VLS| Physical Design: From Graph Partitioning to Timing Closure

Chapter 4 — Global and Detailed Placement

|| Andrew B. Kahng
| Jens Lienig

| hgor L. Markoy

| T Hu

VLSI Physical Design: Original Authors:

Foom Graph Partitioning to Timing Clostune

Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu




Chapter 4 — Global and Detailed Placement

4.1 Introduction

4.2 Optimization Objectives

4.3 Global Placement
4.3.1 Min-Cut Placement
4.3.2 Analytic Placement
4.3.3 Simulated Annealing
4.3.4 Modern Placement Algorithms

4.4 Legalization and Detailed Placement
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4.1 Introduction

Linear Placement
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4.1 Introduction
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4.2 Optimization Objectives

Total Number of Wire Signal
Wirelength Cut Nets Congestion Delay




4.2 Optimization Objectives — Total Wirelength




4.2 Optimization Objectives — Total Wirelength

Wirelength estimation for a given placement

Half-perimeter Complete Monotone Star model
wirelength graph chain
(HPWL) (clique)

o |5 3 Lole 3|8
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HPWL =9 Clique Length = Chain Length =12  Star Length = 15

(21p)Zq < ciquedi(€) = 14.5



4.2 Optimization Objectives — Total Wirelength

Wirelength estimation for a given placement (cont'd.)

Rectilinear Rectilinear Rectilinear Single-trunk
minimum Steiner Steiner Steiner
spanning minimum arborescence tree (STST)
tree (RMST) tree (RSMT) model (RSA)
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4.2 Optimization Objectives — Total Wirelength

Wirelength estimation for a given placement (cont‘d.)

Preferred method: Half-perimeter wirelength (HPWL)

e Fast (order of magnitude faster than RSMT)

e Equal to length of RSMT for 2- and 3-pin nets

e Margin of error for real circuits approx. 8% [Chu, ICCAD 04]
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4.2 Optimization Objectives — Total Wirelength

Total wirelength with net weights (weighted wirelength)

e For a placement P, an estimate of total weighted wirelength is

L(P)= Z w(net) - L(net)

neteP
where w(net) is the weight of net, and L(net) is the estimated wirelength of net.
. Example: @.
Nets Weights d
N]_ - (all bl’ d2) W(N]_) - 2
N, = (c,, d, f) w(N,) = 4 d;
N, = (e, f,) W(N,) =1 “@‘bl

L(P)= ) w(net)-L(net)=2-7+4-4+1-3=33

neteP



4.2 Optimization Objectives — Number of Cut Nets

Cut sizes of a placement

e To improve total wirelength of a placement P, separately calculate the number
of crossings of global vertical and horizontal cutlines, and minimize

LP)= D wp+ D yp(h)

velp heH p
where W ;(cut) be the set of nets cut by a cutline cut



4.2 Optimization Objectives — Number of Cut Nets

Cut sizes of a placement

e Example:

Nets

N, = (a;, by, d,)
N, =(c,, dy, 1))
N; = (e, f,)

e Cut values for each global cutline
bp(vy) =1 b p(vy) =2
bp(hy) =3 b p(hy) =2

e Total number of crossings in P
bp(vy) + b p(vy) + bplhy) + bphy)=1+2+3+2=8

e Cutsizes
X(P) = max( b p(vy), ¥ 5(v,)) = max(1,2) = 2
Y(P) = max( ¥ p(h,), ¥ s(h,)) = max(3,2) = 3



4.2 Optimization Objectives — Wire Congestion

Routing congestion of a placement

e Ratio of demand for routing tracks to the supply of available routing tracks

e Estimated by the number of nets that pass through the boundaries of individual
routing regions

o RO | T
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Wire capacities



4.2 Optimization Objectives — Wire Congestion

Routing congestion of a placement

Formally, the local wire density ¢ o(e) of an edge e between two neighboring

grid cells is
_np(e)
¢p(e)= 5 (€)

where np(e) is the estimated number of nets that cross e and
o p(e) is the maximum number of nets that can cross e

If ¢ (e) > 1, then too many nets are estimated to cross e, making P more likely
to be unroutable.

The wire density of Pis  ®(P) = maX((pP(e))

eckFE

where E is the set of all edges

If ©(P) <1, then the design is estimated to be fully routable, otherwise routing
will need to detour some nets through less-congested edges



4.2 Optimization Objectives — Wire Congestion

Wire Density of a placement

ne(hy) =1 Ne(vy) =1
Ne(hy) =2 ne(v,) =0
Ne(hs) =0 Ne(vs) = 0
np(hy) =1 Np(vs) =0
Ne(hs) = 1 Ne(Vs) = 2
Ne(he) =0 Ne(Ve) = 0
Maximum: ne(e) =2
np(e) 2
DO(P) = =—
(P) o) 3 » Routable




4.2 Optimization Objectives — Signal Delay

Circuit timing of a placement

e Static timing analysis using actual arrival time (AAT) and required arrival time
(RAT)

— AAT(v) represents the latest transition time at a given node v
measured from the beginning of the clock cycle

— RAT(v) represents the time by which the latest transition at v must complete
In order for the circuit to operate correctly within a given clock cycle.

e For correct operation of the chip with respect to setup (maximum path delay)
constraints, it is required that AAT(v) < RAT(v).



Global Placement
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Global Placement

e Partitioning-based algorithms:

— The netlist and the layout are divided into smaller sub-netlists and sub-regions,
respectively

— Process is repeated until each sub-netlist and sub-region is small enough
to be handled optimally

— Detailed placement often performed by optimal solvers, facilitating a natural
transition from global placement to detailed placement

— Example: min-cut placement

e Analytic techniques:

— Model the placement problem using an objective (cost) function,
which can be optimized via numerical analysis

— Examples: quadratic placement and force-directed placement

e Stochastic algorithms:

— Randomized moves that allow hill-climbing are used to optimize the cost
function

— Example: simulated annealing



Global Placement
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4.3.1 Min-Cut Placement

e Uses partitioning algorithms to divide (1) the netlist and (2) the layout region
into smaller sub-netlists and sub-regions

e Conceptually, each sub-region is assigned a portion of the original netlist

e Each cut heuristically minimizes the number of cut nets using, for example,
— Kernighan-Lin (KL) algorithm
— Fiduccia-Mattheyses (FM) algorithm



4.3.1 Min-Cut Placement

Alternating cutline directions Repeating cutline directions
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4.3.1 Min-Cut Placement

Input: netlist Netlist, layout area LA, minimum number of cells per region cells_min

Output: placement P

P=0

regions = ASSIGN(Netlist,LA)

while (regions = @)
region = FIRST_ELEMENT (regions)
REMOVE(regions, region)

if (region contains more than cell_min cells)

(srl,sr2) = BISECT((region)

ADD_TO_END(regions,srl)

ADD_TO_END(regions,sr2)
else

PLACE(region)

ADD(P,region)

/[ assign netlist to layout area

I/ while regions still not placed

/I first element in regions

I/l remove first element of regions

/l divide region into two subregions
/[ srl and sr2, obtaining the sub-
I/l netlists and sub-areas

/[ add srl to the end of regions

/[ add sr2 to the end of regions

/] place region
/[ add region to P



4.3.1 Min-Cut Placement — Example

Given: cut,

5 DD

Task: 4 x 2 placement with minimum wirelength using alternative
cutline directions and the KL algorithm
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4.3.1 Min-Cut Placement — Terminal Propagation

sle 1208

e Terminal Propagation

— External connections are represented by artificial connection points
on the cutline

— Dummy nodes in hypergraphs

8“15 » @1 0.




4.3.1 Min-Cut Placement

e Advantages:
— Reasonably fast
— Objective function can be adjusted, e.g., to perform timing-driven placement

— Hierarchical strategy applicable to large circuits

e Disadvantages:

— Randomized, chaotic algorithms — small changes in input lead to large changes
in output

— Optimizing one cutline at a time may result in routing congestion elsewhere



4.3.2 Analytic Placement — Quadratic Placement

e Obijective function is quadratic; sum of (weighted) squared Euclidean distance
represents placement objective function

1 < 2 2
L(P) :EZCij (xi _xj) +(yi —yj)
i,j=1
where n is the total number of cells, and c(i,)) is the connection cost between cells j and j.

e Only two-point-connections

e Minimize objective function by equating its derivative to zero
which reduces to solving a system of linear equations



4.3.2  Analytic Placement — Quadratic Placement

e Similar to Least-Mean-Square Method (root mean square)

e Build error function with analytic form: E(a,b) = Z(a x; +b—y; )2
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4.3.2 Analytic Placement — Quadratic Placement

L(P>=%ancg((xi _xj) i +(yi —yj) 2)

i,j=1
where n Is the total number of cells, and c(/,j) 1s the connection cost between cells j and j.

e Each dimension can be considered independently:
n n

L(P)= D el p)x=x)  L(P)= D cli,)yi—y)

i=1, j=1 i=1, j=1

e Convex quadratic optimization problem: any local minimum solution
is also a global minimum

e Optimal x- and y--coordinates can be found by setting the partial derivatives
of L,(P) and L (P) to zero



4.3.2 Analytic Placement — Quadratic Placement

L(P>=%ancg((xi _xj) i +(yi —yj) 2)

i,j=1
where n Is the total number of cells, and c(/,j) 1s the connection cost between cells j and j.

e Each dimension can be considered independently:

L(P)= Y e -x)"  L(P)= D cli )iy,
i=1, j=1 i=1, j=1
—l— ——
oL (P
—aLx(P):AX—bx:O D) 4y b, =0
oX oY 4

where A is a matrix with A[/][j] = -c(i,j)) when | # |,
and A[/][i] = the sum of incident connection weights of cell /.

Xis a vector of all the x-coordinates of the non-fixed cells, and b, is a vector
with b,[/] = the sum of x-coordinates of all fixed cells attached to /.

Y'is a vector of all the y-coordinates of the non-fixed cells, and b, is a vector
with b []] = the sum of y-coordinates of all fixed cells attached to /.



4.3.2 Analytic Placement — Quadratic Placement

L(P>=%ancg((xi _xj) i +(yi —yj) 2)

i,j=1
where n Is the total number of cells, and c(/,j) 1s the connection cost between cells j and j.

e Each dimension can be considered independently:
n n

L(P)= Y e —x)"  L(P)= D cli)@i—y;)
i=l, j=1 i=1, j=1
————— —————

oL (P

e System of linear equations for which iterative numerical methods can be used
to find a solution



4.3.2 Analytic Placement — Quadratic Placement

e Mechanical analogy: mass-spring system

kS

— Squared Euclidean distance is proportional to the energy of a spring
between these points

— Quadratic objective function represents total energy of the spring system;
for each movable object, the x (y) partial derivative represents the total force
acting on that object

— Setting the forces of the nets to zero, an equilibrium state is mathematically
modeled that is characterized by zero forces acting on each movable object

— At the end, all springs are in a force equilibrium with a minimal total spring
energy; this equilibrium represents the minimal sum of squared wirelength

— Result: many cell overlaps



4.3.2 Analytic Placement — Quadratic Placement

e Second stage of quadratic placers: cells are spread out to remove overlaps
e Methods:

— Adding fake nets that pull cells away from dense regions toward anchors
— Geometric sorting and scaling

— Repulsion forces, etc.

LEL g
m m
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4.3.2

Analytic Placement — Quadratic Placement

e Advantages:

Captures the placement problem concisely in mathematical terms
Leverages efficient algorithms from numerical analysis and available software
Can be applied to large circuits without netlist clustering (flat)

Stability: small changes in the input do not lead to large changes in the output

e Disadvantages:

Connections to fixed objects are necessary: 1/0 pads, pins of fixed macros, etc.



4.3.2  Analytic Placement — Force-directed Placement

e Cells and wires are modeled using the mechanical analogy of a mass-spring
system, i.e., masses connected to Hooke’s-Law springs

5

e Attraction force between cells is directly proportional to their distance

e Cells will eventually settle in a force equilibrium — minimized wirelength



4.3.2  Analytic Placement — Force-directed Placement

B —

e Given two connected cells a and b, the attraction force f_, exertedonaby bis

 —— ->

F, =c(a,b)-(b—a)
where
— c(a,b) is the connection weight (priority) between cells a and b, and

— (l; — 2) is the vector difference of the positions of a and b in the Euclidean plane

e The sum of forces exerted on a cell i connected to other cells 1...j is

Pi-YF

c(i,j)#0

e Zero-force target (ZFT): position that minimizes this sum of forces



4.3.2  Analytic Placement — Force-directed Placement

Zero-Force-Target (ZFT) position of cell i

o a J
/
d< <G—b
A
ZFT Positon ~ © l
min £, =c(i,a) - @—1)+c(ib) - (b—1)+ci,c)- (€ —1)+c(id)- [d—1)



4.3.2  Analytic Placement — Force-directed Placement

Basic force-directed placement

e Iteratively moves all cells to their respective ZFT positions

e x- and y-direction forces are set to zero:

D i) () =x)=0 Y el ) () -] =0

c(i, j)#0 c(i,j)#0

e Rearranging the variables to solve for x° and y?° yields

.. 0 .. 0
ZC(Z, 7 X ZC(Z’ J): Yj Computation of

0 c(i,))=0 0 c(i,))=#0 ZFT position of cell i
X = =

i Vi = .. connected with
l Zc(i, 7) ZC(Z, J) cells1... j

c(,j)#0 c(i,j)#0




4.3.2  Analytic Placement — Force-directed Placement

Example: ZFT position

Given:
— Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
— Pad positions: Inl (2,2), In2 (0,2), In3(0,0), Out(2,0)
— Weighted connections: c(a,Inl) =8, c(a,In2) =10, c(a,/n3) =2, c(a,Ouf) =2

Task: find the ZFT position of cell a

In2 Inl
Inl _| 2 """"""E ___________ e
In2 ‘Do—om i i
| T S
In3 5 |
In3 - Out
0 1 2



4.3.2  Analytic Placement — Force-directed Placement

Example: ZFT position

Given:
— Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
— Pad positions: Inl (2,2), In2 (0,2), In3(0,0), Out(2,0)
Solution:
D cla, )
0 c(i,j)=0 c(a,Inl)- xp, +c(a,In2)- xp, +c(a,In3)- x5 +c(a,0ut)-xp,, 8:2+10-0+2-0+2-2 20
X, = = = =—% 09
Zc(a, /) c(a,Inl)+c(a,In2)+c(a,In3)+c(a,Out) 8+10+2+2 22
c(i, j)#0
> e(a, )y
0 _ c(i,j)#0 _ca,In)- y,, +ca,In2)- y,, +c(a,In3)- y,; +c(a,0ul)- y,,, _ 8-2+10-2+2-0+2-0 _ ﬁ ~1.6
“ ZC(LZ, 7) c(a,Inl)+c(a,In2) + c(a, In3) + c(a, Oul) 8+10+2+2 22

c(i,j)#0

ZFT position of cell ais (1,2)



4.3.2  Analytic Placement — Force-directed Placement

Example: ZFT position

Given:
— Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
— Pad positions: Inl (2,2), In2 (0,2), In3(0,0), Out(2,0)

Solution:

ZFT position of cell ais (1,2)



4.3.2  Analytic Placement — Force-directed Placement

Input: set of all cells V
Output: placement P

P = PLACE(V)
loc = LOCATIONS(P)
foreach (cell ¢ € V)
status[c] = UNMOVED
while (ALL_MOVED(V) || 'STOP())

¢ = MAX_DEGREE(V,status)

ZFT pos=ZFT _POSITION(c)
if (loc[ZFT _pos] == @)
loc[ZFT pos]=c
else
RELOCATE(c,loc)
status[c] = MOVED

/[ arbitrary initial placement
/] set coordinates for each cell in P

// continue until all cells have been
/[ moved or some stopping

/[ criterion is reached

// unmoved cell that has largest

/[ number of connections

Il ZFT position of ¢

/[ if position is unoccupied,

/[ move c to its ZFT position

/I use methods discussed next
/I mark ¢ as moved



4.3.2  Analytic Placement — Force-directed Placement

Finding a valid location for a cell with an occupied ZFT position

(p: incoming cell, g: cell in p's ZFT position)

e If possible, move p to a cell position close to q.

e Chain move: cell p is moved to cells g’s location.

— Cell g, in turn, is shifted to the next position. If a cell ris occupying this space,
cell ris shifted to the next position.

— This continues until all affected cells are placed.

e Compute the cost difference if p and g were to be swapped.
If the total cost reduces, i.e., the weighted connection length L(P) is smaller,

then swap p and q.



4.3.2  Analytic Placement — Force-directed Placement (Example)

Given: | |

Net Weight i f

N, = by, by Ny = 2 by b " b,
1~ \M1» V3 (A ..E—E..

N, = (b, b,) c(N,) = 1 : :




4.3.2  Analytic Placement — Force-directed Placement (Example)

Given:
Nets Weight o
N, = (b,, by) c(N) =2 0y ,L, s
N, = (by, bs) C(Np) =1
0 1 2
_ L(P)
Incoming ZFT position Cellg before L(P) / placement
cell p of cell p move after move
N 0
D elbs. ) .
by o b0 _20+L1_, by LP)=5 LA)=5 b b b

b 2
S Dby 2

c(by,/)%0 = No swapping of b; and b,



4.3.2  Analytic Placement — Force-directed Placement (Example)

Given:
Nets Weight o
N, = (b, by) c(N,) =2 O [ 02| [ s
N, = (b, b,) c(Ny) =1
0 1 2
. L(P)
Incoming ZFT position Cellg pefore  L(P)/placement
cell p of cell p move after move
N 0
D elby, )] L
by 0 c(by.))%0 _20+11 o by L(P)=5 L(P)=5 b b, b,
" T2+l ——
S ) b)) ¥
c(by, /)#0 — No swapping of b; and b,
D elby. )
L0 _ clh )20 12, L J
o LTS e s e [ e e
c(by, /)#0

— Swapping of b, and b,



4.3.2  Analytic Placement — Force-directed Placement

e Advantages:
— Conceptually simple, easy to implement

— Primarily intended for global placement, but can also be adapted to detailed
placement

e Disadvantages:
— Does not scale to large placement instances
— Is not very effective in spreading cells in densest regions

— Poor trade-off between solution quality and runtime

e In practice, FDP is extended by specialized techniques for cell spreading

— This facilitates scalability and makes FDP competitive



4.3.3 Simulated Annealing

Cost

UL LTI [T ]

T *TT T ITTT]

v

Time
e Analogous to the physical annealing process

— Melt metal and then slowly cool it
— Result: energy-minimal crystal structure

e Modification of an initial configuration (placement) by moving/exchanging
of randomly selected cells

— Accept the new placement if it improves the objective function

— If no improvement: Move/exchange is accepted with temperature-dependent
(i.e., decreasing) probability



4.3.3 Simulated Annealing — Algorithm

Input:  set of all cells V
Output: placement P

T=T,
P = PLACE(V)
while (T>T,,,)
while (ISTOP())
new_P = PERTURB(P)
A cost = COST(new_P) — COST(P)
if (Acost<0)
P=new P
else
r=RANDOM(0,1)
if (I’< e -Acost/T)
P=new P

I/ set initial temperature
/[ arbitrary initial placement

/l not yet in equilibrium at T

Il cost improvement

/[ accept new placement
// no cost improvement
// random number [0,1)
Il probabilistically accept

[lreduce T,0< a <1



4.3.3 Simulated Annealing

e Advantages:

— Can find global optimum (given sufficient time)
— Well-suited for detailed placement

e Disadvantages:
— Very slow

— To achieve high-quality implementation, laborious parameter tuning is necessary

— Randomized, chaotic algorithms - small changes in the input
lead to large changes in the output

e Practical applications of SA:

— Very small placement instances with complicated constraints

— Detailed placement, where SA can be applied in small windows
(not common anymore)

— FPGA layout, where complicated constraints are becoming a norm



4.3.3 Simulated Annealing

Cost

UL LTI [T ]

T *TT T ITTT]

v

Time
e Analogous to the physical annealing process

— Melt metal and then slowly cool it
— Result: energy-minimal crystal structure

e Modification of an initial configuration (placement) by moving/exchanging
of randomly selected cells

— Accept the new placement if it improves the objective function

— If no improvement: Move/exchange is accepted with temperature-dependent
(i.e., decreasing) probability



4.3.4 Modern Placement Algorithms

e Predominantly analytic algorithms

e Solve two challenges: interconnect minimization and cell overlap removal
(spreading)

e Two families:

—~— —~_

Non-convex

uadratic placers L
Q P optimization placers



4.3.4 Modern Placement Algorithms

—~—

Quadratic placers

e Solve large, sparse systems of linear equations (formulated
using force-directed placement) by the Conjugate Gradient algorithm

e Perform cell spreading by adding fake nets that pull cells away
from dense regions toward carefully placed anchors



4.3.4 Modern Placement Algorithms

[ —

Non-convex
optimization placers

e Model interconnect by sophisticated differentiable functions,
e.g., log-sum-exp is the popular choice

e Model cell overlap and fixed obstacles by additional (non-convex) functional
terms

e Optimize interconnect by the non-linear Conjugate Gradient algorithm
e Sophisticated, slow algorithms

e All leading placers in this category use netlist clustering to improve
computational scalability (this further complicates the implementation)



4.3.4 Modern Placement Algorithms

—~gg— —~g—
Quadratic Non-convex
Placement optimization placers

Pros and cons:
e (Quadratic placers are simpler and faster, easier to parallelize
e Non-convex optimizers tend to produce better solutions

e As of 2011, quadratic placers are catching up in solution quality
while running 5-6 times faster



4.4 Legalization and Detailed Placement

=P 4.4 Legalization and Detailed Placement



4.4 Legalization and Detailed Placement

e Global placement must be legalized
— Cell locations typically do not align with power rails

— Small cell overlaps due to incremental changes, such as cell resizing or buffer
insertion

e Legalization seeks to find legal, non-overlapping placements for all placeable
modules

e Legalization can be improved by detailed placement techniques, such as
— Swapping neighboring cells to reduce wirelength
— Sliding cells to unused space

e Software implementations of legalization and detailed placement are often
bundled



4.4 Legalization and Detailed Placement

Legal positions of standard cells between VDD and GND rails

| inv ][ NAND [ NOR |




Summary of Chapter 4 — Problem Formulation and Objectives

e Row-based standard-cell placement

— Cell heights are typically fixed, to fit in rows (but some cells may have double
and quadruple heights)

— Legal cell sites facilitate the alignment of routing tracks, connection to power
and ground rails

o Wirelength as a key metric of interconnect
— Bounding box half-perimeter (HPWL)
— Cliques and stars
— RMSTs and RSMTs

e Objectives: wirelength, routing congestion, circuit delay
— Algorithm development is usually driven by wirelength

— The basic framework is implemented, evaluated and made competitive
on standard benchmarks

— Additional objectives are added to an operational framework



Summary of Chapter 4 — Global Placement

e Combinatorial optimization techniques: min-cut and simulated annealing

Can perform both global and detailed placement
Reasonably good at small to medium scales
SA is very slow, but can handle a greater variety of constraints

Randomized and chaotic algorithms — small changes at the input can lead
to large changes at the output

e Analytic techniques: force-directed placement and non-convex optimization

Primarily used for global placement

Unrivaled for large netlists in speed and solution quality
Capture the placement problem by mathematical optimization
Use efficient numerical analysis algorithms

Ensure stability: small changes at the input can cause only small changes
at the output

Example: a modern, competitive analytic global placer takes 20mins for global
placement of a netlist with 2.1M cells (single thread, 3.2GHz Intel CPU)



Summary of Chapter 4 — Legalization and Detailed Placement

Legalization ensures that design rules & constraints are satisfied

— All cells are in rows

— Cells align with routing tracks

— Cells connect to power & ground rails

— Additional constraints are often considered, e.g., maximum cell density

e Detailed placement reduces interconnect, while preserving legality
— Swapping neighboring cells, rotating groups of three
— Optimal branch-and-bound on small groups of cells
— Sliding cells along their rows
— Other local changes

e Extensions to optimize routed wirelength, routing congestion and circuit timing

e Relatively straightforward algorithms, but high-quality, fast implementation
IS Important

e Most relevant after analytic global placement, but are also used after min-cut
placement

e Rule of thumb: 50% runtime is spent in global placement, 50% in detailed
placement



