
VMCrypt - Modular Software Architecture for Scalable
Secure Computation

Lior Malka
Intel (work done while at UMD)

lior34@gmail.com

ABSTRACT
Garbled circuits play a key role in secure computation, but
existing implementations do not scale and are not modu-
lar. In this paper we present VMCrypt, a library for se-
cure computation. This library introduces novel algorithms
that, regardless of the circuit being garbled or its size, have
a very small memory requirement and use no disk stor-
age. By providing an API (Abstract Programming Inter-
face), VMCrypt can be integrated into existing projects and
customized without any modifications to its source code. We
measured the performance of VMCrypt on several circuits
with hundreds of millions of gates. These are the largest
scalable secure computations done to date.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection

General Terms
Security, Performance, Algorithms

Keywords
Secure Computation, Software API, Scalable

1. INTRODUCTION
Secure computation enables parties to collaborate while

keeping their information private. Specifically, a two-party
protocol for secure computation allows a server (holding in-
put x) and a client (holding input y) to compute f(x, y) such
that either party learns nothing beyond the output of f .
Yao’s Garbled Circuits Technique [31] is central to secure

computation. The first phase in this approach is to create
a representation of f as a boolean circuit C. Next, in the
garbling phase, the server chooses secret keys (called wire
labels) for each wire in C, encrypts a a lookup table for each
gate, and sends all lookup tables (the garbled circuit) to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

client. The server also sends wire labels corresponding to
x. Wire labels corresponding to y require oblivious transfer
(OT). Finally, in the evaluation phase the client uses the
wire labels for x and y to decrypt the lookup tables until
the output gates are decrypted and f(x, y) is revealed.

Yao’s technique has been implemented in Fairplay [21]
and TASTY [11], but these works focused on automation
aspects of secure computation (more details in Section 1.3).
This paper, however, is concerned with software engineering
challenges.

The first challenge is scalability. Suppose, for example,
that f computes the intersection of databases x and y. The
circuit C representing f(x, y) could easily have billions of
gates. Holding it memory would require terabytes of RAM.
Wire labels or lookup tables would require a large hard drive.
Read/write operations will paralyze the operating system.
Recompilation (needed in Fairplay and TASTY) will take a
significant amount of time, ruling out secure computation
on the fly.

The second challenge is software modularity. Consider,
for example, a scenario where garbled circuits are to be in-
tegrated into an application that already has a client and a
server, and that, in addition, a specific method of encryption
should be used for garbling. The source code of the garbled
circuit software can be modified to accommodate this inte-
gration, but this would significantly increase development
costs and is likely to introduce bugs into the source. Ide-
ally, developers would be provided with an abstract program-
ming interface (API) so that they can customize the software
without modifying the source code. This includes customiz-
ing the client and the server, the OT protocol, garbling,
encryption, and so on. Also, modules should be designed in
such a way that developers can use them to build a protocol
with any level of security (we have implemented the curious-
but-honest protocol). Another objective would be to allow
developers to replace parts of their circuits with improved
implementations by other developers, making modular not
only the software, but also the circuits themselves. Finally,
developers must be able to test circuits for correctness au-
tomatically, without having to run the secure protocol.

1.1 Our Results
We present VMCrypt - a fully customizable Java library

for secure computation. VMCrypt introduces novel algo-
rithms that, regardless of the circuit being garbled or its
size, have a very small memory footprint and use no disk
storage. VMCrypt comes with a Developers Manual [19]
and provides tools for debugging and validation.

To describe VMCrypt, we use the example of the database

search protocol, where the server has records ⟨xi, pi⟩, and the
client, who holds y, wants to learn all pi for which xi = y.
We denote the circuit for this protocol by DBSearch.
Unlike Fairplay programs, VMCrypt circuits (called com-

ponents) are simply Java classes. They are compiled once
and for all and receive their parameters at run time, via the
constructor. For example, DBSearch is instantiated at run
time by executing Component c = new DBSearch(ℓx, ℓp, N),
where ℓx and ℓp denote the bit length of x and p, and N is
the number of records in the database. In a realistic sce-
nario where the number of records in the database changes
daily, components allow us to start a VMCrypt protocol
on the fly, whereas with Fairplay we need an expensive of-
fline phase for recompilation (we compare with Fairplay be-
cause TASTY combines homomorphic encryption and gar-
bled circuits. However, as we later show, the same applies
to TASTY).
The second difference between VMCrypt and Fairplay re-

lates to how circuit descriptions are maintained in memory.
In earlier versions of VMCrypt, constructing a component
(e.g., new DBSearch(ℓx, ℓp, N)) would have immediately cre-
ated an instance of this object in memory. In the case of
DBSearch, the size of the object is linear in N(ℓx + ℓp).
Thus, instantiating DBSearch is worse than holding the en-
tire database in memory. This is clearly infeasible. Worse,
it excludes secure computation from consumer devices such
as laptops and cell phones. Fairplay suffers from the same
issue.
VMCrypt solves this problem. Intuitively, it has an under-

lying virtual machine that loads and destructs hardware de-
scriptions dynamically, during execution. This mechanism
is transparent to the developer. It works for circuits of any
size, and guarantees that the client and the server hold only
a small part of the circuit in memory. See Section 3 for
details.
To describe the third difference between VMCrypt and

Fairplay, recall that in Yao’s protocol the client evaluates the
function after receiving the garbled circuit from the server.
This requires storage (e.g., a hard drive) for wire labels or
lookup tables, which, as our tests show, can reach gigabytes
of data. Writing this much data to the hard-disk will para-
lyze the operating system and slow down execution.
VMCrypt eliminates the need for storage, which also im-

proves running time. To achieve this, we introduce a new
variant for Yao’s protocol. Informally, our protocol divides
the number n of input wires into segments of a constant
size s (e.g., s = 100). In iteration i, the server issues the
i-th segment of s wire labels to the client, following which
it garbles the part of the circuit corresponding to this seg-
ment. The lookup tables are sent directly into the network.
The client reads the lookup tables from the network and
evaluates the i-th part of the circuit. This continues until
the entire circuit is evaluated. To achieve this, we garble,
evaluate, and execute OT at the same time (rather than se-
quentially). Interleaving OT in Yao’s protocol is highly non
trivial, especially because we execute OT in bulk, which
is several orders of magnitude faster. Our new protocol is
also attractive because it can be multi-threaded, which may
further improve performance. More details, and a security
proof, are given in Section 2.
We stress that all VMCrypt mechanisms (e.g., storing

only part of the circuit in memory, or garbling the circuit
in chunks) are completely transparent to developers. VM-

Crypt developers only need to describe the circuit (what we
call a component) they want to securely compute and the
input to the circuit.

1.2 Performance
Taking DBSearch again as an example, Fairplay compila-

tion alone takes 50 seconds and 0.7 GB memory (23% of
a 3 GB RAM) when the database size is 40 records. The
Fairplay compiler crashes after 3 minutes when the number
of records is increased to 55.

With VMCrypt, when the database size is 10, 000, the
entire protocol terminates after 19 seconds. Moreover, each
party (and the Java virtual machine that executes it) uses
only 0.15 GB memory (4.8% of 3 GB). Even if we increase
the database size to 1 million (which increases the size of the
circuit to 100 million gates), the parties still use the same
amount of memory.

VMCrypt has gone through rigorous performance analy-
sis. To show that it scales on circuits with a wide structure
we tested it on the DBSearch circuit. To show that VM-
Crypt scales regardless of wiring patterns, we implemented
the set intersection circuit, which has a highly connected
structure. To show that VMCrypt scales on wide and deep
circuits, we implemented the minimum circuit. To show
VMCrypt modularity, all circuits have been developed and
tested without modifying VMCrypt source code. To show
that performance is truly linear, each circuit was tested on
inputs of increasing length (as opposed to breaking the in-
put into small pieces and modifying VMCrypt source code
to evaluate several smaller circuits). To show scalability we
evaluated circuits with hundreds of millions of gates. As our
tests show, VMCrypt would scale on any circuit with any
number of gates (e.g., billions). See Section 5.

1.3 Related Work
Secure computation has been used recently to implement

systems for privacy-preserving face recognition, fingerprint
matching, and DNA processing (c.f., [13, 7, 28, 24, 1, 8]).
Other optimizations for garbled circuits, such as the free
XOR technique [15] and others [17, 14, 27, 26, 6] has been
proposed. Techniques for secure computation based on ho-
momorphic encryption (c.f., [25, 5, 10, 30, 29]) have also
been studied.

Fairplay [21, 2] demonstrated the feasibility of two-party
secure computation based on garbled circuits. Automation
and benchmarking of cryptographic protocols were studied
in, e.g., [3, 4, 18, 23].

The comparison of VMCrypt to Fairplay applies also to
TASTY [11]. TASTY combines the benefits of homomor-
phic encryption and garbled circuits. It uses a high level
language, which requires recompilation and rules out exe-
cuting secure protocols on the fly. TASTY does not pro-
vide an API (indeed, this was not a design requirement),
and therefore integrating it into other applications requires
modifying TASTY source code. TASTY would run out of
memory on any large circuit. In fact, TASTY does not deal
with large circuits, except for one example where memory
consumption climbs as the circuit reaches 4.2 million gates,
and crashes thereafter.

Prior to this work, we showed that faster execution times
can be achieved by constructing circuits from Java classes [9].
The software from [9] was not designed to provide an API,
and it does not include any of the innovations presented

in this paper. Similarly, it does not scale and it requires
the use of storage. Specifically, it crashes on large circuits
and exhibits non-linear running time, problems which we
avoided in [9] by manually instantiating many small circuits
and rewriting the source code for each circuit.

2. OVERVIEW OF VMCRYPT
This section gives a high level overview of VMCrypt. Com-

ponents are described in detail in the next section.
Once a component has been written, VMCrypt provides

the developer with a test tool to validate that the compo-
nent indeed computes the correct function. This tool, im-
plemented in class TestModule, creates an instance of Stan-
dardInput, which holds the input bits. Similarly, it creates
an instance of StandardOutput, and assigns the output bus
of the component to point at it. After the component com-
putes, its output is stored in the StandardOutput object. If
the component implements interface Testable, then the test
tool can automatically validate the component for correct-
ness. The test tool iterates over all inputs to obtain a full
functional coverage of the component. The advantage of our
tool over Fairplay is that a component can be validated on
all inputs, without having to run the secure protocol.
The preceding discussion gives the impression that the

component is a passive description of a circuit, and that the
test tool somehow processes this description. This impres-
sion is wrong. The entire work is done by the component,
and the same applies to garbling and evaluation. We de-
scribe this process in more detail.
Each VMCrypt binary gate has a method notify that

takes three arguments: a port, an object, and a function. In
the case of the test module, the function is class Calculate,
and the object, which represents an input, is a bit (0 or 1).
The port, which is 0 or 1, tells the gate which input wire
is receiving the object. Once both inputs arrive, the gate
invokes the compute method of the function, passing these
inputs as arguments. Next, the gate notifies its output wire
with the output of this function. This process continues until
the entire circuit is computed. The process of garbling and
evaluating a circuit uses the same notify method, except
that different functions and objects are passed as arguments.
VMCrypt presents a new variant for Yao’s protocol, in

which the circuit is garbled in chunks. We use a Notifier

(see Figure 1), which has a very simple task: to obtain a
segment (shown as a bracket) of pairs of wire labels, and
for each pair in the segment, notify the component with this
pair. More precisely, the notifier notifies the component with
an object and a function that gates pass execution to once
they have all their inputs ready. On the server side the func-
tion is Garble and the object is a WireLabelPair. On the
client side the function is Eval and the object is WireLabel.
Both functions implement abstract class Function.
Once the notification process begins, gates receive objects

on all of their input wires and pass execution to the func-
tion. In the case of the garble function, gates receive wire
label pairs, lookup tables are written into the network, and
gates notify their output wires with a wire label pair. In
the case of the evaluation function, gates receive wire labels,
lookup tables are decrypted, and gates notify their output
wires with wire labels. The notifiers repeat this, segment
by segment, until the entire component is notified. Immedi-
ately after the server sends the last lookup table, the client
computes the output. The component builds and destructs

parts of its description during the notification process, which
we describe in the next section.

Oblivious transfer is not executed before or after the gar-
bling; it is interleaved in the garbling. What makes this
possible is abstract class WireLabelTransport. VMCrypt
provides a server side implementation for this class called
WLTPServer (wire label transport protocol, server side) and
a client side called WLTPClient. The role of the wire label
transport protocol is to guarantee that when the notifier on
the server side receives a segment of wire labels, the notifier
on the client side already has them. This enables the server
to stream lookup tables, knowing that the client will be able
to decrypt them on the fly and discard them immediately.
The obvious implication of this streaming is that no storage
is necessary for either wire labels or lookup tables. This is a
significant advantage because the garbled circuit can be very
large. Moreover, time consuming read/write operations are
eliminated, thus reducing running time. A

We briefly sketch the proof of security. The idea is identi-
cal to the classic proof [16]. The simulation begins when the
simulator S sends the evaluator E a garbled circuit with a
random output. Of course, the circuit is sent in chunks, and
OT is interleaved in the garbling. After all OT operations
are over, S learns the input of E . It then queries the ideal
functionality, learns the real output, and sends E a permuta-
tion that maps the random output to the real output. Since
the ideal and the real views of E are computationally indis-
tinguishable, the protocol is secure in the honest but curios
setting.

In the rest of this section we describe the wire label trans-
port protocol parameters, starting with the OT sub protocol.
VMCrypt provides two OT implementations [22, 12], but of
course any OT protocol can be passed as an argument. The
second parameter is an implementation of interface WireLa-
belGenerator. The role of this interface is to provide wire
label pairs for the wire label transport protocol. A stan-
dard implementation of this interface would simply return
two random strings as a WireLabelPair, but VMCrypt im-
plements the ”free XOR” idea [15] and therefore our imple-
mentation of this interface produces a pair ⟨r, r⊕R⟩, where
r is a freshly chosen random string, and R is a fixed random
string. To use standard garbling, all that one needs to do is
provide the standard implementation for WireLabelGener-

ator, with the corresponding implementations of Function
for garbling and evaluation, and pass them as arguments to
the respective classes.

The third parameter to the wire label transport protocol is
a class that implements interface CircuitInput. For any i,
this interface provides a method that answers whether wire
i corresponds to a server input or not, and another method
that returns the value on this wire (0 or 1). The wire label
transport protocol uses the CircuitInput interface to find
which input wire belongs to which party, and what is the
value of this input. Implementations of CircuitInput play
another important role: if a party has an input that is too
large to hold in memory (e.g., a database), then Circuit-

Input can read it from its origin segment by segment, as
opposed to loading it all at once in the beginning.

To avoid expensive OT per wire, we execute OT in bulk.
However, recall that we interleave OT in the garbling, which
means that we do not know in advance how many (and
which) wire labels require OT. To overcome this, we im-
plement what we call an OT bucket. Specifically, in the wire

Component

Garble

Notifier

ComponentInput (Server)

WireLabelTransfer Protocol (Server)

DB

ComponentInput (Client)OT (Server) WireLabelGenerator

WireLabelTransfer Protocol (Client)

OT (Client)

Notifier

Component

Eval

Server Client

Figure 1: Overview of main VMCrypt modules

label transport protocol (server side) the OT bucket con-
tains pairs of random strings ⟨rj,0, rj,1⟩, as opposed to wire
label pairs. On the client side it contains one string rj,b per
pair, where b ∈ {0, 1} is the client input at wire index j.
Wire labels are transferred as follows. If ⟨W i,0,W i,1⟩ is a
wire label pair corresponding to a server input b, then W i,b

is sent to the client. Otherwise, ⟨W i,0 ⊕ r0,W
i,1 ⊕ r1⟩ is

sent, where ⟨r0, r1⟩ is the pair of masks at the top of the
OT bucket. This works because the wire label transport
protocol examines future segments to find what the client
will need when future wires are reached. When the bucket
is empty, the OT protocol is invoked to refill it.
Earlier in this section we described the test tool, which

validates that a component indeed computes the function at
hand. This may not be sufficient for debugging, because a
developer may want to see how a signal passes through a
circuit. The developer may also want to collect statistics,
like network traffic, or number of gates. To support this,
VMCrypt provides class Monitor, which is a tool for visu-
alizing the execution of VMCrypt modules. The monitor
allows developers to see what is happening inside compo-
nents and protocols in real time. Modules report events by
calling monitor method report. They pass the event itself
and a string that includes values of relevant variables. The
monitor displays the ID of the component with each report.
The ID is a pair of integers (depth,index). When sub com-
ponents are built, they are assigned depth that is one higher
than their enclosing component, and a unique index within
this component. By providing the ID, VMCrypt helps de-
velopers identify which part of the component is reporting.
Events are implemented in classes ComponentEvent and Pro-

tocolEvent. They describe useful information such as when
components build and destruct, or when protocols start and
end. There are currently thirty one events in VMCrypt,
and they can be extended of course. Events also provide
runtime statistics, such as network traffic, execution times,
and execution progress.

3. THE COMPONENT MODULE
The component module is the heart of VMCrypt. It has

been redesigned four times from scratch to guarantee that
performance does not depend on circuit topology. We start

with the original design and explain how it evolved to the
current version.

First version. The first version of the component mod-
ule was inspired by the minimum function, which plays a
central role in privacy-preserving systems [7, 28, 24, 1]. We
defined two types of components: Gate and Circuit. We
also provided wires to connect them. Our idea was that de-
velopers would be able to construct small circuits, and then
use them as building blocks for larger circuits. For example,
a bit multiplexer (Figure 2 a) would be built in a low-level
manner, from gates and wires. A string multiplexer, on the
other hand, would be built from the bit multiplexer. Next,
a multiplexer and a comparator can be used to build a cir-
cuit for finding the minimum of two numbers (Figure 2 b),
which is then used to build a circuit for finding the mini-
mum of N numbers (Figure 2 c). This approach is similar
to programming in C ++ in the sense that developers have
both the low-level power of C and the modularity provided
by an object-oriented language. Another advantage of this
approach is that developers can share components or replace
them with better implementations.

To instantiate a circuit for finding the minimum of N
numbers whose bit length is arity, VMCrypt developers
use the following standard Java syntax: Component c = new

MIN(N, arity). The problem is that, even for modest values
N = 1, 000, 000 and arity = 64, the number of wires needed
to connect the BinaryMIN circuits is 3∗arity ∗ (N−1) = 194
million wires (excluding wires and gates inside the Bina-

ryMIN). Moreover, wires are implemented as lists (class Vec-
tor in Java) to allow fan out degree higher than 1. Thus, the
memory needed to instantiate the MIN circuit is prohibitive.
The code of this version was used in [8].

Second version. The objective of the second version
was to provide components for wireless circuit design. We
added a new component, called a Switch, that can route
signals to its sub components without wires. The idea is
simple: when the switch receives a signal and a wire index
(called a port), it compares the in-degree of the first sub
component with the port. If the port is smaller, then the
sub component receives the signal. Otherwise, the in-degree
is subtracted from the port, and the switch iterates on the
next sub component (of course, like all other mechanisms,

(b) BinaryMIN (c) MIN

BinaryMIN BinaryMIN

BinaryMIN

(a) BitMUX

MUX
CMP

x ycarry

x y c

∧

Figure 2: Components of the MIN circuit due to [14, 28]

MapBinaryMIN BinaryMIN

BinaryMIN BinaryMIN

BinaryMIN

Figure 3: The MIN component.

this is automatically taken care of by the component and is
transparent to the developer).
The switch brings up a difficult dilemma that is general to

all the components. That is, should we equip a switch with
output wires or not? Without output wires components will
not be able to connect to each other. With them we create
the same amount of wires that we wanted to eliminate in
the first place. Our solution was to replace output wires of
components other than gates with one pointer, and allow
input wires only in circuits. Thus, gates will still be able to
send signals to multiple components, but non-gate compo-
nents will only be able to send signals to one component. In
the rare case where this would be too restrictive, we provide
a Splitter, which enables routing to multiple components.
This dilemma represents a conflict between utility, usabil-
ity, and efficiency, that predominated throughout the entire
development process.
The other problem with the switch was that routing a

signal requires linear time (as opposed to constant when
using wires). This becomes quadratic per component, and
increases the running time considerably. To solve this prob-
lem we introduced the UniSwitch. This component contains
multiple copies of the same sub component. Thus, it can
route a signal in constant time by dividing the value of the
port by the in-degree of this sub component. The UniSwitch
turned out to be very useful as it enables constructing com-
ponents that mimic a for loop.
Let us use these components to build the MIN component

without wires. As shown in Figure 3, this component has a
BinaryMIN circuit at the root, and a UniSwitch containing
BinaryMIN at each layer, except the base, which is a Switch

containing two sub components: a UniSwitch and a compo-
nent called a Map. The map requires almost no memory as
it contains nothing inside. When it receives input on port i,
it simply outputs it on port m(j), where m is the function

implemented by the map (the identity in this case). The
map is used here to pass the signal one level up in case that
the tree is not perfect. Notice that all the components reside
inside a Switch whose input layer is the base layer.

Having built MIN, let us revisit the java statement Compo-
nent c = new MIN(N, arity), which motivated all the new
components in the second version. This statement no longer
creates millions of wires. However, since all the BinaryMIN

circuits are made of wires and gates, the MIN circuit still
requires an unacceptable amount of memory.

Third version. The third version of the component mod-
ule introduced the Bus. If VMCrypt has one most important
module, the bus would be it. The bus has a very simple
task: it counts the number of signals leaving the compo-
nent. When this number reaches zero, the bus invokes the
destruct method of the component. This removes the com-
ponent from memory. All VMCrypt components have a bus,
except for gates, which self destruct.

Clearly, there is no point in having a bus if the entire
component resides in memory; the bus has a value only if
components are built after their instantiation. Thus, all
VMCrypt components (except gates) build when they re-
ceive their first signal, and destruct immediately when they
output their last signal. We call this the notification prin-
ciple. To see the power of this principle, notice that even
when a component is built, its sub components will not be
built until they receive input, and this of course applies re-
cursively. Consequently, VMCrpyt components have a very
lean memory footprint.

Let us see how much memory the MIN component (Fig-
ure 3) requires now. The first signal will build the base layer,
which contains two components, but only the UniSwitch will
build because the Map received no signal yet (assuming the
signal comes from the left). Inside the UniSwitch, only the
leftmost BinaryMIN circuit is built because the other ones
received no inputs yet. Because the BinaryMIN is also built
from sub components, only those that receive this signal will
be built, and so on. Eventually, the signal will hit a gate,
who will store it and wait for the other signal (assuming a
binary gate). When this signal arrives, the gate computes,
destructs, notifies its output wire, and the process continues.
When the BinaryMIN fires its last output, it is destructed by
its bus. In the case of a UniSwitch, even the reference to
this object is removed from memory. Hence, the UniSwitch

from the base layer becomes empty. Since each layer notifies
the one above it, the Switch, which contains all these layers,
requires log(N) references to components of type UniSwitch
that are either empty or contain one BinaryMIN. Notice that

this is not a flaw in VMCrypt; it is due to the underlying
recursive algorithm we are using. To further improve the
notification process we added a Buffer to components of
type Circuit. The buffer will build the circuit and flush
only after all signals have arrived. Overall, this reduces the
amount of time components (both inside and outside the
circuit) reside in memory as well as the number of these
components.
The notification principle confronted us with the following

problem. Consider the MIN circuit from Figure 2 c. The
BinaryMin circuits (Figure 2 b) that make up this circuit
take a carry bit (either 0 or 1) as input. Thus, the moment
this value becomes available, all of them will be notified and
hence built. The amount of memory required for this build
is like having the entire MIN circuit in memory, which is
clearly unacceptable. In our component for set intersection
we faced the same problem. There, we have multiple copies
of a sub component for set membership, and all of them are
notified with the same set. The issue with our design is that
ports have no control over when they receive notifications.
Fourth version. The fourth version introduces pulling

and pushing ports. A component with a pulling port does
not need to be connected to another component in order
to receive its signals. Instead, it pulls them from a global
pulling-pushing table, called PTable.
The most important aspect of pulling ports is that they

can control when they want to be notified. For example, in
the scenario mentioned above with the MIN circuit (Figure 2
c), the BinaryMin circuits will not build when the carry bit
becomes available. Instead, they decide when to pull this
value from the table. Of course, pulling is useless without
pushing and therefore any output port can push a value into
the table. In the MIN circuit scenario, for example, the carry
bit will be initially pushed into the table, and components
will pull it from the table.
The table presents several design challenges. Consider, for

example, a component that has only pulling ports (we call it
a pulling component). According to the notification princi-
ple, this component will never get notified and hence never
built. The question is therefore who will notify this com-
ponent and when. We decided that this will be specified
by the enclosing component. That is, a component speci-
fies pulling ports, pulling sub components, and a counter.
The component increases its counter on each notification. If
the counter equals to the in-degree of the component, then
all pulling ports and pulling sub-components are notified.
Thus, pulling can occur before, after, or while the compo-
nent is receiving notifications. There is another issue. Recall
that the role of the bus is to destruct a component once the
component fired its last output. If some signals go to the
PTable instead, the bus would not know about them and
therefore never destruct the component. This problem has a
recursive nature because components are nested. We solved
this problem by allowing these pushing signals to continue
to notify buses. Components, however, can ignore them.
We did not conceive situations where a port pulls a value

that has not been pushed yet, but to allow this flexibility the
table stores references to components making such requests
and notifies them as soon as the value becomes available.
We decided that only components (but no other object) will
push values into the table. This preserves modularity be-
cause, by including pulling and pushing information in the
component, developers can freely exchange components.

To see how a PTable works in practice, consider the VM-
Crypt component for set intersection from Figure 4. Intu-
itively, this component pushes the set X = {x1, . . . , xm−1}
of the server into the table, and then each yi from the client
set Y = {y1, . . . , yn} is tested for membership in X by
pulling X from the table. In detail, the component contains
two sub components of type UniSwitch. The first UniSwitch
pushes X into the table using m copies of the identity map
(recall that only components can push. It turns out that Map
is ideal for this purpose). The second UniSwitch contains
n copies of a Switch for set membership. This Switch con-
tains three sub components. The first is a map that pushes
yi into row m of the table. The second is a UniSwitch that
contains m copies of the equality component EQ (of type
Circuit). The j-th EQ circuit pulls to its leftmost ports the
value stored in the table at row m (initially y0) and to its
rightmost ports the value stored in the table at row j (which
is xj). That is, it checks whether yi and xj are equal. Thus,
the UniSwitch containing the EQ circuits outputs a sequence
of m bits that are all 0 if and only if yi /∈ X. Because this
output is fed into an OR component (of type Circuit), the
i-th Switch for set membership will output 1 if and only if
yi ∈ X.

How much memory did the PTable save? Suppose that we
compute set intersection on databases of size N = 1, 000, 000
and that for efficiency we hash set elements into 20 byte
strings (that is, arity = 160 bits). This requires N(N ∗
arity) +N ∗ arity wires. The minimum memory cost for a
wire is 8 bytes (a reference to the wire plus a reference in
the wire itself). Thus, we would need a fantastic amount of
320 terabytes RAM.

Let us examine what happens in memory when the set
intersection component computes. The component is first
notified with the bits of x0 and therefore only the Map ex-
ists fully in memory. There is nothing inside the map, but
notice that now we also need to store information about
which ports are pushing. Since all ports are pushing, this
requires an array of size arity, which is the bit length of set
elements. Once the map fires its last signal it is destruc-
ted by its bus and the UniSwitch in which this map resided
becomes empty again. This repeats until x0, . . . , xm−1 are
pushed. Now the table contains the entire set X. This is
not a flaw in VMCrypt; it is a consequence of the underlying
algorithm we are using for set intersection. Next, we notify
the component with the bits of y0. As before, this causes
the map to build and push y0 into the table. After the map
destructs, the UniSwitch containing the EQ circuit is built.
Next, the first equality circuit builds, computes, destructs,
and the UniSwitch containing it becomes empty again. The
output of the EQ notifies the OR component. Since the OR was
implemented as a circuit and circuits have a buffer, the out-
put of EQ is stored in this buffer and the OR is not built yet.
After the last EQ circuit produces its output, the UniSwitch
containing the EQ destructs and the buffer of the OR is full.
This causes the buffer to build the OR and flush all the signals
into it. The OR computes, destructs, and sends its output to
its enclosing component, the Switch. Since the out-degree
of the Switch is also 1, it also destructs. Now we are at
the same state as in the beginning because all the compo-
nents inside the set intersection component are empty. This
entire process repeats with y1, . . . , yn−1, and finally the set
intersection component destructs.

Map Map EQ

y0, . . . , yn−1

OR m-1

m

0

xm−1

x0

yi

x0, . . . , xm−1

Figure 4: The set intersection component implemented in VMCrypt.

4. CREATING A NEW COMPONENT
This section describes how to create a VMCrypt com-

ponent. For lack of space, we only provide an overview.
See [20, 19] for details.
We start with an overview of the component hierarchy

(Figure 5). The root of this hierarchy is BaseComponent.
Objects of this class have an ID, which is a pair of integers
(depth,index). The only role of the ID is in validation.
Class Gate is extended by two classes: BinaryGate for binary
gates and UniGate for unary gates. All gates receive their
type (e.g., XOR, OR, NOT) during instantiation, and their
output wire (initially empty) is also created during instan-
tiation. The classes Map, UniSwitch, Switch and Circuit

are derived from Component. The main difference between
a Component and Gate is that the former has a Bus, which
also implies that it is built only when notified, whereas the
later has an output wire and is built when instantiated.
Components are created in VMCrypt by writing a new

Java class. Whether created from existing components or
from scratch, developing new components is 100% modular
- it requires no access to any source code. To create a new
component, we need to choose a sub class of Component to
extend, and the type of sub components. Notice that we
can also add new building blocks to VMCrypt by deriving
directly from Component, whereas in Fairplay the language
is final and cannot be extended.
Class Map. A map is a component that maps an input

from one port to another. A map only needs to implement
abstract method map. For example, the identity map code
is as follows:

class IDMap extends Map {

IDMap(Bus bus, int inDegree) {

super(bus, inDegree);

}

int map(int port) {

return port;

}

public String name() {

return "IDMap";

}

}

The name method returns the name of the component
and is used only for testing purposes. The notify method,
which handles notifications from other components, is im-
plemented in class Map. Notice that components like Map are
not the only notifiable modules; a wire, a bus, and other
modules also have a notify method.
Like all sub classes of Component, the constructor of Map

passes three arguments to the constructor of Component: in-

Degree, outDegree and a bus. Those are data members of
Component. In the case of Map, the value of inDegree is
passed both as inDegree and outDegree, which is why our
constructor for IDMap only takes inDegree as an argument.

Class Component. The most important data member
of Component is the bus. We illustrate the role of the bus
using the minimum component (Figure 3). The base layer
of this component is a Switch with two sub components: a
UniSwitch and an IDMap. Figure 6 shows this Switch with
its two subcomponents (the BinaryMIN inside the UniSwitch
are not shown). Each component has a Bus shown as a
grey rectangle. As we mentioned above, all sub classes of
Component must pass to the constructor of Component an
instance of class Bus. This instance stores a reference (called
out) to a notifiable object that will receive the output of the
component. In the case of the minimum circuit, for example,
we first instantiate the layer above the base layer (call it L),
then we create a new bus that will point at it by writing Bus

bus = new Bus(L), and finally we invoke the constructor
of the Switch with bus as argument. This bus is shown in
Figure 6 at the top left corner of the Switch. In addition to
directing the output, the bus is responsible for destructing a
component once it has fired its last signal. For this, the bus
maintains a counter. The only role of the outDegree variable
is to set this counter. Consider now the sub components of
the Switch. Their output is intended to L, yet their busses
point at the bus of the Switch. Why? because the bus of
the Switch must be able to count all the signals leaving the
component. If some signals are missing, then it will never
destruct the Switch.

Let us see how the bus works in practice. Suppose that
the first signal the Switch from Figure 6 receives is on port
0. It will pass it to the UniSwitch, who will process it and
fire a new signal on, say, port 0. If the outDegree of the
UniSwitch is, say, 8, then the counter in the bus of the
UniSwitch is now 8 − 1 = 7. Similarly, if the outDegree of
the Switch is, say, 16, then the bus of the Switch updates its
counter to 16 − 1 = 15. Of course, it also passes the signal
from the UniSwitch out (to the layer above), on the same
port it was received, which is 0. The type of bus that we
use in the UniSwitch would not work in the IDMap. To see
why, consider what happens when the Switch routes signals
to the IDMap. Suppose that the inDegree of the UniSwitch

is 16 and that the Switch receives a signal on port 16. Since
16 does not fall in the range 0 − 15, the Switch will pass
it to the IDMap on port 16 − 16 = 0. Since the map is the
identity function, the bus of the IDMap will pass this sig-
nal to the bus of the Switch on port 0, which will override
outputs of the UniSwitch. Thus, when we instantiate the
IDMap, we pass to it an OffsetBus, which offsets the port.

SwitchUniSwitchMap

Component

UniGate

Gate

Circuit

BaseComponent

BinaryGate

Figure 5: Class hierarchy of components.

Switch

UniSwitch Map

Figure 6: The role of the Bus.

In this scenario we want the output of the IDMap appearing
immediately to the right of the output of the UniSwitch,
and since the outDegree of the UniSwitch is 8, we instanti-
ate this bus by writing OffsetBus offsetBus = new Off-

setBus(bus, 8), where bus is the bus of the Switch. Any
output of the IDMap on port i will now be given to the bus
of the Switch on port 8 + i.
Unlilke outDegree and Bus, the role of inDegree depends

on the component and the sub component. In a Map, the in-
Degree and outDegree are always the same, but inDegree

is never used. Similarly, Switch and UniSwitch never use
their own inDegree. However, the Switch uses the inDegree
of its sub components for routing. This is why all classes
derived from BaseComponent have an inDegree() method.
The UniSwitch takes two parameters: inputTab and out-

putTab. When a signal is received on port i, it is given to
the sub component at index index = ⌊i/inputTab⌋. If this
sub component outputs a signal on port j, then the bus of
the UniSwitch will output it on port index∗outputTab+j.
Class Circuit is the only component that uses its inDegree:
when a circuit is built, it instantiates inDegree objects of
class Wire and stores them in an array of size inDegree.

Circuits. Class Circuit is the only component with in-
put wires. Like in a Switch, the sub components of Circuit
can be of any type derived from BaseComponent. To create
a circuit in VMCrypt, we need to implement two methods:
one that instantiates sub components and another that con-
nects them. As an example, we implement the bit multi-
plexer from Figure 2 a. The skeleton of our class is:

class BitMUX extends Circuit<BinaryGate> {

BitMUX(Bus bus) {

super(bus, 3,1);

}

public String name() {

return "BitMUX";

}

}

The numbers 3 and 1 are the inDegree and outDegree

of the component, respectively. Class Circuit has an array
called components. When a circuit receives its first input,
its define_sub_components() method is called. In the case
of the BitMUX, for example, this method will initiate com-

ponents to be XOR and AND gates. Next, class Circuit will
initialize its inputWires array to size inDegree (which is 3
in our case), create empty wires, and invoke method con-

nect_wires() to connect wires to gates.
Once building blocks like BitMUX are built, higher level

circuits can be built more easily. For example, our MUX on
strings of length arity instantiates arity elements of BitMUX
in define_sub_components(), and connects their input and
output wires in connect_wires().

Classes Switch and UniSwitch. Creating a component
from classes Switch and UniSwitch is even simpler than class
Circuit. In the case of UniSwitch, we only need to imple-
ment a method returning an instance of the sub component.
In a Switch, on the other hand, each sub component can be
from a different class, so like in define_sub_components(),
we instantiate all the sub components, and connect them
using a Bus, or a Splitter when necessary.

5. PERFORMANCE
We analyze VMCrypt performance on circuits which have

been developed without modifying VMCrypt source code.
Each circuit has different structural properties and was tested
on inputs of increasing length to show that performance does
not depend on size or structure. We are not aware of such
rigorous analysis in prior work.

All tests were executed on a Thinkpad X301 laptop with 3
GB RAM and a 1.6 GHz Intel Core2 Duo processor running
Ubuntu Linux. Two Java Virtual Machines (JVM) were
run on this computer; one for each party. To guarantee
that performance is measured in a standard setting, we did
not configure the JVM (e.g., by increasing the size of the
heap). Parties communicated through the loopback network
interface. Running the parties side by side means that the
same machine was stressed with twice the amount of work,
for both TCP (packet handling, checksums, etc.) and Yao’s
protocol.

Encryption was implemented with SHA-1 modeled as a
random oracle, which provides much better performance
compared to number theoretic based pseudo-random gen-
erators (PRGs). Wire label length was 120 bits. We remark
that our communication complexity is exactly four encryp-
tions (one lookup table) per gate and one OT per wire. This
is the absolute minimum. By maintaining party state, we
avoid sending metadata (describing what is being sent), gate
numbers, wire index, etc. Thus, any other protocol can only

31MB

GB1.5

number of records
in database

total time
in minutes

0.31 26.713.4

106

104

GB3

106

2

Figure 7: Running time of secure database search.

have equivalent or worse communication complexity. For-
mally, the communication complexity is exactly 4n∗L+k∗|x|
bytes, where n is the number of non-XOR gates in the cir-
cuit, L is the byte length of a ciphertext (encryption), |x|
is the length of the input of the evaluator, and k is a small
constant that depends on the OT communication complex-
ity.
We start with the database search function. The input to

this function is an array of records ⟨xi, pi⟩ and a string y,
where xi and pi are viewed as columns in a database table.
The output is all pi for which xi = y. In VMCrypt it is
implemented as component DBSearch. In Fairplay [21] it
was implemented as Keyed Database Search (KDS).
Since Fairplay circuit parameters are passed at compile

time, the compiler must be run in each execution. Thus,
we compared the performance of our full protocol with that
of the Fairplay compiler [21] alone (ignoring the time and
memory it takes to actually execute the Fairplay protocol).
Since the time and memory complexity of the Fairplay com-
piler are not reported in the literature, we carried our own
test on a table where the length of each of xi, pi and y is 20
bits. When the table size is N = 20 records, the compiler
runs for 10 seconds. When N = 40 the running time is 50
seconds. Obviously, this is not linear. When N = 55 the
compiler runs for 3 minutes and then crashes with a Java Out
Of Memory Error. In the case of N = 40, memory consump-
tion climbs gradually to 23% of the RAM. When N = 55, it
reaches 26%.
In VMCrypt, when N = 10, 000 the running time of the

secure database search protocol is 19 seconds. Figure 7 de-
scribes the running time (in minutes) and communication
complexity for values of N up to 1 million. The component
with 1 million records has 100 million gates and 60 million
lookup tables (the number of non-XOR gates).
We discuss Figure 7 and other statistics. First and fore-

most, although the full hardware description of the circuit
for database search is linear in N , the client and the server
each used the same amount of memory, namely, 4.8% RAM.
Secondly, the running time is linear in the database size.
This was not the case with earlier versions of VMCrypt, and
therefore should not be taken for granted (see discussion in
Section 3). Thirdly, the very large amounts of data sent
confirm that parallelizing Yao’s protocol yields significant
savings on disk read and writes. Finally, 84% of the run-
ning time was consumed by cryptographic operations and
communication (this was measured by comparing with the
running time of calculating the component). In other words,
VMCrypt overhead was only 16% . Other implementations
also have an overhead, but unfortunately such statistics are
not provided in the literature.

GB1.4

28MB total time
in minutes

0.3 22.2
104

106

106

2

2.7GB

44.5

set size

Figure 8: Running time of secure minimum.

3.2GB

total time
in minutes

0.31 10.3

1581
1000
158

1.3GB
MB32

25.1

set size

Figure 9: Running time of secure set intersection.

Our next test was the minimum component, implemented
in VMCrypt as class MIN (Figure 3). This component takes
N integers (of length 20 bits each) and outputs their mini-
mum. In our experiment, half of the integers belong to the
client and half belong to the server. We remark that, in prac-
tice, parties will have shares of the integers, and the function
would first add the shares and then find the minimum.

The running time (in minutes) and communication com-
plexity of the protocol for secure minimum are given in Fig-
ure 8. These are linear in N because, as with the DBSearch

component, the underlying (non-secure) algorithm runs in
linear time. On average, parties used 5% of the memory (in-
dependently ofN), and VMCrypt overhead was 10%. Notice
that the running time is almost double that of the DBSearch
component. This is because half of the inputs required obliv-
ious transfer, and the number of lookup tables was almost
double (the MIN component with 1 million inputs had 110
million gates and 90 million lookup tables).

Our last test was the set intersection component, imple-
mented as class SetIntersection (Figure 4). This com-
ponent takes two sets of size N and M , and outputs their
intersection. We fixed the bit length of set elements to 20
bits. To simplify the presentation we chose N = M . The
running time (in minutes) and communication complexity of
the protocol for secure set intersection are given in Figure 9.

Notice that, unlike previous tests, the size of the set in-
tersection component is quadratic in N due to the underly-
ing (non-secure) algorithm it implements. For comparability
with previous tests, we chose values of N ranging from 158
to 1581. Thus, when N = 158 we have N2 ∼= 104 and the
component has 1 million gates and 0.5 million lookup tables.
Similarly, when N = 1581 we have N2 ∼= 106 and the com-
ponent has 100 million gates and 50 million lookup tables.
On average, parties used 5% of the memory (independently
of N), and VMCrypt overhead was 15%.

6. REFERENCES
[1] M. Barni, T. Bianchi, D. Catalano, M. D. Raimondo,

R. D. Labati, and P. Faillia. Privacy-preserving
fingercode authentication. In MM&Sec’, Roma, Italy,
2010. ACM.

[2] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a
system for secure multi-party computation. In ACM
Conference on Computer and Communications
Security, pages 257–266, 2008.

[3] D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
A framework for fast privacy-preserving computations.
In ESORICS, pages 192–206, 2008.

[4] I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B.
Nielsen. Asynchronous multiparty computation:
Theory and implementation. In Public Key
Cryptography, pages 160–179, 2009.

[5] I. Damg̊ard and M. Jurik. A generalisation, a
simplification and some applications of paillier’s
probabilistic public-key system. In Public Key
Cryptography, pages 119–136, 2001.

[6] I. Damg̊ard and C. Orlandi. Multiparty computation
for dishonest majority: From passive to active security
at low cost. In CRYPTO, pages 558–576, 2010.

[7] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
I. Lagendijk, and T. Toft. Privacy-preserving face
recognition. In Privacy Enhancing Technologies, pages
235–253, 2009.

[8] D. Evans, Y. Huang, J. Katz, and L. Malka. Efficient
privacy-preserving biometric identification. In
Proceedings of the 17th conference Network and
Distributed System Security Symposium, NDSS 2011.

[9] D. Evans, Y. Huang, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
To appear in the 20th USENIX Security Symposium.

[10] C. Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, pages 169–178, 2009.

[11] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. Tasty: Tool for automating secure
two-party computations. In ACM Conference on
Computer and Communications Security, 2010.

[12] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers efficiently. In CRYPTO,
pages 145–161, 2003.

[13] S. Jha, L. Kruger, and V. Shmatikov. Towards
practical privacy for genomic computation. In IEEE
Symposium on Security and Privacy, pages 216–230,
2008.

[14] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.
Improved garbled circuit building blocks and
applications to auctions and computing minima. In
CANS, pages 1–20, 2009.

[15] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free XOR gates and applications. In ICALP
’08: Proceedings of the 35th international colloquium
on Automata, Languages and Programming, Part II,
pages 486–498, Berlin, Heidelberg, 2008.
Springer-Verlag.

[16] Y. Lindell and B. Pinkas. A proof of security of yao’s
protocol for two-party computation. J. Cryptology,
22(2):161–188, 2009.

[17] Y. Lindell, B. Pinkas, and N. P. Smart. Implementing
two-party computation efficiently with security against
malicious adversaries. In SCN, pages 2–20, 2008.

[18] P. D. MacKenzie, A. Oprea, and M. K. Reiter.
Automatic generation of two-party computations. In
ACM Conference on Computer and Communications
Security, pages 210–219, 2003.

[19] L. Malka. VMCrypt 1.4 developers manual.
http://www.lior.ca/publications/
VMCrypt Manual Rev1.0.pdf.

[20] L. Malka. VMCrypt - modular software architecture
for scalable secure computation. EPrint report
2010/584, 2010.

[21] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay—a secure two-party computation system. In
SSYM04: Proceedings of the 13th conference on
USENIX Security Symposium, pages 20–20, Berkeley,
CA, USA, 2004. USENIX Association.

[22] M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In SODA, pages 448–457, 2001.

[23] J. D. Nielsen and M. I. Schwartzbach. A
domain-specific programming language for secure
multiparty computation. In PLAS, pages 21–30, 2007.

[24] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich.
Scifi - a system for secure face identification. In IEEE
Symposium on Security and Privacy, pages 239–254,
2010.

[25] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In
EUROCRYPT’99: Proceedings of the 17th
international conference on Theory and application of
cryptographic techniques, pages 223–238, Berlin,
Heidelberg, 1999. Springer-Verlag.

[26] A. Paus, A.-R. Sadeghi, and T. Schneider. Practical
secure evaluation of semi-private functions. In ACNS,
pages 89–106, 2009.

[27] B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure two-party computation is practical.
In ASIACRYPT, pages 250–267, 2009.

[28] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
Efficient privacy-preserving face recognition. In ICISC,
pages 229–244, 2009.

[29] N. P. Smart and F. Vercauteren. Fully homomorphic
encryption with relatively small key and ciphertext
sizes. In Public Key Cryptography, pages 420–443,
2010.

[30] M. van Dijk, C. Gentry, S. Halevi, and
V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In EUROCRYPT, pages 24–43,
2010.

[31] A. C.-C. Yao. How to generate and exchange secrets
(extended abstract). In FOCS, pages 162–167, 1986.

