
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007 1717

VMesh: Distributed Segment Storage for
Peer-to-Peer Interactive Video Streaming

W.-P. Ken Yiu, Xing Jin, S.-H. Gary Chan

Abstract—Provisioning random access functions in peer-to-
peer on-demand video streaming is challenging, due to not
only the asynchronous user interactivity but also the unpre-
dictability of group dynamics. In this paper, we propose VMesh,
a distributed peer-to-peer video-on-demand (VoD) streaming
scheme which efficiently supports random seeking functionality.
In VMesh, videos are divided into segments and stored at peers’
local storage in a distributed manner. An overlay mesh is built
upon peers to support random forward/backward seek, pause
and restart during playback. Our scheme takes advantage of
the large aggregate storage capacity of peers to improve the
segment supply so as to support efficient interactive commands
in a scalable manner. Unlike previous work based on “cache-
and-relay” mechanism, in our scheme, user interactivity such
as random seeking performed by a peer does not break the
connections between it and its children, and hence our scheme
achieves better playback continuity. Through simulation, we show
that our system achieves low startup and seeking latency under
random user interactivity and peer join/leave which is a crucial
requirement in an interactive VoD system.

Index Terms—Peer-to-peer, media streaming, random seeking,
distributed storage, locality-aware, popularity-based, distributed
consensus.

I. INTRODUCTION

W ITH THE PENETRATION of broadband Internet ac-
cess into households, there has been an increasing

interest in media streaming services. Video-on-demand (VoD)
is one of such services where movies are delivered to desktops
of distributed users with low delay and free interactivity
(in terms of pause, jump forward/backward, etc.). However,
providing VoD with traditional client-server architecture where
each client is allocated a dedicated stream from the server is
not scalable to large number of clients. This is mainly due to
heavy server load and limited network bandwidth at the server
side. Though IP multicast may be used as a scalable solution
for media streaming, providing such services worldwide is
still challenging due to the lack of widely deployed multicast-
capable networks and dedicated proxy servers [1], [2]. Re-
cently, peer-to-peer (P2P) technologies have been proven as a
scalable solution to many applications, e.g., multicasting and
file sharing among distributed users [3], [4]. In this paper,

Manuscript was received on March 1, 2007; revised on August 1, 2007.
This work was supported, in part, by the Research Grant Council of the
Hong Kong Special Administrative Region (HKUST611107) and Hong Kong
Innovation and Technology Commission (GHP/045/05).

The authors are with the Department of Computer Science and Engi-
neering, The Hong Kong University of Science and Technology, Clear Wa-
ter Bay, Kowloon, Hong Kong (e-mail: {kenyiu, csvenus, gchan}@cse.ust.hk).

Digital Object Identifier 10.1109/JSAC.2007.071210.

we propose a novel P2P technique to provide interactive VoD
service.

In P2P systems, cooperative peers self-organize into an
overlay network via unicast tunnels.1 Each peer (called overlay
node) in the overlay network acts as an application-layer
proxy, caching and relaying data for other peers. In addi-
tion, by sharing their resources such as storage and network
bandwidth, the storage and streaming capacity of the whole
system is greatly amplified as compared with traditional client-
server architecture. Recent research shows that it is feasible
to support large-scale media streaming in the Internet using
P2P approach [5]–[13]. P2P approach has been shown to be
feasible for on-demand media streaming, unfortunately, its
support to user interactivity is still a challenge because a user
may jump forward, backward, pause and resume its playback
anytime. This means that the parents (or “suppliers”) of a
user may need to be changed quite frequently. Therefore,
an efficient algorithm for switching to appropriate parents is
needed to support user interactivity.

Though P2P file swarming systems like BitTorrent may be
used to download the whole media objects before playback,
this introduces long startup delay [4]. Though there has been
much work on providing on-demand video service in P2P
networks (i.e., low startup delay) [5], [8], [10]–[14], only few
tackle user interactivity issue which we focus in this paper.
The previous work uses “cache-and-relay” paradigm, in which
a peer caches what it has recently played out for a period
of time before discarding it, and uses the cached content to
serve others. As opposed to the previous work, our scheme
uses static local storage instead of sliding window buffering
to help handle user interactivity efficiently and to reduce the
complexity. In “cache-and-relay” systems, peers rely on the
cached content of their parents. If a parent jumps to another
playpoint in the video, it starts to receive media data which
is not interested by its children. As a result, all its children
would be abandoned since the cache of their parent can no
longer supply useful data to them. The situation becomes
severe if the system uses tree-based overlay for streaming
because the descendants of the children are also affected. The
advantage of our scheme is that any interactive action (e.g.
random seeking) of a peer does not stop its children from
continuing to receive its stored data. The peers, on the other
hand, connect to new parents for each segment. The main
difference between our scheme and the previous schemes is
that, during normal playback, the time for a peer to switch its
parents is predictable. Therefore, the peer can start caching the
next segment when it nearly finishes playing out the current

1In this paper, we use “client”, “user” and “peer” interchangeably.

0733-8716/07/$25.00 c© 2007 IEEE

1718 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

`

`

`

`

26 94 156

59

30

23 74

Internet

Video
Server

Video Name: Titanic
Video Length: 194 min.

0 1 2 3 4 5 … 191 192193194

Segment Blocks

Video Name: Titanic
Video Length: 194 min.

0 1 2 3 4 5 … 191 192193194

Segment Blocks

stored
segments

Fig. 1. An overview of VMesh architecture. Each VMesh peer stores some segments for serving others.

segment. This is also an advantage of our scheme over the
previous schemes.

Most of the existing work on P2P-based media streaming
systems have made an implicit assumption that a user who
joins a streaming session would play the media from the
beginning to the end. However, as suggested in [9], based
on large amount of user viewing logs, most users performed
random seeking (i.e., jumping) frequently. From the statistics,
we also found that the jump distances are usually small. This
is reasonable because users would usually skip boring scenes
by jumping a bit forward or review some exciting scenes by
jumping a bit backward. It would be beneficial if the system
allows the users to jump to close scenes efficiently.

Based on the above observations, we propose a novel P2P
architecture called VMesh to support interactive VoD service
over the Internet. VMesh utilizes the large aggregate storage
capacity of peers to amplify the supply of video segments to
achieve user scalability. Figure 1 depicts the architecture of
VMesh system. In VMesh, videos are divided into smaller
segments (identified by segment IDs) and distributed to peers
over the network. An overlay mesh is built among the peers
to support playback and interactive functionalities. Each peer
stores a number of video segments at its local storage such as
hard disk, depending on its storage capacity. It keeps a list of
the peers who have the previous and the next video segments.
Following the list, its children can quickly find the peers with
the next requested segments. Furthermore, a peer also keeps
a list of peers storing the same segment for load balancing
purpose. If a node is loaded, it redirects some of its children
to other peers on its list. In order to provide failure-tolerant
streaming service, a client connects to multiple parents who
have stored the segment of interest so that they stream the
video in parallel and collaboratively. The parents could be
searched in the network using a distributed hash table (DHT)
system such as Chord or Pastry with the key comprising video
ID and segment ID [15], [16].

Some people may argue that DHT is unstable under peer
dynamics. Recently, there have been works on improving

DHT’s efficiency and resilience [17], [18] and how DHT
systems could be applied in practical systems [19], [20]. Our
scheme assumes using an efficient and resilient DHT system
as a subsystem, how to improve the efficiency of searching
results from DHT is out of the paper scope. Our scheme does
not pose any limitation on which DHT systems to be used.
Apart from that, network address translation (NAT) is another
major concern on the feasibility of P2P streaming systems.
Since there are many end-hosts currently situated behind NAT
routers, it is difficult to connect them from outside and stream
media to them. This issue can be addressed by applying hole
punching technique proposed in [21]. Once a host behind NAT
joins the system, it registers both of its private and public
endpoints (i.e., the two addresses used by the end-host inside
and outside of the NAT network) at a rendezvous server (RS)
which is dedicated for storing peers’ endpoints. When a peer A
wants to connect to another peer B behind NAT, A can obtain
B’s endpoints from the RS and try to connect to the private
and public endpoints of B. As mentioned in [21], this method
works for most of the NAT routers available nowadays. To get
rid of the centralized RS, one may also make the registered
entries distributed over a DHT. The routing tables in DHT
nodes then contain both private and public endpoints of a node
behind NAT, and the DHT nodes imitate the RS by forwarding
both endpoints to A and B.

In this paper, we propose VMesh architecture to provision
VoD service in a pure P2P network. In VMesh, we propose a
locality-aware segment location algorithm for improving the
streaming efficiency and reducing server stress. In addition, we
also propose a popularity-based segment storage scheme for
better load-balancing and relieving server stress. Our extensive
simulation shows that VMesh has the following desirable
properties:

• Scalability — the system is simple and scalable to large
number of users with low server bandwidth requirement.
It is completely decentralized, without the need of a
server to organize overlay nodes.

• Efficiency — users can start playing the media with low

YIU et al.: VMESH: DISTRIBUTED SEGMENT STORAGE FOR PEER-TO-PEER INTERACTIVE VIDEO STREAMING 1719

delay as it is based on streaming without file download-
ing.

• Failure-resilience — the system is robust to peer dynam-
ics, node and link failures to offer continuous streaming.

• Interactivity support — users can interact with the media
at any time.

This paper is organized as follows. We first briefly mention
the related work in Section II. We then give a detailed
description of our system and the popularity-based storage
scheme in Section III and Section IV. Next, we present our
experimental results in Section V. Finally, we conclude the
paper in Section VI.

II. RELATED WORK

Research on providing on-demand media streaming using
IP multicast, such as patching [1], [2], periodic broadcasting
[22], [23], stream merging [24], etc., has been done. Those
works take advantage of the efficient data dissemination using
IP multicast and repeat the media in multicast channels.
Nevertheless, over the past decade, the deployment of IP
multicast-capable networks has remained very limited. This
leads researchers to tackle the problem in the application layer.
Based on this, VMesh is a pure P2P architecture and does not
assume the existence of IP multicast.

Recently, researchers use peer-to-peer (P2P) approach to
provide VoD services. P2Cast [25] uses a P2P approach to
cooperatively stream video using patching techniques. Similar
to traditional patching schemes, while a new peer receives
a base stream from an overlay tree formed by the peers in
the same session, it also requests another peer from the same
session as its patch server for sending it the patch stream.
However, hosts in P2P networks usually do not have enough
bandwidth to serve a client, the single parent approach used
by P2Cast is unable to cope with the bandwidth limitation and
fluctuation problem and the parent departure problem in P2P
networks. Moreover, overlay tree’s bandwidth is guaranteed
to be monotonically decreasing from the root to the leaves,
streaming quality becomes worse at the leaf nodes. CoopNet
[14] delivers multiple description codes (MDC) of a video
stream over multiple overlay trees to solve the departure
problem. Each peer joins multiple trees, and hence has more
than one parent. If one of the parents departs, the peer can
still receive and decode other descriptions from the remaining
parents with a little quality degradation. PROMISE [26] peers
also receive stream from several parents. However, each of
the parents is required to have the full copy of the requested
media, which is rarely available in practice. P2VoD [13]
organizes each video session tree into layers. Peer departure is
efficiently handled by finding another parent only in the upper
layer without the involvement of the source. With each peer
having a fixed bound on the amount of cached most recent
stream, each new client can quickly join the system by either
joining the lowest layer of the tree or creating a new layer
in the tree. However, P2VoD assumes that all clients play
the stream from the beginning which is not true in reality.
It also does not provide any efficient mechanism for client
to random seek another playpoint in the video which is an
essential functionality in a VoD service. Cui et al. developed

a temporal dependency model among end-hosts [11]. Based
on this model, a media distribution tree is found by the central
server to minimize the overall transmission cost. Nevertheless,
every time a peer leaves or seeks another position in the video,
the server needs to recompute the whole tree. In our design
of VMesh, we consider provisioning the important function -
random seeking, by distributed storage and search schemes.
Each peer in VMesh stores a few segments of the media
data which are independent of what it is playing, hence, user
interactivity of the peers does not affect its children in the
delivery network. In [10], a hybrid approach is introduced.
Upon a tree overlay, a gossip-based data exchange mechanism
is added to withstand the unreliability of peers. However,
all the parent-children relationships and gossip partners are
assigned by a central server. Therefore, the central server
needs to keep track of all the users. This centralized approach
is not preferred in P2P systems because a large amount of
control traffic would congest the network near by the central
server. PROP [27] also uses distributed storage approach for
providing VoD service. But, the scheme relies on proxy servers
and global information for cache replacement. In our system,
we use distributed algorithms for segment location, storage
and replacement. We do not assume any availability of global
information. In addition, we also build an overlay mesh called
VMesh to minimize the searching overhead.

For searching good parents in a P2P network, Zhou and
Liu proposed to build an overlay AVL tree for efficient
searching [28]. Though searching parents is achieved using
a distributed AVL tree, the network locations of peers are
not taken into consideration when assigning parent-children
relationship and gossip partnership. Careless assignment may
lead to transmission of the stream to and fro some bottleneck
links many times, increasing the link stress of the network.
Also, transmission from distant parents may experience higher
probability of packet loss. Chi and Zhang proposed buffer-
assisted search (BAS) in [29] which builds a binary search tree
based on peers’ buffered content range. As peers’ buffer cov-
erage may overlap, many peers who have content overlapped
by others can be dismissed from the search tree. Therefore,
the scheme keeps the search tree size small and hence the
searching process becomes quick. Again, the scheme may also
assign distant parents to a new client which leads to inefficient
data delivery. In VMesh, we use distributed hash table (DHT)
for searching parents. With each peer registers its own stored
segments on the DHT [15], a new client can perform DHT
search to find out which peers are storing the required content.
In addition, the network locations of peers are embedded in
the search key so as to allow the DHT search to find out close
peers for efficient streaming.

Data scheduling among multiple parents is another impor-
tant issue in P2P streaming system. Zhang et al. proposed
a deadline-oriented greedy algorithm for assigning packet
delivery from multiple parents [6]. In [30], the problem is
modeled as a classical min-cost network flow problem and
proposed a distributed scheduling algorithm to maximize the
system throughput. The algorithm solves a linear program
(LP) which maximizes the cost in terms of packet rarity and
emergency, with a set of constraints on available inbound,
outbound and end-to-end bandwidth. In this paper, we con-

1720 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

centrate on segment storage and location, and provisioning
random seeking functionality. This topic is out of the paper
scope. In this paper, we simply apply round-robin scheduling
among parents. However, our system can be adapted to apply
any other advanced techniques for data scheduling.

In [31], we proposed the use of distributed storage to allow
efficient support of user interactivity in P2P VoD system.
In the paper, we extend the work by adding a distributed
algorithm to balance the supply and demand of video seg-
ments under non-uniform segment popularity distribution. The
algorithm makes popular segments to be duplicated more and
match their demands, so as to relieve requirements on the
server bandwidth. Besides, since the distributions of popular
segments are denser, it is more likely that a client could find
close parents for those segments, and hence receive video
of better quality. We also evaluate the performance of the
proposed algorithm through simulation.

III. SCHEME DESCRIPTION

In this section, we first give an overview of VMesh (Sec-
tion III-A), followed by our locality-aware segment loca-
tion scheme for locating distributed stored segments (Section
III-B). Then, we introduce our scheme on mesh construction
(Section III-C) and its feedback-based maintenance (Section
III-D). Finally, we discuss how to choose the size of segment
(Section III-E) and how to extend our work in order to support
fast-forward operation (III-F).

A. VMesh Overview

A video server stores the videos for user access. Each video
is divided into N segments, each of them are identifiable by
its video ID and segment ID. For example, the segment is
5 minutes long with a video bit rate of 1 Mbps, therefore,
it is of size 36 MBytes. Depending on the capacity of its
local storage, each peer stores a number of segments randomly
chosen from the N segments of the video. These peers are
referred as storage peers. In this way, there are multiple copies
of each video segment in the network. When a client wants to
play a segment, it first looks for the supplying peers of that
segment in the P2P network, then sends requests to those peers
for the service. Those supplying peers with enough outgoing
bandwidth would serve the requesting peer. If there is no
supplying peer, the requesting peer requests the media server
for the target segment as the last resort.

Since video segments are distributed among peers, VMesh
utilizes distributed hash table (DHT) to locate these segments.
DHT is a structured overlay constructed among peers. It works
like a traditional hash table, that is, given a hashed key, it
returns the corresponding object or its location. The difference
is that the table entries are not located in the same place but
distributed among the peers in the network. With a proper
routing mechanism, the DHT supports primitive functions
such as: put(id, object), get(id) and delete(id), where id is the
object’s identifier, as in a traditional hash table. In VMesh,
peers use a DHT built among the peers to bootstrap a new
video streaming session. A new client searches for its first
segment of interest in the DHT network and starts playing the
video when the requested data arrives and fills up its buffer. A

1

2

2

4

3

1

3

next-segment

previous-segment

current-segment

1storage peer

next-segment

previous-segment

current-segment

1storage peer

Fig. 2. In VMesh, storage peers hold various video segments and at the
same time, they keep a list of peers who possess the next / previous / current
segments for random seeking and load balancing purposes.

client continues to request the next segment when the current
one is nearly finished. At the mean time, a peer uses its spare
bandwidth to randomly download and store video segment(s)
in its local storage. The segment would then be used to stream
to another peer of interest. Each stored segment should be
registered in the DHT network by the storage peer, so as to
allow other peers to locate the segment. This can be done
using put(id, object).

It is feasible for a client to continuously search for each
segment using get(id) in the DHT network. However, it is
likely that, a client who is accessing the current segment
also wants to access the next segment, i.e., their access
probabilities are highly correlated. Therefore, it is beneficial
to cache the links to the next segment. In VMesh, peers
also form an overlay mesh among themselves in order to
save messaging overhead for the DHT search and shorten the
segment location latency. Each peer keeps a list of pointers
(i.e., the IP addresses) pointing to some peers which store the
next video segment and the previous video segment. By using
the pointer list, clients could request the current parents for
the locations of next required segment. This does not require
the client to go through the DHT query process. Besides, for
the load balancing issue, each storage peer also keeps a list of
pointers to some peers which are storing the same segment.
When a storage peer is overloaded by its children, it can
redirect some of them to other storage peers which are also
able to serve them.

Figure 2 illustrates the idea of VMesh. In the figure, a circle
represents a storage peer and the number inside represents the
ID of the segment it holds. A storage peer holds a few video
segments and keeps a list of peers who have the next, previous,
or current segments for seek and load balancing purposes.
The pointers are used to redirect users to the appropriate
peers storing the next requested segments. In case of joining
or jumping, a VoD client in our system searches for its
parents using DHT and gets the stream from those parents.
In the traditional “cache-and-relay” paradigm proposed in the
previous work, a VoD client relies on the content resides in
its parents’ buffers [11], [13]. If a parent jumps to another
position in the video, the peer needs to search for a new parent
again. In contrast, the segment stored by a peer in VMesh
would not be changed by any user interactive actions.

All peers register the search keys of their stored video
segments in the DHT. A joining client performs the following
procedures:

YIU et al.: VMESH: DISTRIBUTED SEGMENT STORAGE FOR PEER-TO-PEER INTERACTIVE VIDEO STREAMING 1721

6541

7832

1091415

11121316

6541

7832

1091415

11121316

Fig. 3. An example of Hilbert curve mapping from two-dimensional space
to one-dimensional space.

1) It searches for the first interested segment in the DHT
network.

2) Upon receiving the list of peers from the DHT node,
it contacts the returned list of peers to request for
the segment. Close peers are preferred for transmission
efficiency.2

3) Those contacted peers with enough upload bandwidth
become the client’s parents for sending the requested
segment. Multiple parents are employed for fault toler-
ance purpose. Among the multiple parents, the client has
to decide which blocks to be delivered by each parent.
There are various scheduling algorithms to assign pack-
ets with multiple parents [6], [26], [30]. We consider
simple round-robin scheduling in this paper.

4) When the client nearly finishes playing the current
segment, it requests from its current parents their lists
of peers holding the next segment. It then contacts the
peers in the returned list for continuous playback.

5) If the client wants to jump to another video position,
it uses either the mesh pointers or the DHT network
to find the target segment according to Algorithm 1.
The objective of the algorithm is to reduce the num-
ber of overlay hops for the search process. Let Lseek

be the seeking distance (in minutes) from the current
playpoint position, S the segment size, and M the
size of DHT search key space. If the new position is
not far away from the current one, it simply follows
its forward/backward pointers in the video mesh to
contact the new parents. Otherwise, it triggers another
DHT search for the segment corresponding to the new
position.

Algorithm 1 SeekSegment

1: if (Lseek/S) ≤ log M then
2: Follow mesh links to find the target segment;
3: else
4: Search the target segment using DHT;
5: end if

B. Locality-Aware Segment Location

The mutual network distance between parent and children is
a crucial factor for efficient streaming. If the parent-child rela-
tionships are casually formed, much network resources would

2Close parents can be selected from the list by measuring their round-trip
times using simple ping.

SFC mapped coordinatesVideo Segment IDHashed media info SFC mapped coordinatesVideo Segment IDHashed media info

16 bits8 bits16 bits 16 bits8 bits16 bits

Fig. 4. The 40-bit DHT search key consists of three parts: hashed media
information, video segment ID and space filling curve mapped network
coordinates of the peer.

be wasted due to inefficient routing and increase in link stress.
To address this problem, VMesh takes the network locations
of the peers into consideration while locating supplying peers
for a client.

The network location of a peer may be obtained using a
network coordinate system such as GNP and Vivaldi [32],
[33]. Such system gathers ping measurements among peers
and landmarks, and returns multi-dimensional coordinates
in an Euclidean space. In order to search for parents with
close network locations, we put this locality information
into the DHT search keys of the segments registered by
the peers. Since most DHTs in structured overlays use a
one-dimensional space for keys as opposed to the multi-
dimensional coordinates, we need a mapping from the multi-
dimensional coordinate space �d to the one-dimensional DHT
search key space �. We apply a space filling curve (SFC), such
as Hilbert curve, for such mapping because SFC is locality
preserving (i.e., if two points in the multi-dimensional space
are close, the distance between their corresponding mapped
one-dimensional points is also short.) [34]. Figure 3 shows
how Hilbert curve maps a two-dimensional space for a 4x4
2-D coordinates to a one-dimensional space labelled from 1
to 16.

With the mapped coordinates, each peer constructs its 40-bit
DHT key consisting of media information and its segment ID
as well.3 As shown in Figure 4, the DHT key is constructed
by combining the fields in the order of importance. The most
important field is the media information, followed by the video
segment ID, and then the SFC-mapped coordinates. The media
information is hashed to obtain a video ID, so that each video
can be assigned to an ID uniformly distributed in the key
space for the purpose of balancing DHT load among peers.
Each peer registers its own key for its stored video segment(s)
in the DHT. At the same time, it searches for its parents using
DHT search keys constructed by segment ID and its own
mapped coordinates. Most DHTs can be modified to reply
queries with multiple peers whose keys are numerically closest
to the search key. Since the peer’s own mapped coordinates
are used to construct the search key, multiple parents closest
to the requesting peer are returned. The peer can then connect
to them and request for the segment.

Figure 5 illustrates how a new client receives the requested
video stream in VMesh. Firstly, it searches for the segment
of its interest using DHT. For system fault tolerance of DHT,
DHT nodes may duplicate its table entries to the k neighboring
nodes in the key space. Then, the request is forwarded to the
k closest neighboring nodes. Based on our design of DHT
search key, the k closest available storage peers may reply
and begin to serve the requesting client.

3The length of the DHT key can be extended to accommodate larger
systems. Currently, the 16-bit hashed media information can already accom-
modate up to about 65,000 media objects in the system.

1722 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

search

new client
storage peer
new client
storage peer

video stream

Fig. 5. A new client has to search for the first interested video segment to
bootstrap a new video streaming session.

C. Video Mesh Construction

In our system, it is possible for a client to continuously
search for the next required segment using the DHT network,
as proposed in [27]. However, a client who is playing the
current segment is likely to play the subsequent segment too.
That is, the access probabilities of two adjacent segments
should not be independent but highly correlated. Therefore,
to further reduce the latency as well as the routing message
overhead introduced by the DHT search process, our system
additionally builds an overlay mesh among the peers, which
links up the contiguous media segments with bi-directional
pointers. That is, each storage peer keeps an IP address list
of the storage peers who is holding the previous and the
next segments. By following those pointers, a client does
not always need to search for every segment over the DHT
network during its playback.

Upon entering the system and DHT search, a new client
may start viewing its video. Using its residual bandwidth, it
also downloads some random segments for storage. After the
video segment is completely downloaded, the client registers
its segment(s) in the DHT. As shown in Figure 2, a peer needs
to keep three lists of peer pointers (i.e., peers’ IP addresses):
next-segment-list, previous-segment-list and current-segment-
list. The lists could be easily obtained by searching for the
previous / next / current segment IDs from other peers using
the DHT built among them. The pointers in the lists are used to
redirect a peer’s children to some other peers during playback
or for load-balancing purpose. In the case of normal playback,
when a child nearly consumes the whole segment, it requests
for some pointers in the next-segment-list from its current
parents, so that it can get the subsequent segments from other
peers. In case of random seeking a favorite scene in a movie,
users may jump back and forth in the video. Short-distance
jumps (say within 10 minutes), can be satisfied by both the
next-segment-list and previous-segment-list from its current
parents. The current-segment-list is used when the parent’s
load is too heavy. Requesting peers are redirected to other
peers who keep the same video segment. As a result, these
lists can reduce control messaging overhead by avoiding DHT
searching for new parents by the client each time a segment
is nearly used up. Instead, the storage peers search only once
and keep the list.

D. Feedback-based Maintenance

Keeping all the pointers in the lists refreshed by frequent
updates is not economical. We eliminate this kind of mes-
saging overhead by employing a feedback-based mechanism
for maintaining the pointers in the lists. Children of peers are
responsible for checking the validity of the pointers sent by
their parents. If the percentage of invalid or failed pointers is
greater than a certain threshold t, the child reports the situation
to its parent. Upon receiving such failure report, the parent
needs to update the pointers in its list by searching for the
corresponding segment using DHT. The advantages of this
passive updating mechanism are twofold: 1) The storage peers
need not keep track of all pointers in their lists, which may be
very costly. 2) Some failed pointers may become valid again
because the failure may be transient.

Each list only contains at most k pointers. A peer does not
need to keep all the qualified parents (i.e., the peers who store
the segments of interest) in its lists. Due to our design of the
DHT search key, the lists should contain the qualified parents
whose locations are close to the client. Therefore, children of
a peer are likely redirected to close parents during playback
or jumping.

E. Variation of Segment Size

In this proposed scheme, we do not fix the size of each seg-
ment. In fact, having very small segments and requiring each
peer to switch parents very often would possibly introduce
more control overhead on messaging. However, we consider
that each peer has only a limited storage space for caching
video data. For example, we cannot assume that a low-profile
set-top box (STB) is capable of storing a whole movie in its
local storage. Based on this limited storage consideration, it is
a trade off between the requirement on the peers’ local storage
size and the messaging overhead caused by switching parents.

Therefore, it is an art to choose the most suitable segment
size in the system. If we consider deploying the client software
on a small low-profile STB, it is not preferable to put a
requirement that the STB has much storage space for caching
video data, which definitely would increase the STB’s cost.
At the other extreme, the performance of the whole system
would become much better if each peer could store the whole
video (or a very large segment) in its local storage, and its
children are no longer required to switch parents. Moreover,
it is absolutely possible for a peer to store more than one
segment if it has more spare storage space.

To conclude, segment size should be chosen properly based
on these considerations. In our simulation, we just set our
segment size to be 5 minutes long of a video stream with bit
rate of 1 Mbps, which is around 36 megabytes. It is reasonable
for both set-top boxes and personal computers to have such a
storage space.

F. Support of Fast-Forward Operation

There are a number of approaches to extend our system
for supporting fast-forward operation. In this section, we
discuss how to support a double-speed (2X) fast-forward (FF)
operation. For other speeds, e.g., 4X, 8X, etc., the mechanism
is the same.

YIU et al.: VMESH: DISTRIBUTED SEGMENT STORAGE FOR PEER-TO-PEER INTERACTIVE VIDEO STREAMING 1723

One may consider to perform fast-forward operation solely
by playing out the video stream at a faster speed by the client
peer. That is, for a 2X FF operation, the client can either
display video frames at a double frame rate or play only one
frame (and skips one frame) for every two frames. However,
since this approach consumes the bit stream at a double speed,
the peer is also required to download the video stream at a
double speed, which would definitely increase the download
bandwidth required for a peer. Also, the transmission of
skipped frames costs 100% overhead (and the overhead is even
more for higher speed FF operation). Thus, this approach is
not suitable for supporting FF operation in our system.

Therefore, we propose two approaches to support FF in
VMesh:

• Encode-on-demand at peers: In this approach, when a
peer performs a FF operation, it requests its parents to
encode and deliver a video stream of the segment at
a faster frame rate dynamically. This approach requires
not only processing power from the peers for dynamic
encoding, but also the synchronization of all encoding
parameters. This would also complicate the client soft-
ware implementation. Moreover, the client peer needs to
switch its parents more frequently while it performs FF
operation. For example, a peer plays a 5-minute segment
at a double speed, it needs to switch to new parents after
2.5 minutes.

• Distribution of pre-encoded frame-skipped version: In
this approach, the source provides encoded streams of
the original version as well as the frame-skipped versions
for various speeds. The frame-skipped versions are then
distributed to the peers in the same way as the original.
The speed of a version can be embedded into the media
information part of the DHT key, so as to allow clients
who perform FF operations to search the frame-skipped
versions on-demand. This approach requires the source to
pre-encode all versions, and the peers to store segments
of versions other than the original. Therefore, some peer
storage resources are contributed to store various speed
versions.

Both of these two approaches are able to support FF operation.
Applying which approach is a trade off between the overhead
on peers’ computation and the system storage.

IV. POPULARITY-BASED SEGMENT STORAGE

Given a streaming media, the popularity of the segments
are different if user interactivity like jumping is allowed. For
instance, users who are viewing sports events usually jump to
view the scoring moments. This makes the access rate of the
segments non-uniform. Therefore, if storage nodes uniformly
pick random segments to store, some nodes would have heav-
ier load than others since some segments are accessed more
frequently. Intuitively, the load-balancing in the system can be
improved if the supply of each segment matches the demand
of that segment. In this section, we first model the popularities
of segments by considering user interactivity (Section IV-A).
Then, we propose a mechanism to estimate the segment
popularities in a distributed manner (Section IV-B). Based
on the estimated popularities, we describe our distributed

algorithm to determine which segments to be cached by the
storage peers and how to perform cache replacement to adapt
the supply of segments which meets the changing demand
(Section IV-C).

A. Segment Popularities

In [27], segment popularities (i.e., the access probabilities)
are assumed to follow a Zipf distribution, like the distribution
of web objects’ popularities in the Internet. If all the segments
are ranked in the descending order of their popularities, the
popularity of the ith segment, pi, is expressed as

pi =
1/iα∑N

n=1 1/nα

where N is the total number of segments, and α is a constant.
In our study, we link up the user interactivity and the segment
popularities, since the popularity of a segment depends on how
frequent the segment is accessed by the users. We model the
user interactivity as follows: A user starts to watch a video
at a segment randomly selected. The user stays in normal
playback mode for a random time period with an exponential
distribution with mean Tseq seconds, then jumps to a random
segment and returns to normal playback mode again. When
the user finishes the last segment of the video, it loops back to
the first segment. The process continues until the user leaves
the system. The time period for the user staying in the system
follows an exponential distribution with mean Tlife.

For calculating segment popularities, we approximate the
model as a discrete-time system. The continuous stream is
divided into N segments, each of which is ∆t seconds long.
Let πi be the state that a user is accessing segment i. There-
fore, the time for a user staying in the system is discretized
to �Tlife/∆t�. With probability pseq (= e−∆t/Tseq), the user
plays the media normally and sequentially access segment
(i + 1). Thus, the average number of consecutive segments
the user access in sequence is 1/(1−pseq) (for this geometric
distribution). At the segment i, with probability qi,j , the user
jumps to another segment, j, such that

N∑
i=1

qi,j = 1 − pseq .

The user interactivity model is a discrete-time Markov
chain. We can see that the one-step transition probability pi,j

from πi to πj for any i and j, 1 ≤ i, j ≤ N ,

pi,j =

{
qi,j + pseq if j = ((i + 1) mod N) + 1,

qi,j otherwise.
(1)

Given that a user starts with a randomly chosen segment,
the initial access probabilities p

(0)
i of segments are evenly

distributed, i.e.,

p
(0)
i =

1
N

, ∀i ∈ N.

At discrete time slot n, the access probabilities p
(n)
i change

to some other values given by,

p
(n)
i = p

(0)
i Pn

1724 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

Suppose at the end of each time slot, the user still stays in
the system with probability pstay (= e−∆t/Tlife), the time
period that the user stays in the system is geometrically
distributed. The average time period is 1/(1 − pstay). Thus,
the expected access probability for a segment i is,

pi =
∞∑

m=0

p
(m)
i Pr[the user stays in the system at time m]

=
∞∑

m=0

p
(m)
i pm

stay(1 − pstay) (2)

From the equations above, given the user interactivity (i.e.,
the one-step transition probabilities), we can calculate the
popularity (i.e., the access probability) of each segment. Ob-
viously, if all the transition probabilities are equal, all the final
access probabilities are also equal. However, users usually
jump to some positions where they can watch something they
want, this makes the transition probability distribution non-
uniform. Though we realize this fact, it is hard to obtain the
one-step transition probabilities for calculating the populari-
ties of the segments. In addition, the transition probabilities
may change over time, we need an adaptive mechanism for
estimating the popularities of the segments in a distributed
manner.

B. Popularity Estimation by Distributed Consensus

In order to store segments according to their popularities,
the first requirement is to obtain their popularities over the
P2P network. To achieve this, all segment popularities can
be gathered at a central server, and all nodes can reference
to the server. However, this creates a single point of failure
and heavy network load at the server. Therefore, we apply in
our scheme a distributed averaging algorithm to obtain those
popularity information in a decentralized manner.

Distributed consensus problem (or distributed averaging
problem) has been studied in the control and sensing literature
for obtaining the global average of all the values distributed
over the network [35]. In order to calculate global averages,
one can flood the whole network with all the values, or use
synchronized message propagation over a structured overlay
network (e.g. a spanning tree). These are natural methods for
the network nodes to come up with a common value, but the
former has very large messaging complexity, and the latter
requires a structured overlay network and synchronized mes-
saging among nodes. A practical and implementable algorithm
was proposed in [36] for calculating averages over distributed
nodes in a communication network. Also, it is proved that the
algorithm allows the nodes to converge to a common value
(within 1% of the average) under very general asynchronous
timing assumptions. Therefore, we use the algorithm proposed
in [36] in our system for popularity estimation.

In [36], each network node connects to k random neighbors
and only exchange messages with those neighbors locally.
Suppose node i has a local static value zi, and the nodes wish
to obtain the average value of all zi over the network. Then,
each node maintains a dynamic variable xi (called state) which
is initialized to zi. Each node periodically communicates with
its neighbors as the followings (as shown in Figure 6):

i j

STATE: xi

REPLY: γj (xi - xj)

Fig. 6. The message passing in distributed averaging algorithm.

1) Node i sends a STATE message containing xi’s value
to node j.

2) Upon the receipt of the STATE message, node j updates
its local variable xj to xj + γj(xi − xj) where γj (0 <
γj < 1) is a local stepsize parameter4. Also, it sends
back node i a REPLY message containing γj(xi − xj).

3) Node i receives the REPLY message and updates its
local variable xi to xi − γj(xi − xj).

The idea behind the algorithm is to conserve the sum of all
the variables, and the pair of state variables become closer at
each update. The algorithm is simple and it is proved that all
xi will converge to the average. In order to cope with peer
dynamics, each node i also maintains an additional variable
δij associated with each neighbor j, which accumulates all the
changes made due to that neighbor. Whenever node i detects
the departure of its neighbor j, it can subtract δij from xi

to conserve the total sum. The algorithm also works if zi’s
value is time-varying. For any change ∆z on zi, the node also
updates its state xi by the same amount ∆z. This ensures that
the sum of all states are conserved.

We apply the above-mentioned algorithm to count the total
number of accesses of each segment. Each peer in VMesh
maintains a state ai for each segment i, indicating its access to
segment i. If the peer is downloading segment i, it sets ai = 1,
otherwise, it sets ai = 0. In order to obtain the distribution of
all segment popularities, a peer runs the averaging algorithm
on those N states and maintains a set of variables bi, 1 ≤ i ≤
N , where N is the total number of segments in the video. Each
bi represents the global average number of current access for
segment i. Each peer then computes the estimated popularity
p̂i, 0 ≤ p̂i ≤ 1 for segment i from its own set of averages as

p̂i =
bi∑N

k=1 bk

,

and thus,
N∑

i=1

p̂i = 1.

Besides the demand of the segments, we also need to
know the supply of each segment so as to provide a better
load-balancing between storage peers. By using the averaging
algorithm, we also obtain the information of the segment
supplies. Each peer maintains a vector �c = [c1 c2 . . . cN],
where ci is set to 1 if the peer stores segment i, otherwise,
ci is set to zero. Each peer runs the averaging algorithm and
obtains the average number of copies di for segment i in the

4The proposed algorithm still works even if nodes have different values of
γj . Hence, the value of γj does not need to be synchronized among nodes.

YIU et al.: VMESH: DISTRIBUTED SEGMENT STORAGE FOR PEER-TO-PEER INTERACTIVE VIDEO STREAMING 1725

E stimated popularity pi

Normalized supply si

i

0.1

0.2

1 2 3 4 5 6 7 8

S urplus supply of
segments are replaced
by demanded segments

>

Fig. 7. Stored segment replacement probability is calculated using the
difference between p̂i and si (N = 8).

network. Similarly, each peer can then compute the normalized
supplies si, 0 ≤ si ≤ 1 for segment i from its own set of di’s
as

si =
di∑N

k=1 dk

,

such that,
N∑

i=1

si = 1.

Based on those estimated segment popularities p̂i and
normalized supplies si, 1 ≤ i ≤ N , each peer determines
which segments to be cached or replaced by which segments.
We will give the details on how to store segments according to
the changing supplies and demands in the following section.

C. Adaptive Segment Caching

When a new peer joins the system, it requests for the seg-
ment popularities p̂i and normalized supplies si, 1 ≤ i ≤ N ,
from one of its neighbors. The peer then chooses the segments
to cache with probability PC

i to choose segment i,

PC
i =

{
p̂i−siP

{k|p̂k>sk}(p̂k−sk) if p̂i > si,

0 otherwise.
(3)

Equation (3) captures the discrepancy between the supply and
demand. If the demand is greater than the supply for segment
i (i.e., p̂i > si), there is a need to cache more copies of that
segment. PC

i is the probability proportional to the need of
segment i among the demanding segments. Hence, the larger
the difference between supply and demand of a segment, the
larger the probability for a new peer to cache that segment.
After downloading the chosen segments, the peer sets those
ci’s for the chosen segments to 1. The averaging algorithm will
then propagate and update the corresponding di’s throughout
the network.

Periodically, each storage peer checks the distribution of
p̂i and si to see if there is any discrepancy between them.
We define the discrepancy degree D as the mean square
error (MSE) between the supplies and demands of all the N
segments. That is,

D =
∑N

k=1(p̂k − sk)2

N
(4)

If there is a large discrepancy (i.e., D is greater than a
threshold thrD), the peer determines whether it needs to
replace its stored segments or not. For each of its stored
segments, the peer decides whether or not to replace segment
i with probability PR

i ,

PR
i =

{
si−p̂i

si
if p̂i < si,

0 otherwise.
(5)

If the peer decides to replace segment i, it then chooses
to download another segment j to replace segment i with
probability PS

j ,

PS
j =

{ p̂j−sjP
{k|p̂k>sk}(p̂k−sk) if p̂j > sj,

0 otherwise.
(6)

Since we only replace segment i by the segments whose
demand is greater than its supply, the probabilities to choose
segments with supplies exceed demands are zero. For segment
j with its demand exceeds its supply in Equation (6), the
numerator represents the amount by which its demand exceeds
its supply. And, the denominator is the sum of all the amounts
for those segments. Hence, the probability to choose segment
j for replacement is proportional to the amount by which its
demand exceeds its supply among those demanded segments.
Again, the peer sets those ci’s for the chosen segments to
1 after downloading them and let the averaging algorithm
propagate and update the corresponding di’s throughout the
network.

V. PERFORMANCE EVALUATION

We have evaluated VMesh using packet-level event-driven
simulation. We also studied the performance of embedding
locality information into the DHT search key. We used Chord
implementation for our DHT module [37]. For the distributed
consensus protocol, each peer randomly connects to 5 peers
and sends state messages to them periodically with the period
of 2 seconds.5 We set the local stepsize parameter γ to 0.5 for
all peers. Each peer checks for the discrepancy between supply
and demand periodically with the period of 10 minutes, and
the threshold thrD is set to 0.001. In Section V-A, we first
describe how we model our network and user behaviors. We
also introduce the performance metrics we used to evaluate
the system performance. Finally, we present our experimental
results in Section V-B.

In order to compare our scheme with traditional “cache-
and-relay” approach, we implemented P2VoD system [13].
In P2VoD, peers are divided into generations according to
their playpoints. Peers in the uppermost generations directly
connected to the source and peers in an upper generation
delivers stream to peers in its lower generation. Each peer
caches the streaming data for a period and streams the cached
data to its children. However, the system restricts its peers
playing the video from the beginning. Therefore, we modify
the system by allowing the peers to search for their parents
starting from the root. In addition, the system also does not

5In order to further reduce message overhead for distributed consensus
protocol, we use periodic messaging instead of the original message-on-update
approach.

1726 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

support random seeking, hence, we add this functionality by
simply leaving and re-joining the peer to the system. In case
of parent failure, a child would request data from the siblings
of its parent. The cache size of each peer is also set to the
size of one segment.

A. Data and Network Models

In our simulations, the length and bit rate of a movie are
L seconds and R Mbps, respectively. We set L = 7200 and
R = 1 in our simulations. Each segment is 5 minutes long and
of size about 36 MBytes. Each peer owns local storage space
with size of one video segment, thus, a peer can at most store
one segment locally. Each peer is randomly attached to a router
node. When a peer joins the system, it requests the beginning
of the video. Meanwhile, each peer is assigned an uploading
capacity of at most 2R Mbps, i.e., a peer can at most upload
two streams to its neighbors. Group size, i.e. the total number
of peers in a measurement session, varies from 100 to 3200.
The underlying network topology is generated using GT-ITM
[38]. The whole network consists of 4080 routers and more
than 20000 links.

In order to further study the performance of our locality-
aware segment location scheme, we model the link loss of our
network topology according to the typical settings in [39]. A
fraction f of the links were classified as “good” links and the
rest as “bad”. The loss rate for good links is picked uniformly
at random in the 0 − 1% range and that for bad links is
picked in the 5 − 10% range. Once each link is assigned a
loss rate, packet loss events at each link follows a Bernoulli
loss process, i.e., each packet traversing a link is dropped with
a fixed probability determined by the loss rate of the link. In
our simulation, we set f to 0.95.

One way to evaluate the performance of a streaming system
under user behavior is to run the simulation based on real
user traces. However, it is difficult to gather enough data for
various settings of user behavior to perform such trace-driven
experiments. Therefore, we generate users and their activities
according to [40]. The user arrival process follows a Poisson
distribution, i.e.,

p(x; λt) =
(λt)x

x!
e−λt, x = 0, 1, 2, . . . , t ≥ 0,

with average inter-arrival time τ (= 1/λ) seconds. The dura-
tion of each user session is exponential with mean T seconds.
As the usual case in the Internet, we model all user departures
as ungraceful leaving, i.e., the users leave the system without
informing their neighbors nor clearing their DHT entries. This
also provides a pessimistic evaluation on our system. Thus,
the system performance would be better if there are users, on
the other hand, leave the system gracefully. According to the
statistics in [9], each user performs 6 to 7 random seeking
in its session on average. We hence model each user to jump
with exponential inter-jump period of one-seventh of T . A
user may jump forward or backward and the jump distance is
modeled as a Pareto distribution, i.e.,

p(x; k, xm) = k
xk

m

xk+1
, x ≥ xm,

where xm is a location parameter to control the lower bound
of the jumping distance, and k is a shape parameter to control

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

x 10
−4

video position (second)

no
rm

al
iz

ed
 p

op
ul

ar
ity

Fig. 8. Simulated popularity distribution of a video (L = 7200, R =
1, T = L, τ = 9.0), with the average number of concurrent users N =
T/τ = 800. Given the same user interactivity model, our experiments show
that the distributions are similar for other settings of T and τ .

the shape of the distribution (Higher value of k means the
density shifts to xm.). The probability distribution is bounded
by the two ends of the video, and is normalized accordingly.
In order to provide a non-uniform popularity distribution, we
partition the video into three regions with various parameter
settings for jumping:

• Region 1: The region ranges from the 0th second to the
2500th second. Inside the region, xm = 4000 and k =
100.

• Region 2: The region ranges from the 4000th second to
the 6000th second. Inside the region, xm = 10 and k =
500.

• Region 3: The rest of the video belongs to this region,
in which xm = 1000 and k = 1.

Figure 8 shows the popularity distribution of a video we
obtained after simulating the user behavior according to our
model for 24 hours of simulation time.

We evaluate our system using the following performance
metrics:

• Server stress – the outgoing bandwidth required at the
media server to support the whole system. In our results
shown below, we normalized the server stress by the bit
rate of the video stream to indicate the number of streams
required. The lower the server stress, the more scalable
the system is.

• Continuity index – the percentage of media data received
and played out at the client side by the playback deadline
of the media data. The higher the continuity index, the
higher the video quality received is.

• Startup latency – the time period starting from the
instant that a client joins the system to the instant that
the client starts playing out the video after buffering a
few seconds of media data6.

• Jumping latency – the time period starting from the

6The buffer size does affect the smoothness of the playback. In our
simulation, we set it to be 3 seconds.

YIU et al.: VMESH: DISTRIBUTED SEGMENT STORAGE FOR PEER-TO-PEER INTERACTIVE VIDEO STREAMING 1727

instant that a client issues a jump command to the instant
that the client starts playing out at the seek position after
buffering a few seconds of media data. Low jumping
latency means that the system responds quickly to user
jump commands.

B. Experimental Results

In order to study the performance of our schemes on seg-
ment location and distributed storage, we tested three variants
of VMesh. The first version is the pure VMesh in which peers
choose parents randomly regardless their network locations
(i.e., without locality information in DHT search key). This
scheme only applies random selection for segment storage.
The scheme is denoted as VMesh(RAND). The second one
applies locality-aware segment location, and is denoted as
VMesh(LA). This scheme also performs random segment
selection for local storage. The last one applies both locality-
aware segment location and popularity-based segment storage
schemes, and is denoted as VMesh(LA-POP).

1) Server Stress Reduction: To illustrate the performance
on saving server resources and bandwidth, we first present
the effect on the server stress in terms of numbers of media
streams as the average user population increases. Since our
simulations start with no client and add clients into the system
one by one according our user activity model, we change
the parameter τ(= 1/λ) to adjust the average size of user
population according to Little’s law (i.e., N = λT where N
is the average number of users in the system.). Figure 9(a)
shows the server stress against the average user population.
As the average user population increases exponentially, the
server stresses for VMesh systems increase very slowly. In
general, VMesh is highly scalable for large user population.
Obviously, VMesh(LA) achieves lower server stress than
VMesh(RAND). This is because a peer in VMesh(RAND)
may request segments from some distant parents, which may
experience higher packet loss rates and higher delays. The
peer then requests the missing packets from the media server
as the last resort. Therefore, this puts more streaming load
on the server. On the other hand, locality-aware segment
location scheme searches for close peers to become a client’s
parents, and those close peers can provide efficient streaming
in terms of error rate and delay. Hence, VMesh(LA) can
reduce server stress, in this case, by 20 - 60%. In addition to
VMesh(LA), VMesh(LA-POP) matches supply and demand
of each segment in the system, and thus relieves the server
from handling requests for segments whose demands exceed
their supplies. Since the peers keep joining and leaving the
network, the computed averages using distributed consensus
protocol also fluctuate. However, as the peers replace their
stored segments according to their computed distribution, we
found that the computed segment distribution is within 10%
of the real one after around ten rounds of message exchanges.
VMesh(LA-POP) can further reduce the server stress by 20 -
65% when the user population is large. Note that, VMesh(LA-
POP) can save server resources only when the user population
is large enough for the scheme to distribute enough segments
among peers and match their supplies and demands.

For P2VoD, the server stress increases linearly with the
average user population. The system organizes its peers in a

tree-like structure, with upper-level peers watching the latter
part of the video while lower-level peers watching the former
part. Therefore, only a small portion of upper-level peers can
contribute and stream the latter part of the video. However,
according to our popularity distribution, the system fails to
balance the supply and demand of video data. As a result, most
peers directly request data from the server and this makes the
server stress so high.

In Figure 9(b), we show how scalable our VMesh schemes
are in terms of server stress compared to traditional client-
server approach. The figure shows the server stress against
simulation time when the average user population is set to
3200. In traditional client-server system, each new client
requires a dedicated stream from the server to the client.
Therefore, its server stress increases linearly with the user
population, and hence the system is not scalable. On the
other hand, VMesh maintains a relatively constant server stress
at a low level (around 100 to 800). This is because the
peers themselves also become data suppliers and serve other
peers. One important point to note is that, in the previous
work which applies “cache-and-relay” paradigm, when a peer
jumps to another playpoint of the video, all its children need
to search for new parents. This situation becomes severe if
the system uses a tree-based overlay for delivering media
data, because all its descendants would suffer from buffer
shortage if new parents could not be found before all the
buffered content is drained. In this case, clients experience
discontinuous playback and need to wait for the buffer to
be filled up again. One solution to this may be requesting
data from the media server, but this definitely increases server
stress. Therefore, those systems are not suitable for providing
interactive VoD services. Unlike the previous work, VMesh
peers store segments statically. A peer’s random seeking does
not stop its children from continuing to receive data from its
storage. Therefore, VMesh can keep its server stress at a low
level under dynamic peer join/leave and user interactivity.

2) High Playback Continuity: Figure 10(a) plots the av-
erage continuity index against the average user population.
All three VMesh schemes can achieve high continuity under
dynamic peer join/leave in a lossy network. Since VMesh
employs multiple parents, if one of the parents leaves the
system ungracefully, the child can request the remaining par-
ents to share the load of the departed parent temporarily. This
helps keep the continuity stable and high even under dynamic
peer join/leave. Additionally, VMesh(LA) and VMesh(LA-
POP) achieve better continuity than VMesh(RAND) by around
5% and 8%, respectively. This is because our locality-
aware segment location scheme assists the peers to search
for close parents, whose data delivery may experience less
packet losses. Also, in case of packet loss, close parents are
quick enough to retransmit lost packets before the playback
deadlines. VMesh(LA) and VMesh(LA-POP) have similar
playback continuity, as the popularity-based segment storage
scheme used in VMesh(LA-POP) only helps in load-balancing
among storage peers, and hence reduces the server stress. It
does not help improve the playback continuity very much as
expected.

For P2VoD, since the peers are organized in a tree-like struc-
ture, as other tree protocols, data loss accumulates downwards

1728 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

100 200 400 800 1600 3200
0

100

200

300

400

500

600

700

800

900

1000

average user population

se
rv

er
 s

tr
es

s
(n

um
be

r
of

 s
tr

ea
m

s)

client−server
VMesh(RAND)
VMesh(LA)
VMesh(LA−POP)
P2VoD

(a) Server stress against average user population.

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

2500

3000

3500

simulation time (second)

se
rv

er
 s

tr
es

s
(n

um
be

r
of

 s
tr

ea
m

s)

client−server
VMesh(RAND)
VMesh(LA)
VMesh(LA−POP)
P2VoD

(b) Server stress against simulation time (in second). The user population
grows from zero to 3200.

Fig. 9. Server stress under dynamic peer join/leave in a lossy network.

100 200 400 800 1600 3200
0.4

0.5

0.6

0.7

0.8

0.9

1

average user population

co
nt

in
ui

ty
 in

de
x

VMesh(LA−POP)
VMesh(LA)
VMesh(RAND)
P2VoD

(a) Continuity index against average user population.

90 92 94 96 98 100
0

2

4

6

8

10

12

14

16

18

20

continuity index (%)

fr
ac

tio
n

of
 c

lie
nt

s
(%

)

(b) Distribution of continuity index among users in VMesh(LA-POP). (User
population = 3200.)

Fig. 10. Playback continuity under dynamic peer join/leave in a lossy network.

100 200 400 800 1600 3200
2.5

3

3.5

4

4.5

5

average user population

st
ar

tu
p

la
te

nc
y

(s
ec

on
d)

VMesh(RAND)
VMesh(LA)
VMesh(LA−POP)
P2VoD

(a) Startup latency against average user population.

100 200 400 800 1600 3200

2

2.5

3

3.5

4

4.5

5

average user population

se
ek

in
g

la
te

nc
y

(s
ec

on
d)

VMesh(RAND)
VMesh(LA)
VMesh(LA−POP)
P2VoD

(b) Seeking latency against average user population.

Fig. 11. Startup and seeking latency.

YIU et al.: VMESH: DISTRIBUTED SEGMENT STORAGE FOR PEER-TO-PEER INTERACTIVE VIDEO STREAMING 1729

the tree. The high loss rates at the lower-level peers lead to
very low playback continuity. In addition, since a peer has
only one parent, dynamic peer joins and leaves cause frequent
parent failures. This makes the peers miss playback deadlines
very often when searching for new parents.

Figure 10(b) shows the distribution of playback continuity
among VMesh(LA-POP) users when the average user popu-
lation is 3200. As shown in the figure, over 95% of the users
receive playback continuity greater than 90%. For streaming
video, a small number of lost frames can be skipped without
user noticing the difference. To recover original media data,
techniques such as forward error correction (FEC) could be
applied on the transmitted packets. Also, enlarging the clients’
buffer size can help improve the continuity, but this may make
the startup and jumping latency higher. This is a common
tradeoff between the two metrics in media streaming systems.

3) Low Startup and Seeking Latency: Startup latency in-
cludes two parts: 1) the segment location latency, and 2) the
buffering latency. The first part depends on the diameter of
the network. If the end-to-end latency between nodes is low,
the segment location latency will also be low since the search
involves several hops of routing for DHT search. The average
end-to-end latency among all the nodes in our network is
around 200 milliseconds. The second part depends on the
size of buffer to be filled up before playback and the end-
to-end bandwidth. In our simulations, we set the buffer size
to be 3 seconds of media data, and we limit the end-to-end
bandwidth to the streaming bit rate. Figure 11(a) shows the
startup latency for various average user population. As there
are more users in the system, it is more likely for users in
VMesh(LA) and VMesh(LA-POP) to find close parents and
hence fill up their buffers more quickly. One disadvantage of
using DHT for searching parents is that the searching latency
is more or less the same regardless of the user population
size. This is why we build another overlay mesh among peers
to speed up random seeking latency. However, for playback
startup, we need to apply DHT search for our locality-aware
segment location.

Similarly, seeking latency includes two parts: 1) the segment
location latency, and 2) the buffering latency. However, with
the overlay links to the peers who store the next and the pre-
vious segments, seeking latency can be lower than the startup
latency, because a peer could follow the mesh links to locate
the targeted segments. The parents located using this method
are also close to the peer since the mesh links are built using
locality-aware segment location at the beginning. Therefore,
this does not affect the performance on data delivery and
server stress. Figure 11(b) plots the seeking latency against
the average user population. Again, as there are more users
in the system, it is more likely for users in VMesh(LA) and
VMesh(LA-POP) to find close parents and hence fill up their
buffers more quickly.

For P2VoD, since a new peer or a seeking peer needs to
search its parent from the source downwards the tree overlay,
the number of searching hops should be in O(log N) where N
is the size of the tree overlay. However, due to limited outgoing
bandwidth, the located parent may not be able to stream to the
requesting client. Hence, the requesting peer needs to contact
other peers again until it finds a peer with spare bandwidth.

100 200 400 800 1600 3200
50

100

150

200

250

300

350

400

450

average group size

av
er

ag
e

co
nt

ro
l o

ve
rh

ea
d

(b
yt

e
pe

r
se

co
nd

)

VMesh(LA−POP)
VMesh(LA)
VMesh(RAND)

Fig. 12. Control traffic overhead against average user population.

VMesh does not share the same problem because a peer
contacts a number of parents and starts downloading data in
parallel.

4) Low Control Overhead: In our simulations, we count
all VMesh control messages as control traffic overhead. In
VMesh, joining, data scheduling, mesh construction, etc. re-
quires peers to exchange control messages. For VMesh(LA-
POP), distributed consensus requires exchange of STATE and
REPLY messages. As shown in Figure 12, VMesh consumes
very low control overhead and is scalable when the user
population increases, ranging from 100 to 400 bytes per
second. For a 1 Mbps video stream, the control traffic is only
0.1% to 0.3%. VMesh(RAND) and VMesh(LA) have similar
control traffic, because the only difference between them is the
value in the DHT search key. In VMesh(LA-POP), distributed
consensus algorithm adds extra control messages, and hence
increases the control traffic overhead by around 40 bytes per
second.

VI. CONCLUSIONS

Providing interactive VoD service in P2P network is chal-
lenging, not only due to the asynchronous user access pattern
but also the unpredictability of group dynamics and user
interactivity. In this paper, we propose a novel architecture
called VMesh to support interactive VoD service in P2P
networks. VMesh utilizes the large storage capacity of peers
to amplify the supply of videos so as to easily support the
large demand in a scalable manner. In VMesh, videos are
divided into smaller segments and stored in peers distributed
over the Internet. A video mesh is built upon peers to support
playback and jumping forward/backward during playback. A
peer, who has a video segment stored in its local storage,
connects to the peers who have the same, the previous and
the next video segments. As a result, its children can be
redirected to the peers who have the required segments. In
order to provide failure tolerant streaming service, a client in
the system connects to multiple parents who have stored and
are able to stream the requested video segments in parallel
and collaboratively. The parents could be searched in the P2P

1730 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

network via distributed hash table (DHT) technique using the
key comprised of video ID and segment ID.

Our results show that our locality-aware segment location
algorithm substantially reduce the server stress by allowing
clients to find close and good quality parents. Our popularity-
based segment storage scheme also helps reduce the server
stress and improve the playback continuity by matching the
supplies and demands of segments over the network. Unlike
the previous work, in which a peer depends on what resides
in the buffers of its parents, if the parents jump to another
position in the video, the peer needs to search a new parent
again. In VMesh, parent activities do not affect the children
unless the parent shutdowns the service. Through simulation,
we show that our system performs well under peer dynamics.
We show that the system achieves high playback continuity
under random member join/leave. In addition, the system
achieves very low startup and seeking latency which is crucial
to the performance of an interactive VoD system.

REFERENCES

[1] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A Multicast Technique
for True Video-on-Demand Services,” in Proceedings of the 6th ACM
International Conference on Multimedia (MM), Bristol, England, Sept.
1998.

[2] L. Gao, D. Towsley, and J. Kurose, “Efficient Schemes for Broadcasting
Popular Videos,” in Proceedings of the 8th ACM International Workshop
on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), Cambridge, UK, July 1998.

[3] Y. Chu, S. Rao, and H. Zhang, “A Case for End System Multicast,” in
Proceedings of ACM SIGMETRICS, Santa Clara, CA, USA, June 2000.

[4] [Online]. Available: http://www.bittorrent.com
[5] H. Chi, Q. Zhang, J. Jia, and X. Shen, “Efficient search and scheduling

in P2P-based media-on-demand streaming service,” IEEE Journal on
Selected Areas in Communications (JSAC), vol. 25, no. 1, pp. 119–130,
Jan. 2007.

[6] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
Data-driven Overlay Network for Live Media Streaming,” in Proceed-
ings of IEEE INFOCOM, Miami, FL, USA, Mar. 2005.

[7] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Fea-
sibility of Supporting Large-Scale Live Streaming Applications with
Dynamic Application End-Points,” in Proceedings of ACM SIGCOMM,
Portland, OR, USA, Aug. 2004.

[8] A. Sharma, A. Bestavros, and I. Matta, “dPAM: A Distributed Prefetch-
ing Protocol for Scalable Asynchronous Multicast in P2P Systems,” in
Proceedings of IEEE INFOCOM, Miami, FL, USA, Mar. 2005.

[9] C. Zheng, G. Shen, and S. Li, “Distributed Prefetching Scheme for
Random Seek Support in Peer-to-Peer Streaming Applications,” in
Proceedings of ACM Multimedia Conference, Workshop on Advances
in Peer-to-Peer Multimedia Streaming, Singapore, Nov. 2005.

[10] M. Zhou and J. Liu, “A Hybrid Overlay Network for Video-on-
Demand,” in Proceedings of IEEE International Conference on Com-
munications (ICC), Seoul, Korea, May 2005.

[11] Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asynchronous Streaming
Multicast in Application-Layer Overlay Networks,” IEEE Journal on
Selected Areas in Communications (JSAC), vol. 22, no. 1, pp. 91–106,
Jan. 2004.

[12] M. Guo, M. H. Ammar, and E. W. Zegura, “Cooperative Patching: A
Client based P2P Architecture for Supporting Continuous Live Video
Streaming,” in Proceedings of the 13th IEEE International Conference
on Computer Communications and Networks (ICCCN), Chicago, IL,
USA, Oct. 2004.

[13] T. T. Do, K. A. Hua, and M. A. Tantaoui, “P2VoD: Providing Fault
Tolerant Video-on-Demand Streaming in Peer-to-Peer Environment,”
in Proceedings of IEEE International Conference on Communications
(ICC), Paris, France, June 2004.

[14] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing Streaming Media Content Using Cooperative Networking,”
in Proceedings of the 12th ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV),
Miami Beach, FL, USA, May 2002.

[15] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Network-
ing, vol. 11, no. 1, pp. 17–32, Feb. 2003.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” in Pro-
ceedings of IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, Nov. 2001, pp. 329–350.

[17] H. Zhang, A. Goel, and R. Govindan, “Improving lookup latency in
distributed hash table systems using random sampling,” IEEE/ACM
Transactions on Networking (TON), vol. 13, no. 5, pp. 1121–1134, Oct.
2005.

[18] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in 1st International Workshop
on Peer-to-peer Systems (IPTPS), Mar. 2002.

[19] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “OpenDHT: A public DHT service and its uses,”
in Proceedings of ACM SIGCOMM, Aug. 2005, pp. 73–84.

[20] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker,
and J. Hellerstein, “A case study in building layered DHT applications,”
in Proceedings of ACM SIGCOMM, Aug. 2005, pp. 97–108.

[21] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication
across network address translators,” in Proceedings of the 2005 USENIX
Annual Technical Conference (USENIX ’05), Anaheim, California, April
2005.

[22] A. Hu, “Video-on-Demand Broadcasting Protocols: A Comprehensive
Study,” in Proceedings of IEEE INFOCOM, Anchorage, AK, USA, Apr.
2001.

[23] Y. Guo, L. Gao, D. Towsley, and S. Sen, “Seamless Workload Adaptive
Broadcast,” in Proceedings of IEEE International Packetvideo Work-
shop, Pittsburgh, PA, USA, Apr. 2002.

[24] D. Eager, M. Vernon, and J. Zahorjan, “Bandwidth Skimming: A
Technique for Cost-effective Video-on-Demand,” in Proceedings of
SPIE/ACM Conference on Multimedia Computing and Networking
(MMCN), San Jose, CA, USA, Jan. 2000.

[25] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-peer
Patching Scheme for VoD Service,” in Proceedings of the 12th ACM
International World Wide Web Conference (WWW), Budapest, Hungary,
May 2003.

[26] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
Peer-to-Peer Media Streaming Using CollectCast,” in Proceedings of
the 11th ACM International Conference on Multimedia (MM), Berkeley,
CA, USA, Nov. 2003, pp. 45–54.

[27] L. Guo, S. Chen, and X. Zhang, “Design and Evaluation of a Scalable
and Reliable P2P Assisted Proxy for On-Demand Streaming Media
Delivery,” IEEE Transactions on Knowledge and Data Engineering,
vol. 18, no. 5, pp. 669–682, May 2006.

[28] M. Zhou and J. Liu, “Tree-Assisted Gossiping for Overlay Video
Distribution,” Kluwer Multimedia Tools and Applications, vol. 29, no.
3, pp. 211-232, June 2006.

[29] H. Chi and Q. Zhang, “Efficient search in P2P-based video-on-demand
streaming service,” in Proceedings of IEEE International Conference on
Multimedia and Expo (ICME), July 2006, pp. 565–568.

[30] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, “On the Optimal
Scheduling for Media Streaming in Data-driven Overlay Networks,”
in Proceedings of IEEE GLOBECOM, San Francisco, CA, USA, Nov.
2006.

[31] W.-P. K. Yiu, X. Jin, and S.-H. G. Chan, “Distributed storage to support
user interactivity in peer-to-peer video streaming,” in Proceedings of
IEEE International Conference on Communications (ICC), Istanbul,
Turkey, June 2006.

[32] T. S. E. Ng and H. Zhang, “Predicting Internet Network Distance with
Coordinates-Based Approaches,” in Proceedings of IEEE INFOCOM,
New York, NY, USA, June 2002.

[33] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” in Proceedings of ACM SIGCOMM,
Portland, OR, USA, Aug. 2004.

[34] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier, “Space
Filling Curves and Their Use in Geometric Data Structures,” Theoretical
Computer Science, vol. 181, no. 1, pp. 3–15, July 1997.

[35] A. Fax and R. M. Murray, “Information Flow and Cooperative Control of
Vehicle Formations,” IEEE Transactions on Automatic Control, vol. 49,
pp. 1465–1476, Sept. 2004.

[36] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray,
“Asynchronous Distributed Averaging on Communication Networks,”
IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 512-520,
June 2007.

YIU et al.: VMESH: DISTRIBUTED SEGMENT STORAGE FOR PEER-TO-PEER INTERACTIVE VIDEO STREAMING 1731

[37] “The Chord/DHash project.” [Online]. Available:
http://pdos.csail.mit.edu/chord/#downloads

[38] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an
Internetwork,” in Proceedings of IEEE INFOCOM, San Francisco, CA,
USA, Apr. 1996.

[39] V. N. Padmanabhan, L. Qiu, and H. J. Wang, “Server-based Inference
of Internet Link Lossiness,” in Proceedings of IEEE INFOCOM, San
Francisco, CA, USA, Apr. 2003.

[40] S. Jin and A. Bestavros, “GISMO: Generator of Streaming Media
Objects and Workloads,” ACM SIGMETRICS Performance Evaluation
Review, vol. 29, no. 3, pp. 2–10, Dec. 2001.

W.-P. Ken Yiu (S’03) received the B.Eng. and
M.Phil. degrees in computer science from the
Hong Kong University of Science and Technology
(HKUST), Kowloon, in 2002 and 2004, respectively.
He is currently working towards the Ph.D. degree at
the Department of Computer Science and Engineer-
ing, HKUST.

His research interests include computer networks,
peer-to-peer systems, multimedia networking, and
network security.

Mr. Yiu was awarded the Academic Achievement
Medal from HKUST in 2002, and the Sir Edward Youde Memorial Fellowship
from Sir Edward Youde Memorial Fund in 2005 and 2006. In 2007, he
received the Professor Samuel Chanson Best Teaching Assistant Award at
HKUST, and the Hong Kong Telecom Institute of Information Technology
(HKTIIT) Post-Graduate Excellence Scholarship.

Xing Jin (S’04) received the B.Eng. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2002. He is currently
working towards the Ph.D. degree at the Depart-
ment of Computer Science and Engineering, the
Hong Kong University of Science and Technology,
Kowloon.

His research interests include overlay multicast
with applications and QoS issues, Internet topology
inference, end-to-end measurements, and peer-to-
peer streaming.

Mr. Jin was awarded the Microsoft Research Fellowship in 2005. He is a
junior editor of the Journal of Multimedia since 2006.

S.-H. Gary Chan (S’89-M’98-SM’03) received the
B.S.E. degree (Highest Honor) in electrical engi-
neering from Princeton University, Princeton, NJ, in
1993, with certificates in applied and computational
mathematics, engineering physics, and engineering
and management systems, and the M.S.E. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1994 and 1999, respec-
tively, with a minor in business administration.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,

the Hong Kong University of Science and Technology, Kowloon, and an
Adjunct Researcher with Microsoft Research Asia, Beijing. He was a Visiting
Assistant Professor in Networking with the Department of Computer Science,
University of California, Davis, CA, from 1998 to 1999. During 1992-93, he
was a Research Intern at the NEC Research Institute, Princeton, NJ. His
research interests include multimedia networking, peer-to-peer technologies
and streaming, and wireless communication networks.

Dr. Chan is a member of Tau Beta Pi, Sigma Xi, and Phi Beta Kappa. He
was a William and Leila Fellow at Stanford University during 1993-94. At
Princeton University, he was the recipient of the Charles Ira Young Memorial
Tablet and Medal, and the POEM Newport Award of Excellence in 1993.
He served as a Vice-Chair of IEEE COMSOC Multimedia Communications
Technical Committee (MMTC) from 2003 to 2006. He is a Guest Editor
for the IEEE Communication Magazine (Special Issues on Peer-to-Peer
Multimedia Streaming), 2007 and Springer Multimedia Tools and Applications
(Special Issue on Advances in Consumer Communications and Networking),
2007. He is Co-Chair of the Multimedia Symposium for IEEE ICC (2007). He
was the Co-Chair for the workshop on Advances in Peer-to-Peer Multimedia
Streaming for the ACM Multimedia Conference (2005), and the Multimedia
Symposia for IEEE GLOBECOM (2006) and IEEE ICC (2005).

