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Abstract Incorrect modeling of troposphere delays is one

of the major error sources for space geodetic techniques

such as Global Navigation Satellite Systems (GNSS) or Very

Long Baseline Interferometry (VLBI). Over the years, many

approaches have been devised which aim at mapping the

delay of radio waves from zenith direction down to the

observed elevation angle, so-called mapping functions. This

paper contains a new approach intended to refine the cur-

rently most important discrete mapping function, the Vienna

Mapping Functions 1 (VMF1), which is successively referred

to as Vienna Mapping Functions 3 (VMF3). It is designed

in such a way as to eliminate shortcomings in the empir-

ical coefficients b and c and in the tuning for the specific

elevation angle of 3◦. Ray-traced delays of the ray-tracer

RADIATE serve as the basis for the calculation of new map-

ping function coefficients. Comparisons of modeled slant

delays demonstrate the ability of VMF3 to approximate the

underlying ray-traced delays more accurately than VMF1

does, in particular at low elevation angles. In other words,

when requiring highest precision, VMF3 is to be preferable

to VMF1. Aside from revising the discrete form of mapping

functions, we also present a new empirical model named

Global Pressure and Temperature 3 (GPT3) on a 5◦
× 5◦ as

well as a 1◦
× 1◦ global grid, which is generally based on

the same data. Its main components are hydrostatic and wet

empirical mapping function coefficients derived from spe-

cial averaging techniques of the respective (discrete) VMF3

data. In addition, GPT3 also contains a set of meteorological

quantities which are adoptedas they stand from their prede-
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cessor, Global Pressure and Temperature 2 wet. Thus, GPT3

represents a very comprehensive troposphere model which

can be used for a series of geodetic as well as meteorologi-

cal and climatological purposes and is fully consistent with

VMF3.

Keywords VLBI · GNSS · Troposphere · Mapping

functions · Horizontal gradients

1 Introduction

During their passage through the neutral atmosphere, radio

waves are delayed and bent as a result of interaction with dry

gases and water particles. As there is no chance to directly

measure these delays with sufficient accuracy, they need

to be modeled. The common concept for this purpose is

to determine the delay in zenith direction and multiply it

with a mapping function intended to scale it to the eleva-

tion angle of the observation. Because the composition of

atmospheric matter fluctuates heavily both temporally and

spatially, values for these zenith delays and mapping func-

tions are ever changing. One of the most accurate ways of

obtaining (at least approximate values of) troposphere delays

is ray-tracing through numerical weather models (NWMs).

In these numerical weather models, the lower atmosphere is

discretized to a specific horizontal grid resolution and a num-

ber of height levels through which the ray-tracing beams then

propagate. They are delayed and bent following the complex

laws of refraction what is thought to approximate the real

travel path as well as possible. For this reason, ray-tracing

is, unlike surface measurement methods, able to consider the

effect of the whole atmosphere. Current ray-tracing software

such as RADIATE (Hofmeister and Böhm 2017) manages to

compute ray-traced delays for a more or less limited num-
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ber of observations such as those from VLBI (∼10 million

since advent in 1979); however, it is evidently not possi-

ble in terms of computational effort to do this for every

single GNSS observation. The concept of mapping func-

tions provides remedy as the information of the variability

of delays over the whole elevation range is condensed in

them, more precisely in three mapping function coefficients

a, b and c. The first mapping function to adopt information

from ray-tracing through NWMs was the Isobaric Mapping

Functions (IMF) by Niell (2000), which induced a major

leap in accuracy at that time. Böhm and Schuh (2004) drew

on this concept and devised the Vienna Mapping Functions

(VMF) which overcame some limitations of IMF, especially

in the wet part. The subsequent Vienna Mapping Functions

1 (VMF1) by Böhm et al. (2006a) is regarded as the most

accurate mapping functions nowadays and are applied by

numerous research centers and other agencies worldwide.

While VMF1 is retrieving data from the European Centre

for Medium-Range Weather Forecasts (ECMWF), the UNB-

VMF1 (Santos et al. 2012) does the same for NWM data

from the United States National Centers for Environmental

Prediction (NCEP) and the Canadian Meteorological Center

(CMC). Also other models such as the Adaptive Mapping

Functions (AMF) by Gegout et al. (2011) or the Potsdam

Mapping Factors (PMF) by Zus et al. (2014) are based on

the concept of ray-tracing through NWMs.

Mapping functions adopting information from ray-tracing

through NWMs at certain times and locations are commonly

referred to as discrete mapping functions in this paper. In

contrast, empirical troposphere models and mapping func-

tions rely on experience values from climatology and are

of vital importance particularly for all applications that do

not have internet connection and thus have no possibility

of downloading the latest discrete data. Also applications

which simply do not require utmost accuracy benefit from

empirical troposphere delay models owing to their straight-

forward usage. Their accuracy is certainly lower than that of

discrete mapping functions which harness real observation

data, but yet they are frequently used in all space geodetic

techniques. Important realizations of empirical troposphere

models and mapping functions are (in chronological order)

the New Mapping Functions (NMF) by Niell (1996), the

Global Mapping Functions (GMF) by Böhm et al. (2006b),

the model UNB3m (Leandro et al. 2006) or the mod-

els Global Pressure and Temperature 2 (GPT2) by Lagler

et al. (2013) and its successor Global Pressure and Tem-

perature 2 wet (GPT2w) by Böhm et al. (2015), having

improved capability to determine zenith wet delays empir-

ically. However, the modeling of troposphere delays still

leaves considerable room for improvement, which is why

there remains large interest in ever more accurate troposphere

delay modeling techniques both for discrete and for empirical

purposes.

2 Fundamentals of troposphere modeling

Following Nilsson et al. (2013), the total delay time �L(ε)

which radio waves experience when traveling through the

neutral atmosphere depending on the observation elevation

angle ε is commonly modeled with the parametrization in

Eq. (1) (Davis et al. 1985):

�L(ε) = �Lz
h · mfh(ε) + �Lz

w · mfw(ε) (1)

The delay modeling is obviously split into a hydrostatic part,

which is mainly caused by the dry gases in the atmosphere,

and a wet part which arises from water vapor and water

particles in the atmosphere, each represented through a multi-

plication of the respective delay in zenith direction �Lz with

a mapping function mf(ε). The zenith hydrostatic delay �Lz
h

can be determined with very high precision through pressure

measurements at the site, as the weight of all air layers adds

up to the surface pressure. The equation by Saastamoinen

(1972) as revised by Davis et al. (1985)

�Lz
h =

0.0022768 · p

1 − 0.00266 · cos(2ϕ) − 0.28 · 10−6 · hell
(2)

is generally used for this purpose, where p is the pressure and

ϕ and hell the geographic latitude and ellipsoidal height of

the station, respectively. Deriving the zenith wet delay �Lz
w

is far more difficult because surface measurements alone are

not sufficient for this. Common practice in space geodesy

is to estimate this parameter in the analysis on the basis of

a sufficient overdetermination of observations, which, how-

ever, is not always given. An approach to approximate �Lz
w

is the formula by Askne and Nordius (1987) which requires

three input parameters: water vapor pressure e, mean tem-

perature weighted with water vapor pressure Tm and water

vapor decrease factor λ:

�Lz
w = 10−6

·

(

k′

2 +
k3

Tm

)

·
Rd · e

gm · (λ + 1)
(3)

k′

2 and k3 represent empirically determined refractivity con-

stants here, while Rd is the specific gas constant for dry

constituents which equals 287.0464 JK−1 kg−1 and gm is

the mean gravity which equals 9.80665 ms−2. Apart from

that, ray-tracing through numerical weather models is also

capable of computing very precise values for both �Lz
h and

�Lz
w (Teke et al. 2011).

Following the model by Marini (1972) in its truncated

form by Herring (1992), which is the basis for all “modern”

mapping functions developed so far, the mf(ε) are each built

up on the basis of three coefficients a, b and c:
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mf(ε) =

1 +
a

1 +
b

1 + c

sin(ε) +
a

sin(ε) +
b

sin(ε) + c

(4)

According to Herring (1992), a, b and c are defined as coef-

ficients that depend on integrals of refractivity through the

atmosphere. To put it another way, mapping functions can

also be regarded as a measure of the thickness of the neu-

tral atmosphere. With decreasing thickness compared to the

earth’s radius (as is the case at the poles for instance), the

coefficients decrease and the mapping function approaches

sin(ε)−1 (Niell 2000). On account of its principal order in

the formula, the coefficient a is the determining element of

Eq. (4). In all discrete mapping function approaches men-

tioned in Introduction, the information from the NWMs is

incorporated into the coefficient a, while b and c rely on

empirical functions. In empirical mapping functions also the

a coefficients are of empirical nature.

The general purpose of this paper is to conceptualize map-

ping functions which are able to surpass the performance of

VMF1 and GPT2w, which are considered among the most

accurate mapping functions of their kind. For this purpose,

in the following an understanding of the general concept of

these two is given.

The Vienna Mapping Functions 1 (VMF1) is a model

providing discrete values for zenith hydrostatic delay �Lz
h,

zenith wet delay �Lz
w and the hydrostatic and wet map-

ping functions mfh and mfw. Therein the coefficients bh,

bw and cw are constants, while ch is dependent on day of

year (doy) and geographic latitude. The hydrostatic and wet

a coefficients are determined directly from ray-traced delays

at the initial elevation angle 3.3◦ through inverting Eq. (4).

This is done for each NWM epoch, that is, daily at 00:00,

06:00, 12:00 and 18:00 UT for a specific set of stations

as well as on a global grid. The respective values at the

observation epoch can eventually be obtained through inter-

polation from adjacent NWM epochs. In addition, Böhm

et al. (2009) developed the VMF1-FC which provides the

VMF1 coefficients also up to two days in advance and thus

opened the possibility of using VMF1 for real-time applica-

tions.

Global Pressure and Temperature 2 wet (GPT2w) is

an empirical model for troposphere delays which is the

successor of the former models GPT (Böhm et al. 2007)

and GPT2 (Lagler et al. 2013). It requires only informa-

tion about time and location and provides mean values

plus annual and semi-annual amplitudes of a set of quan-

tities such as mapping function coefficients ah and aw,

temperature T , pressure p, water vapor pressure e, mean

temperature weighted with water vapor pressure Tm and

water vapor decrease factor λ, optionally on a 5◦
× 5◦

and a 1◦
× 1◦ grid. The coefficients were derived from

monthly mean pressure-level data of ERA-Interim fields by

the ECMWF.

3 Development of new mapping functions

As the publication of VMF1 dates back to 2006, many new

approaches have evolved over the years, however none of

which was actually able to outperform VMF1 yet. Nonethe-

less, Zus et al. (2015) revealed shortcomings in VMF1 due

to its tuning for the specific elevation angle of 3◦, station

heights and orbital altitudes. For those reasons, it was tried

to conceive a new, however similar mapping function con-

cept to overcome these problems. NWMs have improved

significantly since 2006 what made it possible to draw on

a much larger data framework for this purpose. The new dis-

crete mapping function is to be named VMF3, following the

draft VMF2 (Böhm et al. 2005) which has never become

operational as it was not able to sufficiently improve the

results of VMF1. Analogously, the data are also used for

designing a new empirical mapping function consecutively

named Global Pressure and Temperature 3 (GPT3) that is

also assumed to benefit from the higher amount of data and

is fully consistent with VMF3.

In the course of this paper, a series of new models with

separate names is designed and tested, which might create

confusion as they all resemble each other. Therefore, Table 1

lists all names and labels to serve as a guide. The theory

behind each approach is to be explained in the upcoming

Table 1 A list of all mapping function approaches mentioned through-

out this paper

Identifier name

VMF1original Vienna Mapping Functions 1

VMF1repro3deg Reprocessed VMF1; empirical b and c (Böhm

et al. 2006a), a for 3◦ (outgoing) elevation

VMF1reproLSM Reprocessed VMF1; empirical b and c

(Böhm et al. 2006a), a from LSM

VMFLSM a, b and c from LSM

VMF33deg Vienna Mapping Functions 3; empirical b and

c (this paper), a for 3◦ (outgoing) elevation

VMF3LSM Vienna Mapping Functions 3; empirical b and

c (this paper), a from LSM

GPT2w Global Pressure and Temperature 2 wet

(optionally on a 5◦
× 5◦ or 1◦

× 1◦ grid)

GPT3 Global Pressure and Temperature 3

(optionally on a 5◦
× 5◦ or 1◦

× 1◦ grid)

For all LSM versions, 7 (outgoing) elevation angles are used (3◦, 5◦,

7◦, 10◦, 15◦, 30◦, 70◦)
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sections; however, it is stated already at this point that the

final products of this section will be the methods VMF3LSM

and GPT3.

3.1 Vienna Mapping Functions 3

What is striking in Table 1 is that there are least-squares

method (LSM) approaches and non-LSM approaches. The

idea behind this is that with the ray-tracer RADIATE pro-

grammed in FORTRAN it is possible to create millions of

ray-traced delays in virtually no time at all, so the map-

ping function coefficients can be determined efficiently from

ray-tracing at not just a single elevation angle, such as in

VMF1, but also from a number of elevation angles through

least-squares methods. The reprocessed VMF1 coefficients

(VMF1repro3deg) are calculated based on exactly the same

model, but new ray-tracing data. This shall allow estima-

tions about the quality of the ray-tracing data itself on the one

hand, and comparisons which would not be possible with the

VMF1original on the other hand. The following subsections

are intended to explain the theory behind each approach.

3.1.1 VMF1repro3deg and VMF1reproLSM

Here the b and c coefficients are adopted from VMF1, while

the a coefficients get new values based on the ray-tracing

data whose properties are listed in Table 3.

For VMF1repro3deg, RADIATE is used to compute the

mapping function mf(3◦) for each observation which is then,

together with the empirical b and c, inserted into the follow-

ing formula in order to analytically calculate a:

a = −
mf(ε) · sin(ε) − 1

mf(ε)

sin(ε) +
b

sin(ε) + c

−
1

1 +
b

1 + c

(5)

This is done separately for the hydrostatic and the wet

part. For VMF1reproLSM, the situation is different because

the a coefficients are fitted to ray-traced mapping function

coefficients at the whole elevation range, which requires

least-squares adjustments. Because the equation system is

nonlinear, in fact (unweighted) iterative least-squares adjust-

ments must be applied employing starting values of ah0 =

0.0012, aw0 = 0.00055, although the adjustment is very

insensitive to the choice of the starting values; even using

the (absolutely unrealistic) starting values ah0 = 0.005,

aw0 = 0.002 instead does not change the results at all. Con-

vergence is assumed as soon as the additions are smaller

than 10−12 which corresponds to an accuracy of the resulting

delay of approximately 6 × 10−9 m. For details, see Land-

skron (2017).

3.1.2 VMFLSM

Here all three mapping function coefficients are determined

together in least-squares adjustments. This appears to be the

best approach of simulating the ray-traced delays, because

the coefficients then contain the full information of the

NWMs and do not suffer from sometimes better, sometimes

worse fitting empirical parameters. The iterative adjustment

requires starting values also for b and c, which are set to bh0 =

0.0029, bw0 = 0.00146, ch0 = 0.065 and cw0 = 0.04391.

At first glance, it seems as if this would be the best mapping

function concept; however, for two reasons it cannot be used

operationally:

– Convergence of the wet coefficients can only be achieved

when the underlying NWM is sufficiently “smooth”. This

means that the ray-traced delays must exhibit a more or

less linear variation over the elevation angles, otherwise

the iterative LSM immediately diverges. For the hydro-

static part, this is no problem at all, but the wet delays

are affected by too many small-scale variations so that it

is not possible to determine aw, bw and cw for discrete

locations and times from operational NWM data. Small-

scale variations in the wet delay at different elevation

angles certainly represent important information about

the actual state of the troposphere; however, they conflict

with the determination of single coefficients which shall

represent the state at all elevation angles. For a global grid

based on monthly averaged NWM values, the situation

is different as the upcoming Sect. 3.1.3 addresses.

– According to Böhm (2004), the interpolation, which has

to be performed separately for each of the three coeffi-

cients a, b and c by the user, involves danger because of

the inherent high correlation between them.

3.1.3 VMF33deg and VMF3LSM

The only way to improve the VMF1 concept when b and

c have to keep on their empirical nature is to significantly

improve and extend the underlying empirical model. The

coefficients bh, bw, ch and cw all need to be equipped with

spatial as well as temporal variation components on whose

basis ah and aw can be computed.

As mentioned before, the determination of VMFLSM does

not fail for monthly mean NWMs in which all meteorological

quantities are strongly smoothed. For the operational pro-

vision of mapping functions, this obviously does not make

sense; however, it enables the determination of discrete b and

c values on a grid from which, in a further step, empirical

information can be derived. Hence, ray-traced delays are pro-

duced on a global 5◦
×5◦ grid, monthly for the time period of

2001 to 2010 (Table 2) from which the VMFLSM coefficients

are then estimated.
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Table 2 Properties of the

grid-wise ray-traced delays that

were generated for the

derivation of VMF3

Parameter Specification

Ray-tracing software RADIATE (Hofmeister and Böhm 2017)

Ray-tracing method 2D piecewise linear (Hobiger et al. 2008)

NWM ECMWF ERA-Interim Pressure-Level Data

Horizontal resolution of the NWM 1◦
× 1◦

Horizontal coverage (1) global grid with resolution 5◦
× 5◦ (lat: [87.5◦, −87.5◦],

lon: [2.5◦, 357.5◦]), resulting in 2592 grid points and (2)

global grid with resolution 1◦
× 1◦ (lat: [89.5◦, −89.5◦], lon:

[0.5◦, 359.5◦]) resulting in 64800 grid points

Vertical coverage 25 Pressure levels

Temporal resolution Mean values for every month from 2001 through 2010 (= 120

epochs)

Outgoing elevation angles per point 4 (3.3◦, 5◦, 15◦ and 30◦) for 5◦
× 5◦ grid and 1 elevation (3◦)

for 1◦
× 1◦ grid

Azimuth angles per point 8 (0◦:45◦:315◦)

In order to deduce empirical temporal information for the

coefficients b and c, the following seasonal fit formula is

applied (Lagler et al. 2013; Böhm et al. 2015). For bh, it

would appear as:

bh = A0 + A1 · cos

(

doy

365.25
2π

)

+ B1 · sin

(

doy

365.25
2π

)

+ A2 · cos

(

doy

365.25
4π

)

+ B2 · sin

(

doy

365.25
4π

)

(6)

in which A0 represents the mean value, A1 and B1 the annual

amplitudes and A2 and B2 the semi-annual amplitudes of the

coefficient. Least-squares adjustments are again used to fit

these parameters to the VMFLSM data. Figure 1 contains the

results for the coefficient bh.

The coefficients and their amplitudes could be saved as a

grid, from which the user then could spatially interpolate the

desired position. However, this would be accompanied with

unacceptably long loading times, particularly for a range of

positions and times. Therefore, it was decided to represent

the discrete grid by continuous functions, which is accom-

plished through spherical harmonics, which are commonly

used for representations of the geoid and the gravitational

and magnetic fields of the Earth. In fact, bh, bw, ch and cw

and their amplitudes must pass through another least-squares

adjustment in order to be fitted to the spherical harmonics

coefficients. For details of the spherical harmonics estima-

tion, it is again referenced to Landskron (2017).

Setting the degree of expansion to n = m = 12, 91 Legen-

dre coefficients must be estimated by LSM for each mapping

function coefficient and each of its amplitudes. Figure 2

shows the results of the spherical harmonics expansion exem-

plarily for a certain time, compared to the original grid. In

general, the representation works very well. For small-scale

variations such as over mountain ranges like the Himalayas

or the Andes, the degree of expansion n = 12 is obviously

too low, which, however, is not critical because small errors

in the b and c coefficients can be compensated by the a coef-

ficients.

The empirical coefficients bh, bw, ch and cw now have

appropriate temporal and spatial variations that are consid-

erably more advanced than those of VMF1. Using these,

discrete values for ah and aw can be determined. As men-

tioned already at an earlier stage, this is handled—once

more—through a least-squares adjustment over all seven ele-

vation angles for the representation VMF3LSM and for the

single outgoing elevation angle of 3◦ for version VMF33deg.

The performance of all approaches introduced throughout

this chapter (VMF1repro3deg, VMF1reproLSM, VMF33deg and

VMF3LSM) is assessed in Sect. 4.

3.2 Global Pressure and Temperature 3

In the previous section, empirical representations of the map-

ping function coefficients bh, bw, ch and cw were found from

which the discrete ah and aw can be calculated. To create

an all-empirical mapping function model, these need to be

represented empirically as well. Having done most of the

groundwork already through the generation of VMF3, the

only step remaining is to apply Eq. (6) to the discrete a coef-

ficients. The resulting values are then stored in a grid, as is

done in GPT2w, while b and c retain their spherical harmon-

ics expression. The crucial difference is that for the empirical

version the ah coefficients must be valid at sea level instead

of the respective height of the topography so that users can

then reproduce them for any location on earth, because the

magnitude of ah is dependent on ellipsoidal height hell. The

height correction by Niell (1996) is the suitable tool for han-

dling this:
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354 D. Landskron, J. Böhm

Fig. 1 Parameters of the seasonal fit for the mapping function coefficient bh. Top left: annual amplitude A1, top right: annual amplitude B1, center

left: semi-annual amplitude A2, center right: semi-annual amplitude B2 and bottom: mean values A0

Fig. 2 Empirical coefficient bh at the arbitrary epoch January 15, 2001 (MJD: 51924). Left: the original grid which is to be represented by spherical

harmonics. Right: spherical harmonics representation for degree of expansion n = 12

mfh0 = mfh1 −
hell

1000

×

⎛

⎜

⎝

1

sin(ε)
−

1 +
aht

1+
bht

1+cht

sin(ε) +
aht

sin(ε)+
bht

sin(ε)+cht

⎞

⎟

⎠

(7)

where mfh0 is the hydrostatic mapping function at reduced

height 0 (usually sea level), mfh1 is the hydrostatic map-

ping function at height 1 (usually at the topography), and

the constants aht = 2.53 × 10−5, bht = 5.49 × 10−3 and

cht = 1.14×10−3 define the correction. Figure 3 depicts the

resulting ah coefficients on the grid.
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Fig. 3 Mean values A0 (top left), seasonal amplitudes A1 (top right),

half-seasonal amplitudes A2 (bottom left) and standard deviation of

the residuals of A0 (bottom right) of the hydrostatic mapping function

coefficient ah from GPT3. At a rough estimate, given the uncertainty of

6 × 10−7 in A0 and of 8 × 10−7 in all amplitudes of ah (as is the case

at the poles), the resulting slant hydrostatic delay at 5◦ elevation would

change at worst by 4 mm

Table 3 Properties of the station-wise ray-traced delays that were gen-

erated using the ray-tracer RADIATE from 1999 to 2014

Parameter Specification

Ray-tracing software RADIATE (Hofmeister and Böhm 2017)

Ray-tracing method 2D piecewise linear (Hobiger et al. 2008)

NWM ECMWF ERA-Interim Pressure-Level

Data + ECMWF operational data

Horizontal

resolution of the

NWM

1◦
× 1◦

Vertical coverage 25 Pressure levels

Horizontal coverage 33 VLBI stations

Temporal resolution 6-hourly at 00:00, 06:00, 12:00 and 18:00 UTC

each day from 1999 through 2014 (=23376

epochs)

Outgoing elevation

angles per point

7 (3◦, 5◦, 7◦, 10◦, 15◦, 30◦ and 70◦)

Azimuth angles per

point

16 (0◦:22.5◦:337.5◦)

The several meteorological quantities from GPT2w are

left unchanged for GPT3. They are of particular importance

for creating empirical zenith delays; pressure p can be con-

verted to zenith hydrostatic delay �Lz
h using Eq. (2), while

inserting water vapor pressure e, mean temperature weighted

with water vapor pressure Tm, and water vapor decrease fac-

tor λ into Eq. (3) produces empirical zenith wet delay �Lz
w.

In addition, the ray-traced delays are also utilized for deter-

Table 4 Mean absolute error (first column), mean bias (second column)

and mean standard deviation (third column) in slant total delay �L at

5◦ elevation (mm) between ray-tracing and several mapping function

approaches, averaged over all 2592 grid points and 120 epochs

Trop. model MAE �L Bias �L σ�L

VMFLSM 0.35 0.00 0.43

VMF1repro3deg 1.73 0.58 1.23

VMF1reproLSM 1.49 0.50 1.08

VMF33deg 0.93 −0.04 0.84

VMF3LSM 0.82 −0.03 0.73

GMF 10.21 −2.08 10.47

GPT2w 6.85 0.32 8.26

GPT3 6.44 −1.03 7.98

mining an empirical gradient grid capable of outperforming

currently existing models. Thus, a full empirical troposphere

model is provided. The empirical gradient grid, however, is

not part of this paper; for more information see Landskron

(2017). The eventual GPT3 troposphere model is realized on

a 5◦
× 5◦ as well as on a 1◦

× 1◦ grid, which is naturally

assumed to be more precise, and consists of the quantities

listed in Table 8.

4 Results

In the following, two comparisons are described to assess

the performance of VMF3 and GPT3 relative to other
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Fig. 4 Differences in slant delays at 5◦ elevation between

VMF1repro3deg (left) and VMF3LSM (right) to the ray-traced delays,

averaged over all 120 epochs. Top: bias in slant total delay �L , center

top: bias in slant hydrostatic delay �Lh, center bottom: bias in slant

wet delay �Lw and bottom: standard deviation in slant total delay �L

approaches: (1) baseline length repeatabilities (BLRs) from

VLBI analyses using the Vienna VLBI Software (VieVS)

(Böhm et al. 2012) are compared, and (2) the modeled delays

are compared to those of ray-tracing, which are regarded as

the true delays for this purpose. For the BLR comparison,

only station-wise data (Table 3) are employed, while for the

delay comparison both station-wise and grid-wise data (cf.

Table 2) are regarded, but separately.

The BLR is the standard deviation of a set of baseline

lengths between two stations. These stations are also subject

to plate motions and other discontinuities over the long term,

which must be corrected beforehand so that only the error

of the modeling approach remains. The lower the standard

deviation, the better the modeling. However, it turned out

that the different mapping functions produce only marginal

differences in baseline lengths, with empirical mapping func-

tions even yielding results equivalent to the discrete ones.

Thus, comparing BLRs is not sufficient for assessing differ-

ences between mapping functions [for details see Landskron

(2017)].

A more effective comparison among the mapping func-

tions is provided by comparing the delays directly. The better

the modeled delays approximate the ray-traced delays, the

higher their quality is, when considering the ray-traced delays
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Fig. 5 Differences in slant delays at 5◦ elevation between GPT2w (left)

and GPT3 (right) to the ray-traced delays, averaged over all 120 epochs.

Top: bias in slant total delay �L , center top: bias in slant hydrostatic

delay �Lh, center bottom: bias in slant wet delay �Lw and bottom:

standard deviation in slant total delay �L

as the true reference values. For all tested approaches, the

zenith delays from RADIATE are used so that differences

can be attributed solely to the mapping factors.

First, the comparison is done for the global grid which was

already used for the creation of VMF3 and GPT3. Table 4

shows the results on the basis of comparisons of mean abso-

lute error (MAE), mean bias and mean standard deviation.

VMF1original cannot be included here as it is not available for

the chosen grid.

From this, it can be concluded that VMFLSM, the approach

where all three coefficients a, b and c are estimated in

the least-squares adjustment, gets closest to the ray-traced

delays. However, for the reasons mentioned in Sect. 3.1.2,

this approach is not suitable for station-wise application. The

delays from VMF33deg are not far off of those from VMFLSM,

but considerably better than those from VMF1repro3deg.

The VMF3 approach obviously outperforms the VMF1

approach, while the estimation through LSM yields a fur-

ther small improvement. Figure 4 illustrates this graphi-

cally.

VMF3 reduces apparent shortcomings of the VMF1

approach in particular in mountainous areas, which almost

exclusively appear in the hydrostatic part. Also, as evident

from Table 4 and shown in Fig. 5, delays modeled with
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Table 5 Mean absolute error (first column), mean bias (second column)

and mean standard deviation (third column) in slant total delay �L at

5◦ elevation (mm) between ray-tracing and several mapping function

approaches, averaged over all 33 stations and epochs from 1999 to 2014

Trop. model MAE �L Bias �L σ�L

VMF1original 8.30 0.72 12.71

VMF1repro3deg 3.98 2.66 4.24

VMF1reproLSM 3.47 2.32 3.71

VMF33deg 2.97 1.72 3.57

VMF3LSM 2.64 1.58 3.15

GPT2w (5◦
× 5◦) 18.95 −0.53 24.74

GPT2w (1◦
× 1◦) 18.90 −0.21 24.69

GPT3 (5◦
× 5◦) 18.98 −2.43 24.69

GPT3 (1◦
× 1◦) 18.84 0.20 24.53

Table 6 Mean absolute error (first column), mean bias (second column)

and mean standard deviation (third column) in slant total delay �L at

3◦ elevation (mm) between ray-tracing and several mapping function

approaches, averaged over all 33 stations and epochs from 1999 to 2014

Trop. model MAE �L Bias �L σ�L

VMF1original 22.19 −5.42 33.88

VMF1repro3deg 0.52 0.00 0.64

VMF1reproLSM 1.62 −1.02 1.75

VMF33deg 0.52 0.00 0.64

VMF3LSM 1.17 −0.45 1.50

GPT2w (5◦
× 5◦) 54.35 −5.34 70.09

GPT2w (1◦
× 1◦) 54.13 −4.38 69.93

GPT3 (5◦
× 5◦) 54.49 −8.22 70.21

GPT3 (1◦
× 1◦) 53.86 −0.41 69.58

GPT3 are closer to the ray-traced delays than those mod-

eled with GPT2w. The improvement of GPT3 over GPT2w

is, in fact, not as distinct as it appears to be in the figure

because the delay differences were averaged over all 120

epochs before and thus lost their positive or negative alge-

braic signs. Besides, on the global grid it makes no difference

whether the 5◦
×5◦ or 1◦

×1◦ versions of GPT2w and GPT3

are used, since either of them exactly coincides exactly with

the global grid points.

The second comparison of delay differences is made for 15

years of data (cf. Table 3) for 33 VLBI stations all around the

globe which were chosen in such a way as to reach a global

distribution that is as uniform as possible. Tables 5 and 6 show

the resulting differences between the modeled delays and the

reference ray-traced delays for the two elevation angles 5◦

and 3◦. The zenith delays again come from RADIATE for

all model approaches so that differences in the slant delays

merely stem from differences in mapping factors. Figure 6

shows the improvement of VMF3LSM over VMF1repro3deg at

each station. VMF1original is also stated in this comparison;

as it is determined from entirely different ray-traced delays,

however, the values are not necessarily representative.

Also from these tables and figures, it is obvious that the

VMF3 approach outperforms the VMF1 approach. At 3◦

elevation, the non-LSM version is best, but this is no sur-

prise since the a coefficients were determined for this very

elevation angle. At 5◦ elevation (and all other larger eleva-

tion angles, which are not included in the tables), however,

the LSM version is superior. Consequently, the approach

VMF3LSM is regarded as the best result. In all comparisons,

Fig. 6 Mean differences in slant hydrostatic delays (top) and slant

wet delays (bottom) at 5◦ elevation between VMF1repro3deg (left) and

VMF3LSM (right) to the ray-traced delays. VMF3LSM outperforms

VMF1repro3deg at 27 of the 33 stations in hydrostatic delay and at all

stations, albeit only marginally, in wet delay
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the bulk of improvement comes from the hydrostatic part,

while the wet part does not differ significantly. The empir-

ical model GPT3 is apparently able to marginally exceed

GPT2w in the 1◦
×1◦ version, but not in the 5◦

×5◦ version.

For geodetic purposes, the effect of the mapping function on

station positions is most important. A rule of thumb says that

the error in the height component is approximately one-fifth

of the delay error at an elevation angle of 5◦ (Böhm 2004);

this means that station heights are improved by 0.25 mm

when using VMF3LSM instead of VMF1repro3deg. Concern-

ing empirical mapping functions, there is virtually no station

height change.

5 Conclusions

In this paper, two new mapping function models for tropo-

sphere modeling are introduced, one for discrete purposes

and one for empirical purposes. The former is referred to as

VMF3 (corresponding to the approach VMF3LSM in the text)

and is characterized by a new, more sophisticated handling

of the empirical coefficients b and c compared to VMF1,

as well as a coefficients which were determined through

least-squares adjustments over seven elevation angles. In

particular, at low elevation angles VMF3 is able to approxi-

mate the underlying ray-traced delays appreciably better than

VMF1. At 5◦ elevation, the delays are improved on average

by 1.3 mm, which is equivalent to an improved station height

of 0.25 mm. At higher elevation angles, though, there is not

much of a difference between VMF1 and VMF3. For this

reason, it depends on the task whether the use of VMF3 is

justified or not; for high-precision applications, it certainly

makes sense; however for others VMF1 may be sufficient.

The ability of empirical models to approximate ray-traced

delays is obviously somewhat worse. The newly presented

model GPT3 uses the same b and c coefficients as VMF3

and, in case of the 5◦
× 5◦ version, is based on the same ray-

tracing data as VMF3. GPT3 (5◦
×5◦) achieves equal results

to GPT2w (5◦
× 5◦), while results from GPT3 (1◦

× 1◦) are

slightly better than those of its counterpart, however being

a little more time-consuming. However, the main benefit of

GPT3 is its full consistency with VMF3. In future, a new

height correction for mapping functions will be determined

replacing that of Niell (1996), which is expected to further

improve GPT3 and its ability to model troposphere delays at

positions other than at or close to the surface of the earth.

6 Data and code availability

Required MATLAB scripts and data text files containing the

respective mapping function coefficients can be downloaded

from http://ggosatm.hg.tuwien.ac.at/DELAY/. Information

Table 7 A list of all input and output parameters of the discrete mapping

function VMF3

Symbol Name Unit

Input parameters

ah Hydrostatic mapping function coefficient –

aw Wet mapping function coefficient –

mjd Modified Julian date –

ϕ Geographic latitude rad

λ Geographic longitude rad

zd Zenith distance (π -elevation) rad

Output parameters

mfh Hydrostatic mapping factor –

mfw Wet mapping factor –

Table 8 A list of all input and output parameters of the empirical tro-

posphere model GPT3

Symbol Name Unit

Input parameters

mjd Modified Julian date –

ϕ Geographic latitude rad

λ Geographic longitude rad

hell Ellipsoidal height m

Output parameters

p Pressure hPa

T Temperature ◦C

dT Temperature lapse rate K km−1

Tm Mean temperature weighted with

water vapor pressure

K

e Water vapor pressure hPa

ah Hydrostatic mapping function

coefficient (valid at sea level)

–

aw Wet mapping function coefficient –

λ Water vapor decrease factor –

N Geoid undulation m

Gnh Hydrostatic north gradient m

Geh Hydrostatic east gradient m

Gnw Wet north gradient m

Gew Wet east gradient m

Unless otherwise stated, all output quantities are valid for the ellipsoidal

height hell specified in the input

on the usage of the files is found in http://ggosatm.hg.tuwien.

ac.at/DELAY/readme.txt. All input and output parameters of

VMF3 and GPT3 are summarized in Tables 7 and 8.
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