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Abstract In this paper we propose a novel reservation

plan adaptation system based on machine learning. In

the context of cloud auto-scaling, an important issue

is the ability to define and use a resource reservation

plan, which enables efficient resource scheduling. If

necessary, the plan may allocate new resources upon

reservation where a sufficient amount of resources

is available. Our solution allows the updating of a

reservation plan initially prepared by an administra-
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tor. It makes it possible to adapt reservation plans

one or more weeks ahead. Hence, it allows time for

the administrator to analyze the plan and discover

potential problems with resource under-provisioning

or over-provisioning, which may prevent server over-

load in the former case and unnecessary expenses

in the latter. It also makes it possible to extract and

analyze the knowledge learned, which may provide

useful information about resource usage characteris-

tics. The proposed solution is tested on OpenStack

using real Wikipedia server traffic data. Experimental

results demonstrate that machine learning enables an

improvement in resource usage.

Keywords Automated cloud resource planning ·

Supervised machine learning · Online plan adaptation

1 Introduction

One of the key features of cloud computing is scal-

ability, which is achieved by appropriate resource

scheduling. If requirements exceed current resources,

new resources are allocated. However, in order for

a request for cloud resources to be fulfilled, a suffi-

cient amount of resources should be available. This

is why resource reservation is an important feature

in any virtualization-based system. There are two

basic use cases where reservation plays a crucial role:

(i) resource reservation for immediate use; and (ii)

resource reservation for future use.

(2019) 17:797–812

/ Published online: 13 July 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-019-09487-x&domain=pdf
http://orcid.org/0000-0003-4512-9337
mailto:piotr.nawrocki@agh.edu.pl
mailto:bartlomiej.sniezynski@agh.edu.pl
mailto:kz@agh.edu.pl
mailto:michal.wilk.956@gmail.com
mailto:m.jarzab@samsung.com


B. Sniezynski et al.

The first case refers to a situation where – even if

some reserved resources are to be consumed instantly

– there is latency between the issuance of a resource

reservation request and the actual allocation of the

resources requested. During such latency period, the

resource capacity in question could change, e.g. due

to a failure or allocation to a different request. There-

fore, system response to a request concerning resource

reservation for immediate use should have a validity

period indicating the time limit until which the sys-

tem can reserve the resources requested. During this

time limit, the system should proceed to allocation if

the user wishes to use the resources requested. If allo-

cation does not occur within the validity period, the

system response to the resource reservation request

in question becomes invalid and the system is not

obliged to provide these resources anymore. Reserva-

tion requests for immediate use do not have a start time

but may have an end time.

The second use case addresses a scenario where cloud

operators may want to reserve extra resources for future

use. Such a necessity could arise from predicted con-

gestion, e.g. due to local traffic increase in office hours

during a specific day or week, natural disasters etc.

In such a case, a resource reservation request sent to

the system includes a start time (and an end time if

necessary). The start time indicates at what time the

resource reserved should be available to the consumer

in question. Here, the requirement is that the resources

reserved should be available when the start time

arrives. After the start time has arrived, the resources

reserved could be allocated to the consumer(s) in

question when an explicit allocation request is issued.

Resource reservation requests over a future period

constitute a resource reservation plan.

This paper addresses the second scenario. The

availability of a comprehensive reservation plan is

especially important in the case of private clouds with

limited resources, which require auto-scaling func-

tionality to preserve QoS under changing load con-

ditions, e.g. a problem emerges with 5G technology

where Network Function Virtualization (NFV) based

on cloud infrastructure is used [1, 2].

The accessibility of the reservation plan within

a longer time horizon may also be very important

in some applications as it makes it possible to dis-

cover potential problems with insufficient resources in

advance, leaving enough time to mitigate them. For

instance, new resources may be added from another

(public) cloud or transferred into the cloud from

another tenant or application.

A reservation plan may be drawn up manually

in advance by administrators. However, such plan-

ning is complex and very imprecise because it

requires knowledge about future system load and

accurate predictions of future demand. Therefore,

many researchers [3, 4] are working on methods which

enable the automatic development of such plans and

adapting them to new operating conditions.

The contribution made by this paper consists in

putting forward a novel reservation plan adaptation

system based on machine learning (ML) which is

meant to improve plan accuracy. This system allows

iterative adaptations, using the MAPE-K (Monitor-

Analyze-Plan-Execute over a shared Knowledge) pat-

tern [5, 6], of initial versions of long-term reservation

plans (e.g. made a week or a month ahead) during sys-

tem operation. Machine learning algorithms are lever-

aged to create resource demand models on the basis

of the knowledge obtained. The manner in which this

system can be used with OpenStack-related resource

reservation systems such as Blazar and Promise is

elaborated.

In this paper we assume that resources are allocated

in units that correspond to Virtual Machine (VM) pro-

files. To detect insufficient (or excessive) resource

allocation, VM CPU usage is measured. In the context

of VM auto-scaling [7, 8], an important issue is the

ability to define and use a resource reservation plan

[9], which guarantees the availability of a certain num-

ber of VMs within a given period. Simultaneously, it

limits the ability to use non-reserved resources.

It is possible to reserve either a vector of resources

(e.g., compute, storage and network) or each resource

separately. The reservation of a vector of resources is

much more complicated, which is why our research

started with computational resources as represented

by the VM. Our goal is to automatically create a VM

reservation plan based on an initial one and adapt it

subsequently. The initial plan may be drawn up by

an administrator or created automatically from mon-

itoring data. Currently, we assume that all VMs have

the same predefined configuration. As a result, the

scheduler checks CPU usage on VMs and in the case

of insufficient processing power, a new VM may be

allocated to the application because the reservation

guarantees sufficient processing power. The proposed

ML algorithm is used to adjust (increase or decrease)
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the number of VMs reserved in order to fit the pre-

dicted resource utilization. As a result, a plan is pro-

duced, which may be treated as a dynamic quota on the

number of VMs that guarantees a number that is nei-

ther too high nor too low. A slightly similar approach

was introduced in [10] where proactive prediction-

based statistical models where tested in anticipating

future resource requirements. The authors viewed the

issue as a time-series analysis problem and compared

the results obtained both with a sliding window and

without it.

It is important to point out that if a machine learning

algorithm with symbolic knowledge representation

(e.g. a decision tree) is used, then it is possible to visu-

alize the knowledge learned in a way that is suitable

for human analysis. As a consequence, completely

new kinds of useful information about resource usage

characteristics can be derived. To test the solution in

a realistic cloud environment, we decided to use the

OpenStack real-life cloud framework, which is among

the most popular solutions, for building and managing

private and public clouds [11, 12].

This paper has the following outline. At the begin-

ning, we analyze the literature related to cloud resources

and afterwards, we review OpenStack resource reser-

vation projects. Next, we propose a Knowledge-Based

Plan Adaptation Architecture using machine learning,

which provides the reservation plan adaptation func-

tionality and presents its implementation. Finally, we

present experimental results and conclusions.

2 Related Work

An important issue related to the use of cloud computing

is the ability to manage resources. Management mech-

anisms in the context of cloud computing (and in partic-

ular with respect to federated clouds) have been exten-

sively analyzed in [13]. The authors present resource

management functions in the federated cloud envi-

ronment such as resource pricing, resource discovery,

resource selection, resource monitoring, resource allo-

cation, and disaster management. Important functions

from the point of view of cloud computing system

management are primarily resource monitoring and

allocation which also enable resource prediction and

reservation. However, this study does not include a

broader analysis of resource reservation options aimed

at optimizing the use of resources or a discussion of

the possibility of using ML for resource management,

which appear to be important research directions.

Research on the use of ML for cloud resource man-

agement is presented, for example, in [14], where

the authors propose an intelligent resource manage-

ment mechanism which allows the optimization of

system operation costs and the adaptive allocation of

resources. To this end, they use deep reinforcement

learning mechanisms. However, there is a shortage of

research in the field of auto-scaling, resource reser-

vation and resource use prediction. In another article

[15], the authors also use ML algorithms for man-

aging cloud resources. Using neural networks, they

optimize VM migration, taking into account energy

consumption and SLA parameters. However, that arti-

cle only deals with some aspects of managing current

resources and does not discuss resource prediction and

adapting resource reservation plans.

A lot of research on cloud resource management

is primarily focused on resource allocation methods.

For example, in [16] the authors compare resource

(such as computing, storage, communication) alloca-

tion mechanisms based on their common features such

as time complexity, searching mechanisms, allocation

strategies, optimality, and operational environments.

An important aspect of resource management is

the possibility of auto-scaling. In [7], the authors

propose a system which analyzes the trend of work-

load changes and allows for automatic auto-scaling

without user-provided metrics and threshold values.

Most solutions take into account only the amount

of resources used rather than their cost. However,

there are studies which consider the costs of using

cloud resources, such as the auto-scaling mechanism

described in [17], which uses the Earliest Deadline

First (EDF) algorithm to schedule tasks. This mech-

anism is based on a monitor-control loop and makes

it possible to complete all jobs before user-specified

deadlines in a cost-efficient way.

However, only the resource reservation mechanism

makes it possible to set up the required resources in

advance and guarantee their availability. There are few

studies regarding the reservation of cloud resources.

In one of them [18], the authors designed the Kraken

system which enables the dynamic updating of min-

imum guarantees for both network bandwidth and

compute resources at runtime. This system does not

require prior knowledge of the resource needs of the

applications but is capable of modifying reservations
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at runtime. However, most studies do not take into

account the reservation of cloud resources, but only

forecasts of their consumption. The workload trace

from the Large Hadron Collider Computing Grid was

also used in [19]. This paper presents a time delay

neural network (TDNN) and polynomial regression

methods for predicting future workloads in the Grid or

Cloud platform.

In [20], the authors predict application usage and

make cloud resources available to the user in advance.

The user determines initial and maximal demands.

Next, VM demands are monitored in subsequent time

windows (30min). The list of requested configurations

is compiled. Patterns may be discovered and used

for prediction. Another work about CPU, storage and

memory usage prediction is [8]. It is based on mod-

els learned from historical time series with Support

Vector Regression being used to predict future values.

Here, resources may be allocated in advance as well.

This work is continued in [21], where two Long

Short-Term Memory Recurrent Neural Networks

(LSTM-RNN) are used. They make it possible to rec-

ognize and learn long-term dependencies with up to

1,000-step time lags between relevant events. Input

data consist of the CPU usage observed while output is

a scaling decision. Here, resources are also measured

in VMs. Therefore, each scaling decision corresponds

to the number of VMs to scale up or down. This is cal-

culated according to the difference between predicted

CPU needs and current resources. The first LSTM-

RNN is employed to deal with normal workloads.

The second LSTM-RNN is used to deal with Slashdot

situations (unpredictable increases in requests). This

allows the system to detect Slashdot situations at ear-

lier stages and perform appropriate scaling actions.

Predictions are made by the network with the lower

current prediction error.

The problem of resource utilization and alloca-

tion is also important in other ICT domains such as

IoT where power is not taken for granted. For exam-

ple, in [22] the authors are trying to predict, using

weather forecasts, how much energy can be potentially

harvested and on that basis make decisions which

device peripherals can be used without overdrawing

the power budget predicted. We have also applied an

approach similar to the one described in [23, 24],

where machine learning algorithms are used to create

models predicting battery usage and computation time

for tasks executed on mobile devices.

The need for managing and reserving resources occurs

in various systems, in particular in systems that allocate

virtualized resources such as VMware, Kubernetes

and OpenStack [25]. Currently, the most widespread

virtualization platform, used for example by telecom-

munications operators for NFV deployment, is Open-

Stack [26]. It enables the implementation of virtual

network functions and ensures the appropriate level

of QoS parameters. Therefore, ensuring the possibil-

ity of resource reservation on the OpenStack platform

seems particularly important. Considerations regard-

ing the OpenStack platform in the context of resource

reservation are presented in the next chapter.

The analysis of existing solutions in the field of

resource management in the cloud shows that there

is currently no broader research that would exploit

resource reservation plans while optimizing the use of

cloud resources. Models that are built when develop-

ing such reservation plans require certain parameters

whose values are not known in advance, and therefore

it is not possible to immediately develop an opti-

mal booking plan. Therefore, it is necessary to build

such models on the basis on some experience and

knowledge acquired (for instance, ML models). The

research conducted by the authors is an attempt to fill

the gap in the area of the use of resource reservation

plans in cloud computing and their improvement with

the use of ML models.

3 Resource Reservation in Open Stack Platform

As previously mentioned, one of the most popular

platforms that allocate virtualized resources is Open-

Stack. It is an open-source solution that enables the

creation of a cloud computing environment, which

consists of different types of storage, servers and net-

work devices, assuming a high level of scalability.

OpenStack is an IaaS (Infrastructure as a Service)

solution in which the provider offers resources to

clients and enables them to create their own virtual

infrastructures. This environment consists of multiple

interoperable components such as Compute (Nova)

or Networking (Neutron). In the context of resource

reservation, OpenStack includes the Blazar service,

which enables users to reserve resources of a certain

type for a specific period and it leases these resources

to users based on their reservations. There is also

an independent solution, i.e. Promise, which makes

800



VM Reservation Plan Adaptation Using Machine Learning in Cloud Computing

Table 1 Comparison between Blazar and Promise

Blazar Promise

Integration with OpenStack Native – plugin Separate application

Maturity of the project Development phase Development phase

Type of reserved resources Bare metal and VMs Bare metal

Ability to specify parameters of reserved resources Yes Yes

Machine / calculation priorities No No

API documentation Basic Complete

Ability to check available resources Yes Yes

Prediction of reservation No No

Using ML to determine the reservation plan No No

Possibility to extend functionality Yes Yes

it possible to reserve and manage resources and can

be used with OpenStack. In our research, we use the

OpenStack platform because of its popularity and the

solutions available which allow for the reservation of

resources. However, the resource reservation problem

is general and exists in any system which allocates

resources.

Blazar1 (ex. Climate) is an OpenStack plugin that

provides the resource reservation service in the Open-

Stack cloud for different resource types – both virtual

(instances) and physical (hosts). A Blazar user can

request cloud environment resources (virtual ones:

instances, volumes, networks, and hardware ones: full

hosts with specific RAM and CPU characteristics) to

be leased to his or her project for a specific time,

immediately or in future. At the moment, Blazar does

not support resource availability checking. Therefore,

it is possible to reserve more resources than a cloud

can provide. According to project website, this feature

is going to be added in subsequent releases, along with

volume and stack reservation.

Promise2 is a resource reservation and management

project whose purpose is to identify NFV related require-

ments and to implement resource reservation for future

usage by the capacity management of resource pools with

respect to compute, network and storage. Reserved

resources are guaranteed to a given user/client for

a period expressed by its start and end times. The

Euphrates implementation of Promise is built with the

1Blazar – https://docs.openstack.org/blazar
2OPNFV Promise Project –https://wiki.opnfv.org/display/promi

se

YangForge data modeling framework, using a shim-

layer on top of OpenStack to provide Promise features

such as capacity/reservation/allocation management.

We have analyzed the Blazar and Promise projects.

Results of this comparison are presented in Table 1.

As we can see, both projects are similar. Blazar has

less comprehensive documentation, but it makes it

possible to reserve VMs and to add additional func-

tionality, which is crucial in our research. Therefore,

we have decided to concentrate further research on the

Blazar project in order to develop a plugin to the ML

model which makes it possible to refine the resource

reservation plan.

4 ML-Based Reservation Plan Adaptation

Based on the analysis of current research, we would

like to propose a new solution: ML-Based Reserva-

tion Plan Adaptation. Resource monitoring data are

used to build ML models, which are then used to adapt

the resource reservation plan. This process is repeated

and can be used to adapt the plan online. Details are

described below.

4.1 Adaptation Process

The ML-Based plan adaptation process is presented

in Fig. 1. A reservation plan is initially created by an

administrator. This plan is used by Blazar or Promise

to reserve resources. Resource usage is monitored and

results are stored in a database together with informa-

tion on reservation and fulfillment (resource utiliza-

tion in relation to the limits assumed). This database is
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Fig. 1 ML-Based plan

adaptation process
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used as training data by a machine learning algorithm

which creates the models stored in the knowledge

base. Using this knowledge, Planner updates the reser-

vation plan to provide sufficient resources and limit

over-reservation.

Our solution corresponds to the MAPE-K approach,

in which machine learning is responsible for Analy-

sis, Blazar/Promise for Execution and other modules

are strictly matched (Planner – Plan, Knowledge base

– Knowledge, Monitoring – Monitor, Cloud resources

– Managed resources). Depending on the machine

learning algorithm, knowledge may have various

forms. In the case of regression, we obtain predictions

of values for time stamps. In the case of classification,

we obtain information if the current plan reserves the

appropriate amount of resources, too few or too many

of them. In the case of rule or decision-tree induction,

knowledge may be readable and the administrator is

then able to verify and update it. In the case of Support

Vector Machines or Neural Networks, the knowledge

learned has a form which makes it difficult to analyze

it. However, these algorithms usually exhibit better

accuracy. Based on our research [23] in which Neural

Networks were successfully applied to task allocation

adaptation in Mobile Cloud, we decided to start with

this machine learning model for experiments. Subse-

quently, we have also applied linear regression and

decision trees to compare quality of results.

4.2 Reservation Plan and its Quality

We assume that resources are reserved according to

a reservation plan. The plan P : T → N is defined

as a function over T – time interval of interest (hori-

zon), which is discretized and consists of time stamps.

As a result, P(t) represents the amount of a resource

reserved at time t .

In our research, VMs are reserved and the main

resource that is monitored is CPU usage. However, other

parameters (such as memory, network usage, etc.) can

also be taken into account. The goal is to maintain

the parameters monitored in a user-defined range (e.g.

VM CPU usage should be between 70% and 90%).

If it is too low or too high for a given time stamp,

the reservation plan should be updated and less or

more resources should be reserved in the future in such

conditions. It is assumed that a time stamp is repre-

sented not only by a specific date and hour, but also

by metadata, e.g. whether it is a workday, weekend

or a holiday, season, vacations, etc. As a result, the

knowledge learned is more general and makes it pos-

sible to modify reservations proactively for a longer

time horizon. The learning process and P modifica-

tion are performed periodically, e.g. at midnight, and

the process continues.

The metric Q is defined, which allows us to evaluate

the quality of the reservation plan P for a given obser-
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Fig. 2 Q metrics as a sum

of under- and over-

provisioning errors of a

reservation plan

vation time period O, which is also discretized, and

O ⊂ T , taking into account R = {r t }t∈O where

r t represents the resource usage value measured at

time stamp t . In our case r t = (r t
1, r

t
2, . . . , r

t
P (t)) rep-

resents CPU utilization at all VMs measured in %.

The desired limits for r t
i are represented by L =

[rmin, rmax]. In our case L defines CPU utilization

limits. Q is defined as:

Q(P, O, R, L) =
∑

t∈O

P(t)
∑

i=1

dP (r t
i , L), (1)

where

dP (r t
i , L) =

⎧

⎨

⎩

0 if r t ∈ L

r t
i − rmax if r t

i > rmax

rmin − r t
i if r t

i < rmin

(2)

dP (r t
i , L) is a distance (it may be a power of the dis-

tance) between the usage of resource r measured at

time t and the end of the range L if r t
i is outside the

range or is equal to 0 if r t
i ∈ L, assuming that for

time stamp t the number of VMs ready to be used cor-

responds to P(t). The Q value can be therefore seen

as a sum of under- and over- provisioning errors of a

reservation plan (see Fig. 2).

4.3 Adaptation Algorithm

Our hypothesis is that machine learning will allow

Q(P, O, R, L) to be minimized. We would like to

verify if supervised machine learning will be appropri-

ate for this purpose. The plan adaptation algorithm is

presented in Fig. 3. Supervised machine learning algo-

rithms are used to build a Knowledge base describing

resource usage. The base consists of Mr model(s),

which make it possible to predict resource usage at a

given time point. The input for this model may consist

of a time point description (e.g. hour, day of the week,

holiday), historical resource usage values (e.g. from

the last 12 hours) and other potentially relevant data

(e.g. weather description). There may be a separate

model for every resource. Various learning algorithms

can be used (e.g. linear regression, random forest and

artificial neural network).

The plan adaptation algorithm obtains some initial

plan and monitoring data as inputs. It continuously

optimizes the plan based on monitoring data from a

certain observation period O ⊂ T (e.g. one day).

In line 3, it learns Mr predicting r at t ∈ T . In

the next step, the plan P is updated based on Mr to

maintain resource usage within limits L. We assume

that Mr returns the number of VMs that should be

Fig. 3 Resource

reservation plan adaptation

algorithm using machine

learning
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Fig. 4 Algorithm of the

Instance Module

active. If machine learning algorithm allows incre-

mental learning, the model may be updated using last

R. Otherwise, it should be learned from scratch using

all (or some number of) R sets collected to date. It is

also possible to predict CPU usage and use it to calcu-

late the appropriate number of VMs. For updating the

plan (line 4), we propose to apply an approach similar

to the one used in reinforcement learning:

P(t) := ⌊P(t) + α(Mr(t) − P(t))⌋, (3)

where α ∈ [0, 1] is learning speed. α values close to

0 mean slow changes to the plan. Values close to 1

mean rapid changes, but these may lead to oscillations.

This parameter should be adjusted experimentally and

its impact on plan adaptation speed is in fact tested in

experiments (see Section 6).

5 Implementation

In order to perform tests of the solution designed,

we have developed a system that applies machine-

learning-based resource plan adaptation using Open-

Stack and Blazar. To simulate CPU load and to cover

the functions which have not been provided in Blazar,

we had to implement additional features. The system

developed for performing experiments consists of the

following three main components: the Instance Mod-

ule, the Load Module and the Machine Learning Mod-

ule. The Instance Module is responsible for loading

the plan P to the system and executing Blazar’s reser-

vation and VM initialization functions. Its algorithm

is presented in Fig. 4. Initially, it loads the plan and

reserves resources in Blazar (lines 2–3). Next, it cre-

ates timer-tasks at time stamps when VMs should be

created or destroyed (line 4). These tasks are executed

in a loop (lines 5–9).

The Load Module is used during experiments only.

It is not needed when the system is deployed and

processing a real load. During experiments, the Load

Module is responsible for simulating resource uti-

lization. This module sets CPU consumption on the

machines identified by their IP addresses to a specified

level. Its operation is presented in Fig. 5.

The Machine Learning Module (ML) is responsi-

ble for running ML algorithms and updating the plan.

This module is executed from time to time, e.g. once

a day or whenever a new plan needs to be created. Its

algorithm is presented in Fig. 6. In experiments, we

use several machine learning algorithms to learn Mr .

The plan is updated according to (3).

The modules described above operate in a real-

life OpenStack environment. To simulate a time flow

faster than in reality (time compression), the Fast

Training Module was created. Its role is to deliver a

Fig. 5 Algorithm of the

Load Module
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Fig. 6 Algorithm of the

Machine Learning Module

pre-trained network and therefore not only speed up

the experiment time but also allow the simulation of

long-term operation (e.g. for a year) according to pre-

defined load data during this period. It trains the Mr

model as the Machine Learning Module, assuming

that the rest of the system (i.e. lease creation, instance

reservation, CPU loading and telemetry data collect-

ing mechanisms) is working as expected without any

deficiencies. In particular, it assumes that the instances

reserved are spawned rapidly and without any failures,

CPU usage is distributed perfectly equally among all

active VMs and it is constant within any given hour.

Therefore, it is possible to omit OpenStack and Blazar

integration and to test the concept of reservation sys-

tem operation (particularly, ANN performance) during

a long period in compressed time.

From the different VM images available for Open-

Stack, Ubuntu 16.04 LTS Xenial was selected to per-

form tests. The CPU of each VM was loaded to a spec-

ified percentage by using the stress-ng library.3 With

respect to monitoring, the Ceilometer4 and Gnocchi

4.05 plugins were employed. The former tracks VM

parameters within user-defined time intervals to mea-

sure r t at O time stamps. The latter is recommended

for the aggregation of measurements and as a metric

data storage backend. As a result, the R set was cre-

ated by querying CPU data usage for each VM via a

REST service. OpenStack and plugins were in the Pike

release version.

6 Evaluation

Evaluation is divided into two parts: learning effec-

tiveness and OpenStack integration. The first part was

performed using the Fast Training Module. This made

it possible to speed up the experiments (e.g. there was

3Stress-ng tool manual – http://manpages.ubuntu.com/manpages/

xenial/man1/stress-ng.1.html
4Ceilometer project documentation – https://docs.openstack.

org/ceilometer/pike/
5Gnocchi project site – https://gnocchi.xyz/

no need to wait for VM start) and requests from the

one-year period being used for experiments were pro-

cessed in around 15 minutes. This part of evaluation

is discussed below. In the integration experiment, we

tested the entire system consisting of three modules

with the OpenStack framework to check if it performs

well. Test results allow us to claim that the integra-

tion was successful and all modules cooperated well.

Such tests are time-consuming as VM startup takes

about 10 minutes and the monitoring system has lim-

ited resolution, so it is impossible to apply simulated

time compression to speed it up.

During the experiments, a virtual machine with

the following parameters was used: 4 cores (Intel

Xeon CPU E5-2680, 2.70 GHz), 16 GB of oper-

ating memory and 100 GB of disk space. On the

virtual machine, OpenStack and Blazar software (Pike

release), Gnocchi 4.0, deeplearning4j (version 0.8.0)

and Weka (version 3.8.2) were installed.

The data used in the experiments to generate load

originate from the Wikipedia monitoring system6 and

represent requests submitted to Wikipedia servers

(page views of the Polish Wikipedia Project to be more

specific) in 2015. For every hour of 2015, there is a

file in which the number of page requests during that

hour is stated. We assume that 1K requests generate a

1% load on a single VM. This served as an input for

the Load Module described in Section 5.

Measurements were aggregated every hour. The

reservation plan P stores the number of VMs for every

hour for T representing one day. For the first day,

a constant initial value was selected manually. Sub-

sequently, it was modified using a machine learning

algorithm.

Initially, we applied a Multilayer Perceptron Net-

work from the DL4J Java library to create the Mn

model. Training data were prepared by processing

each hour of load data using the algorithm presented

in Fig. 7. As a result, training data consist of the

pairs (t, nt ), where t is described by the following

6Wikipedia server data – http://dumps.wikimedia.org/other/

pagecounts-raw/ and http://grafana.wikimedia.org
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Fig. 7 Algorithm for

transforming load data

(nof requests) from hour

tn into a training example

attributes: hour, holiday, workday, Saturday, Sunday,

summer vacation, academic year. The first attribute

is a natural number from 0 to 23, which is normal-

ized to the range [0, 1]. The rest of attributes are

binary (0 or 1) and represent holidays, summer vaca-

tions, and the academic year. These calendar dates are

real7 and their impact on Wikipedia logs is noticeable.

Poland lies within a single time zone, which simpli-

fies the relationship between the time of the day and

the resource load level considerably. nt is the number

of VMs which keeps VM loads closest to the mid-

dle of the desired range L during t (lines 18–19),

L = [50%, 70%]. t is an input vector for the model.

7Holidays fall on the following days: 2015/01/01, 2015/01/06,

2015/04/05, 2015/04/06, 2015/05/01, 2015/05/03, 2015/05/24,

2015/06/04, 2015/08/15, 2015/11/01, 2015/11/11, 2015/12/25,

2015/12/26. Summer vacations are from 2015/06/27 to

2015/08/31. Academic year is from 2015/01/01 to 2015/06/30

and from 2015/10/01 to 2015/12/31.

nt is its desired output. It is normalized to the range

[0, 1].

Four neural network architectures have been tested.

These are shown in Table 2. Two of them (architec-

ture 1 and 2) included one hidden layer each and the

rest included two hidden layers each. All layers are

fully connected. We have tested the following learn-

ing rates: 10−2, 10−3, 10−5, 10−6 and 10−7. Weights

are updated at the end of each day via the stochas-

tic gradient descent algorithm using data from the day

Table 2 Network architectures tested – numbers of neurons in

layers

Network architecture 1 2 3 4

Input 7 7 7 7

Hidden 1 7 14 14 21

Hidden 2 N/A N/A 14 14

Output 1 1 1 1
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in question. The number of epochs is equal to 1,000,

and the number of iterations is set to 1. The alpha

parameter is disabled. Network 4 with a learning rate

of 10−6 exhibited the best performance in minimizing

the Q value, hence it was used exclusively in further

experiments.

In our case, according to (1), Q represents a sum of

loads that are outside of the L range over all VMs and

hours of a day (O represents 24 hours). The figures

present average Q(t)/h values, i.e. Q value per hour

(Q is divided by 24).

The chart in Fig. 8 presents the 14-day moving

average of the Q(t)/h value for the entire year and

four learning rates: α = 0.1, α = 0.2, α = 0.5 and

α = 1.0. Q(t) for the day is computed as defined in

(1), where t ∈ O = (0, 1, 2, . . . , 23).

Plans were generated one day ahead. As we can

see, machine learning makes it possible to improve the

Q value. For α = 1.0, the starting value is ca. 140.

At the end of the year, this drops to around 10 which

means that the average reservation error (summed over

all VMs) per hour is equal to 10%. The improve-

ment is the most pronounced at the beginning, because

the learning algorithm obtains new data, which has

a large impact on system performance. Subsequently,

the Q value stabilizes. Reducing the learning rate to

α = 0.5 results in a slight deterioration of results.

For α = 0.2, the performance is much worse. More-

over, there are two periods when Q increases by up

to approximately 40 (around days 190 and 320), while

for larger α values there are no such increases. Results

0 50 100 150 200 250 300 350

time, days
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50

100

150

200

250

300

Q
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Fig. 8 14-day simple moving average of the Q(t)/h value for

365 days

for α = 0.1 are the worst. At the beginning, there is

a decrease of performance instead of an increase. For

this value, the plan adaptation process is incomparably

slower.

Having analyzed the results, we may formulate the

following conclusions. The system operates correctly

and allows the plan to be adapted to decrease Q val-

ues. For plans created one day ahead, α should not be

much smaller than 0.5 because for such values plan

updates are too small. To achieve good results with

Wikipedia data, the system needs data from about two

months, starting from a very simple plan according to

which four VMs are needed all the day. This period

will be shorter if the initial plan is closer to the opti-

mal one, which will be the case when such a system

is applied in practice. Also importantly, any cloud

monitoring data recorded beforehand may be used in

advance to train the initial network and prepare it for

real-life applications.

The next three charts in Fig. 9 present 7-day length

periods for the α value equal to 1: at the beginning

of learning, 6–12 January (top chart), intermediate

results, 1–7 May (middle chart), and at the end of the

process, 7–14 December (bottom chart). Each chart

contains four values:

– rmin – lower desired usage bound (VM count *

50%);

– rmax – upper desired usage bound (VM count *

70%);

– Real – real total CPU usage summed over all VMs

(in %);

– Q – sum of loads that are outside of the L range

over all VMs and hours of a day divided by 24

(Q(t)/h).

where VM count is the number of virtual machines

active during any particular hour.

A significant improvement in reservation quality

can be seen between each of the periods. In the last

period, even rapid peaks are well handled and fit per-

fectly into the desired workload per machine defined

by the user. At the beginning, daily fluctuations in

usage (daily cycle) are the largest cause of highly inad-

equate provisioning (see Fig. 9, top chart). Machine

learning makes it possible to predict this cycle (see

Fig. 9, bottom chart). As a result, Q(t)/h values drop

as much as around 10 times.
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Fig. 9 Plan adaptation

results from January (top

chart), May (middle chart),

December (bottom chart)

for Neural Network with

α = 1
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Table 3 Comparison of selected machine learning algorithms

Algorithm Sum of Q values Learning time, s

Neural Network 116445 3.568

Linear regression 323706 0.01

RepTree 107958 0.02

M5P 185589 0.06

Bold entries means the best results, i.e. the smallest sum of

values and the shortest time

We have also compared performance of the best

Neural Network with three other machine learn-

ing algorithms: linear regression, RepTree and M5P

implemented in Weka [27]. To compare results, we

have used the sum of Q values over all 365 days. For

linear regression, we have checked ridge parameter

values from the [10−10, 1000] range. The best perfor-

mance was achieved for 10−5. RepTree was executed

with and without pruning for the maximum tree depth

limit set to 1, 2, 5 and with no limit. The best result

was achieved without pruning and without a tree depth

limit. M5P was executed with pruning and smooth-

ing switched on and off. The minimum number of

instances per leaf was set to 2, 4 and 6. The best

results were achieved without pruning and smoothing

for a minimum number of instances per leaf set to 2.

We have also measured learning time. The results are

presented in Table 3.

As we can see, the RepTree algorithm performed

the best, 7% better than the Neural Network. We have

also checked performance of RepTree during 7-day

periods, similarly as for the Neural Network. The

results are presented in Fig. 10. The results show that

RepTree learns faster than the Neural Network. Even

in January, it achieves relatively good results. This

explains the lower sum of Q values than for the Neu-

ral Network, which is in the second place. However,

the quality of RepTree predictions does not improve as

much as in the case of the Neural Network. In Decem-

ber, Q values are around 20, while for the Neural

Network these are below 10. As a result, in the long

term, the Neural Network model outperforms.

The overhead of the solution proposed consists

of two components: telemetry services and model

learning. In the production system, telemetry should

be turned on independently of our solution (e.g. for

alarms to be generated in case of problems). We have

no influence over this overhead component. Model

learning is executed once a day and this process

depends on the learning algorithm chosen. The learn-

ing time for the Neural Network is the highest: 3.5

seconds. However, it is low enough not to introduce

any significant overhead.

7 Conclusions

The approach proposed allows for online (during sys-

tem usage), autonomous plan adaptation. This is a

closed-loop solution: it automatically generates and

adopts the plan using monitoring data and compar-

ing reservations to demands. As it was successfully

demonstrated, it is possible to verify the updated plan

in advance and discover potential problems within

both short and longer periods. This is a very important

aspect for planning the operation of both private and

public clouds.

The paper presents a rather general framework. The

reservation process is based on load prediction, and

thus various ML models can be used in the solution

proposed. The application of machine learning models

is very much dependent on the availability of real-life

historical data representing load changes over fairly

long periods and also on online access to current sys-

tem load. Detailed results of the evaluation performed

in this study are dependent upon characteristic fea-

tures of the load observed in the system, therefore

it is difficult to arrive at general conclusions about

numerical results.

In a real-world application, the historical data could

be used for the initial training and parameter setting

of ML models before their deployment and further

refinement during system runtime. The initial train-

ing, as it was demonstrated, could be performed in a

compressed time scale. This makes it possible to use

already pre-trained models and observe the advantage

resulting from the use of ML algorithms during system

operation almost immediately.

Experimental results demonstrate that this solution

improves cloud resource utilization. It was tested on

VM reservations, but the solution is general and may

be applied to other resources as well.

Performance of four machine learning algorithms

was compared: Neural Networks, linear regression,
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Fig. 10 Plan adaptation

results from January (top

chart), May (middle chart),

December (bottom chart)

for RepTree with α = 1
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RepTree and M5P. RepTree was learning faster than

the Neural Network; however, the Neural Network

ultimately yielded better predictions.

There are many areas which should be analyzed

in the future research. More experiments should be

performed in a real-life environment. The solution

proposed is general and it should work with other

resources as well. Therefore, we would like to conduct

experiments (e.g. involving memory, network or GPU

compute) in a real-life environment. Additionally, we

would also like to consider more complex cases where

multiple resources are taken into account simultane-

ously and also how changes to hardware (e.g. new

processors) influence system performance. We are

also planning to enable various VM configurations.

Last but not least, hybrid models (e.g. consisting of the

Neural Network and RepTree) should be examined,

since they can combine the fast learning of RepTree

with the better accuracy of Neural Networks.
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