
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009 1275

VLSI Implementation of an Edge-Oriented
Image Scaling Processor

Pei-Yin Chen, Member, IEEE, Chih-Yuan Lien, and Chi-Pin Lu

Abstract—Image scaling is a very important technique and has
been widely used in many image processing applications. In this
paper, we present an edge-oriented area-pixel scaling processor. To
achieve the goal of low cost, the area-pixel scaling technique is im-
plemented with a low-complexity VLSI architecture in our design.
A simple edge catching technique is adopted to preserve the image
edge features effectively so as to achieve better image quality. Com-
pared with the previous low-complexity techniques, our method
performs better in terms of both quantitative evaluation and visual
quality. The seven-stage VLSI architecture of our image scaling
processor contains 10.4-K gate counts and yields a processing rate
of about 200 MHz by using TSMC 0.18- m technology.

Index Terms—Image scaling, interpolation, pipeline architec-
ture, VLSI.

I. INTRODUCTION

I
MAGE scaling is widely used in many fields [1]–[4],

ranging from consumer electronics to medical imaging.

It is indispensable when the resolution of an image generated

by a source device is different from the screen resolution of a

target display. For example, we have to enlarge images to fit

HDTV or to scale them down to fit the mini-size portable LCD

panel. The most simple and widely used scaling methods are

the nearest neighbor [5] and bilinear [6] techniques. In recent

years, many efficient scaling methods have been proposed in

the literature [7]–[14].

According to the required computations and memory space,

we can divide the existing scaling methods [5]–[14] into

two classes: lower complexity [5]–[8] and higher complexity

[9]–[14] scaling techniques. The complexity of the former

is very low and comparable to conventional bilinear method.

The latter yields visually pleasing images by utilizing more

advanced scaling methods. In many practical real-time appli-

cations, the scaling process is included in end-user equipment,

so a good lower complexity scaling technique, which is simple

and suitable for low-cost VLSI implementation, is needed. In

this paper, we consider the lower complexity scaling techniques

[5]–[8] only.

Kim et al. presented a simple area-pixel scaling method in [7].

It uses an area-pixel model instead of the common point-pixel

Manuscript received January 11, 2008; revised May 26, 2008. First published
March 10, 2009; current version published August 19, 2009. This work was sup-
ported in part by the National Science Council, Taiwan, under Grant NSC-96-
2221-E-006-027- MY3. Also, this work made use of Shared Facilities supported
by the Program of Top 100 Universities Advancement, Ministry of Education,
Taiwan.

The authors are with the Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan 701, Taiwan (e-mail: py-
chen@csie.ncku.edu.tw; lian@csie.ncku.edu.tw; bigo@csie.ncku.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2008.2003003

model and takes a maximum of four pixels of the original image

to calculate one pixel of a scaled image. By using the area cov-

erage of the source pixels from the applied mask in combina-

tion with the difference of luminosity among the source pixels,

Andreadis et al. [8] proposed a modified area-pixel scaling al-

gorithm and its circuit to obtain better edge preservation. Both

[7] and [8] obtain better edge-preservation but require about two

times more of computations than the bilinear method.

To achieve the goal of lower cost, we present an edge-oriented

area-pixel scaling processor in this paper. The area-pixel scaling

technique is approximated and implemented with the proper

and low-cost VLSI circuit in our design. The proposed scaling

processor can support floating-point magnification factor and

preserve the edge features efficiently by taking into account

the local characteristic existed in those available source pixels

around the target pixel. Furthermore, it handles streaming data

directly and requires only small amount of memory: one line

buffer rather than a full frame buffer. The experimental results

demonstrate that the proposed design performs better than other

lower complexity image scaling methods [5]–[8] in terms of

both quantitative evaluation and visual quality.

The seven-stage VLSI architecture for the proposed design

was implemented and synthesized by using Verilog HDL and

synopsys design compiler, respectively. In our simulation, the

circuit can achieve 200 MHz with 10.4-K gate counts by using

TSMC 0.18- m technology. Since it can process one pixel per

clock cycle, it is quick enough to process a video resolution of

WQSXGA (3200 2048) at 30 f/s in real time.

This paper is organized as follows. In Section II, the area-

pixel scaling technique is introduced briefly. Our method is pre-

sented in Section III. Section IV describes the proposed VLSI

architecture in detail. Section V illustrates the simulation re-

sults and chip implementation. The conclusion is provided in

Section VI.

II. AREA-PIXEL SCALING TECHNIQUE

In this section, we first introduce the concepts of the area-

pixel scaling technique. Then the hardware implementation is-

sues of it are briefly reviewed.

A. An Overview of Area-Pixel Scaling Technique

Assume that the source image represents the original

image to be scaled up/down and target image represents the

scaled image. The area-pixel scaling technique performs

scale-up/scale-down transformation by using the area pixel

model instead of the common point model. Each pixel is treated

as one small rectangle but not a point; its intensity is evenly

distributed in the rectangle area. Fig. 1 shows an example

of image scaleup process of the area-pixel model where a

1063-8210/$26.00 © 2009 IEEE

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

1276 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009

Fig. 1. Example of image enlargement using typical area-pixel model. (a) A
source image of 4� 4 pixels. (b) A target image of 5� 5 pixels. (c) Relations
of the target pixel and source pixels.

source image of 4 4 pixels is scaled up to the target image of

5 5 pixels. Obviously, the area of a target pixel is less than

that of a source pixel. A window is put on the current target

pixel to calculate its estimated luminance value. As shown in

Fig. 1(c), the number of source pixels overlapped by the current

target pixel window is one, two, or a maximum of four. Let

the luminance values of four source pixels overlapped by the

window of current target pixel at coordinate be denoted as

and ,

respectively. The estimated value of current target pixel, de-

noted as can be calculated by weighted averaging the

luminance values of four source pixels with area coverage ratio

as

(1)

where , and

represent the weight factors of neighboring source

pixels for the current target pixel at . Assume that the re-

gions of four source pixels overlapped by current target pixel

window are denoted as , and

, respectively, and the area of the target pixel

window is denoted as . The weight factors of four source

pixels can be given as

(2)

where

.

Let the width and height of the overlapped region

be denoted as and , and the width and height

of be denoted as and ,

respectively, as shown in Fig. 1(c). Then, the areas of the over-

lapped regions can be calculated by

(3)

Obviously, many floating-point operations are needed to de-

termine the four parameters, and

, if the direct area-pixel implementation is adopted.

B. Hardware Implementation Issues for Area-Pixel Model

The main difficulty to implement the area-pixel scaling with

hardware is that it requires a lot of extensive and complex

computations. As shown in (1)–(3), total of 13 addition, eight

multiplications, and one division floating-point operations

are required to calculate one target pixel. In [7] and [8], the

precision of those floating-point operations is set as 30 b. To

obtain lower hardware cost, we adopt an approximate tech-

nique, mentioned later, to reduce implementation complexity

and to improve scaling speed. Most variables are represented

with the 4-, 6-, or 8-b unsigned integers in our low-cost scaling

processor.

Furthermore, the typical area-pixel scaling method needs to

calculate six coordinate values for each target pixel’s estimation.

To reduce the computational complexity, we employ an alternate

approach suitable for VLSI implementation to determine those

necessary coordinate values efficiently and quickly.

III. THE PROPOSED LOW-COMPLEXITY ALGORITHM

Observing (1)–(3), we know that the direct implementation

of area-pixel scaling requires some extensive floating-point

computations for the current target pixel at to deter-

mine the four parameters, , and

. In the proposed processor, we use an approxi-

mate technique suitable for low-cost VLSI implementation to

achieve that goal properly. We modify (3) and implement the

calculation of areas of the overlapped regions as

(4)

Those , and

are all 6-b integers and given as

(5)

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

CHEN et al.: VLSI IMPLEMENTATION OF AN EDGE-ORIENTED IMAGE SCALING PROCESSOR 1277

Fig. 2. Pseudocode of our scaling method.

where represents the approximate operator adopted in our

design and will be explained in detail later.

To obtain better visual quality, a simple low-cost edge-

catching technique is employed to preserve the edge features

effectively by taking into account the local characteristic ex-

isted in those available source pixels around the target pixel.

The final areas of the overlapped regions are given as

(6)

where we adopt a tuning operator to tune the areas of four

overlapped regions according to the edge features obtained by

our edge-catching technique. By applying (6) to (1) and (2),

Fig. 3. Example of image enlargement for our method. (a) A source image of
��� �� pixels. (b) A target image of ����� pixels. (c) Relations of the
target pixel and source pixels.

we can determine the estimated luminance value of the current

target pixel. Fig. 2 shows the pseudocode of our scaling method.

In the rest of this section, the approximate technique adopted in

our design is introduced first. Then we describe the low-cost

edge-catching technique in detail.

A. The Approximate Technique

Fig. 3 shows an example of our image scaleup process where

a source image of pixels is scaled up to the target

image of pixels and every pixel is treated as one

rectangle. As shown in Fig. 3(c), we align those centers of four

corner rectangles (pixels) in the source and target images. For

simple hardware implementation, each rectangular target pixel

is treated as grids with uniform size (is 3 for Fig. 3).

Assume that the width and the height of the target pixel window

are denoted as and , then the area of the current target

pixel window can be calculated as . In

our design, the values of and are determined based

on the current magnification factors, for direction and

for direction where and

. In the case of image enlargement, when

100% 200%. When 200% 400%,

will be enlarged to , and so on. In the case of image

reduction, is reduced to when 50%

100%. When 25% 50%, is , and so on.

With the similar way, we can also determine the value of

by using . In the design, the division operation in (2) can

be implemented simply with a shifter.

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

1278 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009

Fig. 4. Two possible cases for ���� ��� ��. (a) ���� ��� �� � �	
 ������ ��
 ��� ��. (b) ���� ��� �� � ��
 .

As shown in Fig. 3(c), the relationships among

, and can be denoted as

follows:

(7)

(8)

As soon as and are determined,

and can be calculated easily. Thus,

we focus on finding the values of and only.

In our design, is calculated as

(9)

where represents the minimum operation, and

represents the horizontal displacement (in the unit of grid) from

the left boundary of the source image to the left side of the cur-

rent pixel window at coordinate , and can be calculated as

(10)

represents the horizontal displacement (in the

unit of grid) from the left boundary of the source image to the

right side of the top-left source pixel overlapped by the current

pixel window at , and can be calculated as

(11)

where is the width of a source pixel relative to a target

pixel and is the regulating value used to reduce the accumu-

lated error caused by rounding . Both and are in the unit

of grid. As shown in Fig. 4(a), if is

smaller than , the current target pixel’s is equal

to . Otherwise, is equal

to , as shown in Fig. 4(b).

Similarly, is given as

(12)

where represents the vertical displacement from the

top boundary of the source image to the top side of the target

pixel window at , and can be calculated as

(13)

represents the vertical displacement from the top

boundary of the source image to the bottom side of the top-left

source pixel overlapped by the target pixel window at coordinate

, and can be calculated as

(14)

where is the height of a source pixel in the unit of grid,

and is the regulating value used to reduce the accumulating

error caused by rounding . Initially,

and . All variables among (9)–(14) are inte-

gers. We use a few low-cost integer addition/subtraction opera-

tions rather than extensive floating-point multiplication/division

computations to obtain the approximated values of

and . In the following paragraph, the steps to deter-

mine and are described.

Since we set each target pixel as grids, and can

be denoted and calculated as follows:

(15)

(16)

In the design, both and are rounded to integers. The rule

is that a fractional part of less than 0.5 is dropped, while a frac-

tional part of 0.5 or more leads to be rounded to the next bigger

integer. The former will produce the rounding-down error and

the latter will produce the rounding-up error. Each kind of er-

rors is accumulated and might cause the values of

or to be incorrect. To reduce accumulated rounding

error, we adopt and to regulate and

respectively. There are two working modes existed in our pro-

cessor. At normal mode, the accumulation of rounding-up/down

error of is less than one grid, so no regulation is needed

and will be set to zero. As soon as the accumulation of

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

CHEN et al.: VLSI IMPLEMENTATION OF AN EDGE-ORIENTED IMAGE SCALING PROCESSOR 1279

Fig. 5. Example of the overlapping method for rounding-down error. (a) An
ideal scaleup example from 8� 8 to 11� 11. (b) The rounding-down error
without regulation. (c) The proposed overlapping method.

rounding-up/down error of is greater than or equal to

one grid, the processor will enter regulating mode and set the

value of to . The same idea can be applied to

and .

Let represent the regulating times required for each row,

thus it can be given as

if is rounded up to an integer

if is rounded down to an integer

(17)

In other words, there are times that is set as or

for each row. If is rounded down, the total sum of grids at

direction in the target image is larger than that in the source

image without regulation. Therefore, it is necessary to “com-

press” the target image by overlapping grids. We choose

pixels in a row of the target image regularly, and shift left each

pixel of them with one grid to finish aligning. Fig. 5 shows an

example of the image scaleup process where a source image of

8 8 pixels is scaled up to the target image of 11 11 pixels.

According to (15), is since

, and . Then, is rounded down to the integer 11 and

is 3, as shown in Fig. 5(b). Therefore, we overlap three grids

via shifting left three target pixels with one grid in this row to

do the job of aligning, shown in Fig. 5(c). The accumulation ef-

fect of rounding errors can be reduced. On the contrary, if is

rounded up, we need to “expand” the target image by inserting

grids. We choose pixels in a row of the target image reg-

ularly, and shift right each pixel of them with one grid to do

aligning. Fig. 6 shows another example of the image scaleup

process where a source image of 8 8 pixels is scaled up to

the target image of 13 13 pixels. According to (15), is

since , and . In the ex-

ample, is rounded up to the integer 14 and is 2, as shown

in Fig. 6(b). Therefore, two grids are inserted via shifting right

two target pixels with one grid in this row to do aligning, shown

in Fig. 6(c). The same way is also applied to the vertical-di-

rection process. Using (7)–(17), we can realize the approximate

operator in (5) with the low-complexity computations.

Fig. 6. Example of the inserting method for rounding-up error. (a) An ideal
scaleup example from 8� 8 to 13� 13. (b) The rounding-up error without reg-
ulation. (c) The proposed inserting method.

Fig. 7. Local characteristics of the data in the neighborhood of k. (a) An image-
edge model. (b) The local characteristics.

B. The Low-Cost Edge-Catching Technique

In the design, we take the sigmoidal signal [15] as the image-

edge model for image scaling. Fig. 7(a) shows an example of the

1-D sigmoidal signal. Assume that the pixel to be interpolated is

located at coordinate and its nearest available neighbors in the

image are located at coordinate for the left and for the

right. Let and represent the luminance value of

the pixel at coordinate . If the estimated value of the pixel

to be interpolated is determined by using linear interpolation, it

can be calculated as

(18)

As shown in Fig. 7(a), and might not match

greatly. To solve the problem, we modify the distance to

make approach for a better estimation.

Assume that the coordinates of the four nearest avail-

able neighbors around the current pixel are located at

, and , respectively, as shown in

Fig. 7(b). In our design, we define an evaluating parameter to

estimate the local characteristic of the data in the neighborhood

of . It is given as

(19)

If the image data are sufficiently smooth and the luminance

changes at object edges can be approximated by sigmoidal func-

tions, we can come to the following conclusion. indicates

symmetry, so is unchanged. indicates that the variation

between and is quicker than that between

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

1280 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009

Fig. 8. Four possible cases for the sigmoidal image model. (a) Convex and
� � �. (b) Concave and � � �. (c) Convex and � � �. (d) Concave and
� � �.

and . It means that the edge is more homoge-

neous on the right side, as shown in Fig. 8(a) and (b), so the pixel

located at coordinate should affect the interpolated value

more than the pixel located at coordinate does. Hence, we can

increase in order to make the estimated value close to the ex-

pected value. On the contrary, indicates the edge is more

homogeneous on the left side, as shown in Fig. 8(c) and (d).

Thus, we must decrease to obtain a better estimation. Based

on the above idea, we modify (18) and calculate the estimated

value of the current pixel as

(20)

where is calculated with a simple way and given as

if

if
(21)

A small amount of operations is required to catch the local

characteristic of the current pixel.

By using the concept of 1-D edge-catching technique shown

in (19)–(21), we can tune the areas of four overlapped regions

adaptively in the proposed 2-D scaling processor to obtain better

image quality. Let represent the evaluating parameter to es-

timate the local characteristic of the current pixel at coordinate

. If is greater than or equal to it means

that is bigger than or equal to . Hence,

the upper row is more important than the lower row

to catch edge features. Thus, is given as

(22)

indicates symmetry, so is unchanged.

indicates that the variation between and

is quicker than that between and

. It means that the edge is more homogeneous on the

right-hand side, so we can increase in order to

Fig. 9. Block diagram of VLSI architecture for our scaling method.

make the estimated value close to the expected one. On the

contrary, indicates the edge is more homogeneous on

the left-hand side, thus we decrease to obtain a

better estimate. Applying the above idea to (6), we can calculate

the final areas of the overlapped regions as

(23)

where if and if

.

On the contrary, if is less than , it means

that is smaller than . Hence, the lower

row is more important than the upper row to catch

edge features. Thus, is given as

(24)

The final areas of the overlapped regions are given as

(25)

where if and

if .

IV. VLSI ARCHITECTURE

Our scaling method requires low computational complexity

and only one line memory buffer, so it is suitable for low-cost

VLSI implementation. Fig. 9 shows block diagram of the seven-

stage VLSI architecture for our scaling method. The architecture

consists of seven main blocks: approximate module (AM), reg-

ister bank (RB), area generator (AG), edge catcher (EC), area

tuner (AT), target generator (TG), and the controller. Each of

them is described briefly in the following subsections.

A. Approximate Module

When a source image of pixels is scaled up

or down to the target image of pixels, the AM

performs (7)–(17) mentioned in Section III-A, and gen-

erates and ,

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

CHEN et al.: VLSI IMPLEMENTATION OF AN EDGE-ORIENTED IMAGE SCALING PROCESSOR 1281

Fig. 10. Architecture of register bank.

respectively, for each target pixel from left to right and from

top to bottom. In our VLSI implementation, is set to 3, so

each rectangular target pixel is treated as uniform-sized

grids. and are both 6-b integers and their values are

restricted to power of 2, so .

Based on the approximate technique mentioned in the

Section III-A, the minimum and the maximum of magnifi-

cation factors (and) supported by the design

are 0.125 and 8, respectively. Hence, the minimum and the

maximum of magnification factor

supported by the design are 1/64 and 64, respectively.

AM is composed of two-stage pipelined architecture. In the

first stage, the coordinate of the current target pixel and

the coordinate of the top-left source pixel overlapped by

the current window are determined. In the second stage, AM

first calculates and

according to (10)–(11) and (13)–(14), and then

generates , and

according to (7)–(9) and (12).

B. Register Bank

In our design, the estimated value of the current target pixel

is calculated by using the luminance values of 2 4

neighboring source pixels

, and . The register bank, consisting of

eight registers, is used to provide those source luminance values

at exact time for the estimated process of current target pixel.

Fig. 10 shows the internal connections of RB where every four

registers are connected serially in a chain to provide four pixel

values of a row in current pixel window, and the line buffer is

used to store the pixel values of one row in the source image.

When the controller enables the shift operation in RB, two

new values are read into RB (Reg3 and Reg7) and the rest

6-pixel values are shifted to their right registers one by one.

The 8-pixel values stored in RB will be used by EC for edge

catching and by TG for target pixel estimating.

C. Area Generator

For each target pixel, AG calculates the areas of the over-

lapped regions , and

according to (4). Fig. 11 shows the architec-

ture of AG where represents the pipeline register and MULT

is the 4 4 integer multiplier.

Fig. 11. Architecture of area generator.

Fig. 12. Architecture of edge catcher.

D. Edge Catcher

EC implements the proposed low-cost edge-catching tech-

nique and outputs the evaluating parameter , which repre-

sents the local edge characteristic of current pixel at coordinate

. Fig. 12 shows the architecture of EC where unit

generates the difference of two inputs and unit generates

the two inputs’ absolute value of difference. The comparator

CMP outputs logic 1 if the input value is greater than or equal to

. The binary compared result, denoted as U GE, is used

to decide whether the upper row (row) in current pixel window

is more important than the lower row (row) in regards to

catch edge features. According to (22) and (24), EC produces

the final result and sends it to the following AT.

E. Area Tuner

AT is used to modify the areas of the four overlapped regions

based on the current local edge information (and U GE pro-

vided by EC). Fig. 13 shows the two-stage pipeline architecture

of AT. If U GE is equal to 1, the upper row (row) in current

pixel window is more important, so and

are modified according to (23). On the contrary, if U GE is equal

to 0, the lower row (row) is more important, so

and are modified according to (25). Fi-

nally, the tuned areas

and are sent to TG.

F. Target Generator

By weighted averaging the luminance values of four source

pixels with tuned-area coverage ratio, TG implements (1) and

(2) to determine the estimated value . Fig. 14 shows the

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

1282 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009

Fig. 13. Architecture of area tuner.

Fig. 14. Architecture of target generator.

two-stage pipeline architecture of TG. Four MULT units and

three ADD units are used to perform (1). Since the value of

is equal to the power of 2, the division operation in (2)

can be implemented by the shifter easily.

G. Controller

The controller, realized with a finite-state machine, monitors

the data flow and sends proper control signals to all other com-

ponents. In the design, AM, AT, and TG require two clock cy-

cles to complete their functions, respectively. Both AG and EC

need one clock cycle to finish their tasks, and they work in par-

allel because no data dependency between them exists. For each

target pixel, seven clock cycles are needed to output the esti-

mated value .

V. SIMULATION RESULTS AND CHIP IMPLEMENTATION

To evaluate the performance of our image-scaling algorithm,

we use 12 gray-scale test images of 512 512 8 b, shown in

Fig. 15. For each single test image, we reduce/enlarge the orig-

inal image by using the well-known bilinear method, and then

employ various approaches to scale up/down the bilinear-scaled

image back to the size of the original test image. Thus, we

can compare the image quality of the reconstructed images for

various scaling methods. Three well-known scaling methods,

nearest neighbor (NN) [5], bilinear (BL) [6], and bicubic (BC)

[9], two area-pixel scaling methods, Win (winscale in [7]) and

M Win (the modified winscale in [8]), and our method are used

for comparison in terms of computational complexity, objective

Fig. 15. Twelve reference images for testing. (a) Crowd. (b) Indian. (c) Lake.
(d) Lena. (e) Peppers. (f) Plane. (g) Syn 1. (h) Syn 2. (i) Syn 3. (j) Syn 4.
(k) Syn 5. (l) Syn 6.

TABLE I
COMPARISON OF EXECUTION TIME FOR DIFFERENT METHODS (UNIT: SECOND)

testing (quantitative evaluation), and subjective testing (visual

quality), respectively.

To reduce hardware cost, we adopt the low-cost tech-

nique suitable for VLSI implementation to perform area-pixel

scaling. To verify the computational complexity, all the six

scaling methods are implemented in C language on the 2.8-GHz

Pentium 4 processor with 512-MB memory and the 520-MHz

INTEL XScale PXA270 with 64-MB memory, respectively.

Table I shows the computing time (in the unit of second) of

enlarging image “Lena” from the size of 400 400 to the size

of 512 512 for the two processors. Obviously, our method

requires less computing time than [7]–[9], and BC needs much

longer time due to extensive computations.

To explore the performance of quantitative evaluation for

image enlargement and reduction, first we scale the twelve

512 512 test images to the size of 400 400, 600 600, and

256 256, respectively, by using the bilinear method. Then,

we scale up/down these images back to the size of 512 512

and show the results of peak signal-to-noise ratio (PSNR) in

Tables II, III, and IV, respectively. Here, the output images

of our scaling method are generated by the proposed VLSI

circuit after post-layout transistor-level simulation. The output

images of other scaling methods are all generated with software

C programs. Simulation results show that our design achieves

better quantitative quality than the previous low-complexity

scaling methods [5]–[8]. However, the exact degree of im-

provement is dependent on the content of different images

processed.

To explore the performance of visual quality, we enlarge

image Syn 6 with different scaling methods. Fig. 16 shows the

cropped regions of the original Syn 6 and reconstructed images.

Obviously, NN produces noticeable blocks and BL blurs the

scaled image, as shown in Fig. 16(b) and (c), respectively. As

shown in Fig. 16(d), BC produces good image quality at the

cost of high computational complexity. Both Win and M Win

are not good enough in regards to edge reservation, as shown in

Fig. 16(e) and (f). The proposed design shows visually pleasing

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

CHEN et al.: VLSI IMPLEMENTATION OF AN EDGE-ORIENTED IMAGE SCALING PROCESSOR 1283

TABLE II
COMPARISON OF PSNR FOR IMAGE ENLARGEMENT FROM

THE SIZE OF 400� 400 TO 512� 512

TABLE III
COMPARISON OF PSNR FOR IMAGE REDUCTION FROM

THE SIZE OF 600� 600 TO 512� 512

TABLE IV
COMPARISON OF PSNR FOR IMAGE ENLARGEMENT WITH THE INTEGER

MAGNIFICATION FACTOR FROM THE SIZE OF 256� 256 TO 512� 512

picture for the reference image especially at its edges, as shown

in Fig. 16(g).

Fig. 16. Visual results of different scaling techniques for Syn 6. (a) Original.
(b) NN. (c) BL. (d) BC. (e) Win. (f) M Win. (g) Our.

Fig. 17. Model used to verify our VLSI implementation.

The proposed VLSI architecture of the proposed design was

implemented by using Verilog HDL. We used SYNOPSYS De-

sign Vision to synthesize the design with TSMC’s 0.18- m cell

library. The layout for the design was generated with SYN-

OPSYS Astro (for auto placement and routing), and verified

by MENTOR GRAPHIC Calibre (for DRC and LVS checks),

respectively. Nanosim was used for post-layout transistor-level

simulation. Finally, SYNOPSYS PrimePower was employed to

measure the total power consumption. Synthesis results show

that the scaling processor contains 10.4-K gate counts and its

core size is about 532 521 m . It works with a clock period

of 5 ns and can achieve a processing rate of 200 megapixels/

second which is quick enough to process a video resolution of

WQSXGA (3200 2048) at 30 f/s in real time. The power con-

sumption is 16.47 mW with 1.8-V supply voltage.

Fig. 17 shows the model used to verify our VLSI implemen-

tation. The 12 testing images are used as the input test patterns.

Using those test patterns, our scaling design implemented with

the C program can generate the corresponding scaled images,

denoted as the golden patterns. Finally, the golden patterns are

automatically compared with the output data generated by our

scaling circuit after post-layout transistor-level simulation.

Furthermore, the architecture was also implemented on the

Altera Cyclone II EP2C8F256C6 FPGA platform for verifica-

tion. The real images generated by the Altera implementation

can be used for visual observation. The cropped region of

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

1284 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009

TABLE V
FEATURES OF FOUR SCALING IMPLEMENTATIONS

scaled image for our method in Fig. 16(g) is obtained with

the Altera implementation of the proposed architecture. The

operating clock frequency of Altera implementation is 109

MHz with 1.06-K logic elements and its power consumption is

173.75 mW.

Table V shows the comparing results of the three area-pixel

scaling chips and the higher complexity bicubic scaling chip

(HABI [14]). For easy comparison, the proposed processor is

implemented with ASIC, Altera, and Xilinx, respectively. In the

last row of Table V, the computation time of those implemen-

tations is obtained by scaling up the testing image from size

512 384 to size 640 480. Obviously, our chip requires less

hardware cost and works faster than other chips.

VI. CONCLUSION

A low-cost image scaling processor is proposed in this paper.

The experimental results demonstrate that our design achieves

better performances in both objective and subjective image

quality than other low-complexity scaling methods. Further-

more, an efficient VLSI architecture for the proposed method is

presented. In our simulation, it operates with a clock period of

5 ns and achieves a processing rate of 200 megapixels/second.

The architecture works with monochromatic images, but it can

be extended for working with RGB color images easily.

REFERENCES

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading,
MA: Addison-Wesley, 1992.

[2] W. K. Pratt, Digital Image Processing. New York: Wiley-Inter-
science, 1991.

[3] T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: Interpolation
methods in medical image processing,” IEEE Trans. Med. Imag., vol.
18, no. 11, pp. 1049–1075, Nov. 1999.

[4] C. Weerasnghe, M. Nilsson, S. Lichman, and I. Kharitonenko, “Digital
zoom camera with image sharpening and suppression,” IEEE Trans.

Consumer Electron., vol. 50, no. 3, pp. 777–786, Aug. 2004.
[5] S. Fifman, “Digital rectification of ERTS multispectral imagery,” in

Proc. Significant Results Obtained from Earth Resources Technology

Satellite-1, 1973, vol. 1, pp. 1131–1142.
[6] J. A. Parker, R. V. Kenyon, and D. E. Troxel, “Comparison of interpo-

lation methods for image resampling,” IEEE Trans. Med. Imag., vol.
MI-2, no. 3, pp. 31–39, Sep. 1983.

[7] C. Kim, S. M. Seong, J. A. Lee, and L. S. Kim, “Winscale: An image
scaling algorithm using an area pixel model,” IEEE Trans. Circuits

Syst. Video Technol., vol. 13, no. 6, pp. 549–553, Jun. 2003.
[8] I. Andreadis and A. Amanatiadis, “Digital image scaling,” in Proc.

IEEE Instrum. Meas. Technol. Conf., May 2005, vol. 3, pp. 2028–2032.
[9] H. S. Hou and H. C. Andrews, “Cubic splines for image interpolation

and digital filtering,” IEEE Trans. Acoust. Speech Signal Process., vol.
ASSP-26, no. 6, pp. 508–517, Dec. 1978.

[10] J. K. Han and S. U. Baek, “Parametric cubic convolution scalar for en-
largement and reduction of image,” IEEE Trans. Consumer Electron.,
vol. 46, no. 2, pp. 247–256, May 2000.

[11] L. J. Wang, W. S. Hsieh, and T. K. Truong, “A fast computation of 2-D
cubic-spline interpolation,” IEEE Signal Process. Lett., vol. 11, no. 9,
pp. 768–771, Sep. 2004.

[12] H. A. Aly and E. Dubois, “Image up-sampling using total-variation
regularization with a new observation model,” IEEE Trans. Image

Process., vol. 14, no. 10, pp. 1647–1659, Oct. 2005.
[13] T. Feng, W. L. Xie, and L. X. Yang, “An architecture and implementa-

tion of image scaling conversion,” in Proc. IEEE Int. Conf. Appl. Spe-

cific Integr. Circuits, 2001, pp. 409–410.
[14] M. A. Nuno-Maganda and M. O. Arias-Estrada, “Real-time FPGA-

based architecture for bicubic interpolation: An application for digital
image scaling,” in Proc. IEEE Int. Conf. Reconfigurable Computing

FPGAs, 2005, pp. 8–11.
[15] G. Ramponi, “Warped distance for space-variant linear image interpo-

lation,” IEEE Trans. Image Process., vol. 8, no. 5, pp. 629–639, May
1999.

Pei-Yin Chen (M’08) received the B.S. degree in
electrical engineering from National Cheng Kung
University, Tainan, Taiwan, in 1986, the M.S. degree
in electrical engineering from Pennsylvania State
University, State College, in 1990, and the Ph.D.
degree in electrical engineering from National Cheng
Kung University, in 1999.

Currently, he is an Associate Professor in the
Department of Computer Science and Information
Engineering, National Cheng Kung University. His
research interests include VLSI chip design, video

compression, fuzzy logic control, and gray prediction.

Chih-Yuan Lien received the B.S. and M.S. degrees
in computer science and information engineering
from National Taiwan University, Tainan, Taiwan,
in 1996 and 1998, respectively. Currently, he is
working towards the Ph.D. degree in the Department
of Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan.

His research interests include image processing,
video compression, and VLSI chip design.

Chi-Pin Lu received the B.S. degree in computer sci-
ence from National Tsing Hua University, Hsinchu,
Taiwan, in 2005 and the M.S. degree in computer
science and information engineering from National
Cheng Kung University, Tainan, Taiwan, in 2007.

His research interests include VLSI chip design
and video compression.

Authorized licensed use limited to: Karpaga Vinayaga College of Engg & Tech. Downloaded on August 20, 2009 at 03:51 from IEEE Xplore. Restrictions apply.

