
 Open access Proceedings Article DOI:10.1109/CNSM.2014.7014205

VNF-P: A model for efficient placement of virtualized network functions
— Source link

Hendrik Moens, Filip De Turck

Institutions: Ghent University

Published on: 01 Nov 2014 - Conference on Network and Service Management

Topics: Virtual network, Service provider, Scalability, Service (systems architecture) and Resource allocation

Related papers:

 Specifying and placing chains of virtual network functions

 Near optimal placement of virtual network functions

 Piecing together the NFV provisioning puzzle: Efficient placement and chaining of virtual network functions

 Network Function Virtualization: State-of-the-Art and Research Challenges

 The dynamic placement of virtual network functions

Share this paper:

View more about this paper here: https://typeset.io/papers/vnf-p-a-model-for-efficient-placement-of-virtualized-network-
2p09ibihr4

https://typeset.io/
https://www.doi.org/10.1109/CNSM.2014.7014205
https://typeset.io/papers/vnf-p-a-model-for-efficient-placement-of-virtualized-network-2p09ibihr4
https://typeset.io/authors/hendrik-moens-iyl86mtg3n
https://typeset.io/authors/filip-de-turck-x2lconi2oz
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/conference-on-network-and-service-management-2fb5n6ea
https://typeset.io/topics/virtual-network-36l5i8wh
https://typeset.io/topics/service-provider-1847laz2
https://typeset.io/topics/scalability-239v0xhx
https://typeset.io/topics/service-systems-architecture-imtu2ab0
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/papers/specifying-and-placing-chains-of-virtual-network-functions-1hshsj0732
https://typeset.io/papers/near-optimal-placement-of-virtual-network-functions-4v12lxep85
https://typeset.io/papers/piecing-together-the-nfv-provisioning-puzzle-efficient-28v75rxcy5
https://typeset.io/papers/network-function-virtualization-state-of-the-art-and-29gg3feprt
https://typeset.io/papers/the-dynamic-placement-of-virtual-network-functions-1wegpziuuc
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/vnf-p-a-model-for-efficient-placement-of-virtualized-network-2p09ibihr4
https://twitter.com/intent/tweet?text=VNF-P:%20A%20model%20for%20efficient%20placement%20of%20virtualized%20network%20functions&url=https://typeset.io/papers/vnf-p-a-model-for-efficient-placement-of-virtualized-network-2p09ibihr4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/vnf-p-a-model-for-efficient-placement-of-virtualized-network-2p09ibihr4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/vnf-p-a-model-for-efficient-placement-of-virtualized-network-2p09ibihr4
https://typeset.io/papers/vnf-p-a-model-for-efficient-placement-of-virtualized-network-2p09ibihr4

VNF-P: A Model for Efficient Placement of

Virtualized Network Functions

Hendrik Moens and Filip De Turck

Ghent University – iMinds, Department of Information Technology

Gaston Crommenlaan 8/201, B-9050 Gent, Belgium

e-mail: hendrik.moens@intec.ugent.be

Abstract—Network Functions Virtualization (NFV) is an up-
coming paradigm where network functionality is virtualized and
split up into multiple building blocks that can be chained together
to provide the required functionality. This approach increases
network flexibility and scalability as these building blocks can be
allocated and reallocated at runtime depending on demand. The
success of this approach depends on the existence and performance
of algorithms that determine where, and how these building
blocks are instantiated. In this paper, we present and evaluate
a formal model for resource allocation of virtualized network
functions within NFV environments, a problem we refer to as
Virtual Network Function Placement (VNF-P). We focus on a
hybrid scenario where part of the services may be provided
by dedicated physical hardware, and where part of the services
are provided using virtualized service instances. We evaluate the
VNF-P model using a small service provider scenario and two
types of service chains, and evaluate its execution speed. We find
that the algorithms finish in 16 seconds or less for a small service
provider scenario, making it feasible to react quickly to changing
demand.

I. INTRODUCTION

Using Network Functions Virtualization (NFV), various net-

work functions are migrated from costly hardware appliances to

virtualized instances deployed on generic servers. This network

architecture increases network flexibility and scalability, as

these virtualized services can be instantiated and scaled on-

demand using cloud scaling technologies.

Two challenges however remain: (1) While there are many

similarities to cloud resource allocation, the NFV architecture

is designed to be used within entire service provider networks,

and not just within datacenters. In datacenters, high-capacity

and high-speed networks are used to connect servers, making

the specifics of the underlying network less important. In

NFV deployments in networks outside of the datacenter, the

importance of network constraints such as bandwidth and

latency however increases. (2) In practice, the more expensive

dedicated hardware often performs faster and more efficiently

than virtualized instances, even though the latter are more

flexible. As dedicated hardware is currently widely deployed, it

is likely that hybrid deployments will be common, where part of

the services are provided by physical hardware. This results in

a scenario analogous to a cloud burst: a base load is handled by

physical hardware (the private cloud in a cloud burst scenario),

while variation in load is handled by dynamically instantiating

services (the public cloud in a cloud burst scenario). In this

“NFV burst” scenario, a base load is handled by physical

Time

Physical hardware

On-demand virtualized

To
ta

l
S
e
rv

ic
e
 D

e
m

a
n

d

Fig. 1: An NFV burst scenario: physical hardware is fully

utilized by a base load, while spillover is handled by utilizing

virtualized services.

hardware while spillover is handled by virtual service instances.

This approach is illustrated in Figure 1.

To resolve these challenges, network and service-aware NFV

management algorithms must be developed. In this paper, we

present and evaluate a formal Virtual Network Function Place-

ment (VNF-P) model that can be used to allocate resources in

hybrid NFV networks. The remainder of this paper is structured

as follows. In the next Section, related work is presented.

Afterwards, in Section III, the major differences between NFV

resource allocation and cloud resource allocation are discussed.

The VNF-P model is presented in Section IV. We discuss

the evaluation set-up in Section V and present the results in

Section VI. Finally, in Section VII we state our conclusions.

II. RELATED WORK

Allocating resources in NFV networks is similar to appli-

cation placement in datacenters and clouds [1], specifically to

network-aware application placement. Many publications [2],

[3], [4], [5], [6], [7], [8] focus on either allocating collections

of Virtual Machines (VMs), or on adding network-awareness

to datacenter resource management algorithms. These works

however focus specifically on Infrastructure as a Service (IaaS)

clouds where VMs are allocated. Often only datacenter-specific

network topologies are considered. In this paper, by contrast,

we focus on NFV resource allocation without any restrictions

on the underlying network topologies. Additionally we also

consider the difference between service requests and VM

requests. These two request types must be handled differently,

as services may be deployed either on dedicated hardware or

on shared service instances that are managed by the service

provider while requested VMs are managed by the client who

requested the service chain.

The VNF-P is also related to the problem of virtual network

embedding in software defined networks [9]. Virtual network

embedding focuses on how virtual network requests, in the

form of a collection of VMs and their interconnections can

be deployed on physical networks. In this paper we extend this

embedding approach by defining VNF-P, making it possible

to specify both VM requests and service requests, the latter

resulting in service provider managed services that may be

shared between multiple tenants. We also incorporate the notion

of hybrid networks containing both physical devices offering

services and virtualized services. Similarly, [10] also focuses

on deployment of virtual network functions in pure NFV

environments while we also consider a hybrid environment

where dedicated hardware for providing services is present.

III. NFV RESOURCE ALLOCATION

In NFV networks, a collection of service chains must be

allocated on physical network nodes. A service chain is a col-

lection of one or more services or VMs that are chained together

to provide specific functionality, and can be represented as a

graph containing services and the network demand between

these services. In a hybrid network environment, service chains

can be allocated either using physical hardware, or by using

virtualized instances. These two approaches are illustrated in

Figure 2.

A service request can be allocated either on dedicated

hardware, or using a service that is deployed by the service

provider using a VM. It is also possible for client VMs to be

part of a service chain. The key difference between service and

VM requests is that a VM that is part of a service chain is

managed by the client who requests the service chain, while a

VM that provides a service is managed by the service provider.

These provider-hosted services can therefore be shared between

multiple clients. Because of this, three types of deployment,

illustrated in Figure 3, are possible in a hybrid NFV network:

(1) VM deployment on physical server nodes, (2) service de-

ployment on physical service nodes, and (3) service deployment

on virtualized service instances. Allocating resources for the

first two deployment types is similar to network-aware VM

allocation in clouds, the only difference being that for VM

deployment CPU and Memory are typically used as resource

types whereas for service deployment other resource types such

as requests per second are more appropriate. Existing resource

allocation algorithms can however easily be adapted to work

with these different resource types. The addition of the third

type of deployment, where services are deployed on shared

virtualized service instances, however results in the need for

significant changes to existing models.

IV. THE VNF-P MODEL

In the following sections we present a formal model for the

VNF-P problem. To improve legibility, we first present the

model inputs. Next, we present a model that only takes into

VM VMService

(a) Services can be allocated on physical devices.

VM VMService

(b) Alternatively, services can be offered using virtualized instances
on generic hardware.

Fig. 2: NFV service chain allocation approaches.

VM

(a) VM deployment on physical nodes.

Service

(b) Service deployment on a physical service node.

Service VM

(c) Service deployment on a virtualized service instance.

Fig. 3: Service and VM allocation approaches.

account the service and VM requests, ignoring the underlying

network. Subsequently, we extend the model, adding network-

awareness to it.

A. Problem description

The inputs of the complete model are shown in Table I. The

network is represented as a graph G = (N,E). The graph

consists of a collection of nodes N that represent physical

network nodes and edges E between these nodes. Within the

model we assume that these edges can be either bidirectional

or unidirectional. Incoming and outgoing edges from a node

TABLE I: The model input variables.

Symbol Description

G The graph G = (N,E) representing the network.
N The nodes within the network. This collection can be par-

titioned into a set of computational nodes Nc and a set of
service nodes Ns.

E The edges within the network.

Ein
n The edges that are incoming in node n ∈ N .

Eout
n The edges that are outgoing from node n ∈ N .

C(e) The bandwidth capacity of an edge e ∈ E.
L(e) The network latency of an edge e ∈ E.
C The service chains that must be allocated on the network.

RV M (C) The VM requests that are part of service chain C ∈ C.
Rs(C) The service requests that are part of service chain C ∈ C.
R(C) The resource requests that are part of service chain C ∈ C.

R(C) = RV M (C) ∪Rs(C).
S The collection of all services that exist within the model.

Dγ(r) The resources of type γ needed for a request r. This request
can either be a service request or a VM request.

Γc The resource types that are available on a physical computa-
tional node. Typically these resources are CPU and Memory.

Γs The resource types that are provided by a service s ∈ S.
Typically this is a service-specific resource such as requests
per second.

R A collection containing all of the resource requests of all
service chains in C.

C
γ
n The resource capacity of a node or service n. For computa-

tional nodes, γ ∈ ΓV M . For service nodes offering service s,
γ ∈ Γs. A service VM of a service s provides C

γ
s resources

of types γ ∈ Γs.
D(r1, r2) The network demand between requested VMs or services r1

and r2.
L(r1, r2) The maximum network latency between requested VMs or

services r1 and r2.

n ∈ N are represented by Ein
n and Eout

n respectively. A node

can be any device in the network, such as a computational

node, router, SDN controller, access point, network switch

or any other type of device. We make a distinction between

computational nodes, contained in N c, and service nodes Ns

that offer a specific service.

The objective of the optimization is to allocate a collection

of service chains C on this physical network. A service chain

C ∈ C consists of a collection of service and VM requests, the

network demand between these services and VMs, and possibly

network latency restrictions. We make a distinction between

service requests and VM requests:

• VM requests are requests for the instantiation of a specific

VM. This instance must be allocated on physical hardware

that is present in the network, where it will use node

physical resources such as CPU, memory, and possibly

disk space. The physical resource types offered by physical

hardware are contained in the set Γc. All VM requests of

a service chain C are contained in the set RVM (C).
• Service requests are requests for capacity of a specific

service. These requests can either be allocated directly on

dedicated physical hardware, or they can be executed in

a shared virtual service instance. A service s makes use

of service-specific resources such as requests per second.

These resource types are contained in the set Γs which is

defined for every service s ∈ S, and where S is the set of

Service Node

Offers

service-specific

resources

Service Requests

(a) Service nodes offer service-specific resources to service requests.

Requested VM

Server Node
Service Instance

Uses physical

resources

Uses physical

resources

Service Requests Offers

service-specific

resources

(b) Server nodes offer physical resources to VM requests. They can
also be used to instantiate service instances that offer service-specific
resources to service requests.

Fig. 4: The difference between service nodes and server nodes.

all services. All service requests of a service chain C are

contained in the set Rs.

The different ways in which VMs and services can be deployed

are illustrated in Figure 4. All requests in a service chain C are

represented by the collection R(C) = RVM (C) ∪Rs(C). The

collection R contains all requests in the model, aggregated over

all of the service chains in C.

All computational nodes in n ∈ N c have a resource capacity

Cγ
n , for all resource types γ ∈ Γc. Similarly, all service nodes

n ∈ Ns offer a limited amount of resources Cγ
n , for all γ ∈ Γs

and for all s ∈ S.

The edge capacity C(e) and latency L(e) are defined for all

edges e ∈ E. The network demand between any requested

VMs and services is represented by D(r1, r2) for any two

requests r ∈ R. Similarly, a maximum network latency between

requested VMs and services L(r1, r2) may be specified.

B. Basic model

We first specify a basic model for NFV resource allocation

that does not take the underlying network into account and

only focuses on the allocation of the VMs and services in the

requested service chains.

We define a binary decision variable, Ar
n, that defines

whether a resource request r ∈ R is allocated on a node n ∈ N .

An integer decision variable ICs
n specifies the number of times

that a service s ∈ S is instantiated on a computational node

n ∈ N c. We use an integer variable as we assume that it is

possible for there to be multiple instances of the same service

on a single physical node. If this is not desired, an upper bound

of 1 can be specified for the ICs
n variable preventing this.

Using these decision variables, and the input variables

specified previously, a server capacity constraint is specified

in Equation (1). This constraint ensures that the total amount

of used resources on a server does not exceed the available

capacity Cγ
n . The total amount of used resources is composed

out of the resources used for handling VM requests, represented

as UVM and shown in Equation (2), and out of the resources

used to provide service instances, represented as Us (shown in

Equation (3)).

∀γ ∈ Γc :∀n ∈ N : UVM (n, γ) + Us(n, γ) ≤ Cγ
n (1)

UVM (n, γ) =
∑

r∈RV M

Ar
n ×Dγ(r) (2)

Us(n, γ) =
∑

s∈S

ICs
n ×Dγ(s) (3)

It is important to ensure that the ICs
n decision variables

take on the correct values. To achieve this, a constraint must

be added ensuring that the number of instances on a node,

ICs
n, offers sufficient resources for the service requests that

are allocated on the node. This is expressed in Equation (4).

This equation makes use of the total available service resources

T γ(s, n) and the total needed service resources Nγ(s, n) on the

node. The expressions for T γ(s, n) and Nγ(s, n) are shown in

Equations (5) and (6) respectively.

∀n ∈ N : ∀s ∈ S : ∀γ ∈ Γs : T γ(s, n) ≥ Nγ(s, n) (4)

T γ(s, n) = ICs
n × Cγ

s (5)

Nγ(s, n) =
∑

r∈Rs

Ar
n ×Dγ(r) (6)

Finally, it is important to ensure that every request is allo-

cated exactly once. This is done using Equation (7).

∀r ∈ R :
∑

n∈N

Ar
n = 1 (7)

The objective of the model is to minimize the number of

used servers. To determine whether a server node n is used,

the binary decision variable Un is used. Equation (8) ensures

that Un takes on value 1 as soon as a single service or VM is

allocated on the node n.

∀n ∈ N c : ∀r ∈ R : Un ≥ Ar
n (8)

It may also be possible for a node to be partially used, e.g.

if a datacenter is represented by a single node, the number

of servers used within the datacenter is relevant. In this case,

this resource use may also be added directly to the objective

function, ensuring it is minimized during optimization. To

formalize this, we define a collection N+ containing pairs of

resources (∈ Γc) and nodes (∈ N c) of which the total resource

demand must be minimized. We do this using the U+ variable

defined in Equation (9). For the datacenter example, the number

of cores used can be used for this.

U+ =
∑

(γ,n)∈N+

UVM (n, γ) + Us(n, γ) (9)

Using the U+ and Un variables, the optimization objective

can be specified as shown in Equation (10).

min

(

U+ +
∑

n∈Nc

Un

)

(10)

To further expand the model, it would be trivial to add the

cost of using specific servers using additional weights in the

objective function. This is however outside of the scope of this

paper.

Firewall

Cloud
Edge Node

Switch

Core Router

Fig. 5: The evaluation network.

C. Adding network-awareness

To add network-awareness to the model, the flow between

two requests (r1, r2) ∈ R2 over the edges e ∈ E of the network

is modeled using a collection of binary flow decision variables

F (e, r1, r2). If F (e, r1, r2) = 1, the edge e is used for the

flow (r1, r2), otherwise the value of this decision variable must

be 0. These flow variables are subject to a flow conservation

constraint, shown in Equation (11). For all nodes except the

source and sink nodes, the incoming flow must equal the

outgoing flow. For the source node, the flow must exceed the

out flow, while for the sink node the opposite holds.

∀(r1, r2) ∈ D : ∀n ∈ N : Ar2
n +

∑

e∈Eout
n

F (e, r1, r2)

= Ar1
n +

∑

e∈Ein
n

F (e, r1, r2)
(11)

Two additional constraints, shown in Equations (12) and (13)

are added to prevent cycles from occurring.

∀(r1, r2) ∈ D : ∀n ∈ N : Ar2
n +

∑

e∈Eout
n

F (e, r1, r2) ≤ 1 (12)

∀(r1, r2) ∈ D : ∀n ∈ N : Ar1
n +

∑

e∈Ein
n

F (e, r1, r2) ≤ 1 (13)

Finally, a capacity constraint, expressed in Equation (14) is

needed to ensure that the total flow over an edge does not

exceed the available edge capacity. To limit the latency on

connections, a latency constraint, shown in Equation (15) is

also added to limit the total delay over the entire path.

∀e ∈ E :
∑

(r1,r2)∈D

F (e, r1, r2)×D(r1, r2) ≤ C(e) (14)

∀(r1, r2) ∈ L :
∑

e∈E

F (e, r1, r2)× L(e) ≤ L(r1, r2) (15)

V. EVALUATION SETUP

We evaluate the model by using it to allocate a collection

of service chains on a small network, shown in Figure 5. This

network represents that of a small service provider, containing

Firewall

CND

3xRR 4xRR

FR

(a) A sample corporate request. The virtual network is split into
two parts separated by access routers and a firewall service. The de-
mand between services is represented by Corporate Network Demand
(CND). Router Requests Per Second (RR) represents the demand for
the router, which is also dependent on the number of nodes in the
subnet. Firewall Requests Per Second (FR) represents the firewall
service demand.

Cache

SD

CC, CM

RR

(b) A sample streaming request. The source node streams to a cache
VM instance with Cache CPU Cores (CC) representing CPU demand
and Cache Memory (CM) representing memory demand. The cache is
connected to a routing service with Router Requests Per Second (RR)
demand, which in turn is connected to a collection of edge nodes. The
demand between nodes is represented by Stream Demand (SD).

Fig. 6: The two evaluation service chain types. The various

abbreviations represent network, service and VM parameters

that are used in the evaluation scenario.

10 edge nodes, 5 switches, 4 core routers, a hardware firewall

and a small cloud datacenter. We add the number of CPU cores

that are used within the datacenter to N+ to ensure as few

datacenter servers are used as possible1. We consider two types

of service chains: a corporate virtual network, and a streaming

scenario. The two service chain types are illustrated in Figure 6.

The corporate virtual network scenario is illustrated in Fig-

ure 6a. In this scenario, a number of services is requested to

connect a collection of edge nodes using a virtual network. The

virtual network is randomly subdivided into a private subnet

and a public subnet. The two subnets are connected using two

access routers that are in turn connected to a firewall service.

The streaming scenario is illustrated in Figure 6b. Here, a

single edge node is the stream source, while multiple edge

nodes occur as sinks for the stream. The stream node is

connected to a cloud-based cache which is a VM that is hosted

by the service chain requester. The cache is connected to a

router which is in turn connected to the various sink edge nodes.

Table II shows the network parameters used for the evaluation

scenario. Here we assume that physical hardware, such as the

hardware firewall and routers, are capable of handling more

1As discussed in the previous section, N+ is used to select a specific node
resource use decision variable that must be added to the global minimization
objective.

TABLE II: Network parameters used for the evaluation sce-

nario.

Network

Edge Capacity 100Gbps
Edge Latency 0.01s
Number of requests 40 per type
Edge nodes per request 7

Hardware service Virtual service

Routing service capacity 200000 requests/s 100000 requests/s
Firewall service capacity 5000 requests/s 10000 requests/s

TABLE III: Service chain parameters used for the evaluation

scenario.

Corporate

Corporate Network Demand (CND) α× 0.05 Gbps
Router Requests Per Second (RR) α× 1000 requests/s
Firewall Requests Per Second (FR) α× 1000 requests/s

Streaming

Stream Demand (SD) β × 0.1 Gbps
Router Requests Per Second (RR) β × 10000 requests/s
Cache CPU Cores (CC) β × 8 cores
Cache Memory (CM) β × 16 GB

requests than virtualized instances of these services. The param-

eters for the various service chains are shown in Table III. Two

multipliers, α and β for the corporate and streaming service

chain respectively, make it possible to increase or decrease

the load of the service chain, making it possible to simulate a

scenario where the load on workflows varies throughout the day.

The Integer Linear Programming (ILP) model presented in

the previous section was implemented using CPLEX 12.4 [11]

and Scala 2.11.1 [12]. The evaluations were executed on an

Ubuntu 14.04 server with Intel Core i3-530 processor with 4GB

of memory. All evaluations were repeated 50 times.

VI. EVALUATION RESULTS

We evaluate a scenario where the load of the corporate

service chain increases while the streaming service chain load

decreases. This is done by modifying the α and β multipliers,

letting them vary from 0.5 to 1 and from 1 to 0.5 respectively.

This represents a scenario where the load of various flows varies

throughout the day (e.g. corporate service chains may have a

higher load during working hours, while streaming requests

may result in a higher load during the evenings).

Figure 7a shows the number of CPU cores in the datacenter

that are used for hosting streaming caches. As the load of

streaming service chains decreases (as β decreases), the number

of caches decreases as well. As a separate cache is used for

each of the service chains using a dedicated VM, a significant

number of caches remains active. When the load of corporate

service chains is increased, the number of shared firewall

service instances gradually increases as shown in Figure 7b.

In all of the scenarios there were sufficient hardware routers,

ensuring no software routers were instantiated.

The performance of the VNF-P model was evaluated by

gradually increasing the number of service chain requests, as

shown in Figure 8. We observe that, as the number of service

chain requests increases, the time needed to evaluate the model

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.5 0.6 0.7 0.8 0.9 1

S
e

rv
ic

e
 C

P
U

 c
o

re
 u

s
e

Corporate service chain multiplier (α)

Cache

(a) Evolution of number of caches.

 0

 2

 4

 6

 8

 10

 0.5 0.6 0.7 0.8 0.9 1

S
e

rv
ic

e
 C

P
U

 c
o

re
 u

s
e

Corporate service chain multiplier (α)

Firewall

(b) Evolution of the number of firewall instances.

Fig. 7: Evolution of resources when the load of corporate

requests increases (α) while the load of streaming requests

decreases (β = 1.5− α).

increases more or less linearly. For the evaluated scenarios, run-

ning the algorithm never takes more than 16 seconds, implying

the algorithm is well-suited for smaller provider networks.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a model for resource allocation

in NFV networks, referred to as Virtual Network Function

Placement (VNF-P). The model can be used in both pure NFV

networks and in hybrid networks containing physical hardware.

This makes the model useful in an NFV burst scenario where

a base load is handled by physical hardware, while spillover is

handled by on-demand virtualized services.

The presented model was implemented as an ILP and was

evaluated using a service provider scenario containing two

types of service chain requests. As the load of the request

types changes, the number of instantiated services changes. The

execution time of the algorithm remained less than 16 seconds.

In future work, we will evaluate the model in larger scale

scenarios, and develop heuristic management algorithms that

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700

E
x
e
c
u
ti
o
n
 s

p
e
e
d
 (

s
)

Number of service chain requests

Fig. 8: The performance of the model for increasing numbers

of workflows. The bars show the sample standard deviation.

α = β = 0.01, 50 iterations per data point.

will improve the scalability of the management approach.

ACKNOWLEDGMENT

Hendrik Moens is funded by the Institute for the Promotion

of Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey
and Research Challenges,” Journal of Network and Systems Management,
Mar. 2014.

[2] C. Low, “Decentralised Application Placement,” Future Generation Com-

puter Systems, vol. 21, no. 2, pp. 281–290, 2005.
[3] M. Rabbani, R. Pereira Esteves, M. Podlesny, G. Simon, L. Zambenedetti

Granville, and R. Boutaba, “On tackling virtual data center embedding
problem,” in 12th IFIP/IEEE International Symposium on Integrated

Network Management (IM 2013). IEEE, 2013, pp. 177–184.
[4] F. Wuhib, R. Yanggratoke, and R. Stadler, “Allocating Compute and Net-

work Resources Under Management Objectives in Large-Scale Clouds,”
Journal of Network and Systems Management, Jul. 2013.

[5] M. Zhani, Q. Zhang, G. Simon, and R. Boutaba, “VDC Planner: Dynamic
migration-aware Virtual Data Center embedding for clouds,” in 12th

IFIP/IEEE International Symposium on Integrated Network Management

(IM 2013). IEEE, 2013, pp. 18–25.
[6] L. Shi, B. Butler, D. Botvich, and B. Jennings, “Provisioning of requests

for virtual machine sets with placement constraints in IaaS clouds,” in
12th IFIP/IEEE International Symposium on Integrated Network Man-

agement (IM 2013). IEEE, 2013, pp. 499–505.
[7] M. Alicherry and T.V. Lakshman, “Network Aware Resource Allocation

in Distributed Clouds,” in IEEE INFOCOM, 2012, pp. 963–971.
[8] R. Esteves, L. Zambenedetti Granville, H. Bannazadeh, and R. Boutaba,

“Paradigm-based adaptive provisioning in virtualized data centers,” in
12th IFIP/IEEE International Symposium on Integrated Network Man-

agement (IM 2013). IEEE, 2013, pp. 169–176.
[9] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker,

S. Beker, and D. Soldani, “A Novel Approach to Virtual Networks
Embedding for SDN Management and Orchestration,” in Proceedings

of the 2014 IEEE Network Operations and Management Symposium

(NOMS), 2014.
[10] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The

Dynamic Placement of Virtual Network Functions,” in Proceedings of the

2014 IEEE Network Operations and Management Symposium (NOMS),
2014.

[11] (2014) IBM ILOG CPLEX 12.4. [Online]. Available: http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer

[12] (2014) Scala 2.11.1. [Online]. Available: http://www.scala-lang.org/

