0.13µm, 1.2V 0.16µm, 1.5V 0.18µm, 1.8V

using TSMC 0.13 µm, 1.2V , eight metal layers CMOS tech-
nology. The decoder can support high throughput decoding,
for example, 1 Gbps at 2.2 dB SNR, at less area.

VII. ACKNOWLEDGEMENT

This work was supported in part by Nokia and by NSF under
grants CCF-0541363, CNS-0551692, and CNS-0619767.

REFERENCES

[1] A.J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” IEEE Journal of Solid-State
Circuits, vol. 37, no. 3, pp. 404–412, 2002.

[2] M.M. Mansour and N.R. Shanbhag, “A 640-Mb/s 2048-Bit Programmable
LDPC Decoder Chip,” IEEE Journal of Solid-State Circuits, vol. 41, pp.
684–698, March 2006.

[3] M. Karkooti, P. Radosavljevic, and J. R. Cavallaro, “Configurable, High
Throughput, Irregular LDPC Decoder Architecture:Tradeoff Analysis and
Implementation,” IEEE 17th International Conference on Application-
specific Systems, Architectures and Processors, pp. 360–367, Sep. 2006.

[4] R.M. Tanner, D. Sridhara, A. Sridharan, T.E. Fuja, and D.J. Costello
Jr., “LDPC block and convolutional codes based on circulant matrices,”
IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 2966–
2984, 2004.

[5] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoders,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 11, pp. 976–996, Dec. 2003.

[6] R. Gallager, “Low-density parity-check codes,” IEEE Transactions on
Information Theory, vol. 8, pp. 21–28, Jan. 1962.

[7] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier and X. Hu, “Reduced-
Complexity Decoding of LDPC Codes,” IEEE Transactions on Commu-
nications, vol. 53, pp. 1232–1232, 2005.

2107

