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Abstract

The efficient high-throughput VLSI implementation of Soft-output MIMO detectors for

high-order constellations and large antenna configurations has been a major challenge in

the literature. This thesis introduces a novel Soft-output K-Best scheme that improves

BER performance and reduces the computational complexity significantly by using three

major improvement ideas. It also presents an area and power efficient VLSI implemen-

tation of a 4×4 64-QAM Soft K-Best MIMO detector that attains the highest detection

throughput of 2 Gbps and second lowest energy/bit reported in the literature, fulfilling

the aggressive requirements of emerging 4G standards such as IEEE 802.16m and LTE-

Advanced. A low-complexity and highly parallel algorithm for QR Decomposition, an

essential channel pre-processing task, is also developed that uses 2D, Householder 3D and

4D Givens Rotations. Test results for the QRD chip, fabricated in 0.13µm CMOS, show

that it attains the lowest reported latency of 144ns and highest QR Processing Efficiency.
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1 Introduction

1.1 Introduction to MIMO Systems

The use of multiple transmit and receive antennas in wireless systems, known as Multiple-

Input Multiple-Output (MIMO) systems [2], offers powerful performance enhancing ca-

pabilities and is one of the most interesting and promising areas of recent innovations in

wireless communications. MIMO technology offers a number of benefits that help tackle

the challenges posed by both the impairments in the wireless channel, as well as the re-

source constraints [3]. MIMO systems also exploit the spatial dimension, in addition to

the time and frequency dimensions, by using multiple antennas at the transmitter and the

receiver, which leads to high spectral efficiency [4].

This high spectral efficiency offered by MIMO technology has made it the technology

of choice in many wireless standards. For example, in the Wireless Local Area Network

(WLAN) IEEE 802.11n standard, MIMO systems are used to achieve data rates of up

to 480 Mbps. MIMO systems are also used for the IEEE 802.16e Wireless Metropolitan

Area Network (WMAN) system, also known as Worldwide Interoperability for Microwave

Access (WiMAX) ( [5], [6], [7] ). They are also envisioned to be used in the the next gen-

eration WiMAX systems, the IEEE 802.16m standard, that require high-mobility MIMO

systems with peak data rates of up to 1 Gbps. Furthermore, the advancement of the Long

Term Evolution (LTE) project, the Evolved Universal Terrestrial Radio Access (E-UTRA)

standard, also known as the LTE-Advanced standard, plans to utilize MIMO systems with

large antenna configurations (4×4 and 8×8) and high data rates (up to 1 Gbps for downlink

and 500 Mbps for uplink).

MIMO systems employ multiple antennas at both the transmitter and receiver sides to

increase spectral efficiency and to meet the aggressive requirements of these standards.

The number of transmit and receive antennas will be denoted by NT and NR, respectively.

This high spectral efficiency leads to an increase in the overall system reliability, achievable

data rate, system capacity, coverage area and a decrease in the required transmit power [3].

However, these desirable attributes compete with one another and maximizing each of
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them requires different transmission schemes. The transmission schemes exploit the high

spectral efficiency, offered by MIMO systems, by leveraging three types of gains [8]:

• Array gain refers to picking up a larger share of the transmitted power at the

receiver, which also increases the receive SNR. Array gain improves resistance to noise

and helps to suppress interference, thereby improving the coverage and extending the

range of wireless communication systems [3]. Beamforming [9], that uses antenna

arrays to focus energy, can be used to maximize array gain.

• Spatial Diversity gain mitigates the effects of fading and is realized by providing

the receiver with multiple (ideally independent) copies of the transmitted signal in

space, frequency or time [3]. The diversity order corresponds to the slope of the bit-

error-rate (BER) curve and is directly related to the number of independent received

signal copies. Space-time coding [10] is used to exploit diversity gain, which increases

link-reliability and Quality-of-Service (QoS).

• Spatial Multiplexing gain allows for a linear increase in spectral efficiency and

peak data rates by transmitting multiple, independent data streams concurrently

within the bandwidth of operation. The Spatial Multiplexing (SM) transmission

scheme uses the NT transmit antennas to achieve high peak data rates and hence to

increase the capacity of the wireless network.

In this thesis, we focus on MIMO systems that employ the Spatial Multiplexing (SM)

transmission scheme. As mentioned, a Spatial Multiplexing gain can be realized by trans-

mitting NT independent data streams. Thus, Spatial Multiplexing can be used to increase

transmission data rates by up to a factor of NT , compared to single antenna communica-

tion systems. However, the multiple transmitted data streams interfere with each other

at the receiver, and in order to reliably separate these received data streams, we require

MIMO receivers with NR ≥ NT [3].

However, these significant performance improvements offered by MIMO systems come

at the expense of considerably more complex signal processing at the receiver. Hence, one

of the major challenges in MIMO systems is to design low-complexity receiver algorithms

and develop their efficient Very Large Scale Integration (VLSI) implementations. In terms

of complexity, one of the most challenging implementation tasks in MIMO receivers is

the realization of the MIMO detectors. In the Spatial Multiplexing mode, the task of a

MIMO detector is to separate the spatially multiplexed data streams at the receiver and

2



1 Introduction

provide estimates for transmitted symbols within each data stream. Also, in practice, most

wireless communication systems use Error Correcting Codes (ECC), demanding a poste-

riori probability (APP) information about each bit for iterative Forward Error Correction

(FEC) purposes. The ECC coded MIMO systems with Soft-Output MIMO detectors gen-

erally offer a much superior bit error rate (BER) performance compared to the uncoded

MIMO systems with Hard-Output MIMO detectors. Therefore, Soft-Output MIMO signal

detection is highly desirable.

1.2 Motivations and Thesis Objectives

The emerging 4G wireless standards, such as IEEE 802.16e/m (WiMAX), IEEE 802.11n

and LTE-Advanced, require MIMO systems with high data rates (up to 1Gbps), large

constellation orders (64-QAM and 256-QAM) and large antenna configurations (4×4 and

8×8). Hence, for an ECC coded MIMO system with worst case rate of 1/2, these stan-

dards require Soft-Output MIMO detectors with detection throughputs of up to 2Gbps.

However, for large constellations and large antenna configurations, existing Soft-Output

MIMO detection schemes lead to a very large computational complexity, for the purpose

of computing APP values for the transmitted bits. As a result, the VLSI implementation

of these MIMO detectors consumes large silicon area and power, as well as achieve only

medium-rate data throughput rates that falls short of most aggressive next-generation 4G

applications. Hence, an area and power efficient high-throughput VLSI implementation of

a Soft-Output MIMO detector, with close to ML performance, for high-order quadrature

amplitude modulation (QAM) schemes still poses many challenges.

One of the objectives of this thesis is to develop a low-complexity Soft-Output MIMO

detection scheme that allows efficient computation of APP values for the transmitted

bits for high-order constellations and large antenna configurations. The proposed scheme

should reduce the total number of operations required and should not cause significant

degradation in the BER performance compared to the optimal ML detection. Another

objective of this thesis is to develop an efficient VLSI implementation of a Soft-Output

MIMO detector that offers high detection throughput and minimizes gate count and power

consumption, such that it can fulfill the aggressive requirements imposed by the emerging

4G wireless standards. In particular, this thesis will focus on designing a Soft-Output 4×4

64-QAM MIMO detector, with sustained detection throughput of up to 2 Gbps.

Several types of channel processing operations run in parallel with MIMO detection. One
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of these is the QR Decomposition (QRD) of the estimated channel characteristic matrix.

QRD is required by most MIMO detection schemes to decompose the channel matrix H

into a unitary matrix Q and an upper triangular matrix R, providing a suitable framework

for sequential detection schemes. However, the implementation details for QRD are often

overlooked. As mentioned earlier, the emerging 4G wireless standards require MIMO sys-

tems with high data rates, high mobility and large antenna configurations. Furthermore,

the high-mobility applications involve dynamic and fast-varying channel environments,

which require QR Decomposition to be performed very frequently. However, for decompo-

sition of large complex channel matrices, state-of-the-art QRD implementations have high

computational complexity and present a throughput bottleneck due to the large number of

sequential operations required. This in turn leads to either large QRD Processing Latency

(defined as the number of clock cycles required to produce a new set of output Q and R

matrices) or to large area and power requirements. Hence, QRD implementations are re-

quired for decomposing large complex channel matrices, while minimizing QRD processing

latency, silicon area and power consumption requirements.

Hence, the second objective of this thesis is to develop a QR Decomposition scheme that

allows low-complexity decomposition of large complex matrices, by reducing the number

of computations required and by increasing their execution parallelism, to resolve the

throughput bottleneck. Another objective of this thesis is to utilize the proposed QRD

scheme to develop an efficient architecture for the QR Decomposition core that offers

low hardware complexity and power consumption requirements. The proposed QRD ar-

chitecture should also minimize the QRD Processing Latency, such that it can be used

in high-mobility applications, envisioned in the new 4G wireless standards, that involve

dynamic and fast-varying channel environments. In particular, this thesis will focus on

designing a QRD core for 4×4 MIMO systems with quasi-static channel model that is

updated every four consecutive channel uses.

1.3 Thesis Outline

The outline of the thesis is as follows. Chapter 2 discusses the overall MIMO system model

and the simulation framework used for all functional simulations within the thesis. It also

provides background information on the various MIMO detection schemes and the basic

QR Decomposition algorithms, along with their performance and complexity characteris-

tics. Chapter 3 describes the proposed Soft-Output K-Best MIMO detection scheme and
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compares its complexity and performance with the existing Soft-Output K-Best detection

schemes. Chapter 4 presents the architecture for VLSI implementation of the Soft K-Best

MIMO detector and provides details about the functionality and architecture of each of

the sub-blocks. Chapter 5 describes the proposed hybrid QR Decomposition scheme, as

well as describes the multi-dimensional CORDIC algorithms that form the basis for the

proposed QRD scheme. Chapter 5 also addresses the VLSI implementation aspects of the

proposed QRD scheme and reports the ASIC implementation and the test results for the

fabricated design, as well as compares them with the state-of-the-art QRD implementa-

tions. Finally, Chapter 6 concludes the thesis and provides potential directions for future

work.
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2 Fundamentals of MIMO Detection and

Pre-Processing

This chapter is divided in two major parts. The first part, Sections 2.1 and 2.2, describe

the MIMO system under consideration, the simulation framework used for all MATLAB

simulations, as well as discusses the notation and terminology that will be used throughout

the thesis. The second part, Sections 2.3 and 2.4, provides background information on

various MIMO detection schemes and the basic QR Decomposition algorithms, along with

their performance and complexity characteristics.

2.1 MIMO System Model

Let us consider a MIMO system shown in Fig. 2.1, where the number of transmit antennas

is denoted by NT and the number of receive antennas is denoted by NR. In this thesis, we

always assume that NR ≥ NT . At time n, the bit sequence x(n) =
[
x1(n), . . . , xMcNT

(n)
]T

is sent to NT parallel streams using a serial-to-parallel (S/P) block, which are mapped into

a complex vector s̃(n) =
[
s̃1(n), . . . , s̃NT

(n)
]T

by NT linear modulators at the transmitter

front end1. Each element s̃i(n) is taken from a complex constellation O (such as rectan-

gular Quadrature Amplitude Modulation (QAM)) composed of Q = |O| = 2Mc distinct

points. This means that every set of Mc consecutive bits is mapped to a complex QAM con-

stellation point. In fact, this implies that s̃ ∈ ONT , where the index n is removed hereafter

for brevity. The transmission rate of the corresponding MIMO system, with NT transmit

antennas in spatial multiplexing (SM) mode is then given by R = NT log2Q = NT Mc bits

per channel use (bpcu). For a fair comparison, which is independent of the number of

transmit antennas and of the modulation scheme, the signal vector s̃ is normalized before

transmission in such a way that the average transmitted power is one (i.e., E{‖ s̃ ‖2}=1).

1In this thesis, complex variables are distinguished from real variables by a “∼” sign. Moreover, matrices
and vectors are distinguished from scalars by using a bold font. For instance, the complex channel
matrix is referred to by H̃ whereas the real channel matrix is denoted by H.
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Figure 2.1: The MIMO system model under consideration.

The complex baseband equivalent model of the MIMO wireless channel, that yields the

NR-dimensional received vector ỹ =
[
ỹ1, . . . , ỹNR

]T
is given by the following equation:

ỹ = H̃s̃ + ṽ, (2.1)

where H̃ = {Hij}NR NT

i=1 j=1 denotes a NR × NT dimensional channel characteristic matrix,

representing the complex-valued channel gains between each transmit and each receive

antenna. Also, ṽ =
[
ṽ1, . . . , ṽNR

]T
represents the NR dimensional independent identically

distributed (i.i.d) circularly symmetric complex zero-mean Additive White Gaussian Noise

(AWGN) thermal noise vector with variance σ2 per complex dimension, i.e., ṽi ∼ Nc(0, σ
2).

Furthermore, the entries of H̃ are chosen independently as zero-mean complex Gaussian

random variables with variance one per complex dimension. The signal-to-noise-ratio

(SNR) is defined as the ratio between the total transmitted power, which is normalized to

one, and the variance of the thermal noise, i.e., SNR= 1/σ2.

The task of the MIMO detector at the MIMO receiver is to obtain the best possible

estimate of the transmitted signal vector s̃ in the Euclidean sense based on the received

vector ỹ. i.e.,
̂̃s = arg min

s̃∈ONT

‖ ỹ − H̃s̃ ‖2 . (2.2)

Note that, it is assumed that the MIMO receiver is provided with an accurate estimate

of the channel H̃, which can be obtained during a separate training phase with the aid of

pilot symbols.

As shown in Fig. 2.1, after being detected by the MIMO detector, the estimated symbols

are transformed back into their corresponding bit representations using the demapper

block. Digital-to-Analog (D/A) and Analog-to-Digital (A/D) converters are used at the

MIMO transmitter and receiver, respectively, to convert the signals from digital to analog
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domain and vice versa. Note that some other blocks such as the channel estimator block

and the lattice reduction block are also shown in Fig. 2.1 at the receiver. The channel

estimator provides an estimate of the current channel status based on the pre-known

transmitted pilot symbols. However, in this thesis we assume that the channel is perfectly

known to the receiver.

In addition to the complex channel model described above, the equivalent real model

can also be derived using a Real Value Decomposition (RVD) scheme [11]. However, in

this thesis, in order to simplify the hardware implementation of the MIMO detector and

the QRD blocks, a slightly different approach is used for the RVD scheme, which is more

suitable for concurrent computations and the VLSI implementation. The real model of

(2.1) can be written as:

y = Hs + v, (2.3)

where y = [y1, y2, · · · , y2NR−1, y2NR
]T , s = [s1, s2, · · · , s2NT−1, s2NT

]T and H are the equiv-

alent real-valued vectors with the following mappings:

y2k−1 = R{ỹk}, y2k = I{ỹk}
s2k−1 = R{s̃k}, s2k = I{s̃k}
v2k−1 = R{ṽk}, v2k = I{ṽk},

Also, real-valued channel matrix H is derived from complex channel matrix H̃ based on

the following mapping:

H =




R(H̃11) −I(H̃11) · · · R(H̃1NT
) −I(H̃1NT

)

I(H̃11) R(H̃11) · · · I(H̃1NT
) R(H̃1NT

)
...

...
. . .

...
...

R(H̃NR1) −I(H̃NR1) · · · R(H̃NRNT
) −I(H̃NRNT

)

I(H̃NR1) R(H̃NR1) · · · I(H̃NRNT
) R(H̃NRNT

)




2NR×2NT

, (2.4)

where R(·) and I(·) denote the real and imaginary parts of a complex variable, respectively.

Note that

si ∈ Ω =

{
(−

√
Q + 1), · · · ,−1, +1, · · · , (+

√
Q − 1)

}
, (2.5)

where Ω is the set of possible real entries in the constellation for in-phase and quadrature

parts with |Ω| =
√

Q. Another way to describe (2.2) is to say the objective of the MIMO
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Maximum-Likelihood (ML) detection method is to find the closest transmitted vector ŝ

based on the observation y, i.e.,

ŝ = arg min
s∈Ω2NT

‖ y − Hs ‖2 . (2.6)

The above definitions, imply that |Ω|2NT = |O|NT , meaning that a complex NR × NT

MIMO system can be modeled as a real 2NR × 2NT MIMO system.

Now, let us denote the QR Decomposition of the channel matrix as H = QR, where Q

is a unitary matrix of size 2NR × 2NT and R is an upper triangular 2NT × 2NT matrix.

Performing the nulling operation by QH results in the updated system equation:

z = QHy = Rs + w, (2.7)

where w = QHv. Note that here QH represents conjugate transpose of the matrix Q, i.e.

QH = (QT )∗). Since the nulling matrix is unitary, the noise, w, remains spatially white

and the norm vector in (2.6), which represents the ML detection rule, can be rewritten

as [12]:

ŝ = arg min
s∈Ω2NT

‖ z − Rs ‖2 . (2.8)

Now, for the Soft-Output MIMO detection purposes, the MIMO detector needs to gen-

erate a posteriori probability (APP) about the encoded bits, x, which is usually expressed

as a Log-Likelihood Ratio (LLR) value. The LLR of bit xk, the k-th bit of x, is defined

as:

LLR(xk|z) = ln
P [xk = 1|z]
P [xk = 0|z] (2.9)

≈ min
x∈S

(0)
k

‖ z − Rx ‖2 − min
x∈S

(1)
k

‖ z − Rx ‖2 (2.10)

where (2.10) is derived from (2.9) based on standard simplifications [13]. Also, S
(1)
k and

S
(0)
k represent all vectors x with bit position xk being “1” and “0”, respectively.
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2.2 Simulation Framework for MIMO Detection and

Pre-Processing Schemes

The bit-error-rate (BER) results in this thesis have been obtained from MATLAB/Verilog

simulations and/or tested chip measurements, based on the i.i.d. channel model assump-

tion. This model is valid in rich-scattering environments with sufficient spacing between

the antennas (on the order of one wavelength) unless explicitly mentioned otherwise. It

is further noted that all presented simulation results assume perfect channel knowledge

at the receiver so that the channel estimation and detection can be separated. Also, for

the purpose of MIMO detection and pre-processing, it is assumed that the channel is

quasi-static and is updated after every four consecutive channel use. Note also that the

Error Probability simulations for the proposed Soft-Output MIMO detection scheme, pre-

sented in Sections 3.3.2 and 3.3.4, also use the same simulation framework as the BER

simulations.

Furthermore, for the BER simulations for the Soft-Output MIMO detector, it is assumed

that the MIMO system uses Error Correcting Codes (ECC). The ECC coded MIMO system

model utilizes Convolutional Turbo Codes (CTC) with rate = 1/2 and 600 bytes/block.

Also, the CTC Decoder uses 8 decoder iterations and the interleaver coefficients and other

simulation parameters are set according to the IEEE 802.16e WiMAX standard [6].

In terms of the modulation selection, the simulation results for 16-QAM and 64-QAM

modulation schemes are presented. However, for implementation purposes, 64-QAM was

chosen for two reasons. First, most of the hardware implementations for MIMO detectors

reported in the literature to-date focus on the 16-QAM scheme, due to the higher complex-

ity of the designs for 64-QAM constellation, which motivates us to fill this gap. Secondly,

64-QAM has been chosen to be one of the mandatory supported constellations in several

standards including IEEE 802.16e (WiMAX 2×2), IEEE 802.16m (WiMAX 4×4), IEEE

802.11n WLAN (2×2 MIMO), 3GPP LTE and LTE-Advanced, which practically justifies

its implementation. Both floating-point and fixed-point simulation results are presented

and discussed throughout the thesis.

10



2 Fundamentals of MIMO Detection and Pre-Processing

2.3 MIMO Detection Schemes

For Spatial Multiplexing (SM) schemes, we assume that the channel matrix H̃ is per-

fectly known at the receiver. Therefore, the task of a MIMO detector is to provide the

decision on the transmitted symbol vector s̃, given the received symbol vector ỹ, where

ỹ = H̃s̃ + ṽ. There are two classes of MIMO detectors: Hard-Decision detectors and

Soft-Decision detectors. The Hard-Decision detectors are useful for detecting uncoded or

coded transmissions, where the decision of MIMO detectors (the estimated symbol vector)

will be used as the final decision. The Soft-Decision detectors are used in ECC coded

MIMO systems, where an iterative Receiver needs soft information (a posteriori probabil-

ity values) being exchanged between detection and decoding modules following the “turbo

principle” [14]. In this thesis, we focus on the Soft-Output MIMO detection problem as

most practical wireless communication systems employ iterative Forward Error Correc-

tion (FEC) using ECC codes such as Convolutional Turbo Codes (CTC) and Low-Density

Parity-Check (LDPC) codes.

As shown in Fig. 2.2, current MIMO detection schemes can be listed within the context

of the following main categories:

• Exhaustive search Maximum-Likelihood (ML) detection.

• Sub-optimal linear receivers (ZF, MMSE).

• Sub-optimal non-linear receivers (V-BLAST, SIC).

• Near-optimal non-linear receivers (Sphere Decoder (SD), K-Best).

In ideal situations, it is desired to implement low-power MIMO detectors with near

Maximum-Likelihood (ML) performance. However, the complexity of the optimal ML

detection scheme grows exponentially with the number of transmit antennas and the con-

stellation order. Therefore, suboptimal lower-complexity approaches need to be developed

for practical commercial applications. Sub-optimal Linear detectors are one of the alterna-

tives for the lower complexity detectors, which are based on the principles of Zero-Forcing

(ZF) or Minimum Mean-Square Error (MMSE). Although they can greatly reduce the
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Figure 2.2: Taxonomy of MIMO detection algorithms [1]. The focus of this thesis is high-
lighted.

computational complexity, they suffer from significant performance loss. Successive Inter-

ference Cancelation (SIC) detectors and V-BLAST detectors [15] are also prone to decision

error propagation and can only provide minor performance improvement.

The other alternative is to use Near-optimal Non-linear detectors, [16], [17]. Depending

on how they carry out the non-exhaustive search, the Near-optimal Non-linear detector

methods generally fall into two main categories, namely depth-first search, and breadth-

first search. Sphere decoding (SD) [18] is the most attractive depth-first approach whose

performance is ML under the assumption of unlimited execution time, [16]. However, the

actual runtime of the algorithm (search time for estimated symbol vector) is dependent not

only on the channel realization, but also on the operating signal-to-noise-ratio (SNR) [19].

Thus leading to a variable throughput rate, which results in extra overhead in the hardware

due to the extra required FIFO buffers and lower hardware utilization.

Among the breadth-first search methods, the most well-known approach is the K-Best

algorithm [20]. The K-Best detector guarantees an SNR-independent fixed-throughput

with a performance close to ML. Being fixed-throughput in nature along with the fact that

the breadth-first approaches are feed-forward detection schemes, makes them especially

attractive for VLSI implementation. In this thesis, we focus on the design of a K-Best

detector, which has been highlighted with a gray box in Fig. 2.2. The following presents

details about breadth-first search methods and the conventional K-Best algorithm.
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2.3.1 Conventional K-Best MIMO Detection Algorithm

Breadth-first tree traversal is a nonrecursive scheme, which starts from the root and tra-

verses the tree in the forward direction only. On each level, the algorithm visits all ad-

missible nodes and considers their associated children to construct a new set of admissible

nodes on the next level before it proceeds [1]. In each level, a subset of all visited nodes are

chosen as the surviving admissible nodes based on a criterion (e.g., their Partial Euclidean

Distance (PED) from the received symbol). For the final level, the examined children,

corresponding to the admissible leaves, comprises a set from which the decoder finally

searches for the solution of (2.6).

Among the breadth-first search methods, the most well-known approach is the K-Best

algorithm [20]. To understand the K-Best algorithm, let us first consider an NR × NT

Q-QAM MIMO system. The detection problem of such a system can be formulated as

a tree-search problem with NT levels in the complex domain and 2NT levels in the real

domain through the RVD scheme [1]. Therefore, given an implementation in the real-

domain, the problem in (2.6) can be considered as a tree-search problem with 2NT levels.

The K-Best algorithm explores this tree from the root to the leaves by expanding each

level and selecting the K best candidates in each level, which are called the surviving nodes

of that level based on a criterion [21]. To make this clearer, let us consider K surviving

nodes in level i. Each of these nodes has
√

Q possible children in level i + 1, from the

symmetry in the Q-QAM constellation. The K-Best algorithm visits all these children

and calculates their Partial Euclidean Distances (PEDs) resulting in K
√

Q children at

level i + 1. Once the PED values are calculated, the K-Best algorithm sorts all these

K
√

Q children and selects the K best children as the surviving nodes in level i + 1. The

K-Best algorithm is a feed-forward detection method proceeding in the forward direction

only. This method offers a trade-off between optimality and complexity with respect to

the value of K [22], [23]. Thus an appropriate value of K should be determined using

extensive simulations for each system framework and/or application.

Now, as discussed in Section 2.1, the updated ML detection rule (with QR Decomposi-

tion) can be rewritten as [12]:

ŝ = arg min
s∈Ω2NT

‖ z − Rs ‖2 . (2.11)
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2 Fundamentals of MIMO Detection and Pre-Processing

Exploiting the upper triangular nature of R, this norm vector can be further expanded as:

ŝ = arg min
s∈Ω2NT

2NT∑

l=1

∣∣zl −
2NT∑

j=l

rljsj

∣∣2, (2.12)

which can be thought of as a tree-search problem with 2NT levels. Due to the upper-

triangular structure of matrix R, the K-Best algorithm starts from the last row of the

matrix (detection tree), i.e., row(level) l = 2NT . Therefore, equation (2.12) can be evalu-

ated in a recursive manner as follows.

Tl

(
s(l)

)
= Tl+1

(
s(l+1)

)
+

∣∣el

(
s(l)

)∣∣2 (2.13)

el

(
s(l)

)
= zl −

2NT∑

j=l

rljsj = Ll

(
s(l)

)
− rllsl, (2.14)

where s(l) = [sl sl+1 · · · s2NT
]T , Tl

(
s(l)

)
is the accumulated partial Euclidean distance (PED)

with T2NT +1

(
s(2NT +1)

)
= 0,

∣∣el

(
s(l)

)∣∣2 denotes the distance increment between two succes-

sive nodes/levels in the tree, and

Ll

(
s(l)

)
= zl −

2NT∑

j=l+1

rljsj = rll(z̄l −
2NT∑

j=l+1

r̄ljsj) = rllL̄l

(
s(l)

)
, (2.15)

where z̄l, and r̄lj denote the scaled zl and rlj by rll, respectively, (i.e., zl = z̄lrll, and

rlj = r̄ljrll).

Finally, the path with the lowest PED at the last level of the tree is the hard-decision

output of the detector, whereas, for a soft-decision output, all of the existing paths at

the last level are considered to calculate the Log-Likelihood Ratio (LLR) values. The

details about extension of the K-Best algorithm to produce soft outputs will be presented

in Chapter 3.

2.4 Matrix QR Decomposition Algorithms

Matrix triangularization and orthonormalization (QR Decomposition) is an essential signal

processing task for MIMO receivers. The QR Decomposition (QRD) operation decomposes

an n×m matrix H into an n×m unitary and orthonormal matrix Q (such that QHQ = I,

where QH = (QT )∗) and an m×m upper triangular matrix R. The 3 common algorithms

14



2 Fundamentals of MIMO Detection and Pre-Processing

to perform matrix QR Decomposition include: the Modified Gram-Schmidt Orthonormal-

ization (MGS) Algorithm, Householder transformations and Givens rotations.

2.4.1 The Modified Gram-Schmidt Orthonormalization Algorithm

The MGS algorithm is based on the Gram-Schmidt linear algebra technique for orthogo-

nalizing and normalizing a set of basis vectors in an inner product space. It uses vector

projections and normalizations to generate an orthonormal set of column vectors for Q

and the upper triangular entries for R. The columns of Q represent the set of basis vectors,

and the entries for R represent the inner-product of the original columns of H with those

basis vectors (i.e. the components along the orthonormal basis vectors). The following are

the primary equations for the Gram-Schmidt algorithm for QR Decomposition:

For a given matrix H with n columns:

H = [h1 h2 · · · hn] (2.16)

For the ith column, let ei = hi

‖hi‖
. Now, define the projection of vector hj on vector ei to

be:

projei
hj =

< ei , hj >

< ei , ei >
ei (2.17)

where, < ei , hj > represents inner product of n× 1 vectors ei and hj. This inner product

can be computed using the following equation:

< ei , hj >=
n∑

k=1

ei(k) × hj(k) (2.18)

where, ei(k) and hj(k) represent kth elements of the vectors ei and hj, respectively. Now,

define vectors u1, u2, · · · , u1 such that:

uj = hj −
j−1∑

i=1

projei
hj (2.19)

Therefore the matrix Q will be:

Q = [e1 e2 · · · en] =

[
u1

‖ u1 ‖
u2

‖ u2 ‖
· · · un

‖ un ‖

]
(2.20)
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2 Fundamentals of MIMO Detection and Pre-Processing

And the matrix R can be obtained as:

R = QHH =




‖ u1 ‖ < e1 , h2 > < e1 , h3 > · · · < e1 , hn >

0 ‖ u2 ‖ < e2 , h3 > · · · < e2 , hn >

0 0 ‖ u3 ‖ · · · < e3 , hn >
...

...
...

. . .
...

0 0 0 · · · ‖ un ‖




(2.21)

Note that < ei , hi >=‖ ui ‖ and < ei , hj >= 0 for i > j.

2.4.2 Givens Rotations

The QR Decomposition algorithm with Givens rotations uses a series of two-dimensional

vector rotations to nullify the lower diagonal elements of the R matrix one by one. Each

of these acts of making the elements zero is referred to as a Vectoring operation. For

each Vectoring operation, there are corresponding Rotation operations to rotate the other

column vectors in the matrix by the same angle used for the Vectoring operation.

To achieve the combination of Vectoring and Rotation, the entire matrix is multiplied

by a Givens rotation matrix, G. The product of all the Givens Rotation matrices G1 to

Gn (where n is the number of lower diagonal elements in the matrix H that need to be

nullified) gives the QH matrix.

The Givens rotation matrix to nullify the element Hi,j can be represented as follows:

G(i, j, θ) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · c · · · s · · · 0
...

...
...

. . .
...

...
...

0 · · · −s · · · c · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




(2.22)

where c = cos θ and s = sin θ appear at the intersection of the ith row and jth column. In
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2 Fundamentals of MIMO Detection and Pre-Processing

other words, a Givens rotation matrix is an identity matrix with the following substitutions:

Gi,i = cos θ

Gj,j = cos θ

Gi,j = sin θ

Gj,i = − sin θ

Using Givens rotations, a single two-dimensional vector rotation can be illustrated as

follows: [
cos θ sin θ

− sin θ cos θ

] [
a

b

]
=

[
r

0

]
(2.23)

where, r = cos θ · a + sin θ · b =
√

a2 + b2.

Now, as mentioned earlier, the final output matrix R can be obtained by pre-multiplying

the H matrix by all the G matrices, as shown below:

GnGn−1 · · ·G3G2G1H = R (2.24)

In addition, the combination of G matrices can be used to find Q, as follows:

GnGn−1 · · ·G3G2G1H = R = QHQR = QHH

Q = (GnGn−1 · · ·G3G2G1)
H (2.25)

2.4.3 Householder Transformations

A Householder transformation is a reflection that takes a vector and reflects it about

some plane. This reflection operation can be used to rotate a multi-dimensional vector

in such a way that all coordinates, except the first one, are nullified. Thus, Householder

transformations can be used to perform QR Decomposition using a very small number of

computational steps. However, each of these steps are computationally intensive, since a

large number of multiplication, division and addition operations need to be performed in

each step [24]. Also, since a Householder transformation affects multiple rows simultane-

ously, it is not straightforward to perform the multiple transformations in parallel [24].

The Householder transformations can be used to compute QR Decomposition of a matrix
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2 Fundamentals of MIMO Detection and Pre-Processing

as follows. Consider an input matrix H with n columns:

H = [h1 h2 · · · hn]

The QR Decomposition using Householder transformations starts by nullifying the ele-

ments in the first column of the H matrix, by pre-multiplying it with the transformation

matrix T1. The matrix T1 can be calculated as:

T1 = I1 − 2
u1u

H
1

uH
1 u1

(2.26)

where, I1 is an n × n identity matrix. Also, u1 = h1 - ‖ h1 ‖e1, where e1 = [1 0 0 · · · 0]T .

Thus, pre-multiplication of the H matrix by T1 zeroes all entries of the first column below

the diagonal and updates all other columns appropriately. The Householder transformation

matrix Ti, to zero elements below diagonal in hi, can be obtained using the following

generalized equation:

Ti = Ii − 2
uiu

H
i

uH
i ui

(2.27)

where, Ii is an identity matrix with n− i+1 rows and columns. Hence, pre-multiplication

of T1, T2, . . ., Tn yields the upper-triangular R matrix, as follows:

TnTn−1 · · ·T3T2T1H = R (2.28)

Also, the unitary matrix Q can be attained as:

Q = (TnTn−1 · · ·T3T2T1)
H (2.29)

The advantages and disadvantages of these 3 QRD algorithms: Modified Gram-Schmidt

algorithm, Givens rotations and Householder transformations will be investigated further

in Chapter 5 from an implementation point of view. This analysis will then be used to

develop a novel low-complexity and highly parallel QRD scheme for decomposing complex

channel matrix H.
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3 The Soft-Output K-Best MIMO Detection

Algorithm

3.1 Introduction

As outlined in Chapter 2, the K-Best algorithm offers SNR-independent fixed through-

put and performance close to optimal ML detection. Its feed-forward nature and fixed-

throughput characteristic make the K-Best algorithm the method of choice for VLSI im-

plementation of the proposed MIMO detector in this thesis. However, an area and power

efficient high-throughput VLSI implementation of a soft-output K-Best MIMO detector for

high-order quadrature amplitude modulation (QAM) schemes still poses many challenges.

To address these challenges, we are motivated by [1] that proposes a scalable pipelined

architecture for 4×4 64-QAM hard-output MIMO detector that offers a fixed critical-

path, independent of the constellation order. The architecture in [1] uses an on-demand

expansion scheme for visiting the intermediate nodes of the search tree, efficient distributed

sorters and is scalable to larger number of antennas and constellation orders. In 0.13µm

CMOS technology, this hard-output MIMO detector achieves a detection throughput of

up to 675 Mbps, while occupying 0.9 mm2 core area with 135 mW power consumption at

282 MHz clock frequency [25].

However, in practice, most wireless communication systems use Error Correcting Codes

(ECC), demanding a posteriori probability (APP) information about each bit for ECC

decoding purposes. Coded MIMO systems with Soft-Output MIMO detectors generally

offer a much superior bit error rate (BER) performance compared to uncoded MIMO

systems. Therefore, Soft-Output MIMO signal detection is highly desirable. In this thesis,

we aim to extend the Hard K-Best detector presented in [1] to produce log-likelihood ratio

(LLR) value for each transmitted bit. The Soft-Output K-Best MIMO detection scheme

proposed in this thesis offers large BER performance improvement with marginal increase

in computational complexity, while still preserving the high detection throughput offered

by the Hard K-Best detector.
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3 The Soft-Output K-Best MIMO Detection Algorithm

3.2 Existing Soft K-Best Detection Schemes and

Challenges

Let us consider an NR × NT MIMO system with Q-QAM modulation scheme. Assuming

an implementation in the real-domain (using Real Value Decomposition), the detection

problem can be considered as a tree-search problem with 2NT levels. A Soft-Output K-

Best MIMO detection scheme needs to compute the LLR value for each of the NT log2(Q)

transmitted bits in x using equation (2.10), also shown below. The LLR of bit xk, the

k-th bit of x, is defined as:

LLR(xk|z) = ln
P [xk = 1|z]
P [xk = 0|z] (3.1)

≈ min
x∈S

(0)
k

‖ z − Rx ‖2 − min
x∈S

(1)
k

‖ z − Rx ‖2 (3.2)

where, S
(1)
k and S

(0)
k represent all vectors x with bit position xk being “1” and “0”, re-

spectively. The following describes the existing Soft K-Best detection schemes and the

challenges they pose.

3.2.1 Conventional Soft K-Best Detection Scheme

The conventional method for computing LLR values for Soft K-Best detection scheme

simply extends the K best paths at the level 2NT - 1 to all of the possible
√

Q symbols

at the level 2NT . The resulting K
√

Q vectors of dimensions 2NT × 1 are then categorized

to be either in S
(1)
k or S

(0)
k for each bit k, and are used to compute LLR value for each of

the NT log2(Q) transmitted bits. However, this conventional Soft K-Best detection scheme

leads to the following challenges:

Challenge 1: For large QAM constellations, this method for computing LLR values

leads to high computational complexity. Moreover, the K-Best algorithm for large constel-

lations tends to use larger K values to attain acceptable BER performance, which increases

the computational complexity even further. This is because of the fact that the conven-

tional Soft K-Best scheme extends the K paths at level 2NT - 1 to all possible K
√

Q vectors

exhaustively. The scheme then needs to compute the Partial Euclidean Distance (PED)

values for each of these K
√

Q paths and compare them to produce the LLR value for each
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3 The Soft-Output K-Best MIMO Detection Algorithm

of the NT log2(Q) transmitted bits. For example, for a Soft K-Best detector used in 4×4

64-QAM MIMO systems with K = 10, this scheme requires computation and comparison

of 80 (K
√

Q = 10*
√

64 = 80) PED values to produce LLR values of 24 (NT log2(Q) =

4*log2(64) = 24) bits.

From a VLSI implementation perspective, this large computational complexity leads to

either low throughput or to large area and power requirements. For example, the Soft

K-Best detector proposed in [26] for 4×4 64-QAM MIMO system with K = 32 uses this

scheme to generate soft outputs. However, due to the large computational complexity, this

Soft K-Best detector can only achieve a peak throughput of 115 Mbps, while consuming

1200 mW power and a silicon area of 31 mm2 in 0.13µm CMOS.

Challenge 2: The K-Best algorithm offers a trade-off between optimality and complex-

ity with respect to the value of K [19] [23]. This implies that a possible way to decrease

computational complexity of the Soft K-Best scheme is to avoid use of very large K values.

However, for nominal K values, the conventional Soft K-Best detection scheme provides

only a marginal improvement in the BER performance compared to a Hard K-Best de-

tector. This can be noticed from the BER curves provided in Fig. 3.1 and Fig. 3.2 for

16-QAM, K=10 and for 64-QAM, K=10, respectively.

This phenomenon can be explained by examining the quality of the output LLR values

from the conventional Soft K-Best detection scheme. Note that LLR for a particular bit

will be assigned either +∞ or -∞, when all of the vectors used for LLR computation have

a ‘0’ or a ‘1’ for the given bit. Let us define the Invalid LLR Percentage as a metric

for quantizing LLR quality. The metric Invalid LLR Percentage computes the percentage

of bits in the 2NT × 1 vector that has an LLR of +∞ or -∞. Thus a lower Invalid

LLR Percentage would imply better LLR quality, and hence superior BER performance.

Table 3.1 shows the minimum, average and maximum Invalid LLR Percentage values for

a conventional Soft K-Best detector in a 4×4 MIMO system for 64-QAM and K = 10.

From Table 3.1, note that for the complete 2NT × 1 output vector, the Invalid LLR

Percentage is very high. This in turn implies poor LLR quality and hence explains the

inferior BER performance. From Table 3.1, it can also be noticed that the LLR quality for

output complex symbol 1 is much superior compared to the LLR quality for the rest of the

NT - 1 complex symbols. Note also that here the complex output symbol 1 corresponds to

levels 2NT - 1 and 2NT of the detection tree, while the rest of the NT - 1 complex symbols
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Figure 3.1: BER Performance of Hard K-Best and conventional Soft K-Best Detection
scheme - for 4×4 MIMO system with 16-QAM, K=10 - using Convolutional
Turbo Coding with rate = 1/2, 600 bytes/block and 8 decoder iterations
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Figure 3.2: BER Performance of Hard K-Best and conventional Soft K-Best Detection
scheme - for 4×4 MIMO system with 64-QAM, K=10 - using Convolutional
Turbo Coding with rate = 1/2, 600 bytes/block and 8 decoder iterations
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Table 3.1: Invalid LLR Percentage values for conventional Soft K-Best detection in 4×4
64-QAM MIMO system with K=10

Metric: Invalid LLR Percentage -
Conventional Soft K-Best:

Complete Output Vector - Min 45.05%
Complete Output Vector - Max 65.37%
Complete Output Vector - Avg 57.23%
Output Complex Symbol 1 - Min 12.15%
Output Complex Symbol 1 - Max 46.73%
Output Complex Symbol 2 - Min 26.89%
Output Complex Symbol 2 - Max 94.37%
Output Complex Symbol 3 - Min 32.35%
Output Complex Symbol 3 - Max 96.57%
Output Complex Symbol 4 - Min 36.94%
Output Complex Symbol 4 - Max 97.70%

correspond to the first 2NT - 2 levels of the detection tree.

This difference in the LLR quality can be explained using the following observation. For

the conventional Soft K-Best scheme, there are only K distinct (2NT - 1) × 1 real symbol

vectors, corresponding to the first 2NT - 1 levels, in the complete set of K
√

Q vectors.

Hence, for the bits corresponding to the first 2NT - 1 levels, only K vectors are used to

compute their LLR values, leading to poor LLR quality. However, for bits corresponding

level 2NT , all of the K
√

Q vectors are utilized to compute LLR values, thus leading to a

much superior LLR quality.

To summarize, since the conventional Soft K-Best detection scheme expands the paths

at the last tree level exhaustively, it leads to a high computational complexity. This

complexity increases dramatically with an increase in constellation size and value of K.

Furthermore, for the smaller K values, the performance gain of the conventional Soft K-

Best scheme, compared to the Hard K-Best detection, is negligible. This is due to the

inferior LLR quality for the bits corresponding to the last NT - 1 complex symbols, since

only K paths are used to compute their LLR values.
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3.2.2 The MKSE Soft K-Best Detection Scheme

The major issue with the conventional Soft K-Best detection scheme is the lack of signifi-

cant improvement compared to Hard K-Best detection scheme, mainly due to the insuffi-

cient number of paths used to compute LLR values for the last NT - 1 complex symbols.

To resolve this issue, the authors in [11] propose to use the information contained in the

discarded paths (DP), that are terminated pre-maturely and are not extended to the end

sub-lattice. The resulting Modified K-Best Schnorr-Euchner (MKSE) detection scheme [11]

will be discussed briefly below.

For the K-Best algorithm, only K smallest PED paths are chosen at each tree level, and

the rest of the K(
√

Q-1) paths are discarded. The MKSE detection scheme retains these

K(
√

Q-1) discarded paths, virtually augments them to full length by making assumptions

on the remaining undetected symbols and then uses their final PED values to compute

LLR for the NT log2(Q) transmitted bits. The ZF estimation1 method, presented in [16],

is the simplest method for augmenting discarded paths. The number of tree levels from

which the discarded paths should be retained and augmented can be decided through

simulations. The MKSE detector design presented in [11] for 4×4 16-QAM MIMO system

utilizes the discarded paths from the last 4 tree levels.

Let us denote the number of tree levels from which the discarded paths are utilized

as ‘L’. Hence, this MKSE scheme uses L*[K(
√

Q - 1)] + K vectors to compute LLR for

the bits corresponding to the first 2NT - 1 levels, and L*[K(
√

Q - 1)] + K
√

Q vectors to

compute LLR for the last log2(Q)/2 bits. This increase in the number of vectors used for

LLR computation reduces the invalid LLR count, and hence improves the LLR quality

for the bits corresponding to the first 2NT - 1 tree levels. Table 3.2 below shows the

minimum, average and maximum Invalid LLR Percentage values for the MKSE detector

in 4×4 MIMO system with 64-QAM modulation scheme, K=10 and L=6. Note that this

table also repeats the Invalid LLR Percentage values from Table 3.1, for the conventional

Soft K-Best detector, for comparison purposes.

From Table 3.2, it can be noticed that the Invalid LLR Percentage values are consid-

erably smaller for the MKSE scheme, compared to those for the conventional approach.

This improvement in the LLR quality is mainly due to the much larger number of paths

used for LLR computation for the first (2NT -1)(log2(Q)/2) bits. For example, for 4×4

64-QAM MIMO detector with K=10 and L=6, a total of 430 vectors are used to compute

1The ZF estimation method estimates an undetected symbol by simply rounding the received point to
the nearest lattice point.
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Table 3.2: Invalid LLR Percentage values for conventional and MKSE Soft K-Best detec-
tion in 4×4 64-QAM MIMO system with K=10

Metric: Invalid LLR Invalid LLR
Percentage - Conv. Percentage - MKSE

Soft K-Best: Soft K-Best:

Complete Output Vector - Min 45.05% 5.19%
Complete Output Vector - Max 65.37% 10.15%
Complete Output Vector - Avg 57.23% 7.17%
Output Complex Symbol 1 - Min 12.15% 0.00%
Output Complex Symbol 1 - Max 46.73% 2.21%
Output Complex Symbol 2 - Min 26.89% 0.00%
Output Complex Symbol 2 - Max 94.37% 6.31%
Output Complex Symbol 3 - Min 32.35% 0.00%
Output Complex Symbol 3 - Max 96.57% 16.30%
Output Complex Symbol 4 - Min 36.94% 20.57%
Output Complex Symbol 4 - Max 97.70% 24.67%

LLR for the first 21 bits. Note that for the same scenario, the conventional Soft K-Best

scheme only used 10 vectors for LLR computation for these first 21 bits. This results in

a substantial reduction in the Invalid LLR Percentage values for the first 3 symbols and

it also improves the BER performance of the Soft K-Best detector. As can be seen from

the BER curves shown in Fig. 3.3 for 4×4 64-QAM MIMO system, the MKSE detec-

tion scheme yields significant performance gain compared to the conventional Soft K-Best

approach and Hard K-Best detection.

Challenges: The MKSE scheme improves the LLR quality and hence improves the

performance. However, since it has to process a very large number of vectors, it still leads to

very high computational complexity for large constellations, large antenna configurations

and large value of K.

The MKSE detection scheme retains K(
√

Q-1) discarded paths from each tree level and

performs ZF augmentation [16] on them to extend them to the final tree level. Hence,

assuming that the discarded paths are utilized from L tree levels, the MKSE scheme needs

to process a total of LK(
√

Q-1) discarded paths. For example, for 4×4 64-QAM MIMO

system with K=10, this scheme needs to ZF augment and compute the updated PED for

70 discarded paths from each tree level. Furthermore, the number of paths to be processed

at each level increases linearly as the algorithm goes further down in the detection tree.

For the same example shown above and assuming L=6, the MKSE algorithm needs to ZF
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Figure 3.3: BER Performance of Hard K-Best, conventional Soft K-Best and MKSE De-
tection schemes - for 4×4 MIMO system with 64-QAM, K=10 - using Convolu-
tional Turbo Coding with rate = 1/2, 600 bytes/block and 8 decoder iterations:

augment and compute the updated PED for 70, 140, 210, 280, 350 and 420 discarded paths

for tree levels 2, 3, 4, 5, 6 and 7, respectively. Furthermore, at the end of the detection

tree, the MKSE scheme needs to sort and compare PED values for a total of 420 paths.

Also, since the MKSE scheme extends the K best paths at level 2NT - 1 to all K
√

Q paths

at level 2NT exhaustively, these 80 exhaustively extended paths need to be compared to

the 420 discarded paths for LLR computation purposes.

From a hardware perspective, this large number of discarded path ZF augmentation,

PED computation and comparison leads to either a throughput bottleneck or large hard-

ware complexity. In other words, for area and power constrained MIMO detectors, this

leads to low throughput due to the large processing latency. On the other hand, for MIMO

detectors that require high throughput, the large amount of computations to be performed

in the given small number of cycles leads to large area and power requirements. Thus,

the MKSE scheme yields significant improvement in the BER performance, however it

leads to prohibitive computational complexity for large constellations and large antenna

configurations. Hence, it is not immediately feasible to use the MKSE scheme to realize

detectors to be used in MIMO systems with large antenna configurations, such as 4×4 and

8×8, and with large constellation size, such as 64-QAM and 256-QAM constellations.

26



3 The Soft-Output K-Best MIMO Detection Algorithm

3.3 Proposed MIMO Detection scheme

Many new 4G wireless standards require MIMO systems that support high data rates,

high mobility and large antenna configurations. For example, the IEEE 802.16m and

LTE-Advanced standards include applications with mobile speeds up to 350 km/h, maxi-

mum antenna configuration of 8×8 and downlink peak data rates of up to 1Gbps. Hence,

these applications require MIMO detectors for large constellations and large antenna con-

figurations that offer large enough throughput to meet the aggressive peak data rate re-

quirements. Also, since these MIMO detectors are required for mobile applications, it is

desirable to minimize silicon area and power consumption requirements.

The conventional Soft K-Best detection scheme, which just uses the paths extended

exhaustively at the last tree level for LLR computation, poses 2 major issues: high com-

putational complexity and lack of significant performance improvement compared to the

Hard K-Best detection scheme. To improve the BER performance, the MKSE detection

scheme is presented in [11], that retains and utilizes the discarded paths from selected

levels of the detection tree, along with the exhaustively extended paths at the last level,

to compute LLR values. However, the scheme increases computational complexity even

further since it has to perform ZF augmentation, PED computation and PED comparison

for the discarded paths. Hence, for large constellations and large antenna configurations,

designing high throughput, area and power efficient MIMO detectors become challenging.

To resolve these issues, this thesis proposes a novel Soft K-Best detection scheme to

compute LLR values for the transmitted bits efficiently. The proposed Soft K-Best de-

tection scheme uses 3 major improvement ideas to reduce computational complexity, and

hence to make hardware implementation of high-throughput low-complexity MIMO detec-

tors possible, while not sacrificing any major BER performance gain. In other words, the

proposed Soft K-Best detection scheme uses the ideas from the MKSE scheme [11], namely

utilization of discarded paths and exhaustive path expansion at the last tree level, and im-

proves upon them to reduce computational complexity. Also, note that the proposed Soft

K-Best scheme uses the novel On-Demand Hard K-Best scheme presented in [1] and [27]

as its basis, and extends it to allow LLR computation. The following provides a brief

description of the On-Demand Hard K-Best scheme and details about the improvement

ideas used by the proposed Soft K-Best scheme to reduce computational complexity.
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3.3.1 On-Demand Hard K-Best Scheme [1]

Let us consider a 2NR × 2NT real-valued MIMO system with channel matrix H. As

described earlier, this can be thought of as a detection problem in a tree with 2NT levels,

K nodes per level and
√

Q children per node. The task of a Hard K-Best detection scheme

is to find the lowest PED 2NT × 1 vector at the last level of the tree. Because of the upper

triangular structure of matrix R, the algorithm starts from the last row of the matrix

(2NT -th row, which is the first level of the detection tree) and goes all the way up to

the first row of the matrix, which is the last (2NT -th) level of the detection tree. Note

that in conventional Hard K-Best scheme, all the possible children of a level are expanded

exhaustively. This exhaustive expansion grows significantly with the constellation size.

The On-Demand Hard K-Best scheme [1], described below, offers a clever way to calculate

the K best candidates at each level without performing an exhaustive search.

Let’s consider level l of the tree and assume that the set of K-Best candidates in level

l − 1 (denoted by Kl−1) is known. Each node in level l − 1 has
√

Q possible children, so

there are K
√

Q possible children in level l. One of the main elements of the On-Demand

Hard K-Best scheme [1] is to find the children of each node on-demand and in the order of

increasing PED rather than calculating the PED of all the children exhaustively. In other

words, the key idea of the proposed distributed K-Best scheme is to find the First Child

(FC) of each parent node in Kl−1. Note that the first child refers to the child with the

lowest local PED among all children of a parent. Finding the first child does not require

any sorting and can be realized using a simple rounding operation. Among these first

children, the one with the lowest PED is definitely one of the K-Best candidates in Kl.

That child is selected and is replaced by its Next Child (NC). Note that next child refers

to the child with the next lowest local PED. This process is repeated K times to find

the K-Best candidates in level l(Kl). The same procedure is performed for each level of

the tree, resulting in the algorithm in Table 3.3 for the detection problem throughout the

whole tree. Note that details about First Child (FC) and Next Child (NC) calculations

will be presented in Appendix A.

The proposed scheme in Table 3.3 is pictorially depicted in Fig. 3.4 for level l where√
Q = 4 and K = 3. It shows the way that Kl is derived from Kl−1. The input to the

algorithm is the K best selected nodes of level l − 1, which are the current parents with

corresponding PEDs of 0.1, 0.4, and 0.6. Each parent can be further expanded to four

offsprings resulting in 12 children whose PEDs are shown in Fig. 3.4. Let Cl represent
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Table 3.3: The On-Demand Hard K-Best Algorithm [1].

1) Find the K-Best children of level 1 (K1).
For l = 2 : 1 : 2NT

2) Find the first child of all candidates in

Kl−1. Call this set Cl.
3) For k = 1 : K

3.1) Select the child in Cl with the lowest PED.
3.2) Announce this child as the next K-Best

candidate in level l (i.e., add it to Kl).
3.3) Replace it with its next best sibling.
End

End

0.7

0.5

0.2

min min min

-3

-1

1

3

0.6

-3

-1

1

3

0.6

-3

-1

1

3

0.4

-3

-1

1

3

0.4

-3

-1

1

0.1

-3

-1

1

3

0.1

-3

-1

1

3

0.6

-3

-1

1

3

0.4

-3

-1

1

3

0.1

1lK
lK

0.9

1.3

5.0

2.0

0.7

1.3

0.5

1.5

0.2

2.2

2.7

1.2

0.2

2.2

2.7

1.2

0.2

2.2

2.7

1.2

0.9

1.3

5.0

2.0

0.9

1.3

5.0

2.0

0.7

1.3

0.5

1.5

0.7

1.3

0.5

1.5

3

1st cycle 2nd cycle 3rd cycle

Figure 3.4: The On-Demand Hard K-Best algorithm for
√

M = 4 and K = 3 and example
PED values [1].

29



3 The Soft-Output K-Best MIMO Detection Algorithm

the set consisting of all the current best children of all parents, and Dl represent their

corresponding PEDs (in Fig. 3.4, Cl = {cl
12 = −1, cl

21 = −3, cl
34 = 3} with Dl = {dl

12 =

0.9, dl
21 = 0.5, dl

34 = 0.2}, where cl
ij represents the j-th child of the i-th parent in level l).

It is easy to see that the child with the lowest PED in Cl is definitely one of the K-Best

candidates in Kl, e.g., cl
34 in Fig. 3.4 (1st cycle). This is because the child with the lowest

PED in Cl has globally the lowest PED. This child can be mathematically represented as

cl
k̄m̄

where

k̄m̄ = arg min
k,m

(dl
km ∈ Dl). (3.3)

Thus this child should be added to Kl. To find the next best child in the K-Best list,

cl
k̄m̄

and its corresponding PED (dl
k̄m̄

) are removed from Cl, and Dl, respectively (2nd cycle

in Fig. 3.4). Following this removal, the next best sibling of this child is added to Cl

(cl
31 = −3 with dl

31 = 1.2 in Fig. 3.4). Taking the same approach, the child in Cl with the

lowest PED is definitely among the final K-Best list (cl
21 = −3 with dl

21 = 0.5). This child

should be added to Kl, be removed from Cl and be replaced by its next best sibling (3rd

cycle). This procedure repeats K = 3 times to find all the K-Best candidates (see Fig.

3.4). The final children in the K-Best list are cl
34, cl

21, and cl
23 with PEDs 0.2, 0.5, and

0.7, respectively. Note that using the On-Demand Hard K-Best scheme, only 5 children of

12 possible children are visited in Fig. 3.4. This amount of savings becomes increasingly

significant for large K and/or M values.

3.3.2 Improvement 1: Relevant Discarded Paths Selection

As discussed earlier, the MKSE scheme retains and utilizes K(
√

Q-1) discarded paths

(DPs) from each tree level. However, due to the On-Demand nature of child expansion,

the Hard K-Best scheme presented in [1] and [27] only produces K-1 discarded paths at

each tree level. The current Soft K-Best scheme would accumulate these K-1 discarded

paths at each tree level. Hence, assuming that the discarded paths are utilized from L tree

levels, a straightforward extension of the Hard K-Best scheme from [1] and [27] will still

need to process a total of L(K-1) discarded paths to produce soft outputs.

Let us denote the partial paths at each tree level (paths from root node to an interme-

diate tree level) or the complete paths (paths from root node to the last tree level) by x,

and a bit position within the path by j. Also denote the Minimum PED (MinPED) for

the jth bit in x being ‘0’ as MinPED0
j and the Minimum PED for the jth bit being ‘1’ as

MinPED1
j . The following 3 observations lead to the derivation of the first improvement
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idea, namely: selection and utilization of only relevant discarded paths.

1. For the Hard K-Best scheme, the K-1 discarded paths at each tree level are already

sorted according their PED values.

2. Among the paths at a particular tree level and for jth bit in these paths, a K Best

path will definitely yield smaller MinPED0
j and MinPED1

j , compared to a discarded

path at that tree level.

3. If a particular discarded path does not provide any extra information (i.e. MinPED

for one or more bits), then there is no advantage in storing and ZF augmenting that

discarded path.

Based on these observations, the current improvement idea proposes to analyze the K

best paths and the rest of the discarded paths at each tree level, and only select those

discarded paths for further processing (ZF augmentation and LLR computation) that yield

MinPED for at least one of the bits. The rest of the unselected discarded paths at that

tree level should not be stored or processed any further, and hence they should be just

abandoned. The relevant discarded paths are selected using the following process at each

tree level:

Step 1: First, populate a Bit Occurrences table for the symbols corresponding to the

current tree level and all previous levels, using the K best paths at the current

tree level.

Step 2: Then, attempt to fill in the remaining entries in the Bit Occurrences table using

the discarded paths accumulated and forwarded from the previous levels.

Step 3: At the end, examine each of the sorted discarded paths at the current level one

by one (in the order of ascending PEDs), and select the current discarded path

for further processing only if it fills at least one of the void entries in the Bit

Occurrences table for the current tree level.

Note that for Level k, a bit occurrence table is simply a table of dimensions 2 ×
(NT − k − 1) ∗ (log2(Q)/2), that keeps track of occurrences of “0” and “1” values for

(NT −k−1)∗ (log2(Q)/2) bits (an (NT −k−1)×1 real-valued vector) in the K-Best paths

and accumulated chosen discarded paths. Thus, this improvement idea proposes to select
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and forward only the relevant discarded paths that contain useful information for LLR

computation, out of the total L(K-1) discarded paths. In other words, this improvement

idea recognizes and eliminates the irrelevant discarded paths to reduce the overall com-

putational complexity significantly. Through mathematical analysis, the largest number

of selected discarded paths can be derived to be ( (2NT - 1)(log2(Q)/2) ) - (K-1), for the

given constellation size, antenna configuration and the value of K. Note that the number

of selected discarded paths is the largest in the worst case scenario, when discarded paths

are utilized from all of the intermediate tree levels and when all of the K-1 best paths

at the last level only yield one different bit from all of the previous K best paths. Thus,

this improvement idea results in large savings in computational complexity, since the Soft

K-Best detection scheme now only needs to ZF augment, compute and compare the PED

for a maximum of ( (2NT - 1)(log2(Q)/2) ) - (K-1) paths. For example, for 4×4 64-QAM

MIMO detector with K=10 and L=6, a maximum of 12 paths need to be processed using

this improvement idea, as opposed to the 54 discarded paths processed earlier.

However, this improvement idea only uses the discarded paths that have minimum PED

for a particular bit at the current tree level and ignores the PED for the unselected paths.

Hence, even though this improvement idea reduces the computational complexity by a

large amount, it might lead to some BER performance degradation. This might happen

in the following case: if for a particular bit, ZF augmentation of an unselected discarded

path yields smaller final Euclidean distance compared to the final Euclidean distance for

ZF extension of a chosen discarded path. This case is classified as an error case in the

LLR computation, since it eventually causes LLR quality degradation compared to the

case where all K-1 discarded paths at each tree level are forwarded for LLR computation.

In order to quantize the error probability, a 4×4 64-QAM MIMO detector was simulated

for large number of transmitted bits and the occurrences of the error case were monitored.

Figure 3.5 shows the error percentage plot obtained using these simulations.

From the error percentage plot, it can be observed that the error probability is uniformly

distributed and is not a function of SNR value. Furthermore, the maximum value of error

percentage is approximately 7.93% and the average is 7.76%. Thus, the probability that ZF

augmentation of an unselected discarded path yields smaller PED compared to a selected

discarded path is relatively small. The details of BER performance loss and reduction in

computational complexity due to this improvement idea will be discussed in Section 3.4.

Thus, to summarize, the selection of relevant discarded paths using the method shown
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Figure 3.5: Error Percentage Plot for improvement idea 1: Relevant Discarded Paths (DP)
Selection.

above only chooses the discarded paths that contain useful information for LLR computa-

tion, and abandons the irrelevant discarded paths from further processing. This helps to

avoid redundant ZF augmentation and PED computations, and hence reduces the overall

computational complexity significantly, at the cost of a marginal loss in the BER perfor-

mance.

3.3.3 Improvement 2: Last Stage On-Demand Expansion

As described in Section 3.2 above, another major issue with the existing Soft K-Best

schemes, that leads to high computational complexity, is the exhaustive expansion of the

paths at the last tree level. In other words, the existing Soft K-Best detection schemes

exhaustively expands the K best paths at the level 2NT -1 to all possible K
√

Q paths

at level 2NT . These Soft K-Best schemes then compute PED for these exhaustively ex-

panded K
√

Q paths and compare these PEDs to compute the LLR values. Hence, for

large constellations and for large values of K, this approach leads to a very large number

of PED computations and comparisons. For example, for a 4×4 64-QAM MIMO detec-

tor with K=10, this will require computation and comparison of 80 PED values at the

last tree level, to compute LLR values for 24 transmitted bits. Hence, this causes either
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large processing latency (defined as: the number of cycles required to compute each new

set of LLR values) for hardware constrained detectors or large hardware requirements for

high-throughput detectors.

However, through careful analysis, it can be observed that within the complete set of

K
√

Q vectors, there are only K distinct 2NT - 1 × 1 symbol vectors, corresponding to the

first 2NT - 1 levels of the detection tree. Hence, the exhaustively extended K
√

Q paths only

improve the quality of LLR for the last log2(Q)/2 transmitted bits, that correspond to the

last level of the detection tree. The exhaustive expansion of the K best paths at the level

2NT - 1 to K
√

Q paths at the level 2NT does not yield any LLR quality improvement for the

first (2NT - 1)(log2(Q)/2) transmitted bits. Thus, the existing approach of exhaustively

extending paths at the last level provides minimal BER performance gain, while requiring

a large amount of extra resources for implementation.

To resolve these issues, this thesis proposes to use the Last Stage On-Demand Expansion

scheme, described below:

Step 1: First, extend the K best paths at tree level 2NT - 1 to exactly K paths at level

2NT using ZF augmentation.

Step 2: Use these K ZF augmented paths at tree level 2NT to fill the MinPED table for

the first (2NT -1)(log2(Q)/2) bits, because for these bits, the K ZF augmented

paths at the level 2NT yield the smallest PED values.

Step 3: For the last (log2(Q)/2) bits:

3.1: First use the lowest PED ZF augmented path, from the K ZF augmented

paths at level 2NT , to fill exactly half of the MinPED table for the last

(log2(Q)/2) bits.

3.2: Then, perform on-demand extension [1] and use at most 2K-1 paths, in the

order of ascending PEDs, to fill the remaining half of the MinPED table.

The Last Stage On-Demand Expansion scheme expands the K paths at the tree level

2NT -1 on-demand to only the 2K-1 relevant paths at level 2NT for LLR computation

purposes. The on-demand nature of path extension ensures that these 2K-1 paths have

the lowest PED among the K
√

Q paths. It also ensures that these paths are expanded

and utilized to fill the MinPED table in the order of ascending PED. In other words,

if a particular entry in the MinPED table is already filled, there is no need to compare
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the current MinPED with the PED for the paths extended afterward. Hence, this avoids

PED comparisons at the last level for the purpose of filling the MinPED table and LLR

computation.

Thus, to summarize, the Last Stage On-Demand Expansion scheme reduces the number

of path extensions from K
√

Q to only 2K-1 and reduces the number of PED compar-

isons from K
√

Q to 0. The details of BER performance and reduction in computational

complexity due to this improvement idea will be discussed in Section 3.4.

3.3.4 Improvement 3: Relaxed LLR Computation Scheme

The MKSE detection scheme, presented in [11], performs LLR computation using the 3

step process shown below:

Step 1: First, fill the MinPED table for all NT log2(Q) bits using the last level extension

of the K-Best paths.

Step 2: Then, examine each discarded path and compare its PED with the existing

MinPEDs to attempt to fill or update the MinPED table.

Step 3: Use the minimum PED data in the MinPED table to compute LLR values

(by simply subtracting the MinPEDs) for each of the NT log2(Q) transmitted bits.

As can be observed, the second step in this process requires comparison of each dis-

carded path PED to the current 2NT log2(Q) MinPEDs. Hence, this leads to a total of

(2NT log2(Q))(L(K-1)) comparisons, which in turn leads to a large computational complex-

ity. However, if an assumption is made that the MinPED values attained by extending

the K-Best paths are always smaller compared to the discarded path PEDs, then a large

amount of computations can be avoided. This assumption is the basic idea behind the Re-

laxed LLR Computation Scheme. Hence, the Relaxed LLR Computation Scheme modifies

Step 2 in the LLR computation process to be the following:

Step 2 - Modified: For each discarded path, in the ascending order of PEDs, fill an entry

in the MinPED table only if it is still empty.

Thus, the Relaxed LLR Computation Scheme does not perform any PED comparisons

and fills an entry in the MinPED table, only if that bit was not covered by either the
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Figure 3.6: Error Percentage Plot for improvement idea 3: Relaxed LLR Computation.

extended K-Best paths or the preceding discarded paths. Hence, this scheme essentially

approximates output LLR values, rather than performing exact computation.

However, this assumption is not always valid, and hence might lead to degradation in

LLR quality and hence in the resulting detector BER performance. This might happen in

the following case: if for a particular bit, a discarded path has a smaller PED compared

to the current MinPED value for that bit. This case is classified as an error case in the

LLR computation and its corresponding error probability is quantified by simulating a

4×4 64-QAM MIMO detector for a large number of transmitted bits. Fig. 3.6 shows the

error percentage plot obtained using these simulations.

From the error percentage plot, it can be observed that the probability of error is higher

at low SNR values and reduces significantly for higher SNR values. This can be explained

by noticing that at low SNR values, the larger noise might cause good vectors to be

discarded on the intermediate stages, which after ZF augmentation to the last level end

up having smaller PED values than the K-Best vectors. Note that the maximum value of

error percentage is approximately 0.125% and the average is 0.03%.

Thus, it can be concluded that the Relaxed LLR Computation Scheme causes only minor

LLR quality degradation, while reducing computational complexity by a large amount.

The details of BER performance loss and reduction in computational complexity due to

this improvement idea will be discussed in Section 3.4.
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3.3.5 Proposed Soft-Output K-Best Detection Scheme

Let us consider a 2NR × 2NT real-valued MIMO system with channel characteristic matrix

H. As described earlier, this can be thought of as a detection problem in a tree with 2NT

levels, K lowest PED paths per level and
√

Q children per path. The task of a Hard

K-Best detector is to find the lowest PED 2NT × 1 vector at the last level of the tree.

On the other hand, the task of a Soft K-Best detector is to compute LLR values for

(2NT )(log2(Q)/2) transmitted bits using all of the existing paths at the last level and the

discarded paths from the intermediate levels. Table 3.4 shows the proposed Soft K-Best

detection algorithm that computes the LLR values for (2NT )(log2(Q)/2) bits efficiently.

Note that the On-Demand Hard K-Best scheme, used as the starting point for the proposed

Soft K-Best scheme, was described in detail in [1]. Hence, in this thesis, we just utilize

this scheme and do not provide details about its individual steps.

Due to the upper triangular structure of matrix R, the Soft K-Best algorithm starts from

the last row of the matrix (corresponding to the first level of the detection tree) and goes

all the way up to the first row of the matrix, which is the last level of the detection tree. At

each level in the detection tree, the algorithm first uses the On-Demand child expansion

scheme to find the K-Best paths at that level. The algorithm then uses a three-step

process to choose only relevant discarded paths for further processing (ZF augmentation,

PED computation and LLR computation) out of the K-1 discarded paths at that level.

Disposal of the redundant discarded paths and use of only relevant discarded paths, using

this three-step process, reduces the overall computational complexity significantly, at the

cost of marginal loss in the BER performance.

The proposed Soft K-Best scheme then uses the Last Stage On-Demand Expansion

scheme, presented in Section 3.3.3, to expand the K best paths at level 2NT - 1 to only 2K-1

lowest PED paths at level 2NT , rather than expanding them exhaustively to K
√

Q paths at

this level. This reduces the number of path extensions from K
√

Q to only 2K-1 and reduces

the number of PED comparisons from K
√

Q to 0. The Soft K-Best scheme then uses the

Relaxed LLR Computation scheme, presented in Section 3.3.4, to update the MinPED

table without performing any PED comparisons. As the very last step, the proposed Soft

K-Best detection scheme computes LLR values for the (2NT )(log2(Q)/2) bits, by simply

subtracting the MinPED values for each bit. Thus, using the 3 improvement ideas and

the On-Demand Hard K-Best scheme, the proposed Soft K-Best detection scheme reduces

the overall computational complexity significantly.
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Table 3.4: Proposed Soft K-Best Detection Scheme

1) Find the K-Best children of level 1. (K1).

2) For l = 2 : 1 : 2NT − L − 1
2.1) Find the K-Best paths at level l using the On-Demand

child expansion scheme (Kl).
End

3) For l = 2NT − L : 1 : 2NT − 1
3.1) Find the K-Best paths at level l using the On-Demand

child expansion scheme (Kl).
3.2) Populate a Bit Occurrences table for symbols corresponding to

levels l -> 1 (2* l *(log2(Q)/2) entries) using the K-Best paths Kl.
3.3) Update the Bit Occurrences table using the discarded paths

accumulated from all previous levels (Dl−1 → 1).
Also, copy (Dl−1 → 1) to (Dl → 1).

3.4) Examine each of the K-1 discarded paths at the current level (Dl)
and select it for further processing (add to Dl → 1) only if it

fills at least one void entry in the Bit Occurrences table.

3.5) Perform ZF augmentation and PED update for each discarded path

in Dl → 1 to level l + 1.
End

4) At level l = 2NT

4.1) Sort the discarded paths from (D2NT−1 → 1) in the ascending

order of PED.

4.2) Extend the K-Best paths at level 2NT-1 (K2NT−1) to exactly K

paths at level 2NT using ZF augmentation.

4.3) Use these K paths at level 2NT to fill the MinPED table for

the first (2NT -1)(log2(Q)/2) bits.

4.4) To compute LLR for the last (log2(Q)/2) bits:

4.4.1) Use the lowest PED ZF augmented path at level 2NT to fill

exactly half of the MinPED table for these bits.

4.4.2) Perform On-Demand extension of (K2NT−1) and use at most

2K-1 paths, in the order of ascending PEDs, to fill the

rest half of the MinPED table for these bits.

5) Use the sorted 2NT × 1 discarded paths from (D2NT−1 → 1) to update

the MinPED table using the Relaxed LLR Computation scheme.

6) Compute LLR values using the minimum PED data in the MinPED table

for each of the 2NT(log2(Q)/2) transmitted bits.

38



3 The Soft-Output K-Best MIMO Detection Algorithm

3.4 Complexity Analysis and Performance Comparison

In this section, we study the computational complexity of the conventional [26] and the

MKSE [11] Soft K-Best schemes, as well as the proposed Soft K-Best detection scheme.

The focus of this complexity analysis would be on the parts of the detector that perform

soft output (LLR) computation, as we assume that all of these schemes use the same Hard

K-Best detection algorithm as their basis. For the complexity analysis of the proposed Soft

K-best scheme, we will first start with the computational complexity of the MKSE scheme,

and then analyze the incremental complexity reduction due to each of the 3 improvement

ideas discussed in Section 3.3 above.

Let us consider a 2NR × 2NT real-valued MIMO system with Q-QAM constellation.

Also assume that all of the Soft K-Best detection schemes under consideration use the

same values for K and L. Table 3.5 shows the computational complexity comparison be-

tween different schemes. For comparison metrics, the number of PED updates, PED

comparisons and ZF augmentations are considered. However, assessment and comparison

of basic computational operations, such as number of additions, multiplications, shifts

and comparisons, might assist in a more thorough complexity analysis. Hence, Table 3.6

below shows the complexity comparison between different schemes in terms of these basic

computational metrics.

It can be observed that the conventional Soft K-Best scheme requires a large number

of PED updates and PED comparisons, but no ZF augmentations. The number of PED

updates, PED comparisons and ZF augmentations are increased even further while using

the MKSE scheme. This in turn causes a large increase in the number of shift, addition and

comparison operations required. The first improvement idea, Relevant Discarded Paths

Selection, reduces the number of FC augmentations, PED updates and PED comparisons

required, since it only selects and processes relevant discarded paths and abandons further

processing of the redundant discarded paths. The Last Stage On-Demand Expansion

scheme, presented in Section 3.3.3, expands the K best paths at level 2NT -1 to only

2K-1 lowest PED paths at level 2NT , rather than expanding them exhaustively to all

K
√

Q possible paths at this level. Due to this reduction in path extension, this scheme

further reduces the number of PED updates and comparisons required, and hence causes

a reduction in the number of shift, addition and comparison operations required for LLR

computation. Finally, the Relaxed LLR Computation scheme eliminates the need for PED

comparison between the discarded path PED and the extended K-Best path PED, and
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Table 3.5: Computational Complexity of various Soft K-Best schemes

Metric/Scheme Conventional [26] MKSE [11] This Work

PED K
√

Q K
√

Q + (2K-1) +

Computations LK(
√

Q-1) ((2NT -1)*(log2(Q)/2))-

(K-1)

PED K
√

Q K
√

Q + (2K-1)

Comparisons ((LK(
√

Q-1)*

(2NT log2(Q))

ZF 0 LK(
√

Q-1) ((2NT -1)*(log2(Q)/2))-

Estimations (K-1)

hence reduces the number of PED comparisons required significantly.

Note that, since the proposed Soft K-Best detection scheme uses all of these 3 improve-

ment ideas, it integrates the complexity reduction effect due to each of these ideas. Hence,

the proposed Soft K-Best scheme offers a significantly lower computational complexity

compared to the MKSE scheme [11]. To demonstrate effectiveness of the proposed Soft

K-Best detection scheme, Table 3.7 lists the number of shifts, additions, multiplications

and comparisons required by each Soft K-Best scheme for two case scenarios: 4×4 64-

QAM MIMO detector with K=10, L=6 and 4×4 16-QAM MIMO detector with K=10,

L=6. From these tables, it can be observed and concluded that the proposed Soft K-Best

scheme reduces the number of addition, multiplication, shift and comparison operations

required to compute LLR values for NT log2(Q) bits, approximately by a factor of 5, com-

pared to the MKSE scheme.

For the purpose of comparing BER performance, the various Soft K-Best MIMO de-

tectors were combined with Convolutional Turbo Coding (CTC) Encoder and Decoder

with rate = 1/2, 600 bytes/block and 8 decoder iterations. These combined models were

customized for use with a 4×4 MIMO system with 64-QAM and for a 4×4 MIMO system

with 16-QAM modulation scheme. Figures 3.7 and 3.8 show the BER curves obtained by

simulating these combined models for 16-QAM and 64-QAM case scenarios, respectively.

From the BER curves, it can be noticed that the first improvement idea, Relevant

Discarded Paths Selection, causes the largest BER performance degradation compared to

the other two improvement ideas. For example, for the 64-QAM case (Fig. 3.8), this
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Table 3.6: Computational Complexity (in terms of basic fixed-point mathematical opera-
tions) of various Soft K-Best schemes

Metric/ Conventional MKSE [11] This Work

Scheme [26]

Shift 3K
√

Q 17L(K-1) + 3K
√

Q 17[((2NT -1)*(log2(Q)/2))-

(K-1)] + 3(2K-1)

Additions 6K
√

Q 26L(K-1) + 6K
√

Q 26[((2NT -1)*(log2(Q)/2))-

(K-1)] + 6(2K-1)

Multiplications K
√

Q L(K-1) + K
√

Q [((2NT -1)*(log2(Q)/2))-

(K-1)] + (2K-1)

Comparisons K
√

Q L(K-1)(2NT log2(Q)) + (2K-1)

K
√

Q

Table 3.7: Basic Operations Count for various Soft K-Best schemes

Scheme Metric Conventional [26] MKSE [11] This Work

4 × 4 Shift 120 1038 142

16-QAM Additions 240 1644 244

(K=10) Multiplications 40 94 24

Comparisons 40 1768 19

4 × 4 Shift 240 1158 261

64-QAM Additions 480 1884 426

(K=10) Multiplications 80 134 31

Comparisons 80 2672 19
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Figure 3.7: BER Performance of Hard K-Best and various Soft K-Best Detection schemes
- for 4x4 MIMO system with 16-QAM, K=10 - using Convolutional Turbo
Coding with rate = 1/2, 600 bytes/block and 8 decoder iterations:
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Figure 3.8: BER Performance of Hard K-Best and various Soft K-Best Detection schemes
- for 4x4 MIMO system with 64-QAM, K=10 - using Convolutional Turbo
Coding with rate = 1/2, 600 bytes/block and 8 decoder iterations:
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improvement idea results in approximately 0.4 dB loss at BER = 10−3, compared to

the MKSE detection scheme. As already discussed in detail in Section 3.3.2, this BER

degradation is due to the following error case: For a particular bit, ZF augmentation of

an unselected discarded path yields smaller final Euclidean distance compared to the final

Euclidean distance for ZF extension of a chosen discarded path. This error case causes

LLR quality degradation, and hence BER performance degradation, compared to the case

where all K-1 discarded paths at each tree level are forwarded for LLR computation.

However, the other two improvement ideas, Last Stage On-Demand Expansion and

Relaxed LLR Computation, only cause approximately 0.1 dB and 0.04 dB loss at BER =

10−3, respectively. This is consistent with the observation made from the Error Percentage

plot (Fig. 3.6) for the Relaxed LLR Computation scheme, which demonstrates that the

probability of error is around 0.03% on average. Thus, in total, for the 64-QAM case, the

proposed Soft K-Best detection scheme results in 0.54 dB loss compared to the MKSE

scheme presented in [11], while reducing the number of computations required for LLR

calculation by a factor of 5. However, it should also be noted that the proposed Soft

K-Best scheme improves the BER performance by around 1.7 dB and 2.9 dB compared

to the conventional Soft K-Best scheme and the Hard K-Best scheme at BER = 10−3,

respectively. Similar observations can also be made from the BER curves for the 16-QAM

case (Fig. 3.7) as well.

To summarize, the proposed Soft K-Best detection scheme reduces the computational

complexity significantly, while only causing a relatively small BER performance loss com-

pared to the MKSE scheme. Also, the proposed Soft K-Best scheme offers a large per-

formance improvement compared to the conventional Soft K-Best scheme and the Hard

K-Best scheme, with comparable complexity. For an example case of 4×4 64-QAM Soft

K-Best MIMO detector with K=10, the proposed Soft K-Best scheme reduces the com-

putational complexity at least by a factor of 5, while only causing 0.54 dB loss in BER

performance compared to the MKSE scheme. For this example case, the proposed K-Best

scheme also offers a large BER performance improvement of 2.9 dB in compared to the

Hard K-Best detection scheme.

3.5 Summary

The conventional Soft K-Best detection scheme, which just uses the paths extended ex-

haustively at the last tree level for LLR computation, poses the major issues of high
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computational complexity and lack of significant performance improvement compared to

the Hard K-Best detection scheme. To improve the BER performance, a modified MKSE

detection scheme is presented in [11] that utilizes the discarded paths from intermediate

tree levels, in addition to the exhaustively extended paths at the last level, to compute

LLR values. However, this scheme increases computational complexity even further. Thus,

using the existing Soft K-Best detection schemes, it is not feasible to design high through-

put, area and power efficient MIMO detectors for large constellations and large antenna

configurations, envisioned in future WiMAX and LTE systems.

To resolve these issues, this thesis proposed a novel Soft K-Best detection scheme that

reduces computational complexity significantly. The key contributions are the three major

improvement ideas: Relevant Discarded Paths Selection, Last Stage On-Demand Expan-

sion and Relaxed LLR Computation Scheme. The proposed Soft K-Best detection scheme

offers a large improvement in BER performance compared to the conventional Soft K-Best

scheme and the Hard K-Best scheme. Moreover, the proposed Soft K-Best scheme offers

significant reduction in the computational complexity compared to the MKSE scheme,

while not sacrificing any major BER performance gain.
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K-Best MIMO Detector

4.1 Introduction

The K-Best algorithm is a well-known approach and an alternative to Sphere Decoding for

MIMO detection offering two important advantages: SNR-independent fixed throughput

and the ability to define a pipelined architecture due to its feed-forward nature. Spatial

Multiplexing (SM) hard and soft-output MIMO detectors based on the K-Best algorithm

for 16-QAM systems with 4-transmit and 4-receive antennas (4×4) have been realized for

low-order constellations [11,28]. The 4×4 16-QAM soft-output MIMO detector presented

in [11] offers a peak throughput of 107Mbps and requires 97KGates core area in 0.13µm

CMOS technology. However, emerging 4G wireless standards, such as IEEE 802.16m

and LTE-Advanced, require MIMO systems with high-order constellation schemes (e.g.

64-QAM), large number of antennas (e.g. 4×4) and high data rates (up to 1Gbps).

State-of-the-art 4×4 64-QAM MIMO detectors in the literature consume large silicon

area [26, 29], achieve only medium-rate (115Mbps) data throughput rates [26, 29, 30] that

falls short of the most aggressive next-generation 4G applications, exhibit variable data

throughput that is a function of signal-to-noise-ratio (SNR) and, all implementations to-

date reveal some performance loss, [29, 30], relative to a perfect K-Best implementation.

One of the major issues that most of these detector designs face is the large number of

operations required to compute the Log-Likelihood Ratio (LLR) values for the transmitted

bits. Furthermore, as discussed in Chapter 3, for nominal values of K, these designs

offer only a marginal performance gain compared to the hard-output K-Best detectors.

This issue can be resolved by utilizing discarded paths from intermediate tree levels [11]

for the purpose of computing LLR values. However, for large constellations and large

antenna configurations (4×4, 64-QAM), a straightforward implementation of a MIMO

detector using this idea leads to prohibitive hardware complexity, which leads to either

extremely low throughput or large area and power requirements. Hence, an area and
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power efficient scalable high-throughput VLSI implementation for a 4×4 64-QAM MIMO

detector, envisioned in LTE and WiMAX systems, remains a significant technical challenge

especially for high multimedia data rates that are envisaged to approach 1Gbps in future

systems.

Note that, in this chapter, we solely focus on the implementation of the K-Best algo-

rithm. Thus it is assumed that the sorted QR-decomposition algorithm according to [31]

is applied to the channel matrix before our implemented ASIC to generate the R matrix

using the scaled and decoupled architectures [32], which also applies the generated Q ma-

trix to the received vector to generate z. Without loss of generality, it is also assumed that

i-th row of matrix R and zi are normalized by rii. Therefore, Li(s
(i)) in equation (2.15)

can be written as:
Li(s

(i)) = rii(z̄i −
2NT∑

j=i+1

r̄ijsj), (4.1)

where z̄i, and r̄ij denote the scaled zi and rij by rii, respectively, (i.e. zi = z̄irii, and

rij = r̄ijrii).

4.2 Proposed Soft K-Best Detector - General

Architecture Description

As discussed in Chapter 3, the issues mentioned above can be resolved using the novel

Soft K-Best detection scheme presented in Table 3.4. This proposed Soft K-Best detection

scheme reduces computational complexity significantly, and hence enables hardware im-

plementation of high-throughput low-complexity MIMO detectors. The proposed scheme

first uses the basic idea from the MKSE scheme [11], namely utilization of intermediate

discarded paths, to achieve a substantially superior BER performance compared to the

Hard K-Best detection scheme. It then uses three innovative improvement ideas to re-

duce the overall computational complexity significantly, with only minimal BER loss. The

proposed Soft K-Best detection scheme is shown in Table 3.4 for 2NR × 2NT Q-QAM

real-valued MIMO systems. In this chapter, a customized version of this scheme is used

to develop a VLSI architecture of a 4×4 64-QAM Soft K-Best detector.

The proposed architecture with all intermediate parameters for a 4×4 64-QAM Soft-

output K-Best MIMO detector with K = 10 and Ω={-7,-5,-3,-1,+1,+3,+5,+7} is shown

in Fig. 4.1. There are 2NT = 8 levels in the tree. The first level of the tree, corresponding

to the last row of equation (2.7), opens up all the possible values in Ω, and calculates their
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corresponding PEDs. The output of this stage is K1 resulting in |Ω| = 8 PED values,

which is done by Level I in Fig. 4.1. For each of the nodes in K1, the first child is found

and its PED is updated using the FC-Block in Level II. The Sorter block, shown in

Fig. 4.1, then sorts all eight resulting PED values in four cycles, to determine the lowest

PED.

The output of the Sorter block is the sorted FCs of L7, i.e. C2, which are all loaded

simultaneously to the next stage (i.e., PE I) to form K2. Note that the dashed gray arrows

in Fig. 4.1 imply that the data is loaded only once after the completion of the previous

stage, and the number on them shows how many cycles after the completion of the previous

stage data is loaded. Generally speaking, in each level, one PE II block is used to generate

and sort the list of all FCs of the current level and one PE I block is used to generate the

K-Best list of the current level. This fact is denoted in Fig. 4.1 by FC-Li and NC-Li labels

under each level’s block. The PE I block takes the FCs of each level and uses a PED sorter

and a core called NC-Block in the feedback loop to generate the K-Best paths of that level

one-by-one. The PE II receives the K-Best candidates of the previous level, one after the

other, and generates the FC of each received K-Best candidate one-by-one, and sorts them

as they arrive. It finally transfers them to its following PE I block for computation of the

K-Best paths. Since at the last level only the FC with the lowest PED is of concern, only

one PE II block is used for the first level (FC-L1), whose output is the solution to the

hard detection symbol ŝ. Note that the architecture presented for Hard detection is based

on the Hard-output K-Best MIMO detector architecture presented in [1].

The SPE and DP Sorter blocks together create the discarded path (DP) datapath that

retains selected discarded paths from each tree level, performs ZF augmentation and PED

computation for them and sorts them. The SPE block samples in the K-Best paths and

K-1 discarded paths from the PE I block at each level, as well as the accumulated selected

discarded paths from all of the previous levels. It then observes the bit occurrences in the

K-Best paths and accumulated selected discarded paths, and uses this observation to select

and tag only useful discarded paths at the current level. The SPE block then computes

ZF augmentation for all of the selected discarded paths using the FC-Block and updates

their PED values. At the end of the DP datapth, the DP Sorter block sorts all of the

accumulated selected discarded paths in the order of ascending PEDs to prepare them to

be used for LLR computation.

The Fill MinPEDTable I, Fill MinPEDTable II and ComputeLLR OutputController

blocks perform the task of computing LLR values using the chosen discarded paths and
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extended K-Best paths at the last tree level. From equuation 3.1, the process of LLR

computation can be performed in two steps. In the first step, the selected discarded paths

and extended K-Best paths can be observed to fill the minimum PED (MinPED) table

for each transmitted bit. In the second step, this MinPED table can be used to compute

LLR values for each bit, by simply subtracting the MinPED values for each bit. The

Fill MinPEDTable I block performs the task of initializing and filling the MinPED table

using the 2NT ×1 paths generated through the Last Stage On-Demand Expansion scheme,

described in Section 3.3.3. The Fill MinPEDTable II block then updates this MinPED

table using the accumulated selected discarded paths. The final stage of the Soft-output

K-Best detector, the ComputeLLR OutputController block, computes LLR values for the

24 transmitted bits and outputs them in parallel using the LLROut 1 and LLROut 2 ports.

Note that two output ports are required because 24 13-bit LLR values need to be sampled

out every 10 clock cycles. In other words, for this particular case, use of two 13-bit output

ports help minimize the total number of output pins.

The proposed VLSI architecture for Soft K-Best detector was modeled in Verilog HDL,

synthesized using Synopsys Design Compiler and placed and routed using Cadence SoC

Encounter/Silicon Ensemble. The RTL and gate level netlists were verified with the golden

model generated from the fixed-point MATLAB model. The final Soft K-Best ASIC was

fabricated in 0.13 µm IBM 1P8M CMOS technology using ARM standard library cells.

4.3 Proposed Soft K-Best Detector - Input/Output

Schedule

4.3.1 Input Schedule

The inputs to the Soft K-Best architecture, shown in Fig. 4.1, are the entries of the R

matrix as well as the z vector in equation (2.7). Using the RVD scheme, proposed in

equation (2.4), the resulting R matrix after the QR decomposition has symmetry features

that can be exploited to advantage, which are explained by the following example [1]. Note

that this RVD scheme is a slightly modified version of the conventional RVD scheme, and

is more suitable for concurrent computations in the hardware implementation of the Soft

K-Best detector. Consider a 4×4, 64-QAM MIMO system (8×8 real domain). The R

matrix using the modified RVD scheme is as follows:
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R =




r22 0 r24 −r23 r26 −r25 r28 −r27

0 r22 r23 r24 r25 r26 r27 r28

0 0 r44 0 r46 −r45 r48 −r47

0 0 0 r44 r45 r46 r47 r48

0 0 0 0 r66 0 r68 −r67

0 0 0 0 0 r66 r67 r68

0 0 0 0 0 0 −r88 0

0 0 0 0 0 0 0 r88




. (4.2)

From this R matrix, it can be noticed that each pair of consecutive rows share the same

entries with a possible sign flip. Therefore, in the VLSI architecture, the input values

of two consecutive levels share the rij values, and hence this RVD scheme reduces both

the number of input pads and the required memory to buffer the rij values. Another

implication of this structure is that the first children of the odd rows do not depend on

the K-Best list of the preceding even row [1]. For instance, the first child of the fifth row

is independent of s6 and that is due to the fact that r56 = 0.

Note that in the proposed Soft K-Best detector architecture, it is assumed that the

channel is quasi-static and is updated every four channel uses. This implies that the QR

decomposition and the input R entries need to be updated with a proper frequency. In

total, there are 16 distinct entries in the R matrix as well as 32 entries corresponding to

the four input z vectors 1. Hence, if the input R matrix and the four input z vectors

are to be sampled in simultaneously and assuming that each entry requires 16 bits on

average, the number of input pads for the chip will be 768 pads, which is not feasible for

a cost-efficient implementation.

In order to avoid this large number of pads in our ASIC, input R and z entries are

received one-by-one at the inputs, are buffered and consumed later at the proper time [1].

Moreover, for the proposed Soft K-Best detector, we use a multiplexed scheme where each

16-bit rlj is received in two consecutive clock cycles, i.e., 8 bits per clock cycle. The received

entries are buffered at the input and are used at the proper time in the architecture. Using

this scheme the number of pads is significantly reduced [1], with the only drawback being

a longer initial latency. Fig. 4.2 shows such a scheduling at the input for two consecutive

iterations. Note that since we assumed that the channel is updated every four channel

1There are four received z vectors per channel matrix and each z vector has eight entries corresponding
to eight levels of the tree, which results in a total of 32 entries.
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Figure 4.2: Proposed Soft K-Best Input Scheduling - for reading R matrix and z vectors.

use and since 10 cycles are required for each 4×1 received vector detection, each iteration

takes 40 cycles to be processed. In the first 32 cycles the values of rij and zj are buffered

at the input, and at the end of the 40 cycles the buffered samples are used by the detection

core. As shown in Fig. 4.2, each rij value is read in two cycles (different cycle colors in the

figure), while each zj requires only one clock cycle. This is due to the fact that there are

16 rij entries per channel matrix and 32 zj values for 4 consecutive z vectors. Note that all

of these fixed-point numbers are implemented using the two’s complement representation.

4.3.2 Output Schedule

The major outputs of the proposed Soft K-Best detector are the Log-Likelihood Ratio

(LLR) values for each transmitted bit, computed using equation (3.1), and the hard de-

tection output symbol ŝ. As shown in Fig. 4.1, the output ports LLROut 1 and LLROut 2

are used to output 24 13-bit LLR values for 24 bits (NT log2(Q) = 4× log2(64) = 24 bits)

every K = 10 clock cycles. Note again that this is due to the fact that the proposed Soft

K-Best detector computes LLR values for a 4×1 complex z vector every 10 cycles. Also,

in order to attain a cost and area-efficient implementation and reduce the required pad

count, only two 13-bit ports, LLROut 1 and LLROut 2, are used to output the 13-bit LLR

values.

However, since the Soft K-Best detector needs to output 24 LLR values within 10 clock

cycles using only two 13-bit ports, they need to be multiplexed such that 2 LLR values

can be sampled out in a single clock cycle, i.e. at the positive and negative clock edges.

Fig. 4.3 shows the output scheduling for the LLR output ports. As shown in this figure,

each of the LLROut 1 and LLROut 2 ports output 12 LLR values within the first 6 clock

cycles, with a new 13-bit LLR value sampled out every half cycle (indicated by toggling

and using different colors every half cycle in the figure). Table 2 shows the exact schedule

of the output LLR values for a 4×1 transmitted symbol vector s = [s1 s2 s3 s4]
T . Note
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Figure 4.3: Proposed Soft K-Best Output Scheduling - for writing out LLR values.

Table 4.1: Output Scheduling for LLR values for transmitted symbol vector (s).

Clock Cycle/Edge: LLROut 1: LLROut 2:

Cycle 1 - posedge (↑) s1[5] s1[4]

Cycle 1 - negedge (↓) s1[3] s1[2]

Cycle 2 - posedge (↑) s1[1] s1[0]

Cycle 2 - negedge (↓) s2[5] s2[4]

Cycle 3 - posedge (↑) s2[3] s2[2]

Cycle 3 - negedge (↓) s2[1] s2[0]

Cycle 4 - posedge (↑) s3[5] s3[4]

Cycle 4 - negedge (↓) s3[3] s3[2]

Cycle 5 - posedge (↑) s3[1] s3[0]

Cycle 5 - negedge (↓) s4[5] s4[4]

Cycle 6 - posedge (↑) s4[3] s4[2]

Cycle 6 - negedge (↓) s4[1] s4[0]

that this pattern and schedule is repeated every 10 clock cycles.

4.4 Proposed Soft K-Best Detector - Detailed VLSI

Architecture

This section provides details about the architecture and functionality of the blocks used

in the proposed Soft K-Best MIMO detector. A detailed description of some common

sub-blocks used throughout the architecture will be provided first, and will be followed by

a description of the major functional blocks. Note that since the proposed Soft K-Best

architecture uses a few sub-blocks from the Hard K-Best architecture presented in [1], the

following subsections will provide detailed information for only the blocks used specifically

for Soft K-Best detection. The details about blocks specific to the Hard K-Best detector

have been included in Appendix B.
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4.4.1 Common Sub-Block Description

Multiplication (MU)

The overall Soft K-Best detector architecture involves two types of multiplications. The

multiplication of z̄i×rii and si×rij (see equation (4.1)). The first multiplication is realized

using 13-bit×13-bit multipliers [1]. However, the second multiplication can be implemented

using an alternative architecture, which takes less area and has a much smaller critical

path. This architecture, called MU, is shown in Fig. 4.4 using a few multiplexers (MUX)

and adders (SUM). In this figure, the numbers on the right represent the bit location in sj

(i.e. sj can be represented with 4 bits), “≪ n” represents n shifts to the left and the tiny

bubble “⊸” denotes the negation operation. Note that all of the fixed-point numbers use

the two’s complement representation.

Note that this simpler implementation of the multiplication operation, si×rij, is possible

due to the fact that the values of si are drawn from a finite pre-determined odd-integer set

Ω =
{
(−√

Q + 1), · · · ,−1, +1, · · · , (+
√

Q − 1)
}
, where Q is the constellation size. The

structure of the MU block is such that the adder always produces one of the odd multiples

of rij (i.e., rij, 3rij, 5rij, 7rij), depending on the value of si. The MUXs before the adder

perform the function of selecting correct operands for the adder. The first operand of the

adder can be either of rij or -rij, and the second operand of the adder can be any of 0,

2rij, 4rij or 8rij. The MUX in the last stage, after the adder, utilizes the Most Significant

Bit (MSB) of sj to make the decision on whether or not to negate the output si × rij.

This way of implementation of the multiplication operation is much faster than a nor-

mal multiplier implementation. As will be discussed in Section B.5, the motivation for

designing the MU block is due to the fact that this multiplication lies in the critical path of

the architecture, which is on a feedback path [1]. Since the fine-grained pipelining tech-

nique cannot be used in the feedback path to improve the overall throughput, an efficient

implementation of the multiplier using this scheme is critical to enhance the maximum

operating frequency for the Soft K-Best detector.

MapBinaryToConstellation blocks

As discussed in Section 4.2, the proposed MIMO detector uses real-domain implementation

of the K-Best detection algorithm. This in turn implies that the input and intermediate

data are real signed numbers that are represented in binary format using two’s comple-

ment representation. However, for LLR computation purposes, the intermediate data
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Figure 4.4: Alternative architecture for Multiplication - the MU block. Note that here [x]
refers to the xth bit of Sj.

(specifically the partial vectors at the intermediate levels) need to be utilized as complex

numbers, whose binary representation is attained by mapping them onto a gray coded

64-QAM constellation. This is accomplished in the proposed MIMO detector using the

MapBin2Constellation Re and MapBin2Constellation Im blocks.

Fig. 4.5 shows a 64-QAM constellation, with a gray coded binary representation of

each complex point in the constellation. From this constellation, the mapping from bi-

nary two’s complement representation of real and imaginary symbols to the constella-

tion representation can be derived as shown in Table 4.2. In the proposed Soft K-Best

detector, the MapBin2Constellation Re and MapBin2Constellation Im blocks imple-

ment this mapping using combinational circuitry for real and imaginary elements, respec-

tively. For example, the partial real-valued vector {1001 1101 0101 1111 0011 0101} in

two’s complement representation corresponds to partial vector {-7-3i, 5-1i, 3+5i}. Using

the MapBin2Constellation Re and MapBin2Constellation Im blocks, this vector will be

mapped to {000 111 101 110 111 001} in the constellation representation.

Mapper and Limiter

Once s
[0]
i was calculated based on L̄i(s

(i)) = Li(s
(i))/rii, the first child needs to be calculated

by mapping the value s
[0]
i to the nearest point in Ω (slicing). This is done in two consecutive
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Figure 4.5: A 64-QAM Constellation, with Gray Coded binary representation of each Com-
plex point.

stages. First s
[0]
i is mapped to its nearest odd integer number (s̃

[0]
i ) using the Mapper block

and then if s̃
[0]
i is outside the allowed boundary of Ω, it will be bounded by the Limiter

block to generate s
[1]
i . The process of mapping to the nearest odd integer number is imple-

mented by the Mapper block shown in Fig. 4.6 [1]. The reason behind this implementation

is the fact that the nearest odd number to s
[0]
i is 2

⌊s
[0]
i

2
+0.5+0.5

⌋
−1 = 2

⌊s
[0]
i + 1

2
+0.5

⌋
−1,

where ⌊·⌋ represents the truncation operation.

The process of limiting the value in the predefined range is done through the Limiter

block. In other words, if s̃
[0]
i is outside the boundaries of Ω, the Limiter block guarantees

that the upper/lower bounds (e.g., +7/-7 in 64-QAM) are chosen as the selected points in

Ω. The Limiter block is shown in Fig. 4.7 with examples on the action taken on s̃
[0]
i to

determine s
[1]
i for three different cases.
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Table 4.2: Binary two’s complement to Constellation representation Mapping table

Symbol Binary Two’s Constellation

Complement Representation Representation

Re Symbols -7 1001 000

-5 1011 001

-3 1101 011

-1 1111 010

1 0001 110

3 0011 111

5 0101 101

7 0111 100

Im Symbols -7 1001 100

-5 1011 101

-3 1101 111

-1 1111 110

1 0001 010

3 0011 011

5 0101 001

7 0111 000

4.4.2 Soft PE (SPE)

SPE is a general block used for all levels from level 7 to level 2. In general, at each level,

this block receives the list of K-Best paths (KB) and discarded paths (DP) at that level, in

addition to the chosen discarded paths (ChosenDP) accumulated from all of the previous

level SPE blocks. As its output, this block generates a list of ZF augmented ChosenDPs

and the discarded paths selected from the current tree level. Thus, in general, an SPE block

performs the tasks of selecting relevant discarded paths at the present level and computing

their ZF augmentation. In other words, an SPE block simply implements steps 3.2 to 3.5

of the proposed Soft K-Best algorithm, shown in Table 3.4.

The overall architecture of the SPE block is shown in Fig. 4.8 for Level k (Lk). As

shown, the overall architecture consists of three major sub-blocks: Note Bit Occurrences

(NBO), Tag Discarded Paths (TDP) and FCBlock. Fig. 4.9 shows the timing diagram

for the input, output, as well as the internal signals of the SPE block. Note that this timing

diagram is shown for only one set of data (a single z vector), and the portions of each

signal corresponding to this data set are highlighted. Also, note that each of these signal
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patterns repeat every K = 10 clock cycles in the proposed Soft K-Best detector.

As shown in Fig. 4.9, the 10 K-Best paths are sampled out from a PE I block at the

positive edges (posedge) of cycles 1 to 10. Also, the accumulated ChosenDPs are ready at

the SPE block inputs at posedge cycle 9. The NBO block first uses these K-Best paths and

ChosenDPs to fill a bit occurrence table at the current level. Since, this last K-Best path

is sampled out at posedge cycle 10, the bit occurrence table is finalized and is available

at the NBO block outputs at posedge cycle 11. Furthermore, due to the deeply pipelined

architecture of the Soft K-Best detector, the discarded paths (DP) at the current level

need to be sampled out from a PE I block in the same cycle as the last K-Best path. In

other words, the TDP block samples in all K − 1 = 9 discarded paths at the current level

at posedge cycle 10. The TDP block then uses the bit occurrence table to observe each of

the 9 discarded paths and to tag a DP for further processing only if it fills at least one

of the void entries in the bit occurrence table. The FCBlock then samples in only tagged

discarded paths and accumulated ChosenDPs, from posedge cycle 13 to posedge cycle 22,

and computes their ZF augmentation [16] and updated PED values. Since, the latency of

the FCBlock is 4 clock cycles, the ZF augmented chosen discarded paths are sampled out

from the FCBlock at posedge cycle 17 to 26. The following sections will provide detailed

description of the NBO, TDP and FCBlock blocks.
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Figure 4.8: Generic overall architecture of an SPE block.
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Figure 4.9: Timing Diagram for input, output and intermediate signals of the SPE block.

4.4.3 NBO and TDP Blocks

The NBO and TDP blocks together implement the improvement idea: Relevant Discarded

Paths Selection, presented in Section 3.3.2, that has also been encapsulated in steps 3.2

to 3.4 of the proposed Soft K-Best algorithm. The NBO block samples in K-Best paths

from the current level and accumulated ChosenDPs from the previous levels. These K-

Best and discarded paths are then observed and utilized to fill the bit occurrence table

at the current level. Note again that for Level k, a bit occurrence table is simply a table

of dimensions 2×(NT − k − 1)(log2(Q)/2), that keeps track of occurrences of “0” and “1”

values for (NT −k− 1)(log2(Q)/2) bits ((NT −k− 1)× 1 real-valued vector) in the K-Best

paths and accumulated ChosenDPs.

Fig. 4.10 shows the overall architecture of the Note Bit Occurrences (NBO) block for

Level 6 (NBO L6). As shown, the NBO block consists of two major parts: KB Datapath

58



4 VLSI Implementation of a Soft-Output K-Best MIMO Detector

Map_Im Map_Re Map_Im

S6_Bin S7_Bin S8_Bin

KB_NBO KB_NBO KB_NBO

S8_Cons

S8_Bit1 S8_Bit2 S8_Bit3

KB_NBO KB_NBO KB_NBO

S7_Cons

S7_Bit1 S7_Bit2 S7_Bit3

KB_NBO KB_NBO KB_NBO

S6_Cons

S6_Bit1 S6_Bit2 S6_Bit3

Map_ImMap_ReMap_Im

S6_BinS7_BinS8_Bin

DP_NBODP_NBODP_NBO

S8_Cons

S8_Bit1S8_Bit2S8_Bit3

DP_NBODP_NBODP_NBO

S7_Cons

S7_Bit1S7_Bit2S7_Bit3

DP_NBODP_NBODP_NBO

S6_Cons

S6_Bit1S6_Bit2S6_Bit3

KB_L6 ChosenDP_L7

K
B

_
B

it
O

c
c

_
S

8
_

B
it

3
_

0

K
B

_
B

it
O

c
c

_
S

8
_

B
it

3
_

1

D
P

_
B

it
O

c
c
_

S
8

_
B

it
3

_
0

D
P

_
B

it
O

c
c

_
S

8
_

B
it

3
_

1

BitOcc_S8_Bit3_0 BitOcc_S8_Bit3_1

KB_Datapath DP_Datapath

Figure 4.10: Overall architecture of the Note Bit Occurrences (NBO) block - with criti-
cal path highlighted.

and DP Datapath. These KB Datapath and DP Datapath parts independently fill the bit

occurrence tables for K-Best paths and accumulated ChosenDPs, respectively, in a com-

pletely parallel manner. The logical OR operation at the NBO block output then merges

these two independent bit occurrence tables. In each of the datapaths, the process of filling

the bit occurrence table is carried out in two steps. In the first step, the input symbol

in binary two’s complement representation is converted to its constellation representation.

The second step then uses this constellation representation to update the bit occurrence

table using the blocks KB NBO and DP NBO.

Figures 4.11 and 4.12 show the architecture of the KB NBO and DP NBO sub-blocks, re-

spectively. In both of these blocks, logical XNOR operation with “0” or “1” is used to

determine whether the current bit is “0” or “1”. The KB NBO sub-block uses a special

mechanism to reset the KB bit occurrence table, using the logical OR and AND operations.

This special reset mechanism is required since the KB NBO sub-block needs to be active for

all K = 10 clock cycles and there are no idle cycles are available for register reset. Hence,

KB NBO needs to be reset in the same clock cycle when the first K-Best path is processed.

Contrary to this, the DP NBO sub-block does not need this special reset mechanism and

can be reset by simply resetting the registers. However, the DP NBO does require a tagging
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Figure 4.12: Architecture of the DP NBO sub-block.

mechanism at its inputs. This mechanism is required to recognize and tag the bits that

belong to the selected relevant discarded paths. The overall critical path of the NBO block

is also shown in Fig. 4.10, which consists of MapBin2Constellation Re/Im and DP NBO

sub-blocks.

The TDP block utilizes the bit occurrence table prepared by the NBO block to observe and

tag each of the 9 discarded paths at the current level. In other words, a discarded path

will be selected for further processing and will be tagged “1” only if it fills a void entry

in the present bit occurrence table. The overall architecture of the TDP block is shown in

Fig. 4.13. The “Load BOTable” signal is used to load the bit occurrence table into the

appropriate DP TDP sub-blocks, from the NBO block outputs. Once the bit occurrence table

is loaded, the large MUX at the TDP block input is used to choose the current discarded

path to be processed. The combination of MapBin2Constellation Re/Im and DP TDP

sub-blocks are then used compute the tags for individual bits. The overall tag for the
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Figure 4.14: Architecture of the DP TDP sub-block.

current discarded path, “CurrentDP Tag” is computed by using the logical OR operation,

as shown in Fig. 4.13. Fig. 4.14 shows the architecture of the DP TDP sub-block for a

single bit. It uses similar circuitry to determine whether the current bit is “0” or “1” and

to update the bit occurrence table. Additional circuitry has been added to load the input

bit occurrence table and to compute the tag for the current bit. Note that the complete

process of selecting and tagging a discarded path is performed in a single clock cycle, and

hence the critical path for the overall TDP block contains all of the sub-blocks from the DP

inputs to the “CurrentDP Tag” output signal.

61



4 VLSI Implementation of a Soft-Output K-Best MIMO Detector

MU

8l
r 8s

MU

7l
r 7s

MU

5l
r

5s

MU

6l
r 6s

3l
r 3s

MU

4l
r

4s

SUM SUM SUM

l
z

SUM

ll
r

lll
rL

MU

ll
r

MU

SUM

SUM

Limiter

Mapper

Clk Clk Clk

SUM

SUM

Clk

ClkClk

Clk

Clk Clk

l
L

1l
T

Clk

l
T

Clk

S
ta

g
e

 1
S

ta
g

e
 2

S
ta

g
e

 3
S

ta
g

e
 4

Figure 4.15: The architecture for the FCBlock inside the SPE block with the critical path
highlighted.

4.4.4 FCBlock

The main tasks of the FCBlock are to calculate the L̄i value, to find the first child of the

current parent based on the calculated L̄i, and to update its PED value. The proposed

architecture for the FCBlock is shown in Fig. 4.15. In order to increase the total throughput

in the architecture, pipelining has been used by the introduction of the registers on all the

forward paths. It increases the throughput at the cost of additional latency in the circuit.

The complete FCBlock block incurs a latency of 4 clock cycles.

The proposed architecture for the FCBlock consists of four pipeline levels. In the first

pipeline level (shown in Fig. 4.15), there are six MU blocks. However, depending on the

SPE block in which it is used, only part of these MU blocks are used. For instance, for the
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SPE blocks of stage SPE L6 and SPE L5, only the first two MUs are implemented. For SPE

blocks of stage SPE L4 and SPE L3, the first four MUs and finally for SPE blocks of stage

SPE L2 and SPE L1, all of the six MUs are implemented [1].

The first two levels of the architecture calculates the
∑2NT

j=i+1 r̄ijsj in equation (2.15) and

the value of L̄i. Using the L̄i, in Level 3, the first child is calculated using the Mapper

and Limiter sub-blocks in the FCBlock. Finally the blocks in Level 4 calculate the PED

value of the announced first child. Thus, the FCBlock computes ZF augmentation for the

accumulated ChosenDPs and the selected discarded paths at the current level. The output

ZF augmented discarded paths and their tags are transferred to the NBO block of the next

level.

4.4.5 DP Sorter

As discussed in Section 4.4.2, the SPE blocks retain selected discarded paths from each tree

level, as well as perform ZF augmentation and PED computation for them. The output

of the SPE L2 block consists of only selected discarded paths of dimensions 2NT × 1, that

have been fully ZF augmented to the last tree level. However, the Fill MinPEDTable II

block requires the input discarded paths to be sorted and to be supplied in pairs (input

two discarded paths per clock cycle). Hence, the purpose of the DP Sorter block is to sort

all of the accumulated selected discarded paths in the order of ascending PEDs.

The architecture of the DP Sorter block is shown in Fig. 4.16, where Din is the input

port and D0-D9 are the output ports. The FCBlock at the output of SPE L2 computes

the first child and updated PED values for the selected discarded paths. These discarded

paths and their corresponding PED values are transferred to DP Sorter block sequentially,

which then sorts these paths and calculated PED values as they arrive. In the proposed

architecture for DP Sorter, the sorted PEDs are stored in the register banks, depicted
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by N -bit registers in Fig. 4.16 and denoted by RB0 − RB8. At every clock cycle, two

register banks are updated at the same time. This is because of the fact that the registers

on the upper part of the sorter are located in every other stage. This is required to

guarantee the correct functionality of the Fill MinPEDTable II block. The functionality

of the DP Sorter is such that the larger values are shifted to the right while the smaller

values are shifted to the left. Once the last element (10-th element in 64-QAM) enters the

sorter, it updates the first two register banks, thus the first two are guaranteed to have

the two smallest PED values. Therefore, at the next clock cycle, they can be transferred

to the following Fill MinPEDTable II block. After the second clock cycle, the next two

register banks are updated and they are also ready to be transmitted. Therefore, the sorted

discarded paths and their PED values are transferred to the next block on a pair-by-pair

basis.

Note also that once the last element comes in and the first two register banks are sent to

the next stage, the internal min/max functions should be initialized to the highest positive

number to avoid the comparison between the first element of the next iteration and the

last element of the current iteration. This is implemented through the introduction of a

MUX before the min/max functions and is controlled by a control signal (signal C in Fig.

4.16). This control signal is incremented every clock cycle and is initialized to zero at the

end of each iteration. For instance, when C=1, the input to the first two min/max functions

are initialized to the largest 16-bit number (i.e., 16’b1), thus once the first discarded path

of the next iteration comes in, it would not be compared with the previous stored values

in the register banks from the previous iteration.

4.4.6 Fill MinPEDTable I

The Fill MinPEDTable I is the first block, in the set of 3 serial blocks that perform

LLR computation. This block performs the task of initializing and filling the minimum

PED (MinPED) table using the last level extension of K-Best paths. In other words, the

Fill MinPEDTable I block samples in ZF augmented 10 2NT × 1 K-Best paths, processes

them further and utilizes them to generate the MinPED table and the corresponding

MinPED tag values. Recall that a MinPED table is simply a table of dimensions 2 ×
NT log2(Q), that stores minimum path PED values for NT log2(Q) transmitted bits. The

detailed definition and description of the MinPED table was provided in Section 3.3.2. The

Fill MinPEDTable I block populates the minimum PED table using the improvement
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Figure 4.17: Overall Architecture of the Fill MinPEDTable I block.

idea: Last Stage On-Demand Expansion, presented in Section 3.3.3. In other words,

this block implements steps 4.2 to 4.4, also shown below, of the proposed Soft K-Best

algorithm.

Step 4.2: Extend the K best paths at tree level 2NT - 1 to exactly K paths at level 2NT

using ZF augmentation.

Step 4.3: Use these K ZF augmented paths at tree level 2NT to fill the MinPED table for

the first (2NT -1)(log2(Q)/2) bits, because for these bits, the K ZF augmented

paths at the level 2NT yield the smallest PED values.

Step 4.4: For the last (log2(Q)/2) bits:

4.4.1: First use the lowest PED ZF augmented path, from the K ZF augmented

paths at level 2NT , to fill exactly half of the MinPED table for the last

(log2(Q)/2) bits.

4.4.2: Then, perform on-demand extension [1] and use at most 2K-1 paths, in the

order of ascending PEDs, to fill the remaining half of the MinPED table.

Fig. 4.17 shows the overall architecture of the Fill MinPEDTable I block. As shown,

this block consists of 3 major sub-blocks. The PE I sub-block used in this block is identical

to the one used in the hard K-Best datapath, as shown in Fig. 4.1. It receives the sorted

list of ZF augmented 10 K-Best paths at level 2NT − 1 and uses an On-Demand path

extension scheme [27] to generate a list of K-Best paths at Level 2NT . Since the On-

Demand expansion scheme uses Schnorr-Euchner (SE) enumeration, the 10 K-Best paths

65



4 VLSI Implementation of a Soft-Output K-Best MIMO Detector

00 0111 10 11 0110 00

MinPED_RegBank_
Si_Bitj_0

MinPED_RegBank_
Si_Bitj_1

Map_Re/Im

!=
10'b0111..1

!=
10'b0111..1

FC_Path1_PED

MinPED_I_Si_Bitj_0

Current_MinPED_Si_Bitj_0

FC_Path1_Si

Current_MinPED_Si_Bitj_1

FC_Path2_Si FC_Path2_PED

FC_Path1_Si_Cons

Map_Re/Im

FC_Path2_Si_Cons

FC_Path1_Si_Cons[ j ]

FC_Path2_Si_Cons[ j ]

MinPED_I_Si_Bitj_1

MinPED_Tag_I_
Si_Bitj_0

MinPED_Tag_I_
Si_Bitj_1

Figure 4.18: Architecture of a single functional block (for jth bit of ith transmitted symbol)
for the Fill MinPEDTable I Part1 sub-block.

are generated one-by-one, in the order of ascending PEDs. These K-Best paths are then

utilized in the Fill MinPEDTable I Part2 sub-block to fill the MinPED table. More

details about the architecture and functionality of the PE I sub-block are included in

Section B.4.

As shown in Fig. 4.17, the multiplexors at the top select the current ZF augmented

path and transfer them to the “FC Path1” and “FC Path2” ports each clock cycle. The

Fill MinPEDTable I Part1 and Fill MinPEDTable I Part2 sub-blocks then utilize these

ZF augmented K-Best paths (“FC Path1” and “FC Path2”) and the K-Best paths from the

PE I sub-block (“KB Path”) to populate the MinPED table for NT log2(Q) bits and com-

pute their tags. The Fill MinPEDTable I Part1 sub-block samples in “FC Path1” and

“FC Path2”, and fills the MinPED table for real-valued symbols “S8” to “S2”, correspond-

ing to the the first (2NT -1)(log2(Q)/2) transmitted bits, using steps 4.2 and 4.3 shown

above. Fig. 4.18 shows the architecture of the Fill MinPEDTable I Part1 sub-block, for

jth bit of ith real-valued transmitted symbol. As shown, the MapBin2Constellation Re/Im
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Figure 4.19: Architecture of a single functional block (for jth bit of transmitted symbol
S1) for the Fill MinPEDTable I Part2 block.

sub-blocks are first used to attain the constellation representation of the “Si”. This con-

stellation representation of “Si” is then used as select signals for the MUXs that select the

minimum PED among “FC Path1 PED” and “FC Path2 PED”, which is then compared

with the present stored MinPED value to find the “Current MinPED Si Bitj (0/1)” val-

ues. As the final step, this current MinPED value is sampled by the MinPED register

bank and is utilized to find the MinPED tag value. Note that, at the beginning of each

set of paths, the MinPED register bank is initialized with 10’b0111111111, which is the

largest positive value that can be represented by using 10 digits. Hence, a MinPED tag

of “1” (MinPED != 10’b0111111111) would imply that MinPED value has been found for

the current bit.

The Fill MinPEDTable I Part2 sub-block samples in “FC Path1”, “FC Path2” and

“KB Path”, and fills the MinPED table for real-valued symbol “S1”, corresponding to

the the last log2(Q)/2 transmitted bits, using steps 4.4.1 and 4.4.2 shown above. Fig.
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Figure 4.20: Overall Architecture of the Fill MinPEDTable II block.

4.19 shows the architecture of the Fill MinPEDTable I Part2 sub-block, for jth bit of

“S1”. As shown, the MapBin2Constellation Re sub-blocks are first used to attain the

constellation representation of the “S1” symbol for the ZF augmented and K-Best paths,

which are then used as select signals for MUXs that generate “Current FC MinPED”

and “Current KB MinPED” values. The two serial comparators are then used to find

“Current MinPED S1 Bitj (0/1)” values. Note that the Fill MinPEDTable I Part2 sub-

block uses a special mechanism to reset the MinPED register bank, shown in Fig. 4.19.

This special reset mechanism is required since this block needs to be active for all K = 10

clock cycles (processing 1 K-Best path per cycle) and there are no idle cycles are available

for register reset.

4.4.7 Fill MinPEDTable II

The Fill MinPEDTable II block performs the task of updating the MinPED table using

the PED values of the chosen discarded paths that have been ZF augmented to the last

tree level. Fig. 4.20 shows the input and output signals for the Fill MinPEDTable II

block, along with information about which blocks they come from or go to. As shown,

the Fill MinPEDTable II block samples in the present MinPED table and their tags from

the Fill MinPEDTable I block and outputs an updated MinPED table and tags to the

ComputeLLR OutputController block. It also receives two discarded paths per clock cycle,

in the order of ascending PED values, from the DP Sorter block.

Fig. 4.21 shows the architecture of a single functional block, used to store and update
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Figure 4.21: Architecture of a single functional block (for jth bit of ith transmitted symbol)
for the Fill MinPEDTable II block - with the critical path highlighted.

MinPED value for jth bit of ith transmitted symbol. The overall Fill MinPEDTable II

block consists a total of 24 instances of this single functional block. As shown in Fig. 4.21,

the MapBin2Constellation Re/Im sub-blocks are first used to attain constellation repre-

sentation of the “Si” symbols for both “DP Path1” and “DP Path2”. These constellation

representations are then used as select signals for the MUX that selects the minimum PED

among “DP Path1 PED” and “DP Path2 PED”, to generate the “Current DP MinPED”

value. The two branches on left and right sides of this MUX perform the task of storing

and updating the MinPED for “0” and “1” values of the current bit, respectively. Note

that since the PED word-length for K-Best and discarded paths are 10 bits and 13 bits,

respectively, the input 10-bit MinPED values from the Fill MinPEDTable I block needs

to be converted to 13-bit fixed-point format. Note that Fig. 4.21 also shows the critical

path of the Fill MinPEDTable II block.

The Fill MinPEDTable II block implements the improvement idea: Relaxed LLR Com-

putation Scheme, presented in Section 3.3.4. This improvement idea approximates the

actual LLR computation by making the assumption that the MinPED values attained by

extending the K-Best paths are always smaller compared to the discarded path PEDs.

69



4 VLSI Implementation of a Soft-Output K-Best MIMO Detector

Hence, for the proposed Fill MinPEDTable II block, there is no need to compare the

“Current DP MinPED” value with the current MinPED value stored in the MinPED reg-

ister bank. This results in significant hardware savings, since there are no comparators

required. At the final outputs of the Fill MinPEDTable II block, the updated MinPED

tags are computed by comparing the current stored MinPED with 13’b0111111111111.

These computed MinPED tags are then utilized by the ComputeLLR OutputController

block, to ease the process of LLR computation significantly.

4.4.8 ComputeLLR OutputController

The ComputeLLR OutputController is the last block in the pipelined architecture of the

proposed Soft K-Best MIMO detector. This block receives the table of MinPED values,

that has been populated using the last level extension of K-Best paths and the FC aug-

mented selected discarded paths. It uses these MinPED values and their corresponding

tags to compute the Log-likelihood Ratio (LLR) values for 24 (NT ∗ log2(Q) = 4 ∗ log2(64)

= 24) transmitted bits. The ComputeLLR OutputController block then outputs these

LLR values using the scheduling described in Section 4.3.

Fig. 4.22 shows the overall architecture of the ComputeLLR OutputController block,

with critical path highlighted. As shown, the overall architecture can be divided into two

major parts. Part1 consists of circuitry to compute LLR values using the MinPED table

and Part2 operates as an Output Controller, to schedule and output the LLR values appro-

priately. As shown in Fig. 4.22, the ComputeLLR OutputController block computes LLR

values for 8 bits every 2 clock cycles. The interface between the Fill MinPEDTable II and

the ComputeLLR OutputController blocks contains multiplexors that generate appropri-

ate values for the “MinPED II Bitj (0/1)” signals, for j = 1 to 8, by simply selecting them

from the MinPED values for all 24 bits, using the table 4.3.

The first part of the ComputeLLR OutputController block selects MinPED values for

one of the bits each cycle, using the control signal “Sel MinPED LivevsStored”, which is set

to “0” in cycle 1 and to “1” in cycle 2, in each set of 2 cycles. Note that the MinPED trans-

fer scheduling between the Fill MinPEDTable II and the ComputeLLR OutputController

blocks creates the need for register banks to sample and store the MinPED values for the

second bit. The chosen bit MinPED values for “0” and “1” are then subtracted to compute

LLR values using equation (3.2). The ComputeLLR OutputController block then utilizes

the MinPED tag values to check validity of the computed LLRs and decide on the correct

70



4 VLSI Implementation of a Soft-Output K-Best MIMO Detector

MinPED_II_

Bit1_0

Sel_MinPED_LivevsStored

10

Clk

MinPED_II_

Bit5_0
MinPED_II_

Bit1_1

10

Clk

MinPED_II_

Bit5_1

MinPED_Tag_II_CurrentBit_0 01 1100
1
0

MinPED_Tag_II_CurrentBit_1

1
3

'b
1

0
--

-0
1

1
3

'b
0

1
--

-1
1

1
3

'b
0

0
--

-0
0

Clk

CurrentBit_LLR_Set1

Enable_LLROut

Clk

CurrentBit_LLR_1n

MinPED_II_

Bit2_(0/1)

MinPED_II_

Bit6_(0/1)

Clk

CurrentBit_LLR_Set2

Clk

CurrentBit_LLR_2n

MinPED_II_

Bit3_(0/1)

MinPED_II_

Bit7_(0/1)

Clk

CurrentBit_LLR_Set3

Clk

CurrentBit_LLR_1p

MinPED_II_

Bit4_(0/1)

MinPED_II_

Bit8_(0/1)

Clk

CurrentBit_LLR_Set4

Clk

CurrentBit_LLR_2p

10CLK

LLROut_1

10CLK

LLROut_2

Part 1
LLR

Computation

Part 2
Output

Controller

Figure 4.22: Overall Architecture of the ComputeLLR OutputController block - with the
critical path highlighted.

output LLR values.

The second part of the block acts as an Output Controller to output computed LLR

values for 24 transmitted bits according the scheduling shown in table 4.1. As shown in

Fig. 4.22, the two sets of register banks in series are used to reduce the critical path length.

The clock driven MUXs then output two LLR values per clock cycle (one at each of the

positive and negative edges of clock) at the ports “LLROut 1” and “LLROut 2”. Thus,

each port in the second part of the ComputeLLR OutputController block outputs 12 LLR

values within 6 clock cycles, in each set of 10 cycles.

4.5 Latency and Bit-True Simulations

The fine-grained pipelining used by the proposed Soft K-Best detector improves the through-

put at the cost of the larger latency. Starting from the first block, the latency of Level

I is 2 cycles, Level II has a 3-cycle latency and the Sorter block’s latency is 4 cy-

cles. Furthermore, the PE I block’s latency is K = 10 cycles, and finally PE II’s la-

tency is 10 cycles plus an additional 6 cycles for the pipelined FC-Block. Since the
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Table 4.3: MinPED Transfer Schedule at the interface between Fill MinPEDTable II and
ComputeLLR OutputController blocks.

MinPED II Bitj (0/1)/ Cycles 1 and 2: Cycles 3 and 4: Cycles 5 and 6:

Clock Cycle Set:

MinPED II Bit1 (0/1) MinPED II MinPED II MinPED II

S1 Bit5 (0/1) S2 Bit3 (0/1) S3 Bit1 (0/1)

MinPED II Bit2 (0/1) MinPED II MinPED II MinPED II

S1 Bit4 (0/1) S2 Bit2 (0/1) S3 Bit0 (0/1)

MinPED II Bit3 (0/1) MinPED II MinPED II MinPED II

S1 Bit3 (0/1) S2 Bit1 (0/1) S4 Bit5 (0/1)

MinPED II Bit4 (0/1) MinPED II MinPED II MinPED II

S1 Bit2 (0/1) S2 Bit0 (0/1) S4 Bit4 (0/1)

MinPED II Bit5 (0/1) MinPED II MinPED II MinPED II

S1 Bit1 (0/1) S3 Bit5 (0/1) S4 Bit3 (0/1)

MinPED II Bit6 (0/1) MinPED II MinPED II MinPED II

S1 Bit0 (0/1) S3 Bit4 (0/1) S4 Bit2 (0/1)

MinPED II Bit7 (0/1) MinPED II MinPED II MinPED II

S2 Bit5 (0/1) S3 Bit3 (0/1) S4 Bit1 (0/1)

MinPED II Bit8 (0/1) MinPED II MinPED II MinPED II

S2 Bit4 (0/1) S3 Bit2 (0/1) S4 Bit0 (0/1)

Fill MinPEDTable I block contains an internal PE I block, its total latency is 11 cy-

cles, while the Fill MinPEDTable II and ComputeLLR OutputController blocks have a

latency of 7 clock cycles each. Therefore, according to the overall architecture shown in

Fig. 4.1, the total latency of the architecture is 2+3+4+6×10+6×16+11+7+7 = 190

cycles. However, note that the architecture outputs LLR values for 24 transmitted bits

(corresponding to a single 4×1 complex transmitted vector) every 10 clock cycles.

Table 4.4 shows the number of bits associated with different variables in the algorithm

for the bit-true simulation2 as well as the hardware implementation for the case of a

4×4, 64-QAM constellation in the form of [n : m], where n and m denote the total

number of bits (word-length) and the number of bits in the fractional part (fraction-

length), respectively. The fixed-point simulations are performed using the 2’s complement

number representation. Note that the word lengths in Table 4.4 have been derived based

2Bit-true simulation refers to the simulation results with finite word-length effect, which is also equiva-
lently called the fixed-point simulation.
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Table 4.4: Fixed-point Word-Length (bits) of Parameters.

Parameter rii rij zi si KB PED DP PED LLR

Word Length† [13:12] [16:11] [13:4] [3:0] [10:7] [13:7] [13:7]

† [n : m] an n-bit number with m bits for the fractional part.

on extensive bit-true simulation results to minimize the BER loss relative to the floating-

point result (i.e., less than 0.5 dB at BER = 10−3) for the Soft K-Best MIMO detector.

This means that based on the extensive floating-point simulations, the dynamic range of

all the variables were determined, based on which the required number of bits for integer

and fractional parts were calculated.

4.6 BER Simulations and Design Comparison

4.6.1 BER Simulation Results

The K-Best MIMO detection algorithm is not an ML-optimal detector, and hence it might

miss the hard-ML point, resulting in performance loss. However, for a proper choice of K

value, its bit-error-rate (BER) performance approaches the optimal case over a reasonable

range of SNR values. The floating-point and fixed-point MATLAB models for the proposed

Soft K-Best MIMO detector were combined with Convolutional Turbo Coding (CTC)

Encoder and Decoder with rate = 1/2, 600 bytes/block and 8 decoder iterations. These

combined models were customized for use in single-carrier 4×4 MIMO system with 64-

QAM and 16-QAM modulation schemes. In both of these simulations, the K-Best approach

has been tested for 2000 blocks, where each block consists of 4800 bits (600 bytes/block

* 8 bits/byte). Hence, the K-Best detectors were simulated for 9.6Mbits in total. Test

vectors are created using: (i) pseudo-random data, (ii) complex-valued random Gaussian

channel matrix H̃ with statistically independent elements updated per four channel use,

and (iii) additive white Gaussian (circularly symmetric) complex random noise.

Figures 4.23 and 4.24 show the BER curves obtained by simulating these combined

models for 16-QAM and 64-QAM case scenarios, respectively. From these BER curves, it

can be noticed that the fixed-point results for all cases are within a reasonable distance

from the floating-point results (i.e., less than 0.5 dB at BER = 10−3). Note that the

number of bits for various parameters in the fixed-point simulation is based on Table 4.4.

Also, it can be noticed that the proposed Soft K-Best scheme results in considerable BER

performance improvement compared to the conventional Soft K-Best detection and Hard
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Figure 4.23: BER Performance of Hard K-Best and the proposed Soft K-Best Detection
scheme (Floating-point and Fixed-point) - for 4x4 MIMO system with 16-
QAM, K=10 - using Convolutional Turbo Coding with rate = 1/2, 600
bytes/block and 8 decoder iterations:

K-Best detection schemes. For the 64-QAM case (Fig 4.24), fixed-point model of the

proposed Soft K-Best detector improves the BER performance by approximately 1.8 dB

and 2.9 dB at BER = 10−3 compared to fixed-point models of conventional Soft K-Best

and Hard K-Best, respectively.

4.6.2 Design Characteristic Comparison

For the purpose of design comparison, the proposed VLSI architecture for Soft K-Best

detector was modeled in Verilog HDL, synthesized using Synopsys Design Compiler and

placed and routed using Cadence SoC Encounter/Silicon Ensemble. The RTL and gate

level netlists were verified with the golden model generated from the fixed-point MATLAB

model [1]. The final Soft K-Best ASIC was fabricated in 0.13 µm IBM 1P8M CMOS

technology using ARM standard library cells. Timing analysis on the RC extracted netlist

shows that the proposed Soft K-Best MIMO detector attains peak data throughput of 655

Mbps, while running at the highest clock frequency of 270 MHz. The proposed MIMO

detector design consumes 1.45 mm2 (174 KG)3 silicon area and 195 mW power.

3The average gate density of the ARM 0.13 µm standard cell library is 120 KG/mm2.
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Figure 4.24: BER Performance of Hard K-Best and the proposed Soft K-Best Detection
scheme (Floating-point and Fixed-point) - for 4x4 MIMO system with 64-
QAM, K=10 - using Convolutional Turbo Coding with rate = 1/2, 600
bytes/block and 8 decoder iterations:

The proposed Soft K-Best MIMO detector was also synthesized and characterized in

TSMC 65nm CMOS technology with ARM standard library cells. Synthesis results in

the 65nm CMOS technology with Low Vt (LVT) transistors and tt1p3V25C PVT (typical

process, 1.3V VDD and 25oC temperature) demonstrate that the proposed Soft K-Best

detector attains the peak data throughput of 2Gbps, while operating at 833MHz clock

frequency and consuming 0.57 mm2 silicon area and 280 mW of power. In order to reduce

power consumption and minimize decoding energy per bit, the proposed MIMO detector

was also synthesized with Standard Vt (SVT) transistors and ss1p1V105C PVT, as well

as with High Vt (HVT) transistors and tt1p1V25C PVT. The peak throughput, area and

power consumption results, as well as decoding energy per bit, have been summarized in

Table 4.5.

Table 4.5 provides an overview and comparison of all the reported ASIC implementations

in the literature for 4×4 16-QAM and 64-QAM MIMO detectors, respectively, including

this work. The applied algorithm and the value of the K parameter in the case of the

K-Best algorithm, the fabricated technology, as well as some detailed specifications of each

ASIC are listed. If information on other designs is not provided by the authors, this is

indicated by the entry N/A. From this table, the following points can be inferred:
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Table 4.5: Comparison of the Current ASIC Implementations of 4×4 MIMO Detectors.

Reference [11] [26] [30] [29] [1] This work This work This work This work

0.13µm 65nm LVT 65nm SVT 65nm HVT

tt1p3V25C ss1p1V105C tt1p1V25C

Modulation 16-QAM 64-QAM 64-QAM 64-QAM 64-QAM 64-QAM 64-QAM 64-QAM 64-QAM

Method K-Best K-Best K-Best SD/SIC K-Best K-Best K-Best K-Best K-Best

K-value 5 64 64 5 10 10 10 10 10

Process 0.13 µm 0.13 µm 65 nm 90 nm 0.13 µm 0.13 µm 65 nm 65 nm 65 nm

Core Area 97 KG 5270 KG 174 KG 294 KG 114 KG 174 KG 298 KG 302 KG 293 KG

Max Freq. 200 MHz 270 MHz 200 MHz 166 MHz 270 MHz 270 MHz 833 MHz 335 MHz 266 MHz

Throughput 107 Mbps 100 Mbps 115 Mbps 95 Mbps 655 Mbps 655 Mbps 2000 Mbps 800 Mbps 640 Mbps

Latency 1.2 µs N/A N/A 0.25 µs 0.6 µs 0.7 µs 0.230 µs 0.566 µs 0.712 µs

Power N/A 847 mW 11 mW N/A 131 mW 195 mW 280 mW 84 mW 65 mW

Energy/bit N/A 8470pJ/b 96pJ/b N/A 200pJ/b 298pJ/b 140pJ/b 105pJ/b 101.5pJ/b

Soft/Hard Soft Soft Soft Hard Hard Soft Soft Soft Soft

SNR Dep. No Yes Yes Yes No No No No No

Domain Real Complex Complex Complex Real Real Real Real Real
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1. Comparing this thesis to [26], which are both fabricated in 0.13 µm CMOS technol-

ogy, reveals a significant reduction in the area achieved and significant increase in

the peak data throughput using our proposed Soft K-Best scheme. Also, our pro-

posed detector attains a much lower power consumption and decoding energy per

bit requirements. These are because of the fact that only a tiny fraction of all the

children are expanded in our architecture. Furthermore, the proposed Soft K-best

scheme uses a Last Stage On-Demand Expansion strategy, that avoids exhaustive

expansion, and hence eliminates a large amount of computations required for LLR

calculation at the last tree level. Also, K = 64 in [26] is in the complex domain as

opposed to K = 10 in our case in the real domain with a finer granularity.

2. The Soft K-Best design presented in [30] achieves smaller power consumption and de-

coding energy requirements compared to the proposed Soft K-Best design. However,

the design in [30], fabricated in the state-of-the-art 65nm technology, attains a decod-

ing throughput of only 115Mbps. Furthermore, this K-Best detection algorithm [30]

uses major approximations, such as approximate sorting with coarse granularity,

bidirectional partial tree search and ECC feedback-aided detection bypassing, that

results in significant performance degradation compared to exact K-Best BER re-

sults. Hence, to summarize, compared to [30], the proposed Soft K-Best detector

attains a much higher decoding throughput and larger gain in BER performance,

while requiring marginally larger energy per bit.

3. As mentioned earlier, the proposed Soft K-Best detection scheme builds up on the

Hard K-Best detection scheme presented in [1]. Comparing our Soft K-Best design

with the Hard K-Best design presented in [1], it can be noticed that the Soft K-

Best design attains the same decoding throughput of 655Mbps, in spite of the much

larger number of extra calculations required to compute LLR values. Furthermore,

the Soft-output MIMO detection in this thesis with ECC provides a much superior

bit error rate (BER) performance compared to the uncoded hard-output MIMO

detection presented in [1]. The proposed Soft-output MIMO detector achieves BER

performance improvement of 2.9 dB at BER = 10−3, and still offers a throughput of

655Mbps.

4. The emerging 4G wireless standards, IEEE 802.16m (WiMAX) and LTE-Advanced,

pose aggressive decoding throughput requirements for MIMO detectors. Note that
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these standards require peak uncoded data rates of up to 1Gbps, which translates

to Downlink coded data rates of up to 2Gbps. As can be noticed from Table 4.5,

none of the previously published MIMO detectors fulfill these demanding throughput

requirements. However, synthesis results for the proposed Soft K-Best detector in

65nm CMOS technology with LVT transistors and tt1p3V25C PVT show that it

attains a peak data throughput of 2Gbps, while requiring 0.57 mm2 silicon area and

280 mW of power. Thus, to the best of our knowledge, the proposed Soft K-Best

detector in this thesis is the only design to-date that fulfills the aggressive data rate

requirements imposed by the emerging IEEE 802.16m and LTE-Advanced wireless

standards.

5. The mobile applications, envisioned in the IEEE 802.16m and LTE-Advanced stan-

dards, require MIMO detectors with low power consumption and minimum possible

decoding energy per bit. The synthesis of the proposed MIMO detector in TSMC

65nm CMOS technology with SVT transistors and ss1p1V105C PVT shows power

consumption requirement only 84 mW, while still attaining a throughput of 800Mbps.

Furthermore, the proposed design with HVT transistors and tt1p1V25C PVT dis-

sipates only 65mW power, with throughput of 640 Mbps, hence achieving a low

decoding energy per bit of 101.5 pJ/bit.

Fig. 4.25 compares the Soft K-Best detector presented in this thesis to previously

published works. It compares the total achieved throughput as a function of the number of

kilo-gates (KG) used in each design. Designs for 16-QAM (N) and 64-QAM (¥) have been

distinguished with different icons. The highest achieved throughput is reported for SNR-

dependent schemes. It can be seen that our implementation has the highest throughput

ever reported for the 4×4, 64-QAM designs. As was expected, in general, the designs in

16-QAM take lower area as the value of K, the number of possible children per parents,

and the sorting cores are almost 4× smaller compared to that of 64-QAM.

4.7 Summary

This chapter presented an area and power efficient novel high-throughput VLSI imple-

mentation of a 4×4 64-QAM MIMO detector, that is suitable for high-order constellation
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Figure 4.25: Throughput vs. Gate Count Comparison with Previously Published Works.

schemes. The proposed MIMO detector is designed based on a low-complexity high-

performance Soft K-Best detection scheme presented in section 3.3.5. This scheme utilizes

information contained in the discarded paths to improve BER performance, and then re-

duces computational complexity using three innovative improvement ideas. The proposed

Soft K-Best detector uses a deeply pipelined architecture to maximize throughput and

various strategies to minimize hardware and power requirements.

The proposed design attains a 5.8× improvement in throughput in 0.13 µm technol-

ogy and a 14.7× improvement in 65 nm technology, compared to the highest throughput

published previously for Soft-output MIMO detectors. Synthesis results in 65nm CMOS

technology shows that the proposed Soft-output MIMO detector attains a peak coded
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data throughput of 2Gbps, which makes it the only design to-date that fulfills the ag-

gressive data rate requirements (1Gbps uncoded) imposed by the emerging IEEE 802.16m

and LTE-Advanced 4G wireless standards. Furthermore, this detector is also suitable for

low-power mobile applications that require high data rates, since it achieves a low power

consumption of 65mW at 1.1V supply and low decoding energy per bit requirement of

101.5 pJ/bit, while still providing a data throughput of 640 Mbps.
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Implementation

5.1 Introduction

Several types of channel pre-processing operations run in parallel with MIMO detection,

one of which is the QR Decomposition (QRD) of the estimated channel characteristic

matrix. QRD is required by many types of MIMO detection schemes, such as Successive

Interference Cancellation (SIC), V-BLAST, K-Best, Sphere Decoding and many other

schemes. It is used in MIMO receivers to transform the NR ×NT complex channel matrix

H into a NR × NT unitary and orthonormal matrix Q (such that QHQ = I, where

QH = (QT )∗) and a NT × NT upper triangular matrix R. As discussed in Section 2.1,

these complex matrices Q and R, along with the received symbol vector, y, are then

used by the MIMO detector to estimate the transmitted symbol vector, s. The major

reason why QR Decomposition is preferred for MIMO receivers, compared other matrix

triangularization schemes, is because of the fact that the matrix Q generated by QR

Decomposition is a unitary matrix, which helps to avoid the noise enhancement problem

and keeps noise spatially white.

Many new 4G wireless standards require MIMO systems with high data rates, high

mobility and large antenna configurations. For example, the IEEE 802.16m and LTE-

Advanced standards include applications with mobile speeds up to 350 km/h, maximum

antenna configuration of 8×8 and Downlink peak data rates of up to 1Gbps. Furthermore,

the high-mobility applications involve dynamic and fast-varying channel environments,

which require channel estimation and QR Decomposition to be performed very frequently,

for every few channel uses. Thus, it is desired to minimize the QRD Processing Latency,

which is formally defined as the number of cycles after which a new set of QRD outputs
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is ready. Also, for MIMO receivers to be used in battery-operated mobile devices, it is

desired to minimize QRD power dissipation and silicon area as much as possible. Hence,

to summarize, the applications in the emerging 4G wireless standards require QRD im-

plementations for decomposing large complex channel matrices, while minimizing QRD

processing latency, silicon area and power consumption requirements.

The outline of this chapter is as follows. The chapter first lists the existing QR Decom-

position schemes and describes the implementation challenges they face. It then describes

various types of CORDIC algorithms that provide a low complexity method to imple-

ment vector rotations that are executed during QR Decomposition. The proposed QRD

scheme is then described and its computational complexity is analyzed. The chapter then

describes the overall VLSI architecture for the proposed QRD core and provides details

about architecture and functionality for each of the individual sub-blocks. The last part

of this chapter provides BER results and test results for the fabricated QRD chip. It also

presents the design characteristics of the fabricated QRD chip and compares it with other

state-of-the-art QRD designs.

5.2 Existing QR Decomposition Schemes and

Implementation Challenges

The 3 basic methods for computing matrix QR Decomposition include: the Modified

Gram-Schmidt Orthonormalization (MGS) algorithm, Householder transformations and

Givens rotations. The MGS algorithm computes Q and R matrices, column by column,

by using vector projection, norm and other computations [33]. However, for fixed-precision

arithmetic, it offers lesser accuracy and numerical stability due to round-off errors and loss

of orthogonality introduced during the vector projections onto planes [33]. Also, a straight-

forward implementation of this algorithm requires multiplication, division and square-root

operations, which lead to high implementation complexity and high computation latency.

The authors of [34] propose an idea of using log-domain computations to implement mul-

tiplication, division and square-root operations using low-complexity adders, subtractors

and shifters. However, this scheme requires frequent conversions between log and linear
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domains using LOG (log2(x)) and EXP (2x) Look-Up Tables (LUT). Hence, a VLSI im-

plementation for this scheme requires a large storage space to hold these Look-Up Tables

and results in large gate count. In a 0.18 µm CMOS technology, this design requires a core

area of 72KG and attains a QRD processing latency of 67 cycles at a clock frequency of

277 MHz. To reduce the gate count, the authors of [35] propose a modified MGS scheme

that reduces circuit complexity and power consumption by using an approximation in the

MGS algorithm step that requires division by a real-valued norm. Since multiplication is a

simpler operation to implement than division, [35] substitutes the division and square-root

computations with multiplication and inverse square-root (1/
√

x) calculations. The com-

putation of the inverse square-root is further approximated by using the following function,

that is attained by manual curve fitting within the desired range of x:

1√
x
≈ 0.965820 − (

1

4
)x − (

1

32
)x

However, since this QRD scheme uses an approximation to an actual function, for fixed-

precision arithmetic, it might lead to a degradation in the bit error rate (BER) performance

of the MIMO detector. Furthermore, since the QRD core presented in [35] uses an iterative

architecture, it incurs a very large processing latency. In 0.13 µm CMOS, this QRD design

requires a QRD processing latency of 139 clock cycles at 269 MHz and requires only 23.3KG

silicon area.

As another way of computing Q and R matrices, Householder transformations can be

used to transform the input channel matrix H to the final upper-triangular R matrix,

by eliminating all of the elements below the diagonal in a column simultaneously [33].

However, a major disadvantage of Householder transformations, when used for QR De-

composition, is that since a Householder reflection operates on all of the matrix rows

simultaneously, it is not straightforward to carry out multiple reflections in parallel, which

could have helped to speed up the QR Decomposition process [24]. Also, a straightforward

VLSI implementation of the Householder algorithm requires multiplication, division and

square-root operations, and hence leads to very high hardware complexity.

As an alternative, Givens rotations have the capability of selectively annihilating in-

dividual matrix elements by rotating two-dimensional real or complex column vectors to

align them with the pivot axis. Since Givens Rotations work on two matrix rows at a

time, they can be more easily parallelized, to reduce the QR Decomposition processing
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latency [24]. Application of Givens rotations to two-dimensional column vectors within

the input H matrix can be implemented using either multiply-and-add operations or more

commonly using the COordinate Rotation DIgital Computer (CORDIC) algorithm [36].

The Vectoring and Rotation modes of the CORDIC algorithm can be used to approxi-

mate vector rotation and hence perform Givens rotations using low-complexity shift and

add operations. Hence, the capability of performing multiple Givens rotations in parallel,

which in turn leads to higher throughput, as well as the lower hardware complexity of

the CORDIC modules makes Givens rotations the method of choice for implementing QR

Decomposition in this thesis.

However, for matrices with large dimensions (e.g. 4×4 complex), performing QRD

using the conventional sequence of Givens rotations might lead to high computational

complexity, due to the large number of Vectoring and Rotation operations required. For

an example of MIMO systems with 4 transmit and 4 receive antennas, the process of

decomposing a 4×4 complex channel characteristic matrix H into 4×4 complex matrices

Q and R using the conventional sequence of Givens rotations will require a total of 26

real Vectoring and 200 real Rotation operations. In [37], QRD for a 4×4 complex matrix

H is implemented using the conventional sequence of Givens rotations, which attains the

processing latency of 67 cycles at 125MHz clock frequency, and requires 54KG in 0.25

µm CMOS technology. Furthermore, as will be discussed in detail in Section 5.4.1, the

sequential nature of annihilations for the HRe
i,j matrix elements and the large number of

Rotation operations required for each element annihilation causes a throughput bottleneck.

These factors will lead to high computational complexity, larger hardware requirements and

high power dissipation for throughput-constrained systems. Hence, a QR Decomposition

architecture designed using these schemes will not be suitable for use in MIMO receivers

embedded within mobile devices, that essentially require signal processing blocks with low

power dissipation and low silicon area.
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5.3 Conventional, Multi-Dimensional and Householder

CORDIC Algorithms

5.3.1 Conventional 2D CORDIC Algorithm

The COordinate Rotation DIgital Computer (CORDIC) algorithms, introduced by Volder

[38] and extended by Walther [39], provide the mechanism to perform vector rotations in

hardware using low-complexity adders and shifters. Thus, the CORDIC algorithms, in

their Vectoring and Rotation modes, can be used to approximate 2D Givens rotations. In

the Vectoring mode, the CORDIC algorithm rotates the input vector by a necessary angle

to align the resulting vector with the X axis. In the Rotation mode, the input vector is

rotated by the specified angle to attain updated co-ordinates of the vector after rotation.

In the Vectoring mode, the output is a rotation angle and the norm of the original vector.

The CORDIC algorithm in effect attempts to minimize the Y component of the updated

vector at each incremental rotation, and hence it uses the sign of the residual Y component

to determine the direction for the next rotation. Since the angle accumulator is initialized

with zero and is updated at each incremental rotation, it will contain the traversed angle,

i.e. the angle between the vector and the x-axis, at the end of the Vectoring operation.

To summarize, in Vectoring mode, the CORDIC elementary rotation equations are [36]:

X i+1 = X i − 2−iDiY i

Y i+1 = Y i + 2−iDiX i (5.1)

θi+1 = θi − Ditan−1(2−i)

where, Di = −sign(Y i). Thus, if the Vectoring operation is completed so that the residual

Y component is zero, we have [36]:
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Xn = An
√

(X0)2 + (Y 0)2

Y n = 0 (5.2)

θn = tan−1(Y 0/X0)

An =
∏√

1 + 2−2i

Note, that here [X0 Y 0]T and [Xn Y n]T represent the input and output vectors to the

Vectoring process, respectively. Also, An represents the processing gain of the CORDIC

algorithm, where n represents the number of CORDIC algorithm iterations.

In the Rotation mode, the angle accumulator is first initialized with the desired rotation

angle. The direction of elementary rotations is determined so that the magnitude of

the residual angle, in the angle accumulator, is diminished. In this mode, the CORDIC

algorithms use the same elementary rotation equations as shown in 5.1, however, at each

iteration, Di is determined as: Di = sign(θi). Also, once the Rotation operation is

completed, the final outputs can be written as [36]:

Xn = An[X0 cos θ0 − Y 0 sin θ0]

Y n = An[Y 0 cos θ0 + X0 sin θ0] (5.3)

θn = 0

An =
∏√

1 + 2−2i

Note, that the CORDIC algorithms approximate the actual vector rotations by using

a series of successively smaller elementary rotations by angles tan−12−i. Hence, there is

a direct trade-off between n, the number of CORDIC algorithm iterations, the accuracy

of the vector rotations and computational complexity of the rotation operation. In other

words, an increase in the value of n improves the vector rotation accuracy, however, it

leads to larger computational complexity, and hence larger resource requirements.
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5.3.2 Multi-Dimensional CORDIC Algorithm

Multi-dimensional Givens rotations operate on column vectors of dimensions larger than 2,

to align them with the first axis (Vectoring operation) and then to apply the same rotation

to rotate other vectors (Rotation operation). This approach increases the parallelism in

the vector rotation operation by processing all components of the vector simultaneously.

However, a generic way to implement multi-dimensional Givens rotations, for column

vector dimensions 3 or larger, is to use high-complexity multiply-and-accumulate based

algorithms. From the VLSI implementation perspective, this results in reduced latency,

however, leads to much larger hardware requirements.

To resolve this issue, [40] presents Multi-dimensional CORDIC algorithms that extend

the conventional two-dimensional CORDIC algorithms to 3D and 4D. In other words,

the 3D and 4D CORDIC algorithms, presented in [40], approximate 3D and 4D Givens

rotations using low-complexity shift and addition operations. Note that, the 3D and 4D

vector rotation refer to rotations of 3×1 and 4×1 real-valued vectors. The CORDIC

elementary rotation equations for 3D Givens rotations is shown below [40]:

X i+1
1 = X i

1(1 − 2−2i) + X i
2(D

i
12

−i+1 + Di
1D

i
22

−2i+1) + X i
3(2D

i
22

−i + 2−2i+1) (5.4)

X i+1
2 = X i

1(−Di
12

−i+1 + Di
1D

i
22

−2i+1) + X i
2(1 − 2−2i) + X i

3(D
i
12

−i+1 + Di
1D

i
22

−2i+1)

X i+1
3 = X i

1(−2Di
22

−i + 2−2i+1) + X i
2(−Di

12
−i+1 + Di

1D
i
22

−2i+1) + X i
3(1 − 2−2i)

where, the rotation directions are calculated as: Di
1 = sign(X i

1 ·X i
2) and Di

2 = −sign(X i
1 ·

X i
3). Also, the CORDIC processing gain for the 3D CORDIC algorithm can be calculated

using the following equation, for n iterations of this 3D CORDIC algorithm:

An =
∏

1 + 3 ∗ 2−2i (5.5)

The CORDIC elementary rotation equations for 4D Givens rotations are shown in 5.6

below [40]:
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X i+1
1 = X i

1 − 2−iDi
1X

i
2 − 2−iDi

2X
i
3 − 2−iDi

3X
i
4

X i+1
2 = 2−iDi

1X
i
1 + X i

2 + 2−iDi
3X

i
3 − 2−iDi

2X
i
4 (5.6)

X i+1
3 = 2−iDi

2X
i
1 − 2−iDi

3X
i
2 + X i

3 + 2−iDi
1X

i
4

X i+1
4 = 2−iDi

3X
i
1 + 2−iDi

2X
i
2 − 2−iDi

1X
i
3 + X i

4

where, the rotation directions are calculated as: Di
1 = −sign(X i

1·X i
2), Di

2 = −sign(X i
1·X i

3)

and Di
3 = −sign(X i

1 · X i
4). Also, the CORDIC processing gain can be given as:

An =
∏√

1 + 3 ∗ 2−2i (5.7)

Since these 3D and 4D CORDIC algorithms can annihilate multiple elements simulta-

neously (2 elements for the 3D case and 3 elements for the 4D case) using only shift and

addition operations, they offer a significant reduction in hardware complexity, as well as

reduction in the overall processing latency. The details about hardware implementation

of these equations to develop 3D and 4D CORDIC processors will be presented in Section

5.6.

5.3.3 Householder CORDIC Algorithm

Householder transformations also provide the capability of annihilating multiple elements

simultaneously by reflecting a multi-dimensional input vector onto a plane. The details

about how the Householder reflections can be used to rotate multi-dimensional vectors,

and hence reduce QR Decomposition processing latency, were presented in Section 2.4.3.

However, a straightforward VLSI implementation of the Householder algorithm requires

multiplication, division and square-root operations, and hence it leads to very high hard-

ware complexity [33]. To resolve this issue, [41] presents novel Householder CORDIC

algorithms that use sequences of simple Householder reflections, which can be easily im-

plemented using shift, carry-save-addition (CSA) and simple addition operations. In [41],

the authors derive the elementary rotation matrix for generic nD Householder CORDIC

algorithms, as products of two simple Householder reflections. The details about the
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derivation of these elementary rotation matrices and their corresponding control sign se-

lection laws, generalization of these algorithms in Euclidean and pseudo-Euclidean spaces

and the algorithm convergence proofs are also presented in [41].

The elementary rotation matrix for nD Householder CORDIC algorithm has been cus-

tomized for 3D and 4D cases using appropriate parameters. Equation 5.8 below shows the

rotation equations for a single (ith) iteration of the 3D Householder CORDIC algorithm.

X i+1
1 = X i

1 − 2−2i+1X i
1 + 2−i+1Di

1X
i
2 + 2−i+1Di

2X
i
3

X i+1
2 = −2−i+1Di

1X
i
1 + X i

2 − 2−2i+1Di
1D

i
2X

i
3 (5.8)

X i+1
3 = −2−i+1Di

2X
i
1 − 2−2i+1Di

1D
i
2X

i
2 + X i

3

where, the rotation directions can be obtained from the input operands as: Di
1 = sign(X i

1 ·
X i

2) and Di
2 = sign(X i

1 · X i
3). Also, the CORDIC processing gain for the 3D Householder

CORDIC algorithm can be calculated using the following equation:

An =
∏

1 + 2−2i+1 (5.9)

Similarly, the elementary rotation equations for ith iteration of the 4D CORDIC algo-

rithm can be derived as follows:

X i+1
1 = X i

1(1 − 3 ∗ 2−2i) + X i
2(2

−i+1Di
1) + X i

3(2
−i+1Di

2) + X i
4(2

−i+1Di
3) (5.10)

X i+1
2 = X i

1(−2−i+1Di
1) + X i

2(1 + 2−2i) + X i
3(−2−2i+1Di

1D
i
2) + X i

4(−2−2i+1Di
1D

i
3)

X i+1
3 = X i

1(−2−i+1Di
2) + X i

2(−2−2i+1Di
1D

i
2) + X i

3(1 + 2−2i) + X i
4(−2−2i+1Di

2D
i
3)

X i+1
4 = X i

1(−2−i+1Di
3) + X i

2(−2−2i+1Di
1D

i
3) + X i

3(−2−2i+1Di
2D

i
3) + X i

4(1 + 2−2i)

where, the rotation directions can be obtained from the input operands as: Di
1 = sign(X i

1 ·
X i

2), Di
2 = sign(X i

1 · X i
3) and Di

3 = sign(X i
1 · X i

4). Also, the CORDIC processing gain for

the 4D Householder CORDIC algorithm can be calculated using the following equation,

for n iterations of this 4D Householder CORDIC algorithm:

An =
∏

1 + 3−2i+1 (5.11)
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Figure 5.1: Element Annihilation Sequence for the Conventional Givens Rotations QRD
Scheme.

5.4 Proposed QR Decomposition scheme

5.4.1 Proposed QRD scheme - for 4×4 MIMO systems

As discussed in Section 5.2, the three popular methods for computing QR Decomposition

include the Modified Gram-Schmidt Orthonormalization (MGS) algorithm, Householder

transformations and Givens rotations. Among these, the Givens rotations method is su-

perior in terms of BER performance and hardware complexity, compared to the other

two methods. However, QR Decomposition of the channel characteristic matrix H using

the conventional sequence of Givens rotations [42] leads to an excessive amount of com-

putations, since it does not exploit the symmetry between the adjacent columns of the

H matrix. For example, QRD of a 4×4 complex channel matrix H and computation of

z = QH ∗ y for 4 input 4×1 complex y vectors using the conventional sequence of Givens

rotations requires a total of 26 Vectoring and 200 Rotation operations.

The authors of [43] present a modified sequence of Givens rotations that helps to keep

the symmetry of the H matrix intact during the triangularization process, and hence

reduces the number of element annihilations and corresponding Rotation operations re-

quired. Note that use of this scheme produces 4 upper-triangular sub-matrices, as shown

in [43]. However, if a modified Real Value Decomposition (RVD), as shown in Fig. 5.1, is

used to convert the complex 4×4 H̃ matrix to its real counterpart (H), then we can attain

a strictly upper-triangular 8×8 real-valued R matrix using this scheme [44].
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Application of the modified sequence of Givens rotations on the H matrix created using

the modified RVD scheme will keep the symmetry between the adjacent columns intact

during the triangularization process. Hence, this will reduce the total number of Vectoring

operations required to 16, however, the number of Rotation operations required is 136,

which is still very large. This will lead to high computational complexity and hence larger

hardware requirements for throughput-constrained systems. For example, in order to

attain a QR Decomposition processing latency of 40 clock cycles and assuming that each

Vectoring or Rotation operation requires 8 clock cycles (assume 8 iterations of the CORDIC

algorithm), the complete QR Decomposition core will require a total of (16 + 136)/5 = 31

iterative CORDIC processors. On the other hand, for hardware constrained systems, this

will increase the QRD processing latency, and hence reduce throughput by a considerable

amount.

By taking a closer look at the triangularization process, it can be noticed that the

Vectoring and Rotation operations corresponding to the annihilation of the HIm
i,j elements

can be performed in a completely parallel manner, since they operate on independent set of

rows of the H matrix. For example, for the H matrix shown in Fig. 5.1, Givens rotations to

annihilate the HIm
3,1 and HIm

4,1 elements will operate on row pairs 5,6 and 7,8 of the H matrix,

respectively, and hence they can be executed in parallel. However, annihilation of the HRe
i,j

elements and their corresponding Rotation operations have to be performed sequentially.

For example, the Givens rotations to annihilate the HRe
3,1 and HRe

4,1 elements will operate on

row pairs 3,5 and 5,7 of the H matrix, respectively, and hence they can not be performed

in parallel. We must first perform Givens rotations to annihilate the HRe
4,1 element using

the HRe
3,1 element as a pivot element and then annihilate the HRe

3,1 element by using HRe
2,1 as

the pivot element. Another issue with the annihilation of HRe
i,j elements is that the number

of Rotation operations required corresponding to the annihilation of each HRe
i,j elements

is very large. For example, for annihilation of the HRe
4,1 element, according to [43], Givens

rotations need to be performed on all columns of rows 5,7 and 6,8. Hence, annihilation of

each HRe
i,j element requires twice the number of Rotation operations, compared to those

for HIm
i,j . Thus, to summarize, the Givens rotations corresponding to the annihilation of

the HRe
i,j elements contribute the most to the total number of Rotations and they have to

be performed sequentially, and hence they cause a throughput bottleneck and increased

hardware complexity.

To resolve these issues, this thesis proposes a hybrid QR Decomposition scheme that

uses a combination of Multi-dimensional Givens rotations, Householder transformations
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and the conventional two-dimensional Givens rotations to compute the QR Decomposi-

tion of a 4×4 complex channel matrix H̃ and to compute the z = QH ∗ y for 4 input 4×1

complex y vectors. The proposed scheme relieves the throughput bottleneck and reduces

the hardware complexity by first decreasing the number of Rotation operations required

and then by enabling their parallel execution. The basic idea is to annihilate multiple HRe
i,j

elements in parallel, by using Multi-dimensional Givens rotations and Householder trans-

formations, and to reduce the circuit complexity by implementing these multi-dimensional

vector rotations using CORDIC algorithms that only utilize low-complexity shift and addi-

tion operations. Also, for the HIm
i,j elements, that do allow parallel Vectoring and Rotation

operations, the 2D Givens rotations can be used to perform annihilation with maximum

parallelism and minimal complexity.

It should be noted that the proposed scheme also uses the special sequence of element

annihilations, presented in [43], that keeps the symmetry between the adjacent columns

of H intact. Hence, the proposed scheme will only need to perform Vectoring and Ro-

tation operations on odd numbered columns of H, and the values for the elements in

the even numbered columns can be derived directly, without any computations. Also,

the proposed scheme uses the Multi-dimensional CORDIC and Householder CORDIC

algorithms, described in Section 5.3 above, to implement Multi-dimensional Givens rota-

tions and Householder transformations for 3D and 4D vectors. The elementary rotation

equations for 3D CORDIC, 4D CORDIC, Householder 3D CORDIC and Householder 4D

CORDIC algorithms, shown in (5.4), (5.6), (5.8) and (5.10) respectively, were compared

for their implementation complexity. The comparison results were then used to make the

decision about which algorithms to use for 3D and for 4D vector rotations. It was decided

to use Householder CORDIC algorithms for 3D vector rotations and the Multi-dimensional

CORDIC algorithms for 4D vector rotations.

The proposed QR Decomposition scheme for 4×4 complex matrix is shown in Table

5.1. The algorithm begins with annihilating the HIm
i,1 elements in the first column of the

H matrix. As mentioned above, the Vectoring and Rotation operations corresponding to

the annihilation of the HIm
i,1 elements can be performed in a completely parallel manner,

and hence the conventional 2D Givens rotations are used for these element annihilations.

After the nullification of the HIm
i,1 elements in the first column of H, the algorithm uses

4D Givens rotations [40] to annihilate the elements HRe
4,1, HRe

3,1 and HRe
2,1 simultaneously.

As mentioned above, using the conventional 2D Givens rotations, the annihilation of these

elements had to be performed sequentially, which led to very large number of sequential
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Table 5.1: The proposed hybrid QR Decomposition Scheme for 4×4 complex matrix.

1) Annihilate HIm
1,1 , HIm

2,1 , HIm
3,1 and HIm

4,1 using 2D CORDIC algorithm.

2) Annihilate (HRe
2,1, HRe

3,1, HRe
4,1) using 4D CORDIC algorithm.

3) Annihilate HIm
2,2 , HIm

3,2 and HIm
4,2 in parallel using 2D CORDIC algorithm.

4) Annihilate (HRe
3,2, HRe

4,2) using Householder 3D CORDIC algorithm.

5) Annihilate HIm
3,3 and HIm

4,3 using 2D CORDIC algorithm.

6) Annihilate HRe
4,3 using 2D CORDIC algorithm.

7) Annihilate HIm
4,4 using 2D CORDIC algorithm.

Rotation operations and hence a throughput bottleneck. However, using the 4D Givens

rotations, the annihilation is performed in parallel and the corresponding number of Ro-

tation operations has been reduced by a factor of 3. Specifically, the 4D Givens rotations

propagate the effect of HRe
i,1 element annihilation to rows 1,2,3,4 and 5,6,7,8 simultaneously,

and hence reduces the number of Rotation operations required from 42 to 14.

As the next step, the conventional 2D Givens rotations are used once again to perform

parallel annihilation of the HIm
i,2 elements in the third column of the H matrix. The

scheme then uses the 3D Householder CORDIC algorithm [41] to annihilate HRe
4,2 and HRe

3,2

simultaneously. The effect of element annihilation is propagated to non-zero elements in

rows 2,3,4 and 6,7,8 in parallel, and this further reduces the number of corresponding

rotation operations by a factor of 2. As the last step, the algorithm annihilates the

HIm
3,5 , HIm

4,3 , HRe
4,3 and HRe

4,4 elements, in the order given, using the conventional 2D Givens

rotations.

Fig. 5.2 demonstrates the annihilation order used in the proposed scheme, where the

number on top of each arrow shows the sequential step number in the annihilation process.

For example, the number “1” on top of arrows for HIm
1,1 , HIm

2,1 , HIm
3,1 and HIm

4,1 demonstrate

that all of these four elements are annihilated in step 1, in a completely parallel manner.

Also, from Fig. 5.1 and Fig. 5.2, it can be noticed that the proposed scheme annihilates

the HRe
2,1, HRe

3,1 and HRe
4,1 elements simultaneously in step 2, as opposed to the conventional
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Figure 5.2: Element Annihilation Sequence for the Proposed QRD Scheme.

Givens rotation scheme that annihilates these elements in 3 sequential steps (steps 2, 3

and 4 in Fig. 5.1). The similar observation can be made for annihilation of elements HRe
3,2

and HRe
4,2. Thus, the proposed scheme reduces the number of sequential steps required,

and hence reduces the overall QRD processing latency.

5.4.2 Proposed QRD scheme - Generalization

The proposed QRD scheme is presented in Section 5.4.1 for decomposition of a 4×4 com-

plex channel characteristic matrix H. However, it can be generalized to perform QR De-

composition of matrices of any size, by appropriately using the 2D and 4D CORDIC

algorithms and the Householder 3D CORDIC algorithm. The generalization of the pro-

posed scheme for QR Decomposition of an n × n complex matrix can be performed using

the following ideas:

1. For element annihilations that operate on independent sets of rows of H and can

be parallelized, use the conventional 2D CORDIC algorithm to attain maximum

parallelization and minimal computational complexity.

2. For sequential element annihilations that use common pivot rows, use Householder

3D CORDIC and 4D CORDIC algorithms to nullify these elements simultaneously,

and hence reduce latency by a factor of 2 and 3, respectively, and also remove the

throughput bottleneck.
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For example, an extended QRD scheme for 6×6 complex channel matrix, derived using

the ideas listed above, is shown in Table 5.2. As shown, this scheme requires a total of 11

sequential steps that use either of 2D, Householder 3D or 4D CORDIC algorithms to nullify

the elements of the input 6×6 complex H matrix, to convert it to an upper-triangular R

matrix. Note that, according to [40], for vector rotations with dimensions larger than

4, the multiply-and-accumulate based algorithms offer lower computational complexity

compared to the Multi-dimensional and Householder CORDIC algorithms. Hence, the

extensions of the proposed QRD scheme to n × n matrices should avoid using CORDIC

algorithms of dimensions larger than 4.

The proposed scheme shown in Table 5.2 for QRD of 6×6 complex matrix uses the

low-complexity 2D CORDIC algorithm [36] to annihilate the necessary HIm
i,j elements in

parallel. For annihilation of the HRe
i,j elements, the proposed scheme uses the optimal

number of 4D, Householder 3D and 2D CORDIC vector rotations, such that the number

of sequential steps required to annihilate the necessary HRe
i,j elements in each column is

minimized. For example, for column 1 of 6×6 H matrix, the proposed QRD scheme needs

to annihilate a total of 5 HRe
i,1 elements. Hence, the proposed scheme first uses the 4D

CORDIC algorithm to annihilate HRe
6,1, HRe

5,1 and HRe
4,1 elements simultaneously, and then

uses the Householder 3D CORDIC algorithm to nullify the remaining 2 elements, HRe
3,1 and

HRe
2,1. Thus, all 5 elements in column 1 are annihilated using only 2 sequential steps, as

opposed to 5 sequential steps required using the 2D CORDIC algorithm.

As can be derived from Table 5.2, the proposed scheme requires 3 4D Vectoring, 24

4D Rotation, 2 Householder 3D Vectoring, 14 Householder 3D Rotation, 23 2D Vectoring

and 80 2D Rotation operations to perform QRD of a 6×6 complex matrix. Through

mathematical analysis, the number of 2D, Householder 3D and 4D Vectoring and Rotation

operations required for QR Decomposition of an n×n complex matrix have been derived as

shown in Table 5.3. Thus, from these equations, QRD of 4×4 complex matrix requires 1 4D

Vectoring, 6 4D Rotation, 1 Householder 3D Vectoring, 4 Householder 3D Rotation, 11 2D

Vectoring and 21 2D Rotation operations. Furthermore, QRD of an 8×8 complex matrix

requires 7 4D Vectoring, 76 4D Rotation, 2 Householder 3D Vectoring, 14 Householder 3D

Rotation, 39 2D Vectoring and 191 2D Rotation operations.

To summarize, the generalization of the proposed QRD scheme for processing n×n com-

plex matrices can be performed by appropriately utilizing the 2D, Householder 3D and

4D CORDIC algorithms, according to the rules mentioned above, depending on the type

and number of element annihilations to be performed. As discussed above, the proposed
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Table 5.2: The proposed hybrid QR Decomposition Scheme for 6×6 complex matrix.

1) Annihilate HIm
1,1 , HIm

2,1 , HIm
3,1 , HIm

4,1 , HIm
5,1 and HIm

6,1 in parallel using

2D CORDIC algorithm.

2) Annihilate (HRe
6,1, HRe

5,1, HRe
4,1) using 4D CORDIC algorithm.

3) Annihilate (HRe
3,1, HRe

2,1) using Householder 3D CORDIC algorithm.

4) Annihilate HIm
2,2 , HIm

3,2 , HIm
4,2 , HIm

5,2 and HIm
6,2 in parallel using 2D CORDIC

algorithm.

5) Annihilate (HRe
6,2, HRe

5,2, HRe
4,2) using 4D CORDIC algorithm.

6) Annihilate HRe
3,2 using 2D CORDIC algorithm.

7) Annihilate HIm
3,3 , HIm

4,3 , HIm
5,3 and HIm

6,3 in parallel using 2D CORDIC

algorithm.

8) Annihilate (HRe
6,3, HRe

5,3, HRe
4,3) using 4D CORDIC algorithm.

9) Annihilate HIm
4,4 , HIm

5,4 and HIm
6,4 in parallel using 2D CORDIC algorithm.

10) Annihilate (HRe
6,4, HRe

5,4) using Householder 3D CORDIC algorithm.

11) Annihilate HIm
5,5 and HIm

6,5 in parallel using 2D CORDIC algorithm.

12) Annihilate HRe
6,5 using 2D CORDIC algorithm.

13) Annihilate HIm
6,6 using 2D CORDIC algorithm.
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Table 5.3: Equations for number of 2D, Householder 3D and 4D Vectoring and Rotation
Operations Required for QRD of an n × n Complex Matrix

Operation Number of Operations Required

for n × n Complex Matrix

4D Vectoring
∑n−2

i=1 (⌊n−i
3
⌋)

4D Rotation
∑n−2

i=1 [(⌊n−i
3
⌋) × 2(n − i)]

Householder 3D Vectoring
∑n−2

i=1 (⌊ (n−i) − (3⌊n−i

3
⌋)

2
⌋)

Householder 3D Rotation
∑n−2

i=1 [(⌊ (n−i) − (3⌊n−i

3
⌋)

2
⌋) × 2(n − i)]

2D Vectoring
∑n−2

i=1 [(n − i) − (3⌊n−i
3
⌋) − (2⌊n−i

2
⌋)] +

∑n

i=1(n − i + 1) + 1

2D Rotation
∑n−2

i=1 [(n − i) − (3⌊n−i
3
⌋) − (2⌊n−i

2
⌋)] × (n − i) +

∑n

i=1(n − i + 1) × (n − i) + 1

QRD scheme reduces the number of sequential annihilation steps required significantly, and

hence reduces the QRD processing latency and removes the throughput bottleneck, com-

pared to the existing Givens rotations based QRD schemes. The proposed scheme also uti-

lizes the low-complexity CORDIC algorithms for two-dimensional and multi-dimensional

vector rotations, that results in a substantial reduction in the computational complexity

required for QRD calculation.

5.5 Proposed QR Decomposition - Overall Architecture

Description

Emerging 4G wireless standards require QR Decomposition implementations for process-

ing large complex channel matrices, while minimizing QRD processing latency, silicon area

and power consumption requirements. For decomposition of large complex matrices, the

existing QRD schemes lead to high computational complexity, sequential throughput bot-

tleneck and lack of parallelism. Hence, the published QRD VLSI implementations, using

these existing schemes, either lead to large QRD processing latency or to large silicon area
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and power requirements. In Section 5.4, we proposed a hybrid QR Decomposition scheme

that uses a unique combination of Multi-dimensional Givens rotations, Householder trans-

formations and the conventional 2D Givens rotations to both reduce the computational

complexity and achieve higher execution parallelism. This hybrid QRD scheme is utilized

in this section to develop a VLSI architecture for a QRD core to decompose a 4×4 complex

channel matrix H, and compute updated symbol vectors z = QH ∗y for four received 4×1

complex y vectors.

As mentioned earlier, it is desired to develop a QRD architecture that decomposes large

channel matrices with minimal QRD processing latency, and also minimizes gate count

and power consumption requirements as much as possible. Considering the large number

of Vectoring and Rotation operations that need to be performed to output 4×4 complex R

matrix and four 4×1 complex z vectors, an architecture with linear or triangular systolic

arrays will require an extremely large amount of hardware resources [45]. On the other

hand, an iterative architecture where one or more CORDIC processors are used repeatedly

to perform the complete QR Decomposition, will have much smaller silicon area and power

requirements, however, they will lead to very large QRD processing latency, due to the large

number of Vectoring and Rotation operations that need to be done iteratively [46]. In order

to perform the large number of Vectoring and Rotation operations required to compute a

new R matrix and 4 complex z vectors in the smallest possible number of cycles, while

also minimizing the area and power requirements, this thesis proposes an efficient semi-

pipelined semi-iterative architecture that uses un-rolled CORDIC processors iteratively,

along with complex controllers, to maximize throughput and resource utilization, while

minimizing the area and power requirements. The proposed QRD architecture attains a

processing latency of merely 40 clock cycles at 278 MHz, while occupying 0.3mm2 core

area (36KG) and dissipating 48.2mW at 1.32V supply.

Fig. 5.3 shows the overall architecture of the proposed QR Decomposition core. The

overall architecture consists of a total of 6 pipelined stages, each with latency less than

or equal to 40 cycles. The first stage is an Input Controller stage, that provides the

interface with the preceding stage in the MIMO Receiver. This stage serves the purpose

of reading in one 4×4 complex H matrix and four 4×1 complex y vectors every 40 clock

cycles from the preceding stage. The Input Controller stage then stores the read data

and uses them to supply appropriate input operands to the CORDIC processors. The last

stage in the QRD architecture is an Output Controller stage that serves the purpose of

transferring the output 4×4 complex R matrix and four output 4×1 complex z vectors

98



5
Q

R
D

ecom
p
osition

-
A

lgorith
m

an
d

V
L
S
I

Im
p
lem

en
tation

Global Controller

Stage 1

Stage1 
Controller

2D Un-rolled 
CORDIC

Processor

M
u
x
B
a
n
k

R
e
g
B
a
n
k

Stage 2

Stage2 
Controller

4D/2D 
Configurable

Un-rolled 
CORDIC

Processor

R
e
g
B
a
n
k

Stage 3

Stage3 
Controller

3D Un-rolled 
CORDIC

Processor

R
e
g
B
a
n
k

Stage 4

Stage4 
Controller

2D Un-rolled 
CORDIC

Processor

R
e
g
B
a
n
k

M
u
x
B
a
n
k

M
u
x
B
a
n
k

M
u
x
B
a
n
k

Re
1,1H

Im
1,1H

Re
1,1y

Im
1,1y

Re
4,1H

Im
4,1H

Re
4,1y

Im
4,1y

Re
1,1R

Im
1,1R

Re
1,1z

Im
1,1z

Re
4,1R

Im
4,1R

Re
4,1z

Im
4,1z

Input 
Controller

Output 
Controller

Hy_In_Re

Hy_In_Im

Rz_Out_Re

Rz_Out_Im

Input ports to sample 

the channel matrix H
and the received 

symbol vector y.

Output ports to deliver 

upper triangular matrix R
and updated symbol 

vector z.

F
igu

re
5.3:

O
verall

A
rch

itectu
re

of
th

e
P

rop
osed

Q
R

D
ecom

p
osition

C
ore.

99



5 QR Decomposition - Algorithm and VLSI Implementation

(z = QH ∗ y) to the succeeding K-Best MIMO Detector block every 40 clock cycles. Both

the Input Controller and the Output Controller blocks read in or write out 1 complex

number (2 16-bit Real numbers) each cycle, by following the scheduling shown in Table

C.1 in Appendix C.

The four central stages, Stage1-4, compute the QR Decomposition of input H matrix,

as well as 4 z vectors, simultaneously, using un-rolled pipelined 2D, Householder 3D and

4D/2D Configurable CORDIC processors. The details about functionality and architecture

of these un-rolled CORDIC processors will be provided in Section 5.6. As shown in Fig.

5.3, each of these four central stages also contains a multiplexor (MUX) bank (MuxBank)

and a register bank (RegBank) in the datapath, in addition to the un-rolled CORDIC

processors. In each stage, the MuxBank serves the purpose of selecting the input operands

for the CORDIC processor in that stage every clock cycle. The RegBank at the output of

each stage is used to re-direct the CORDIC outputs to appropriate registers and to hold

them until the current stage completes its desired computations and all outputs are ready

to be passed to the next stage as inputs.

In terms of the control path, each of these stages contains an independent Stage

Controller that controls the operation of the datapath modules, to enable them to per-

form the required operations within the given number of clock cycles. Specifically, the

Stage Controller provides the select and other control signals to direct appropriate data

in and out of the CORDIC processor every cycle. The Stage Controller also provides

the required control signals to the CORDIC processors to control their mode of operation

(Vectoring or Rotation), rotation direction transfers and re-use of the pipelined CORDIC

stages to maximize resource utilization. In addition to the individual stage controllers,

the QRD architecture also contains a Global Controller that controls the overall oper-

ation of the complete QRD core. As mentioned, all 6 pipelined stages perform a certain

fixed set of tasks every 40 clock cycles, independently of each other. Hence, the Global

Controller contains a counter that provides a global count (from 1 to 40), in order to

synchronize the operation of each of the 6 stages. The Global Controller also provides

the required control signals to ensure correct functionality of the Input Controller and

Output Controller blocks, as well as Stage Controller blocks within each central stage.

Note that the data format for input, output and internal data for the QR Decompostion

core, is signed numbers in two’s complement format with a word-length of 16 bits and 11

bits for the fractional part. Note that due to their larger dynamic range, the Householder
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3D CORDIC processor uses an extra bit for the integer part, and hence requires a word-

length of 17 bits. These word-length and number of bits for fractional part were derived

using extensive bit-true simulations, such that the BER loss relative to the floating-point

result is minimized. Also, the total latency of the architecture from input H and y matrices

to output R and z matrices is 160 clock cycles. However, due to its deeply pipelined nature,

the QRD architecture processes a new set of H and y matrices , and produces a new set

of R and z output matrices every 40 clock cycles.

5.6 Proposed QR Decomposition - Detailed VLSI

Architecture

5.6.1 CORDIC Processors - Proposed General Architecture

The CORDIC algorithm uses a series of shift and addition operations to evaluate many

basic arithmetic and mathematical functions [47]. It is also very suitable for implementing

Givens rotations, using its Vectoring and Rotation modes [36]. There are a number of ways

to design the CORDIC processors, that implement the CORDIC algorithms. Hence, the

architecture of the CORDIC processor, for the given application, depends on the latency

and hardware resource constraints.

For the QR Decomposition architecture under consideration, a large number of Vec-

toring and Rotation operations need to be performed at each pipelined stage within 40

clock cycles, while trying to achieve the smallest gate count possible. In other words, the

architectures for the CORDIC processors need to be designed with the primary aim of

achieving high throughput, possibly performing 1 Vectoring or Rotation operation every

cycle. And then, as the secondary aim, the area of the CORDIC processors should be

reduced as much as possible, using various strategies. Iterative CORDIC processors pro-

vide a minimum hardware solution, however, they have a considerably large processing

latency [36]. On the other hand, fully un-rolled Pipelined CORDIC processors offer very

high throughput, however, their straightforward implementation poses very large resource

requirements [36]. Hence for the novel QR Decomposition architecture in this thesis, we

propose to use an un-rolled, deeply pipelined architecture with iterative stages to design
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the 2D, Householder 3D and 4D/2D Configurable CORDIC processors, with major modifi-

cations to reduce the gate count and the number of cycles required for complete Vectoring

and Rotation operations.

Fig. 5.4 shows the general architecture of the CORDIC processors used in the proposed

QRD core in this thesis. In general, the 2D, Householder 3D and 4D/2D Configurable

CORDIC processors consist of multiple pipelined core stages, where each stage implements

one or more of the CORDIC elementary rotation equations. Each CORDIC Core stage is

designed to work in either Vectoring or Rotation mode, which in turn is controlled by the

Stage Controller block. In addition to the Core stages that implement the elementary

rotation equations, the CORDIC processors also include an input coarse rotation stage

and an output stage that performs both inverse coarse rotation and output scaling. The

architectures for these stages are shown in Fig. 5.5 and Fig. 5.6, respectively. The

CORDIC Vectoring and Rotation algorithms are limited to rotation angles between -π/2

and +π/2, and hence for composite rotation angles larger than π/2, the input and output

coarse rotation stages rotate the input and output vectors by -π and +π, respectively.

From a hardware perspective, this is implemented in the input coarse rotation stage by
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Figure 5.6: Architecture of the Output Coarse Rotation + Scaling stage for 2D CORDIC
Processors.

simply monitoring the sign of the input operands and negating (using the two’s complement

scheme) them, if required. Based on the input operands, the input coarse rotation stage

generates the control signal “CoarseRot Req”, which is then used by the output inverse

coarse rotation stage to decide whether to perform inverse rotation or not.

The output scaling stage scales the CORDIC outputs by a constant factor, in order to

compensate for the CORDIC processing gain, described in Sections 5.3.1, 5.3.3 and 5.3.2.

The proposed QRD architecture approximates the scaling operation to reduce the circuit

complexity. For example, for the 2D CORDIC case, implementation of the exact scaling

by factor 0.6097 requires signed multipliers. However, approximation of this scaling by

2−1 + 2−3 (0.6250) will allow its implementation with considerably lower circuit complexity,

by only using hardwired shifts and signed addition, as shown in Fig. 5.6. Similarly,

the Householder 3D and 4D CORDIC processors use approximate scale factors of 0.1875

(2−3 + 2−4) and 0.3125 (2−2 + 2−4), respectively. The impact of these approximations

on the BER performance is very minor, which will be discussed in detail in Section 5.7.

Also, note that based on MATLAB simulations, architectural decisions were made to use

8 CORDIC iterations.

5.6.2 2D CORDIC Processor

The 2D CORDIC algorithm was described in Section 5.3.1, as a method to implement the

Vectoring and Rotation operations for Givens rotations. The CORDIC elementary rotation

equations, shown in (5.1), are used to implement both Vectoring and Rotation operations,

where the elementary rotation direction is calculated using the input vector co-ordinates

for the Vectoring case, and using the residual angle for the Rotation case. Hence, a single

stage architecture for the 2D CORDIC processor can be designed to be programmable to
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Figure 5.7: Conventional Architecture of a single pipeline stage for 2D CORDIC Processor.

execute appropriate CORDIC equations, depending on its mode of operation (Vectoring or

Rotation). Fig. 5.7 shows the generic single stage architecture for 2D un-rolled CORDIC

processor, derived using equation (5.1). As shown, the architecture uses a ROM module

and a large amount of hardware resources for the angle datapath. Also, since it only

implements one iteration of the CORDIC elementary rotation equation, it leads to low

resource utilization and large hardware requirements. For example, for a 2D un-rolled

CORDIC processor with 8 CORDIC iterations, a total of 8 instances of this single stage

architecture will be required. The resulting CORDIC processor will take 8 clock cycles to

complete Vectoring or Rotation operation for a single 2D vector and will require a total

of 24 adder and 8 ROM modules.

The proposed single stage architecture, shown in Fig. 5.8, for the 2D un-rolled CORDIC

processor resolves these issues using two major improvement strategies, namely: implicit

angle transfer and re-use of hardware resources for execution of multiple CORDIC itera-

tions in a single clock cycle using the same single stage. The idea of implicit angle transfer

simply computes the elementary rotation directions in the Vectoring mode, stores them

in the Stage Controller registers, and utilizes them directly in the Rotation mode of

operation [41]. Thus, the CORDIC processor does not need to explicitly compute the

rotation angle in the Vectoring mode and does not need to utilize and keep track of it to

derive the elementary rotation directions. This results in hardware savings of around 30%,

since the adders, registers, MUXs and the ROM that make up the angle datapath for each
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Figure 5.8: Proposed Architecture of a single pipeline stage for 2D CORDIC Processor -
with the critical path highlighted.

CORDIC stage can be removed.

The second improvement strategy proposes to implement 2 sets of 2D CORDIC elemen-

tary rotation equations using the same single stage. The idea is to use the same set of

16-bit signed adders twice and use MUXs to select inputs to these adders, with the clock

signal acting as the MUX select signal. In the first half of the clock cycle, the inputs

corresponding to the first set of elementary equations are passed to the adders. The adder

outputs, from the first half of the clock cycle processing, are used as the adder inputs for

the second half of the clock cycle. For each elementary equation set implementation, the

elementary rotation directions are computed from the input operands, and are used to

operate the signed adders in either addition or subtraction mode. Thus, using this strat-

egy, only 4 instances of the single stage architecture shown in Fig. 5.8 will be required for

the 2D un-rolled CORDIC processor with 8 CORDIC iterations. The resulting CORDIC

processor will take 4 clock cycles to complete Vectoring or Rotation operation for a single

2D vector and will require a total of 8 adders and 0 ROM modules. Thus, this reduces the

number of cycles required for Vectoring and Rotation operations required by a factor of

2, the amount of hardware required by a factor of 3 and increases the datapath hardware

utilization to approximately 100%.
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Figure 5.9: Proposed Architecture of a single pipeline stage for 3D CORDIC Processor -
with the critical path highlighted.

Also, since each CORDIC single stage needs to perform fixed shift, it can be performed

using re-wiring of the input operands and hence the area intensive Barrel Shifters can be

removed [36]. Note that identical architectures of the 2D CORDIC processors are used in

Stage 1 and Stage4 of the proposed QR Decomposition core. In Stage 1, it performs 4 2D

Vectoring and 24 2D Rotation operations, and in Stage 3, it performs 3 2D Vectoring and

24 2D Rotation operations within 40 clock cycles.

5.6.3 Householder 3D CORDIC Processor

The 3D un-rolled CORDIC processor performs Vectoring and Rotation operations on three-

dimensional column vectors (3×1 real-valued vectors) using the Householder 3D CORDIC

elementary rotation equations, shown in equation (5.8). The 3D un-rolled CORDIC pro-

cessor consists of 4 pipelined single stages, each of which implements 2 sets of Householder

3D elementary rotation equations, within 2 clock cycles. Fig. 5.9 shows the architecture

of a single stage of the Householder 3D un-rolled CORDIC processor, with critical path

highlighted. Note that this architecture also uses the same area saving strategies that were
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used for the 2D CORDIC processor, described in Section 5.6.2.

As shown in Fig. 5.9, the four signed adders are used a total of 4 times, within 2

clock cycles, to implement the 2 iterations of the Householder 3D CORDIC equations.

Note again that the MUXs, controlled by the clock signal, are used to provide appropriate

inputs to the adders. The top two adders compute X i+1
1 by adding the 4 terms in the

first equation, shown in (5.8). The bottom two adders compute X i+1
2 and X i+1

3 , in each

half of a single clock cycle. The outputs X i+1
1 , X i+1

2 and X i+1
3 are then fed back as inputs

to the same single stage, and the same procedure is used to compute X i+2
1 , X i+2

2 and

X i+1
3 , which serve as the final outputs of the single stage. Note that the Householder

3D CORDIC processor is used in the QR Decomposition Stage 3, and it performs 1 3D

Vectoring and 12 3D Rotation operations within 34 clock cycles.

5.6.4 4D/2D Configurable CORDIC Processor

Stage 2 of the proposed QR Decomposition core contains a 4D/2D configurable un-rolled

CORDIC processor. This CORDIC processor consists of 8 pipelined single stages, each of

which is programmable to operate in either 4D or 2D mode. In the 2D mode of operation,

each single stage of the 4D/2D configurable CORDIC processor can perform 4 2D Vectoring

or Rotation operations in parallel, in a single clock cycle. In the 4D mode of operation, it

can perform a single Vectoring or Rotation operation, by implementing the 4 elementary

rotation equations shown in 5.6, within a single clock cycle.

Fig. 5.10 shows the architecture of a single stage of the 4D/2D configurable un-rolled

CORDIC processor, with critical path highlighted. The MUXs select the input data and

rotation directions for the adders according to the mode of operation (2D or 4D). Since,

in the 4D mode of operation, each of these adders are used twice, the clock signal driven

MUXs have also been cascaded to select the adder inputs. For the 4D mode of operation,

the adders are used to compute X i+1
1 and X i+1

2 in the first half of the clock cycle, and

to compute X i+1
3 and X i+1

4 in the second half of the clock cycle. In the 2D mode of

operation, the CORDIC processor performs Vectoring and Rotation operations on two

sets 2D vectors, [X i
1 X i

2]
T and [X i

3 X i
4]

T , in parallel, in each half of the clock cycle. In

other words, the adders compute [X i+1
1 X i+1

2 ]T and [X i+1
3 X i+1

4 ]T in the first half of the

clock cycle, for the first set of two 2D input vectors. The same process is repeated in the

second half of the clock cycle to compute updated vectors for the second set of two 2D

input vectors.
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Figure 5.10: Proposed Architecture of a single pipeline stage for the 4D/2D Configurable
CORDIC Processor - with the critical path highlighted.

The 4D/2D configurable un-rolled CORDIC processor performs a total of 1 4D Vec-

toring, 14 4D Rotation, 3 2D Vectoring and 18 2D Rotation operations within 36 clock

cycles. This makes Stage 2 the most computation and hardware intensive stage within the

complete QR Decomposition core. Also, due to the hardware intensive nature, the critical

path of the single stage of the 4D/2D configurable CORDIC processor accounts for the

critical path of the overall QR Decomposition core.

5.7 BER Simulation Results

The QR Decomposition operation does not directly estimate the transmitted vector, and

hence it does not have a direct impact on the BER performance. However, the accuracy

of the channel matrix QR Decomposition does have an effect on the MIMO detection
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process. In other words, a QRD core decomposes the channel matrix H and processes

received symbol vectors y, to produce an upper-triangular matrix R and updated symbol

vectors z (z = QH ∗ y). The matrix R and symbol vectors z are then used by the MIMO

detector to estimate the transmitted vectors ŝ. These estimated transmitted vectors, ŝ,

are then compared to the actual transmitted vectors, s, to quantize the BER performance

of the MIMO Receiver (QRD + MIMO Detector).

Thus, sources of inaccuracy in QR Decomposition will produce R matrix and z vec-

tors that may not be exactly the same as the actual R and z attained mathematically

(using ideal QRD) in floating-point format. Use of these perturbed R and z matrices for

MIMO detection would lead to errors in estimating the transmitted vector ŝ, which then

results in BER performance degradation compared to ideal QRD. In this thesis, the BER

performance of the proposed QRD scheme and its VLSI implementation is quantified by

comparing floating-point and fixed-point QRD models when combined with a 4×4 64-

QAM Hard-output K-Best detector, with K = 10. The combined MATLAB models were

simulated for 100,000 packets, where each packet consists of 4× log2(Q)×NT = 4× 6× 4

= 96 bits (9.6Mbits in total) for 4 × 4 MIMO system.

As mentioned in Section 5.6.1, the proposed QRD architecture uses approximations for

the actual scale factors for compensating CORDIC processing gain, in order to simplify

the VLSI implementation of the scaling operation. In other words, the scale factors 0.6097,

0.1896 and 0.3364 for 2D, Householder 3D and 4D CORDIC processors have been approx-

imated with 0.6250 (2−1 + 2−3), 0.1875 (2−3 + 2−4) and 0.3125 (2−2 + 2−4), respectively.

However, as mentioned above, these approximations might lead to increased inaccuracy

in the resulting R matrix and z vectors, and hence might cause BER performance degra-

dation. Fig. 5.11 shows the BER performance of the QRD + K-Best MIMO detector

integration with actual and approximated scale factors. As shown, the approximation of

the actual scale factors only leads to a BER performance loss of 0.14 dB at BER = 10−3.

However, in terms of hardware implementation, this leads to significant hardware savings

since the actual signed multiplication can be implemented using only hardwired shifts and

signed addition.

In the proposed QRD scheme, the CORDIC algorithms are utilized to perform vector

rotation. The accuracy of the vector rotations depends on the number of iterations used

for the CORDIC algorithm. In other words, a larger number of CORDIC iterations will

lead to better accuracy, however, will also lead to larger hardware complexity. Hence, in

order to decide on the number of CORDIC algorithm iterations to be used, the MATLAB
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Figure 5.11: BER Performance of proposed QRD Scheme with different CORDIC Process-
ing Gain Scale Factors

models for the proposed QRD were simulated with different number of CORDIC iterations.

Fig. 5.12 shows the BER curves attained using these MATLAB simulations. From these

BER curves, it can be noticed that QRD using 6 CORDIC iterations leads to a significant

BER performance degradation, compared to QRD with 8 CORDIC iterations. On the

other hand, QRD using 10 CORDIC iterations yields a BER performance improvement of

approximately 0.28 dB at BER = 10−3. However, from an implementation perspective, use

of 10 CORDIC iterations leads to a much higher computational complexity, which results

in either large QRD processing latency or large hardware and power requirements. This

justifies our choice of using 8 iterations for 2D, Householder 3D and 4D/2D configurable

CORDIC processors.

Fig. 5.13 shows the BER curves obtained by simulating the combination of QR Decom-

position and K-Best MIMO Detector for different QRD schemes. The QR Decomposition

MATLAB models use 8 CORDIC iterations and the scale factors of 0.6250, 0.1875 and

0.3125 for 2D, Householder 3D and 4D CORDIC processors, respectively. From Fig. 5.13,

it can be noticed that the BER performance for the proposed QR Decomposition scheme is

identical to that of the QRD scheme using the conventional sequence of Givens rotations,

for both floating-point and fixed-point models. This can be justified by noticing that the

average absolute difference between the R matrix and the z vectors produced by both of

these schemes is on the order of 10−5 for floating-point models and on the order of 10−3
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Figure 5.12: BER Performance of proposed QRD Scheme with different Number of
CORDIC Algorithm Iterations

for fixed-point models. Note that these floating-point and fixed-point MATLAB models

for QR Decomposition use the CORDIC algorithms for performing Givens rotations. Fig.

5.13 also shows the BER curve for QR Decomposition using ideal Givens rotations, imple-

mented in floating-point arithmetic (as opposed to implementing them using the CORDIC

algorithm). It can be noticed that the BER performance for QRD using ideal Givens rota-

tions is marginally better compared to that when Givens rotations are implemented using

the CORDIC algorithm. This can be explained by the fact that the CORDIC algorithm

just approximates actual vector rotations, with the accuracy dependent on the number of

CORDIC algorithm iterations used and the compensation scale factors used.

5.8 Test Results and Design Comparison

The proposed QR Decomposition core was fabricated in a 0.13 µm IBM 1P8M CMOS

process and was tested using an Agilent(Verigy) 93000 SoC high-speed digital tester and

a Temptronic TP04300 thermal forcing unit. The die micrograph for the QRD chip is

shown in Fig. 5.14. The test setup consisting of the 93K SoC tester, Temptronic TP04300

thermal forcing unit, load board and the DUT is shown in Fig. 5.15. The nominal core

supply voltage is 1.2 V, whereas the I/O voltage is 2.5 V. The functionality of the QRD

111



5 QR Decomposition - Algorithm and VLSI Implementation

15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 

Ideal Givens Rotations QRD

Conventional 2D CORDIC QRD − FloatingPt

Conventional 2D CORDIC QRD − FixedPt

Proposed 2D,3D,4D CORDIC QRD − FloatingPt

Proposed 2D,3D,4D CORDIC QRD − FixedPt

Figure 5.13: BER Performance of different QRD Schemes for 4×4 matrix decomposition -
combined with 64-QAM K-Best MIMO Detector with K=10

core was verified by generating and passing channel matrices and received symbol vectors

at different SNR values to the chip through the tester and comparing the QRD outputs

with the expected values from the bit-true simulations both from MATLAB and Verilog

HDL simulations. The BER performance of the QRD core was measured as follows:

1. Complex-valued random Gaussian channel characteristic matrix, updated every four

channel uses, was generated and was used to transmit the symbol vectors.

2. For a given SNR value, additive white Gaussian noise with the desired variance was

generated and was used along with the channel matrix to derive the received symbol

vectors.

3. A test vector, including the input channel matrix and received symbols, as well as

all the required control and enable signals, was generated using MATLAB.

4. This generated test vector was then converted to a VCD file using ModelSim, a

Verilog HDL simulator.

5. The V93K TestGenerator tool [48] was then used to convert the test vector VCD

file to timing files (“.tim”), configuration files (“.pin”), and binary test vector files

(“.binl”) required for testing.
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Figure 5.14: Die Micrograph for the QRD Chip.

Figure 5.15: Test setup using Verigy 93K tester, Temptronic TP04300 thermal forcing unit
head, and the DUT.
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Figure 5.16: Measured Maximum Operating Frequency and Power Dissipation vs. Supply
Voltage @ 25C.

6. The core supply voltage along with the I/O supply voltage are set appropriately.

7. These files were loaded onto the V93K SoC tester and were used to supply input test

vectors to the QRD chip.

8. An at-speed test was run on the QRD chip and the outputs are compared against

the desired bit stream generated by the MATLAB simulation.

Fig. 5.16 shows a Shmoo plot depicting the maximum operating frequency and the total

power dissipation of the design versus the supply voltage at 25oC. A total of five chips

were tested, where the average and the max/min values of the achieved frequency have

been shown in Fig. 5.16. The detailed measurement results are presented in Appendix D

in Table D.1 to Table D.15. At 25oC and 1.32V supply voltage, the QRD design operates

at a clock rate up to 278 MHz and consumes 48.2 mW of power. The temperature was

forced to be at 25oC using the Temptronic TP04300 thermal forcing unit. Also, using this

Temptronic TP04300 thermal forcing unit, test results at 0oC and 85oC yield clock rates

of 292 MHz and 254 MHz, while dissipating 51.5 mW and 43.7 mW, respectively, at 1.32V

supply. The complete measurement results at these temperatures have been presented in

Appendix D.
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Table 5.4: Chip Characteristics and Comparison to Previous QR Decomposition Imple-
mentations.

Reference [35]-2008 [34]-2007 [49]-2009 [37]-2007 This work

Process 0.13 µm 0.18 µm 0.18 µm 0.25 µm 0.13 µm
QRD Algorithm MGS MGS MGS Givens Hybrid
Used Rot
Input Matrix 4×4 4×4 4×4 4×4 4×4
Size Complex Real Real Complex Complex
QRD Processing Real Real Real Complex Real
Mode
QRD Processing 139 cycles 67 cycles 44 cycles 67 cycles 40 cycles
Latency
Max Clock 269 MHz 277 MHz 270 MHz 125 MHz 278 MHz
Frequency
QRD Processing 516 ns 241 ns 162 ns 536 ns 144 ns
Latency [ns]
Core Area 23.2 KG 72 KG 51 KG 54 KG 36 KG
QRD Processing 5.346 0.923 1.936 2.212 12.352
Efficiency
(1/ns · KG) (× 103)
Tested Chip No No No No Yes
Power Consumption N/A N/A N/A N/A 48.2mW @

1.32V

Table 5.4 shows the measured results for the designed QRD chip and compares it to

other published state-of-the-art QR Decomposition implementations for decomposing 4×4

matrices. For the MMSE QR Decomposition design presented in [37], new Q and R

matrices are produced every 67 cycles, running at 125 MHz, and the total core area required

is 54 KG. The authors of [34] use log-domain computations to simplify implementation of

multiplication, division and square-root operations in the Modified Gram-Schmidt (MGS)

algorithm. However, this scheme requires considerable storage space to hold the look-up

tables, and hence it requires large core area, as shown in Table 5.4. Note that the core area

and processing latency numbers here are given for the complete matrix inversion operation,

which requires an additional matrix multiplication stage after QR Decomposition. On the

other hand, the authors of [35] present a low complexity approximation of the inverse

square-root function to simplify the implementation of the division by norm operations in

the MGS algorithm. This leads to a considerably lower gate count of 23.2 KG, however, the
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Figure 5.17: Comparison of QR Processing Efficiency between this work and previous QRD
implementations.

QR Decomposition processing latency for this architecture is 139 cycles. In comparison,

the novel QR Decomposition scheme and architecture proposed in this thesis outputs a

new 4×4 complex R matrix and four 4×1 complex z vectors every 40 cycles, at a clock

frequency of 278MHz, and requires a gate count of 36 KG. Thus, this architecture achieves

the lowest QRD processing latency, while still achieving the second lowest core area.

As can be noticed from Table 5.4, some of the reference QRD chips have been designed

for processing matrices with dimensions other than 4×4 complex. Hence, to allow fair

comparison, we introduce a new figure of merit, QR Processing Efficiency, as follows:

QR Processing Efficiency ,
Total H Matrix Real Element Count

Gate Count × Processing Latency
(5.12)

Note that for complex matrices, the Total H Matrix Real Element Count in equation

5.12 is attained by first using Real Value Decomposition (RVD) to convert the complex

matrix to its real counterpart, and then by counting the total number of elements in the

real-valued matrix. Fig. 5.17 shows the QR Processing Efficiency comparison between
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the the reference QRD chips and our proposed design. Each hyperbola in Fig. 5.17 repre-

sents a constant value of QR Processing Efficiency (computed by taking the reciprocal

of the product of the two axes) for each QRD design. Note that since QR Processing

Efficiency is the reciprocal of the product of the two axes, the distance of the hyper-

bola to the origin is inversely proportional to the QR Processing Efficiency metric. In

other words, hyperbolas that are relatively closer to the origin represent larger value of QR

Processing Efficiency, and hence a better QRD design. Since the hyperbola for the

presented QRD design is closest to the origin, the presented design attains the highest QR

Processing Efficiency. From Fig. 5.17 and Table 5.4, the presented QRD core offers

a 3.6× reduction in processing latency (for 4×4 complex case) and a 2.5× increase in QR

Processing Efficiency, compared to the best reported design [35].

5.9 Summary

In order to fulfill the aggressive requirements of new 4G wireless standards, QR Decompo-

sition implementations are required that decompose large complex channel matrices with

minimum possible processing latency, silicon area and power consumption requirements.

However, for decomposition of large channel matrices, the state-of-the-art QRD implemen-

tations cause high computational complexity and throughput bottlenecks, which leads to

either large QRD Processing Latency or to large area and power requirements.

This chapter proposed a hybrid QR Decomposition scheme that reduces the number of

computations required and increases their execution parallelism by using a unique combi-

nation of Multi-dimensional Givens rotations, Householder transformations and Conven-

tional 2D Givens rotations. The computational complexity is further reduced by using

the CORDIC algorithm to implement these multi-dimensional vector rotations. A semi-

pipelined semi-iterative architecture is presented for the QRD core, that uses innovative

design ideas to develop 2D, Householder 3D and 4D/2D Configurable CORDIC Proces-

sors, such that they can perform the maximum possible number of Vectoring and Rotation

operations within the given number of cycles, while minimizing gate count and maximizing

resource utilization. The test results for the QRD chip, fabricated in 0.13µm 1P8M CMOS

technology, demonstrate that the QRD chip attains the lowest reported processing latency

of 40 clock cycles (144 ns) at 278 MHz for 4×4 complex matrices at room temperature. It

also outperforms all of the previously published QRD designs by offering the highest QR

Processing Efficiency, while consuming only 0.3 mm2 silicon area and 48.2 mW.
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6.1 Conclusions

Developing a high-throughput low-complexity Soft-Output MIMO detector for high-order

constellation sizes and large antenna configurations has been a significant challenge in the

literature. To address this issue, this thesis proposed a novel Soft-Output K-Best MIMO

detection scheme that improved BER performance by utilizing information contained in

the paths discarded at the intermediate tree levels by the K-Best algorithm. The proposed

algorithm reduced the number of computations required significantly by detecting and

processing only useful discarded and K-Best paths and by using approximations to actual

calculations, where appropriate. For the case of 4×4 64-QAM MIMO detection with

K=10, the proposed scheme reduced the number of computations required by a factor of

5 for LLR computation purposes, compared to the MKSE Soft-Output detection scheme

(that uses all discarded and K-Best paths). Furthermore, for the same case, the proposed

scheme leads to a BER performance improvement by 1.7 dB (at BER = 10−3) compared

to the conventional Soft K-Best detection scheme.

An area and power efficient high-throughput VLSI implementation of a 4×4 64-QAM

K-Best MIMO detector was realized using the presented Soft-Output MIMO detection

scheme. The proposed Soft K-Best detector used a deeply pipelined architecture to maxi-

mize throughput and various strategies to minimize hardware and power requirements. In

a 0.13 µm CMOS technology node, the proposed design attained a detection throughput

of up to 655 Mbps, which is 5.8× higher compared to the highest Soft-output detection

throughput published previously. Synthesis results in 65nm CMOS demonstrated that

the proposed MIMO detector attains a peak data throughput of 2 Gbps, which makes it

the only design published to-date that fulfills the aggressive data rate requirements of the

next-generation IEEE 802.16m and LTE-Advanced 4G wireless standards.

The thesis also presented an efficient low-complexity algorithm for channel matrix QR
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Decomposition, an essential channel pre-processing task for MIMO detection. The pro-

posed hybrid QRD algorithm reduces the number of computations required and increases

their execution parallelism by using a unique combination of multi-dimensional and two-

dimensional vector rotations. Further reduction in computational complexity is attained

by implementing the vector rotations using low-complexity Multi-dimensional and House-

holder CORDIC algorithms. Moreover, the thesis proposed a semi-pipelined semi-iterative

VLSI implementation for the QRD core, that used novel architectures for 2D, Householder

3D and 4D/2D Configurable CORDIC processors, to maximize throughput and resource

utilization, while minimizing gate count. The QRD chip was fabricated in 0.13µm 1P8M

CMOS technology and test results demonstrate that it attains the lowest reported pro-

cessing latency of 40 clock cycles (144 ns) at 278 MHz for QRD of 4×4 complex matrices

and offers the highest QR Processing Efficiency compared to all of the previously reported

QRD chips.

6.2 Future Directions

Soft K-Best MIMO Detector - Complex Mode

The complex mode for MIMO detection offers the advantage of processing only half as

many tree levels, compared to the real mode. However, the number of possible children

to be expanded per parent is twice as large and the sorting per level is more complicated.

Moreover, all the operations including the Euclidean distance calculation in all levels are

in the complex domain. However, depending on the objectives and the specifications of

the targeted MIMO detector core, sometimes it might be desirable implement the Soft

K-Best MIMO detector in the complex mode. Hence, extension of the proposed low-

complexity Soft-output K-Best scheme to the complex domain and an efficient hardware

implementation of MIMO detector in the complex mode is an interesting topic worth

investigating further.

Soft K-Best MIMO Detector - Extension to 256-QAM

Since 256-QAM is considered as a possible optional modulation for the emerging 4G stan-

dards, the ASIC implementation of a Soft-output K-Best MIMO detector in Chapter 4 for
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the 4×4 256-QAM case is an interesting avenue for further study. There is no hardware

implementation in the literature for the 256-QAM case, because of the significant increase

in the complexity of a Soft K-Best detector for 256-QAM constellation. However, the

On-Demand nature of K-Best path selection, as well as the improvement ideas to reduce

computational complexity of the LLR Computation operation makes the proposed scheme

a low-complexity Soft K-Best MIMO detection scheme, and hence makes the realization

of a 256-QAM system feasible.

Soft K-Best MIMO Detector and QRD - Extension to 8×8 MIMO Systems

Emerging 4G standards also require MIMO systems with antenna configurations up to 8×8.

The generalized version of the proposed QR Decomposition scheme (presented in Section

5.4.2) can be customized to process 8×8 complex channel matrix. This low-complexity

customized QRD scheme for 8×8 MIMO can then be used, along with the low-complexity,

high-throughput architectures of 2D, Householder 3D and 4D/2D Configurable CORDIC

processors to develop QRD core architecture with low QRD processing latency, low area

and power consumption requirements. Furthermore, the proposed Soft-output K-Best

MIMO detection scheme presented in Chapter 3 is scalable to larger antenna configurations

and larger constellation orders. Hence, this Soft-output K-Best detection scheme can be

directly used to develop a VLSI implementation of a Soft K-Best detector for 8×8 64-QAM,

as well as 8×8 256-QAM MIMO systems.
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A The On-Demand Hard K-Best Detection

Scheme - First/Next Child Calculation [1]

The On-Demand Hard K-Best scheme [1] was described briefly in Section 3.3.1. As men-

tioned, this scheme requires the computation of First Child (FC) and Next Child (NC) for

parent nodes, in order to generate the K-Best path list at each tree level. Based on the

system model in equation 2.13, the first child (s
[1]
l ) of a node in Kl−1 is the one minimizing

el

(
s(l)

)
, i.e.,

s
[1]
l = arg min

sl∈Ω

∣∣el

(
s(l)

)∣∣2 = arg min
sl∈Ω

∣∣Ll

(
s(l)

)
− rllsl

∣∣2. (A.1)

This is because Tl+1

(
s(l+1)

)
is in common between all children of a parent.

Therefore, s
[1]
l can be found by rounding s

[0]
l = Ll

(
s(l)

)
/rll to the nearest odd number

in Ω (represented by ⌈·⌋ in this dissertation). Note that rounding s
[0]
l to the nearest

odd number in Ω is equivalent to calculating 2⌊s
[0]
l + 1

2
+ 0.5⌋ − 1, where ⌊·⌋ represents

the truncation operation. In order to find the next children (NC), the Schnorr-Euchner

technique, [50], is employed, which implies a zig-zag movement around s
[0]
l to select the

]0[
ls

2

4

1

-1-3 +3+1

3

Figure A.1: The order of the SE row-enumeration for four consecutive enumerations in
16-QAM.
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Table A.1: First/Next Child Selection Procedure for Node j [1].

1) First Child

1.1) s
[0]
l = ℓl

1.2) s
[1]
l ← ⌈s[0]

l ⌋, n
j
l ← 2.

2) Next (k-th) Child

2.1) SignBit =





Sign
(
s
[k−1]
l − s

[k−2]
l

)
if s

[k−1]
l 6= ±(

√
M − 1)

−1 if s
[k−1]
l = (

√
M − 1)

+1 if s
[k−1]
l = −(

√
M − 1)

2.2) s
[k]
l ← s

[k−1]
l + n

j
l× SignBit.

2.3) n
j
l =

{
2 if s

[k−1]
l = ±(

√
M − 1)

n
j
l + 2 otherwise

consecutive elements in Ω. Fig. A.1 shows such an enumeration for
√

Q = 4. As shown,

the SE enumeration finds the closest points in a real domain one-by-one by changing the

search direction. In this example -3 is the closest point to s
[0]
l (denoted by arrow 1), the

next point is -1 (denoted by arrow 2) and so on. Note that the direction is negative and

then positive, and normally alternates between the two. However, if the SE enumeration

reaches the upper/lower bound of Ω (+3/-3 in this example), the direction of the search

remains fixed, as is the case for 3-rd and 4-th children in Fig. A.1. Based on this strategy,

the procedure of selecting the first/next child of node j in level l is described in Table

A.1, where nj
l denotes the number of moves, and SignBit represents the direction. In fact,

SignBit alternates between positive and negative unless it reaches ±(
√

M−1). The number

of moves also increases by 2 every time and is reset to 2 if boundaries of Ω are reached.

The detailed pseudo-code shown in Table A.2 describes the On-Demand Hard K-Best

scheme. In the initialization step, the K best nodes of the first level are selected creating K1

(Step I.1, and I.2). For each of the elements in K1, the first child and its corresponding

weight are found (Step II.2, and II.3). The child with the lowest weight is selected as

one of the K best nodes (Step II.4.1 and II.4.2) and is replaced by its next best sibling

(Step II.4.3 to II.4.5). This process is repeated K times to find all the K-Best nodes
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Table A.2: The Proposed Implementation for the On-Demand Hard-Output K-Best Algo-
rithm [1].

I. INITIALIZATION

1) Find the K-Best children of level 1 of tree C1.

2) Set K1 = C1.

II. EXPANSION & SORT

For l = 2 : 1 : 2NT

1) Kl = ∅.
2) Find Cl, the set of the first child of each

node in Kl−1.

3) Calculate Dl, the weights of the elements in Cl.

4) For k = 1 : K

4.1) k̄m̄ = arg mink,m

{
dl

k,m ∈ Dl

}

4.2) Kl ← Kl +
{
cl
k̄m̄

}

4.3) Cl ← Cl −
{
cl
k̄m̄

}
, and Dl ← Dl −

{
dl

k̄m̄

}
.

4.4) Find the next best child of k̄-th parent,cl
k̄m̂

.

4.5) Cl ← Cl +
{
cl
k̄m̂

}
, and Dl ← Dl +

{
dl

k̄m̂

}
.

End

End

III. DETECTION

1) k̄m̄ = arg mink,m

{
d1

k,m ∈ D1

}

2) Announce c1
k̄m̄

with all of its parents up to the

first level of tree as the hard decision output ŝ.
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of level l and is performed for all the levels down to level 2NT . Among the K-Best nodes

of level one, the node that has the lowest PED
(
k̄m̄ = arg mink,m

{
d1

k,m ∈ D1

})
with all

of its ancestors up to the first level are announced to be the output of the hard-decision

detection problem (Step III.1 and III.2).
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B Soft K-Best Detector - Detailed VLSI
Architecture for Hard Detection Specific
blocks [1]

This section provides details about the architecture and functionality of the blocks used

in the proposed Soft K-Best MIMO detector, that are specific to Hard K-Best detection.

Note that the design ideas for these blocks were used from the Hard K-Best MIMO detector

presented in [1]. Detailed description of the overall Soft K-Best detector architecture, some

common sub-blocks used throughout the architecture, details about the major functional

blocks used for Soft K-Best detection was provided in Section 4.4.

B.1 Level I

The input to Level I is r88 and z̄8 and its output is the PEDs of all the elements in Ω,

which are the nodes in the 8-th level of the tree. The detail of the architecture is shown

in Fig. B.1. It employs a 13-bit×13-bit multiplier, eleven adders and the absolute value

block. Note that the absolute value block, representing the ℓ1-norm, can be replaced by

a squaring operation block, ℓ2-norm, which can be easily implemented using a carry-save-

adder technique [11]. However, simulation results show that the difference in the BER

performance is negligible [28]. Fig. B.2 confirms this and shows the performance result for

a 4×4, 64-QAM MIMO system with K = 10 for ℓ1-norm and ℓ2-norm cases. It shows that

the performance result for both cases is almost the same but due to the low-complexity

nature of the ℓ1-norm, it is the preferred approach for the implementation.

Since Level I is on the feed-forward path of the architecture, a fine-grained pipelining

technique can be employed inside the block in order to increase the system throughput.

Two-stage pipelining is employed in Level I, which is shown by two and five positive-

edge-triggered registers/flip-flops added in stage one and two, respectively (Fig. B.1). In

fact, by using the registers the block is broken down to two consecutive stages, which

avoids a long critical path and implies that the critical path of the architecture contains
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Figure B.1: The architecture for Level I with the critical path highlighted [1].

only one multiplication. It is assumed that all the registers used in this thesis are triggered

by the positive-edge of the clock.

B.2 Level II

The input to Level II is the PED values of the 8-th level and its output is the PED values

of the first children in the 7-th level of the tree. In fact, in the Level II block, the first

children of the eight nodes in the 8-th level are determined. Note that due to the structure

of the R matrix in (4.2), the first children in the 7-th level of the tree are all the same and

independent of their parents in level 8 (because r78 = 0). This child is determined and is

used to calculate the updated PED values of the nodes in the 7-th level. Since r77 = −r88,

no extra input is required for the calculations in Level II. The equation of the 7-th level

can be written as

r77z̄7 = r77s7 + v7 ⇒ z̄7 = s7 +
v7

r77

. (B.1)

This implies that in order to find the first child in the 7-th level, z̄7 is applied to the input

of the Mapper/Limiter block whose output is the first child. The architecture of the Level

II block is shown in Fig. B.3. Once the first child was determined it is multiplied by r77

126



B Soft K-Best Detector - Detailed VLSI Architecture for Hard Detection Specific blocks [1]

15 20 25 30 35

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

 

 

l
1
−Norm

l
2
−Norm

Figure B.2: The performance of a 4×4 64-QAM MIMO system with K = 10 for ℓ1-norm
and ℓ2-norm case [1].

using the MU block. The input normalized z̄7 value is also multiplied by r77 after which the

Euclidean distance between the first child and the received vector (i.e., |r77z̄7 − r77s7|) is

calculated and the result is added to the PED values of the 8-th level PEDs to derive the

eight updated PEDs of the 7-th level. A fine-grained pipelining technique has also been

employed in this block to break it into four stages in order to limit the length of the critical

path. Note that in order to guarantee the correct functionality of the architecture after

pipelining, three stages of registers are required to be inserted on all input PEDs coming

from the Level I block (i.e., T1(−1), · · · , T1(+7)).

B.3 Sorter Block

The input to the Sorter block is the set of eight PED values of the 7-th level FCs and

the main task of this block is to generate the sorted list of these PED values. The ar-

chitecture of the Sorter is shown in Fig. B.4. The eight inputs are denoted by D0-D7.

The Ctrl signal is used to load the data in one clock cycle. Using this architecture, it
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Figure B.3: The architecture for Level II with the critical path highlighted [1].

takes four clock cycles to sort all the eight PED values, which are stored in the positive-

edge-triggered registers after the comparators1. This architecture can be used as a general

sorter, which sorts K numbers in K/2 clock cycles. This efficient architecture performs

the sorting operation twice as fast as a bubble sorter [22] because two consecutive mini-

mizations/maximizations are implemented in one clock cycle between two registers. One

such set of consecutive minimizations is highlighted in Fig. B.4, which is also the critical

path of the Sorter block. Since the global critical path of the MIMO detector is larger

than that of the Sorter block, the two consecutive minimizations do not limit the total

throughput. Note that the factor N on the registers, shown in Fig. B.4, represents a

register bank (RBi) of length N bits, used to store the child list (path history) as well as

the updated PED values2.

B.4 PE I Block

PE I is a general block used for all the levels from level 7 to level 2. It receives the sorted

list of the first children of each level and generates the K best candidates of that level. For

instance the output of the PE I in level 7, called NC-L7, is the K = 10 consecutive best

1The comparators are realized using the blocks provided in the ARM standard cell library.
2The path list grows from one level to another so does the value of N . This means that the value of N

is different for each PE I/II stage.
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Figure B.5: The architecture for the PE I block with the critical path highlighted [1].

candidates with the lowest PED values in level 7, generated one-by-one in series at the

output. In other words, PE I implements Steps 4.1-4.5 of the Hard K-Best algorithm.

The architecture of PE I is shown in Fig. B.5. It consists of a sorter, and a block called

NC-Block on the feedback path. In fact, PE I receives the sorted list of the PEDs from the

preceding stage. It finds the best one with the lowest PED and announces it as the next

K-Best candidate at the output, and then calculates the next best sibling of the announced

child through the NC-Block and feeds it back to the sorter to locate the correct location

of the new sibling in the already sorted list in PE I. Finally it performs the comparison

and announces the next K-Best candidate in the next clock cycle. The following points

clarify the details of this architecture:

• The main task of the sorter in this block is to receive a sorted list and finds the right
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position of a new entry in the sorted list, while announcing the entry with the lowest

PED every clock cycle. In other words, as a new entry comes into the sorter, it walks

through the sorter and finds its correct ordered position. This position is updated

every clock cycle by the introduction of the new sibling from the feedback path.

• Before the sorted PED values of the preceding stage are loaded into the PE I block,

there is a reset signal, Rst in Fig. B.5, that initializes all the register banks (except

the one attached to the output) to the maximum possible number. This is necessary

to avoid any interference from the previous values stored in them and makes them

ready to process the new list. The Rst signal also initializes the control signal, Ctrl

in Fig. B.5, to zero whose value increases every clock cycle. The Ctrl signal is used

to load the sorted list from the preceding stage to the PE I block. Note that the data

in the sorted list is loaded one pair at the time. For instance, when Ctrl=0, D0 and

D1 are loaded and when Ctrl=4, D8 and D9 are loaded. The reason is to guarantee

the proper functionality of the architecture when PE I and PE II are co-operating

together. Additional details will be provided in Section B.6. A snapshot of the signal

transitions and the relation between the Clk, Rst, and Ctrl signals are also shown

by an example in Fig. B.5.

• The critical path of the PE I block is highlighted in Fig. B.5. It contains a MUX, a

comparator and the NC-Block. The main task of the NC-Block is to determine the

next best sibling of an already announced best child. It also finds the PED value

of this sibling and sends the information to the sorter part of the PE I block. Since

the NC-Block is on the feedback portion of the architecture, pipelining cannot help

to increase the throughput of the architecture. In fact, this path is the critical path

of the whole MIMO architecture. Therefore, an efficient architecture needs to be

proposed for the NC-Block to ensure an overall high-throughput architecture.

B.5 NC-Block

The detail of the NC-Block architecture is shown in Fig. B.6. The main task of the

NC-Block is to determine the next sibling of the currently announced best child using the

SE enumeration technique. Thus, the NC-Block in the i-th level needs to calculate the

number of jumps ni , the direction of the next move, SignBit, and finally calculates the
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Figure B.6: The architecture for the NC-Block with the critical path highlighted [1].

PED value of the new sibling3. These three tasks are implemented by the architecture

shown in Fig. B.6, where SignBit determines the direction of the SE enumeration for the

next child and Uout(Lout) determines if the SE enumeration has reached the upper (lower)

boundary of the Ω set. In fact, the PED value of the new sibling can be determined as

follows:

Ti = Ti+1 + |Li − riisi| = Ti+1 + rii|L̄i − si|, (B.2)

where (s(l)) was omitted for brevity of discussion and L̄i = z̄i−
∑2NT

j=i+1 r̄ijsj. As mentioned,

any effort to simplify this block and/or reduce its critical path, has a direct and significant

effect on the total achievable data rate. In order to optimize its critical path, the following

two efficient techniques were utilized in our VLSI architecture:

1. Avoid multiplication: Since the value of L̄i depends only on the selected symbols

up to level i and is independent of the current sibling (si), the values of L̄i and

L̄irii can be calculated using the FC-Block in the preceding block4 and forwarded

to the NC-Block as an input (see Fig. B.6). This is a preferred approach as the

required multiplication to calculate L̄irii will be rescheduled and removed from the

3The signal SB in Fig. B.6 represents the sign bit of the result of the adder.
4For PE I of NC-L7, the preceding block is Level II. For all other PE I blocks, this block is the PE II

block in the preceding stage. For instance for PE I in NC-L3, this is done in PE II in FC-L3.
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Figure B.7: The architecture for the NC-Block with improved critical path [1].

critical path and is shifted to a block that is pipelineable. Moreover, the second

multiplication, i.e., riisl, is realized using the MU block.

2. Broken critical path: As can be seen from the NC-Block architecture (Fig. B.6),

the critical path has three adders (one 4-bit and two 16-bit adders), as well as the

MU block. The critical path associated with this architecture is 4.8ns in 0.13 µm

CMOS technology using the ARM standard cell library. The first part of the critical

path (specified by 1st section in Fig. B.6) calculates the next sibling, which can be

transferred to the FC-Block in the preceding block. This means that the FC-Block

would calculate both the first and second best child of each parent and sends them to

the NC-Block. The NC-Block calculates the PED value of the second best child while

determining the third best child and so on. This implies that the NC-Block block

always calculates one child ahead. Using this approach in our ASIC implementation

yields a critical path of length 3.65ns, thus higher overall throughput. The use of

this scheduling technique effectively breaks the critical path of the NC-Block down

into two smaller parts (1st and 2nd section in Fig. B.6). This is shown in Fig. B.7

with the improved critical path. The first section of the NC-Block on the right hand
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Figure B.8: The architecture for the PE II block with the critical path highlighted [1].

side of Fig. B.7 is denoted by NCSub, which is the block that will be added to the

preceding FC-Block in order to calculate the second best child.

In brief, by forwarding all the processing required to start the second section in the

NC-Block to the preceding FC-Block, the critical path is significantly improved.

B.6 PE II Block

The output of PE I is the serial list of K-Best candidates of the the current level, generated

one-by-one at the output. As each of the K-Best candidates is generated, it is sent to the

PE II block to calculate the first children of the next level and sort them as they arrive.

The architecture of the PE II block is shown in Fig. B.8, where Din is the input port and

D0-D9 are the output ports. At the beginning, the first child of the K-Best candidate of

the previous stage and its updated PED value are calculated by the FC-Block, and then

using the sequential sorter, the calculated PED values are sorted as they arrive. Note

that this process is performed on a cycle basis since the PE II block is connected to the

output of the PE I block in a pipelined fashion. In the proposed architecture for PE II,

the sorted PEDs are stored in register banks, depicted by N -bit registers in Fig. B.8 and

denoted by RB0 − RB8. At every clock cycle, two register banks are updated at the same

time. This is because of the fact that the registers on the upper part of the sorter are

located in every other stage. This is required to guarantee the correct functionality of the

PE I. The functionality of the sorter is such that the larger values are shifted to the right

while the smaller values are shifted to the left. Once the last element (10-th element in

64-QAM) enters the sorter, it updates the first two register banks, thus the first two are

guaranteed to have the two smallest PED values. Therefore, at the next clock cycle, they

can be transferred to the following PE I block. After the second clock cycle, the next two

register banks are updated and they are also ready to be transmitted. Therefore, the PED
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Figure B.9: The pairwise data transfer from PE II to PE I, (a) two entries at a time, (b)
one entry at a time [1].

values are transferred to the next level on a pair-by-pair basis. This fact is shown in Fig.

4.1 with grey lines between the PE II block and the PE I block and the numbers on them

represent the number of clock cycles after the arrival of the last K-Best candidate to the

PE II in which they are transferred. This transfer is performed only once every K clock

cycles.

The reason that the data is transferred one pair at a time can be understood in Fig. B.9.

This example is for K = 6, and six register banks in PE I, which are represented by RB0-

RB5. In fact, Fig. B.9 shows the internal register updates between different register banks

in PE I. The first schedule (Fig. B.9.a) shows the transitions when the data is transferred

in pairs, while the second schedule (Fig. B.9.b) shows the case where the data is pushed

into PE I one entry at a time. The expected correct sorted list for this example at the

output of the PE II block is {1, 5, 10, 12, 15, 17}. For example, in the first schedule, {1, 5}
are transferred to PE I in one clock cycle and in the next cycle, {10, 15} are transferred.

However, for the second schedule, each element in the FC list is fed one-by-one to the PE

I block. Note that in the PE I block, each FC that is chosen as the best candidate is fed

back to the NC-Block to calculate its next sibling. This is represented in Fig. B.9 by the

arrows and the associated PED value of the next sibling next to it. For instance, the PED

value of the next sibling of the candidate with PED=1 is 21. The first register bank RB0 is

connected to the output, which represents the list of the K-Best candidates of the current

level. This output is highlighted by the grey line in the schedules (the first row of each
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Figure B.10: The timing scheduling between a typical pair of PE II and PE I [1].

schedule). Note that the one-by-one strategy, i.e., Fig. B.9(b), results in the wrong result

at the output (i.e., {1, 5, 21, 10, 12, 15}), while feeding the data one pair at a time (Fig.

B.9(b)) results in the proper functionality (i.e., {1, 5, 10, 12, 15, 17}).
Note also that once the last element comes in and the first two register banks are sent to

the next stage, the internal min/max functions should be initialized to the highest positive

number to avoid the comparison between the first element of the next iteration and the last

element of the current iteration. This is implemented through the introduction of a MUX

before the min/max functions and is controlled by a control signal (signal C in Fig. B.8).

This control signal is incremented every clock cycle and is initialized to zero at the end of

each iteration. For instance, when C=1, the input to the first two min/max functions are

initialized to the largest 16-bit number (i.e., 16’b1), thus once the first K-Best candidate

of the next iteration comes in, it would not be compared with the previous stored values

in the register banks from the previous iteration. This makes the core utilization 100% as

PE I and PE II are fully pipelined with zero latency with respect to one another.

The scheduling between PE II and PE I blocks along with their control signals such as

signal C, Ctrl(PE I), and Ctrl(PE II) is shown in Fig. B.10. Two Rst signals are two

input signals whereas the other signals are internal signals that perform the scheduling

of various data exchange operations occurring in the two blocks. For instance, one clock

cycle after the Ctrl signal of PE II becomes high, the new input signals are inserted into

PE II and the internal signal C is initialized, which guarantees the proper implementation

of comparison and avoids the interference between two consecutive iterations. It takes 5

clock cycles to insert all the entries into PE II and takes 5 more clock cycles to generate

the first two FC candidates in the output of PE II. This is exactly the time when the Rst

signal of PE I is raised high to initiate reading the FCs two at a time from the preceding
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PE II with the help of its Ctrl signal, which performs as an internal counter determining

the correct scheduling.

All of the above blocks are interconnected together in a pipelined fashion and every

clock cycle data exchange occurs between the adjacent blocks. This means all the data are

calculated and transferred sequentially operand-by-operand between the blocks. A proper

scheduling scheme at the input of the chip guarantees the delivery of the correct r̄ij and

z̄i values to the blocks.
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C Proposed QR Decomposition Core -
Input/Output Data Schedule

As described in Section 5.5, the proposed QRD core processes a new 4×4 complex channel

matrix H and four 4×1 complex received symbol vectors y every 40 cycles, and outputs

the corresponding 4×4 complex upper-triangular R matrix and four 4×1 complex updated

symbol vectors z every 40 clock cycles. However, due to the pipelined architecture of the

QRD core, the total latency from input H and y matrices to output R and z matrices is

160 clock cycles. This is demonstrated at a high level in Fig. C.1. As shown in Fig. C.1,

the channel matrix H1 and symbol vectors y11, y12, y13 and y14, corresponding to the

first set of QRD inputs, are sampled in by the QRD core between clock cycles 1 and 40.

Their corresponding QRD outputs, the R1 matrix and the updated symbol vectors z11,

z12, z13 and z14, are sampled out within the 40 clock cycles, after a 160 cycle latency. In

other words, the first set of outputs are sampled out from cycles 161 to 200. Note that as

shown in Fig. C.1, this schedule for input and output data repeats every 40 clock cycles.

The proposed QRD core reads in or writes out one complex number (two 16-bit Real

numbers) each cycle. Table C.1 shows the schedule used to read in a 4×4 complex channel

characteristic matrix H and four 4×1 complex received symbol vectors y, every 40 clock

cycles. The table also shows the output schedule used by the QRD core to output a

H1 H2

0 40 80

y11 – y14 y21 – y24

0 40 80

R1 R2

0 160 200

z11 – z14 z21 – z24

0 160 200

240

240

cycles

cycles

cycles

cycles

Figure C.1: Timing Schedule used for QR Decomposition Input and Output Data.
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4×4 complex upper-triangular matrix R and four 4×1 complex updated symbol vectors

z, every 40 cycles.
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Table C.1: QRD Core - Input/Output Schedule

Input/Output Sampled Hy In Re Hy In Im Rz Out Re Rz Out Im

at posedge and negedge

of Cycle Number:

1 HRe
1,1 HIm

1,1 16’h0000 16’h0000

2 HRe
1,2 HIm

1,2 RRe
1,1 16’h0000

3 HRe
1,3 HIm

1,3 RRe
1,2 RIm

1,2

4 HRe
1,4 HIm

1,4 RRe
2,2 16’h0000

5 Y Re
1,1 Y Im

1,1 RRe
1,3 RIm

1,3

6 Y Re
1,2 Y Im

1,2 RRe
2,3 RIm

2,3

7 Y Re
1,3 Y Im

1,3 RRe
1,4 RIm

1,4

8 Y Re
1,4 Y Im

1,4 ZRe
1,1 ZIm

1,1

9 HRe
2,1 HIm

2,1 ZRe
1,2 ZIm

1,2

10 HRe
2,2 HIm

2,2 ZRe
1,3 ZIm

1,3

11 HRe
2,3 HIm

2,3 ZRe
1,4 ZIm

1,4

12 HRe
2,4 HIm

2,4 RRe
2,4 RIm

2,4

13 Y Re
2,1 Y Im

2,1 ZRe
2,1 ZIm

2,1

14 Y Re
2,2 Y Im

2,2 ZRe
2,2 ZIm

2,2

15 Y Re
2,3 Y Im

2,3 ZRe
2,3 ZIm

2,3

16 Y Re
2,4 Y Im

2,4 ZRe
2,4 ZIm

2,4

17 HRe
3,1 HIm

3,1 16’h0000 16’h0000

18 HRe
3,2 HIm

3,2 16’h0000 16’h0000

19 HRe
3,3 HIm

3,3 16’h0000 16’h0000

20 HRe
3,4 HIm

3,4 16’h0000 16’h0000
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Input/Output Sampled Hy In Re Hy In Im Rz Out Re Rz Out Im

at posedge and negedge

of Cycle Number:

21 Y Re
3,1 Y Im

3,1 16’h0000 16’h0000

22 Y Re
3,2 Y Im

3,2 16’h0000 16’h0000

23 Y Re
3,3 Y Im

3,3 RRe
3,3 16’h0000

24 Y Re
3,4 Y Im

3,4 16’h0000 16’h0000

25 HRe
4,1 HIm

4,1 RRe
3,4 RIm

3,4

26 HRe
4,2 HIm

4,2 16’h0000 16’h0000

27 HRe
4,3 HIm

4,3 16’h0000 16’h0000

28 HRe
4,4 HIm

4,4 16’h0000 16’h0000

29 Y Re
4,1 Y Im

4,1 16’h0000 16’h0000

30 Y Re
4,2 Y Im

4,2 ZRe
3,1 ZIm

3,1

31 Y Re
4,3 Y Im

4,3 ZRe
3,2 ZIm

3,2

32 Y Re
4,4 Y Im

4,4 ZRe
3,3 ZIm

3,3

33 16’h0000 16’h0000 ZRe
3,4 ZIm

3,4

34 16’h0000 16’h0000 16’h0000 16’h0000

35 16’h0000 16’h0000 16’h0000 16’h0000

36 16’h0000 16’h0000 RRe
4,4 16’h0000

37 16’h0000 16’h0000 ZRe
4,1 ZIm

4,1

38 16’h0000 16’h0000 ZRe
4,2 ZIm

4,2

39 16’h0000 16’h0000 ZRe
4,3 ZIm

4,3

40 16’h0000 16’h0000 ZRe
4,4 ZIm

4,4

140



D QR Decomposition - Detailed Measurement
Results

This Appendix presents the test results from testing five working QRD chips at 0oC, 25oC

and 85oC. The detailed measurement results of all the five chips in terms of the maximum

operating frequency and power consumption is documented in Table D.1 to Table D.15

for different supply voltages.
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Table D.1: Measurement Results for Chip #1 @ 0oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns)1 13.90 9.60 7.70 5.70 4.80 3.90 3.50
f (MHz)2 72 104 130 176 210 258 286
P (mW)3 19.45 22.59 27.85 32.41 39.08 45.52 51.62

1 t: clock period. 2 f: clock frequency.
3 P: core power @ supply voltage.

Table D.2: Measurement Results for Chip #1 @ 25oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 12.82 10.21 8.20 5.88 4.96 4.00 3.59
f (MHz) 78 98 122 170 202 250 278
P (mW) 19.63 23.57 26.25 32.56 39.98 43.36 48.20

Table D.3: Measurement Results for Chip #1 @ 85oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 14.70 11.12 9.10 6.17 5.20 4.14 3.74
f (MHz) 68 90 110 162 192 242 268
P (mW) 17.78 21.33 24.85 30.89 37.32 39.56 43.70
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Table D.4: Measurement Results for Chip #2 @ 0oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 14.72 9.87 7.93 5.90 4.82 3.93 3.54
f (MHz) 68 102 126 170 208 254 282
P (mW) 15.78 19.33 24.25 30.46 37.52 43.86 49.22

Table D.5: Measurement Results for Chip #2 @ 25oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 14.28 10.86 8.62 6.02 5.05 4.10 3.67
f (MHz) 70 92 116 166 198 244 272
P (mW) 18.32 22.45 24.68 30.92 37.68 41.74 45.78

Table D.6: Measurement Results for Chip #2 @ 85oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 16.12 11.62 9.62 6.32 5.32 4.21 3.79
f (MHz) 62 86 104 158 188 238 264
P (mW) 18.83 19.29 22.84 28.45 35.33 37.26 42.52
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Table D.7: Measurement Results for Chip #3 @ 0oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 12.82 9.10 7.35 5.49 4.55 3.78 3.38
f (MHz) 78 110 136 182 220 264 296
P (mW) 20.23 24.83 29.55 35.62 41.95 48.34 54.75

Table D.8: Measurement Results for Chip #3 @ 25oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 11.90 9.62 7.81 5.62 4.81 3.81 3.44
f (MHz) 84 104 128 178 208 262 290
P (mW) 19.95 23.68 27.44 33.56 40.38 45.24 50.47

Table D.9: Measurement Results for Chip #3 @ 85oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 13.51 10.20 8.77 5.88 4.96 4.00 3.59
f (MHz) 74 98 114 170 202 250 278
P (mW) 22.52 23.75 26.32 32.25 39.47 41.46 46.72
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Table D.10: Measurement Results for Chip #4 @ 0oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 13.15 9.25 7.46 5.51 4.58 3.84 3.42
f (MHz) 76 108 134 182 218 260 292
P (mW) 19.45 22.59 27.32 33.79 39.25 46.42 53.32

Table D.11: Measurement Results for Chip #4 @ 25oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 13.88 9.62 7.69 5.62 4.67 3.91 3.52
f (MHz) 72 104 130 178 214 256 284
P (mW) 17.95 20.52 24.54 30.21 36.84 43.23 48.56

Table D.12: Measurement Results for Chip #4 @ 85oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 14.70 11.12 9.25 6.09 5.05 4.09 3.67
f (MHz) 68 90 108 164 198 244 272
P (mW) 20.73 21.74 24.36 30.92 37.45 39.42 44.52
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Table D.13: Measurement Results for Chip #5 @ 0oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 12.20 8.77 7.04 5.37 4.42 3.74 3.35
f (MHz) 82 114 142 186 226 268 298
P (mW) 21.45 26.38 29.55 36.34 42.74 50.84 56.55

Table D.14: Measurement Results for Chip #5 @ 25oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 12.50 9.10 7.35 5.43 4.58 3.78 3.42
f (MHz) 80 110 136 184 218 264 292
P (mW) 17.95 20.52 24.54 30.21 36.84 43.23 48.56

Table D.15: Measurement Results for Chip #5 @ 85oC.

Supply voltage 0.7 V 0.8 V 0.9 V 1.0 V 1.08 V 1.2 V 1.32 V
t (ns) 13.88 10.63 9.10 5.81 5.00 3.96 3.59
f (MHz) 72 94 110 172 200 252 278
P (mW) 21.25 22.58 26.12 33.65 38.32 40.86 46.14
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