

This is a postprint version of the following published document:

Agarwal, S., Malandrino, F., Chiasserini, C.F. y De, S.
(2019). VNF Placement and Resource Allocation for
the Support of Vertical Services in 5G Networks.
IEEE/ACM Transactions on Networking, 27 (1), pp.
433-446.

DOI: 10.1109/TNET.2018.2890631

 ©2019 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://www.doi.org/10.1109/TNET.2018.2890631
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

1

VNF Placement and Resource Allocation for the
Support of Vertical Services in 5G Networks

Satyam Agarwal, Member, IEEE, Francesco Malandrino, Member, IEEE,

Carla-Fabiana Chiasserini, Fellow, IEEE, Swades De, Senior Member, IEEE

✦

Abstract—One of the main goals of 5G networks is to support the

technological and business needs of various industries (the so-called

verticals), which wish to offer to their customers a wide range of services

characterized by diverse performance requirements. In this context, a

critical challenge lies in mapping in an automated manner the require-

ments of verticals into decisions concerning the network infrastructure,

including VNF placement, resource assignment, and traffic routing. In

this paper, we seek to make such decisions jointly, accounting for their

mutual interaction, and efficiently. To this end, we formulate a queuing-

based model and use it at the network orchestrator to optimally match

the vertical’s requirements to the available system resources. We then

propose a fast and efficient solution strategy, called MaxZ, which allows

us to reduce the solution complexity. Our performance evaluation, car-

ried out accounting for multiple scenarios representative of real-world

services, shows that MaxZ performs substantially better than state-of-

the-art alternatives and consistently close to the optimum.

1 INTRODUCTION

5G networks are envisioned to provide the computational,
memory, and storage resources needed to run multiple third
parties (referred to as vertical industries or verticals) with
diverse communication and computation needs. Verticals
provide network operators with the specification of the
services they want to provide, e.g., the virtual network
functions (VNFs) they want to use to process their data and
the associated quality of service.

Mobile network operators are in charge of mapping
the requirements of the verticals into infrastructure man-
agement decisions. This task is part of the network or-
chestration, and includes making decisions concerning (i)
the placement of the VNFs needed by the verticals across
the infrastructure; (ii) the assignment of CPU, memory and
storage resources to the VNFs; (iii) the routing of data across
network nodes.

These decisions interact with each other in ways that are
complex and often counterintuitive. In this paper, we focus
on the allocation of computational and network resources,
and make such decisions jointly, accounting for (i) the re-
quirements of each VNF and vertical; (ii) the capabilities
of the network operator’s infrastructure; (iii) the capacity

• S. Agarwal is with IIT Guwahati, India. F. Malandrino and C.-F. Chi-
asserini are with Politecnico di Torino, Italy and CNR-IEIIT, Italy. S. De
is with IIT Delhi, India.

• A preliminary version [1] of this work was presented at the IEEE
INFOCOM 2018 conference.

and latency of the links between network nodes. A key
aspect of our work, often disregarded by previous literature
on 5G and VNF placement, is that our approach allows
flexible allocation of the computational capabilities of each
host among the VNFs it runs.

We identify queuing theory as the best tool to model
5G networks, owing to the nature of their traffic and the
processing such a traffic needs. Indeed:

• much of 5G traffic, especially that coming from
Internet-of-things (IoT) and machine-type communi-
cation (MTC) applications, will consist of REST-ful,
atomic (in principle) requests, as opposed to long-
standing connections [2];

• such requests will traverse one or more processing
stages, as implemented in the emerging multi-access
edge computing (MEC) implementation Amazon
Greengrass [3], and can trigger additional requests
in the process;

• the time it takes to process each request depends on
the capabilities of the computational entity serving
it [3].

Requests and processing stages naturally map onto clients
and queues they have to traverse. Furthermore, the fact that
queues can be assigned different service rates aptly models
our flexible allocation of computational resources.

We take service delay as our main key performance in-
dicator (KPI), and we formulate an optimization problem
that minimizes the maximum ratio between actual and
maximum allowed end-to-end latency, across all services.
Furthermore, and without loss of generality, we focus on
CPU as the resource to assign to VNFs. In light of the
complexity of the problem, we then propose an efficient
solution strategy, closely matching the optimum: based on
(i) decoupling the VNF placement and CPU assignment de-
cisions, while keeping track of their interdependence, and
(ii) sequentially making such decisions for each VNF. Traffic
routing decisions are simply derived once all placement
and assignment decisions are made. Although made in a
decoupled and sequential fashion, our decisions are joint
as their mutual impact is properly accounted for, e.g., we
consider how deploying a new VNF on a host impacts the
possible CPU assignments therein.

Our main contributions can be summarized as follows:

http://arxiv.org/abs/1812.11365v1

• our model accounts for the main resources of 5G
networks, namely, hosts and links;

• we model the diverse requirements of different
VNFs, and allow them to be composed in arbitrarily
complex graphs, as mandated by [4, Sec. 6.5], instead
of simpler chains or directed acyclic graphs (DAGs);

• unlike existing work, we allow flexible allocation of
CPU to VNFs, and model the resulting impact on
service times;

• we propose a solution strategy, called MaxZ, that is
able to efficiently and effectively make VNF place-
ment and CPU allocation decisions, and show how
it consistently performs very close to the optimum
across a variety of traffic requirements;

• focusing on the special case of fully-load conditions,
we state and prove several properties of the optimal
CPU allocation decisions, and use them to further
speed up the decision process.

The remainder of the paper is organized as follows. Sec. 2
reviews related work, highlighting the novelty of our con-
tribution. Sec. 3 positions our work within the context of the
ETSI management and orchestration (MANO) framework.
Sec. 4 describes the system model, while Sec. 5 introduces
the problem formulation and analyzes its complexity. Sec. 6
presents our solution concept, while Sec. 7 describes how
we deal with the special case of full-load conditions. Sec. 8
addresses scenarios with multiple VNF instances. Finally,
Sec. 9 presents performance evaluation results, while Sec. 10
concludes the paper.

2 RELATED WORK

Network slicing and orchestration. A first body of works
concerns the network slicing paradigm and its role within
5G. Several works, including [5]–[7], focus on the architec-
ture of 5G networks based on network slicing, pointing out
their opportunities and challenges. Other works, e.g., [8], [9],
address decision-making in 5G networks and the associated
challenges, including computational complexity. Finally, or-
chestration, including the decision-making involved entities
and the arising security concerns have been tackled in, e.g.,
[10] and [11], respectively.

Network-centric optimization. Many works, includ-
ing [12]–[16], tackle the problems of VNF placement and
routing from a network-centric viewpoint, i.e., they aim at
minimizing the load of network resources. In particular, [12]
seeks to balance the load on links and servers, while [13]
studies how to optimize routing to minimize network uti-
lization. The above approaches formulate mixed-integer lin-
ear programming (MILP) problems and propose heuristic
strategies to solve them. [14], [15], and [16] formulate ILP
problems, respectively aiming at minimizing the cost of
used links and network nodes, minimizing resource utiliza-
tion subject to QoS requirements, and minimizing bitrate
variations through the VNF graph.

Service provider’s perspective. Several recent works
take the viewpoint of a service provider, supporting mul-
tiple services that require different, yet overlapping, sets of
VNFs, and seek to maximize its revenue. The works [17],
[18] aim at minimizing the energy consumption resulting
from VNF placement decisions. [19], [20] study how to

place VNFs between network-based and cloud servers so
as to minimize the cost, and [21] studies how to design the
VNF graphs themselves, in order to adapt to the network
topology.

User-centric perspective. Closer to our own approach,
several works take a user-centric perspective, aiming at
optimizing the user experience. [22], [23] study the VNF
placement problem, accounting for the computational ca-
pabilities of hosts as well as network delays. In [24], the
authors consider inter-cloud latencies and VNF response
times, and solve the resulting ILP through an affinity-based
heuristic.

Virtual EPC. The Evolved Packet Core (EPC) is a prime
example of a service that can be provided through soft-
ware defined networking and network function virtualiza-
tion (SDN/NFV). Interestingly, different works use different
VNF graphs to implement EPC, e.g., splitting user- and
control-plane entities [25]–[27] or joining together the packet
and service gateways (PGW and SGW) [28], [29]. Our model
and algorithms work with any VNF graph, which allows us
to model any real-world service, including all implementa-
tions of vEPC.

2.1 Novelty

The closest works to ours, in terms of approach and/or
methodology, are [22], [23], [24], and [28].

In particular, [22], [23], and [28] model the assignment
of VNFs to servers as a generalized assignment problem,
a resource-constrained shortest path problem and a MILP
problem, respectively. This implies that either a server has
enough spare CPU capacity to offer a VNF, or it does not.
Our queuing model, instead, is the first to account for the
flexible allocation of CPU to the VNFs running on a host,
e.g., the fact that VNFs will work faster if placed at a
scarcely-utilized server. Furthermore, [22] and [28] have as
objective the minimization of costs and server utilization,
respectively. Our objective, instead, is to minimize the delay
incurred by requests of different classes, which changes
the solution strategy that can be adopted. The work [23]
aims at solving essentially the same problem as ours, albeit
in the specific scenario where all traffic flows through a
deterministic sequence of VNFs, i.e., VNF graphs are chains.

The queuing model used in [24] is similar (in principle)
to ours; however, [24] does not address overlaps between
VNF graphs and only considers DAGs, i.e., requests can-
not visit the same VNF more than once. Furthermore, in
both [23] and [24] no CPU allocation decisions are made,
and the objective is to minimize a global metric, ignoring
the different requirements of different service classes. Fi-
nally, the affinity-based placement heuristic proposed in [24]
neglects the inter-host latencies, and this, as confirmed by
our numerical results in Sec. 9, can yield suboptimal perfor-
mance.

Finally, it is worth mentioning that a preliminary version
of this paper appeared in [1]. While sharing the same basic
solution concept, this version includes a substantial amount
of new and revised material, including a discussion on how
our work fits in the 5G MANO framework (Sec. 3), an
extended discussion of full-load conditions (Sec. 7), and new
results for large-scale scenarios.

2

3 OUR WORK AND THE ETSI MANO FRAMEWORK

ETSI has standardized [4] the management and orches-
tration (MANO) framework, including a set of functional
blocks and the reference points, i.e., the interfaces between
functional blocks (akin to a REST API) that they use to
communicate. Its high-level purpose is to translate business-
facing KPIs chosen by the vertical (e.g., the type of pro-
cessing needed and the associated end-to-end delay) into
resource-facing decisions such as virtual resource instantia-
tion, VNF placement, and traffic routing. In this section, we
first present a brief overview of the ETSI MANO framework;
then, in Sec. 3.1, we focus on the NFV orchestrator and
detail the decisions it has to make and the input data at
its disposal.

Fig. 1 presents the functions composing the MANO
framework (within the blue area) as well as the functions
outside the framework they interact with. Operation and
business support (OSS/BSS) service block, which represent
the interface between verticals and mobile operators. High-
level, end-to-end requirements and KPIs are conveyed,
through the Os-Ma-nfvo reference point, to the NFV or-
chestrator (NFVO). The NFVO is in charge of deciding the
number and type of VNFs to instantiate as well as the
capacity of virtual links (VLs) connecting them.

Such decisions are conveyed, via the Or-vnfm interface,
to the VNF manager (VNFM) function, which is in charge
of actually instantiating the required VNFs. The VNFM
requests from the virtual infrastructure manager (VIM) any
resource, e.g., virtual machine (VM) or VL needed by the
VNFs themselves. The VNFM also interacts with the ele-
ment management (EM) function, a non-MANO entity that
is in charge of Fault, Configuration, Accounting, Perfor-
mance and Security (FCAPS) management for the functional
part of the VNFs, i.e., for the actual tasks they perform.

Finally, the VIM interacts with the NFV infrastructure
(NFVI), which includes the hardware (e.g., physical servers,
network equipment, etc.) and software (e.g., hypervisors)
running the VNFs.

3.1 The NFVO: input, output, and decisions

As its name suggests, the main entity in charge of orches-
tration decisions is the NFV orchestrator (NFVO), which
belongs to the MANO framework depicted in Fig. 1. In
the following, we provide more details on the decisions the
NFVO has to make and the information it can rely upon,
which correspond (respectively) to the output and input of
our algorithms.

The NFVO receives from the OSS/BSS a data struc-
ture called network service descriptor (NSD), defined in [4,
Sec. 6.2.1]. NSDs include a graph-like description of the
processing each service requires, e.g., the VNFs that the
traffic has to traverse, in the form of a VNF Forwarding Graph
(VNFFG) descriptor [4, Sec. 6.5.1]. They contain deployment
flavor information, including the delay requirements as-
sociated with every service [4, Sec. 6.2.1.3]. Additionally,
from the virtual infrastructure manager (VIM), the NFVO
fetches information on the state and availability of network
infrastructure, including VMs able to run the VNFs and the
links connecting them.

With such information, the NFVO can make what ETSI
calls lifecycle management decisions [4, Sec. 7.2] about the
VNFs composing each network slice, i.e., how many in-
stances of these VNFs to instantiate, where to host them,
and how much resources to assign to each of them. Such de-
cisions will correspond to decision variables in our system
model, as detailed next.

4 SYSTEM MODEL

We model VNFs as M/M/1 queues, belonging to set Q,
whose customers correspond to service requests. The class of
each customer corresponds to the service with which each
request is associated; we denote the set of such classes by K.
The service rate µ(q) of each queue q reflects the amount
of CPU (expressed in, e.g., ticks or microseconds of CPU-
time) each VNF is assigned to. Thus, µ(q) influences the
time taken to process one service request. Notice that µ(q)
does not depend on the class k; that is, CPU is assigned
on a per-VNF rather than per-class basis. This models those
scenarios where the same VNF instance can serve requests
belonging to multiple services.

Arrival rates at queue q ∈ Q are denoted by λk(q).
Note that these values are class-specific, and reflect the
amount of traffic of different services. Class-specific transfer
probabilitiesP(q2|q1, k) indicate the probability that a service
request of class k enters VNF q2 after being served by
VNF q1. Furthermore, P(q|◦, k) indicates the probability
that a request of class k starts its processing at VNF q.

Physical, or more commonly virtual, hosts are repre-
sented by set H. Each host h has a finite CPU capacity κh.
Host-specific κh values account for both different capa-
bilities and different hosts, and the fact that some hosts
may be assigned a low-power CPU state [30] for energy-
saving purposes. This implies that energy constraints can
be accounted for by properly setting the values of the κh
parameters.

Going from host h ∈ H to host l ∈ H entails a
deterministic network latency δ(h, l), which depends on the
(virtual) link between the two hosts. Furthermore, the link
between hosts h and l has a finite capacityC(h, l). The delay
and capacity parameters, i.e., δ(h, l) and C(h, l), are able to
describe in a consistent way two different cases, namely:

• there is a direct, physical link between hosts h and l;
• h and l are connected through multiple physical

links, which are abstracted as one virtual link.

In the latter case, the capacity of the virtual link corresponds
to that of the physical link with lowest capacity, while the
delay is the sum of individual delays. Such information is
part of the input data to our problem.

The notation used is summarized in Tab. 1, and exempli-
fied below.

Example 1. Assume that the network has to support three
services: video streaming, gaming, and vehicle colli-
sion detection. Then the set of service classes is K =
{video, game, veh}. For the sake of clarity, let us asso-
ciate to each service the following, highly simplified,
VNF graphs:

• video streaming: firewall – transcoder – billing;

3

Fig. 1. The NFV-MANO architectural framework. Source: [4]

PSfrag replacements

λvideo

λgame

λveh
firewall

transcoder

game server

coll. detector

billing

DPI

h l m

δ(h, l) δ(l, m)

C(h, l) C(l, m)

Fig. 2. Example 1: three service graphs, and six VNFs, corresponding
to the six queues, placed across three hosts. Dashed and dotted lines
represent the different paths that service requests can take.

• gaming: firewall – game server – billing;
• vehicle collision detection: firewall – collision detector.

Suspicious-looking packets belonging to the video
streaming and gaming services can further be
routed through a deep packet inspection (DPI) VNF.
Hence, Q={firewall, transcoder, billing, game server,
collision detector, DPI}.

There are three hosts H = {h, l,m}, connected
to each other through links characterized by a la-
tency δ and a link capacity C. Fig. 2 illustrates the
above quantities and shows a possible VNF place-
ment across the three hosts. Routing can be deter-
ministic, e.g., P(billing|transcoder, video)=1, or it can
be probabilistic, e.g., P(DPI|firewall, gaming)=0.1 and
P(game server|firewall, gaming)=0.9.

TABLE 1
Notation

A(h, q) Binary variable Whether to deploy VNF q at
host h

C(h, l) Parameter Capacity of the link between
hosts h and l

Dk Aux. var. Total delay incurred by requests
of class k

D
QoS
k

Parameter Target delay for requests of class k
h ∈ H Set Physical hosts
k ∈ K Set Services (traffic classes)
q ∈ Q Set VNFs (queues)
P(q1|q2, k) Parameter Probability that requests of class k

visit VNF q2 (immediately) after
VNF q1

Rk(q) Aux. var. Processing time for requests of
class k at VNF q

γk(q) Aux. var. Number of times requests of
class k visit VNF q

δ(h, l) Parameter Delay associated with the link be-
tween hosts h and l

Λk(q) Aux. var. Rate at which requests of any class
arrive at VNF q

λk(q) Aux. var. Rate at which new requests of
class k arrive at VNF q

λ̂k(q) Aux. var. Total rate at which requests of
class k arrive at VNF q

κh Parameter Computational capacity of host h
µ(q) Real variable Computational capacity to assign

to VNF q

5 PROBLEM FORMULATION AND COMPLEXITY

When allocating the resources necessary to run each service,
the NFVO has to make three main decisions:

• VNF placement, i.e., which physical hosts have to
run the required VNFs;

• CPU assignment, i.e., how the computational capa-
bilities of each host have to be shared between VNF;

• how traffic shall be steered between VNFs.

In this section, we describe how such decisions and the
constraints they are subject to can be described through our

4

system model. We take service delay as our main perfor-
mance metric, and we formulate the problem for scenarios
where exactly one instance of each VNF is to be deployed in
the network. The general case where multiple instances of
the same VNF can be deployed is then discussed in Sec. 8.

Decisions and decision variables. We have two main
decision variables: a binary variable A(h, q) ∈ {0, 1} repre-
sents whether VNF q ∈ Q is deployed at host h ∈ H, and a
real variable µ(q) expresses the amount of CPU assigned to
VNF q ∈ Q. Notice how µ(q) maps onto the service rate of
the corresponding queue.

System constraints. A first, basic constraint that alloca-
tion decisions must meet is that the computational capacity
of hosts is not exceeded, i.e.,

∑

q∈Q

A(h, q)µ(q) ≤ κh, ∀h ∈ H. (1)

As mentioned above, we present our model in the case
where there is exactly one instance of each VNF deployed
in the system. This translates into:

∑

h∈H

A(h, q) = 1, ∀q ∈ Q. (2)

Arrival rates and system stability. In addition not to
overload hosts, allocation decisions must ensure that indi-
vidual VNFs are assigned enough computational capacity
to cope with their load, i.e., that the system is stable. Recall
that input parameters λk(q) express the rate at which new
requests of service class k arrive at queue q ∈ Q. We can

then define an auxiliary variable λ̂k(q), expressing the total
rate of requests of class k that enter queue q, either from
outside the system or from other queues. For any k ∈ K, we
have:

λ̂k(q)=
∑

q∈Q

λk,q +
∑

p∈Q

P(q|p, k)λ̂k(p). (3)

We can then define another auxiliary variable Λ(q), express-
ing the total arrival rate of requests of any class entering
queue q:

Λ(q) =
∑

k∈K

λ̂k(q).

Using Λ(q), we can impose system stability, requesting that,
for each queue, the arrival rate does not exceed the service
rate:

Λ(q) < µ(q), ∀q ∈ Q. (4)

In other words, each VNF should receive at least enough
CPU to deal with the incoming traffic. If additional CPU is
available at the host, it will be exploited to further speed up
the processing of requests.

Latency. The previous constraints ensure that individual
VNFs are stable, i.e., they process incoming requests in a
finite time. We can now widen our focus, and study how the
processing times of different VNFs and the network times
combine to form our main metric of interest, i.e., the delay
each request is subject to.

The processing time, i.e., the time it takes for a request of
service k to traverse VNF q is represented by an auxiliary
variable Rk(q). For FCFS (first come, first serve) and PS
(processor sharing) queuing disciplines, we have:

Rk(q) =
1

µ(q)− Λ(q)
, ∀q ∈ Q (5)

Note that the right-hand side of (5) does not depend on
class k; intuitively, this is because the queuing disciplines we
consider are unaware of service classes. The response times
for other queuing disciplines, including those accounting
for priority levels and/or preemption, cannot be expressed
in closed form. It is also worth stressing that present-day
implementations of multi-access edge computing (MEC) [3]
are based on FIFO discipline, and do not support preemp-
tion.

To compute the network latency that requests incur
when transiting between hosts, we first need the expected
number of times, γk(q), that a request of class k visits
VNF q ∈ Q, i.e.,

γk(q) = P(q|◦, k) +
∑

p∈Q\{q}

P(q|p, k)γk(p). (6)

In the right-hand side of (6), the first term is the probability
that requests start their processing at queue q, and the sec-
ond is the probability that requests arrive there from another
queue p. Note that γk(q) is not an auxiliary variable, but
a quantity that can be computed offline given the transfer
probabilities P. Using γk(q), the expected network latency
incurred by requests of service class k is:

∑

q,r∈Q

γk(q)P(r|q, k)
∑

h,l∈H

δ(h, l)A(h, q)A(l, r). (7)

We can read (7) from left to right, as follows. Given a service
request of class k, it will be processed by VNF q for γk(q)
number of times. Every time, it will move to VNF r with
probability P(r|q, k). So doing, it will incur latency δ(h, l)
if q and r are deployed at hosts h and l, respectively (i.e., if
A(h, q) = 1 and A(l, r) = 1).

The average total delay of requests of the generic service
class k is therefore given by:

Dk =
∑

q∈Q

γk(q)Rk(q)+

∑

q,r∈Q,q 6=r

γk(q)P(r|q, k)
∑

h,l∈H

A(h, q)A(l, r)δ(h, l). (8)

Link capacity. Given the finite link capacity C(h, l),
which limits the number of requests that move from any
VNF at host h to any VNF at host l,we have:

∑

k∈K

∑

q,r∈Q

λ̂k(q)P(r|q, k)A(q, h)A(r, l)≤C(h, l). (9)

Constraint (9) contains a summation over all classes k and
all VNFs q, r ∈ Q, such that q is deployed at h and r is
deployed at l, as expressed by the A-variables. For each of

such pair of VNFs, λ̂k(q) is the rate of the requests of class k
that arrive at q. Multiplying it by P(r|q, k), we get the rate
at which requests move from VNF q to VNF r, hence from
host h to host l.

Objective. Dk defined above represents the average de-
lay incurred by requests of class k. In our objective function,
we have to combine these values in a way that reflects
the differences between such classes, most notably, their
different QoS limits. Thus, we consider for each class k the

5

ratio of the actual delay Dk to the limit delay DQoS
k , and seek

to minimize the maximum of such ratios:

min
A,µ

max
k∈K

Dk

DQoS
k

. (10)

Importantly, the above objective function not only ensures
fairness among service classes while accounting for their
limit delay, but it also guarantees that the optimal solution
will match all QoS limits if possible. More formally:

Property 1. If there is a non-empty set of solutions that meet
constraints (1)–(9) and honor the services QoS limits,
then the optimal solution to (10) falls in such a set.

Proof: We prove the property by contradiction, and
assume that there is a feasible solution such that D′

k ≤ D
QoS
k

for all service classes, but that the optimal solution hasD⋆

k̂
>

DQoS

k̂
for at least one class k̂ ∈ K.

In this case, the optimal value of the objective (10) would

be at least
D⋆
k̂

D
QoS

k̂

> 1. However, we know by hypothesis

that there is a feasible solution where Dk ≤ DQoS
k for all

classes, which would result in an objective function value

of mink∈K
D′

k

D
QoS
k

≤ 1. It follows that the solution we assumed

to be optimal cannot be so.
Furthermore, when no solution meeting all QoS limits

exists, the solution optimizing (10) will minimize the dam-
age by keeping all delays as close as possible to their limit
values.

5.1 Problem complexity

The VNF placement/CPU assignment problem is akin to
max-flow problem; however, it has a much higher complex-
ity due to the following: (i) binary variables control whether
edges and nodes are activated, and (ii) the cost associated
with edges changes according to the values of said variables.
More formally, the problem of maximizing (10) subject to
constraints (1)–(9) includes both binary (A(h, q)) and con-
tinuous (µ(q)) variables. More importantly, constraints (1)
and (9), as well as objective (10) (see also (8)), are nonlinear
and non-convex, as both include products between different
decision variables.

Below we prove that such a problem is NP-hard,
through a reduction from the generalized assignment prob-
lem (GAP).

Theorem 1. The problem of joint VNF placement and CPU
assignment is NP-hard.

Proof: It is possible to reduce the GAP, which is NP-
hard [31], to ours. In other words, we show that (i) for
each instance of the GAP problem, there is a corresponding
instance of our VNF placement problem, and (ii) that the
translation between them can be done in polynomial time.
GAP instance. The GAP instance includes items i1, . . . , iN
and bins b1, . . . , bM . Each bin b has a budget (size) sb; placing
item i at bin b consumes a budget (weight) wbi and yields
a cost pbi. The decision variables are binary flags xbi stating
whether item i shall be assigned to bin b; also, each item
shall be assigned to exactly one bin. The objective is to
minimize the cost.
Reduction. In our problem, items and bins correspond to
VNFs and hosts respectively, and the decision variables xbi

correspond to VNF placement decisions A(i, b). The capac-
ity of each host is equal to the size sb of the corresponding
bin. Furthermore, we must ensure that:

• the weight wbi of item i when placed at bin b cor-
responds to the quantity of CPU assigned to VNF i,
i.e., wbi = µb(i);

• the cost pbi coming from placing item i in bin b
corresponds to the opposite1 of the processing time at
VNF i, i.e., wbi = −

1
µb(i)−Λ(i)

, or equivalently, with a

linear equation, Λ(i)− µb(i) = 1
pbi

.

Finally, we set all inter-host delays to zero.
Complexity of the reduction. Performing the reduction
described above only requires to solve a linear system of
equations in the µb(i) and Λ(i) variables, which can be
performed in polynomial (indeed, cubic) time [32]. We have
therefore presented a polynomial-time reduction of any
instance of the GAP problem to our problem. It follows that
our problem is NP-hard, q.e.d.
It is interesting to notice how, in the proof of Theorem 1,
we obtain a simplified version of our problem, with non-
flexible CPU assignment (if VNF i is placed at host b it gets
exactly µb(i) CPU) and no network delay. This suggests that
our problem is indeed more complex than GAP.

The NP-hardness of the problem rules out not only
the possibility to directly optimize the problem through
a solver, but also commonplace solution strategies based
on relaxation, i.e., allowing binary variables to take values
anywhere in [0, 1]. Even if we relaxed the A(h, q) variables,
we would still be faced with a non-convex formulation, for
which no algorithm is guaranteed to find a global optimum.

One approach to overcome such an issue could be sim-
plifying the model, e.g., by assuming that any host has suffi-
cient computing capability to run simultaneously all VNFs,
therefore dispensing with the A(h, q) variables. However,
by doing so we would detach ourselves from real-world 5G
systems, thus jeopardizing the validity of the conclusions we
draw from our analysis. We instead opt to keep the model
unchanged and present an efficient, decoupled solution strat-
egy, leveraging on sequential decision making.

6 SOLUTION STRATEGY

Our solution strategy is based on decoupling the problems
of VNF placement and CPU allocation, and then sequen-
tially – and yet jointly, i.e., accounting for their mutual
impact – making these decisions. We begin by presenting
our VNF placement heuristic, called MaxZ, in Sec. 6.1, and
then discuss CPU allocation in Sec. 6.2.

6.1 The MaxZ placement heuristic

As mentioned earlier, the two main sources of problem
complexity are binary variables and non-convex functions
in both objective (10) and constraints (1) and (9). In order
to solve the VNF placement problem, our heuristic walks
around these issues by:

1) formulating a convex version of the problem;

1. So that minimizing the cost is the same as minimizing the service
time.

6

2) solving it through an off-the-shelf solver;
3) computing, for each VNF q and host h, a

score Z(h, q), expressing how confident we feel
about placing q in h;

4) considering the maximum score Z(h⋆, q⋆) and plac-
ing VNF q⋆ at host h⋆;

5) repeating steps 2–4 until all VNFs are placed.

The name of the heuristic comes from step 4, where we seek
for the highest score Z .

6.1.1 Steps 1–2: convex formulation

To make the problem formulation in Sec. 5 convex, first we
need to get rid of binary variables; specifically, we replace
the binary variables A(h, q) ∈ {0, 1} with continuous vari-
ables Ã(h, q) ∈ [0, 1].

We also need to remove the products between Ã-
variables (e.g., in (7), (8), and (9)), by replacing them with a
new variable. To this end, for each pair of VNFs q and r and
hosts h and l, we introduce a new variable Φ(h, l, q, r) ∈
[0, 1], and impose that:

Φ(h, l, q, r) ≤ Ã(h, q), ∀h, l ∈ H, q, r ∈ Q; (11)

Φ(h, l, q, r) ≤ Ã(l, r), ∀h, l ∈ H, q, r ∈ Q; (12)

Φ(h, l, q, r)≥Ã(h, q)+Ã(l, r)−1, ∀h, l ∈ H, q, r ∈ Q.
(13)

The intuition behind constraints (11)–(13) is that Φ(h, l, q, r)
mimics the behavior of the product Ã(h, q)Ã(l, r): if ei-
ther Ã(h, q) or Ã(l, r) are close to 0, then (11) and (12)
guarantee that Φ(h, l, q, r) will also be close to zero; if both
values are close to one, then (13) allows also Φ(h, l, q, r) to
be close to one.

Another product between variables, i.e., a term in the
form A(h, q)µ(q), appears in (1). Following a similar ap-
proach, we introduce a set of new variables, ψ(h, q), mim-
icking the ratio between the A(h, q)µ(q) product and the
host capacity κh. We then impose:

ψ(h, q) ≤ Ã(h, q), ∀h ∈ H, q ∈ Q; (14)
∑

q∈Q

ψ(h, q) ≤ 1, ∀h ∈ H , (15)

which mimic (1). By replacing all products between Ã-
variables with a Φ-variable and all products between Ã- and
µ-variables with a ψ-variable, we obtain a convex problem,
which can efficiently be solved through commercial solvers.

6.1.2 Steps 3–4: Z-score and decisions

Let us assume that no VNF has been placed yet. We
then solve an instance of the convex problem described
in Sec. 6.1.1, and use the values of the variables Ã(h, q)
and ψ(h, q) to decide which VNF to place at which host.

Recall that Ã(h, q) is the relaxed version of our place-
ment variable A(h, q), so we would be inclined to use that
to make our decision. However, we also need to account
for how much computational capacity VNFs would get,
as expressed by ψ(h, q). If such a value falls below the

threshold Tψ(h, q) = Λ(q)
κh

, then VNF q may not be able
to process the incoming requests, i.e., constraint (4) may be
violated.

To prevent this, we define our Z-score, i.e., how confi-
dent we are about placing VNF q at host h, as follows:

Z(h, q) = Ã(h, q) + 11[ψ(h,q)≥Tψ(h,q)] , (16)

where 11 is the indicator function. Recalling that Ã-values
are constrained between 0 and 1, favoring high values of
(16) means that we prefer a deployment that results in ψ-
values greater than the threshold, if such a deployment
exists. Otherwise, we make the placement decision based
on the Ã-values only.

Specifically, we select the host h⋆ and VNF q⋆

associated with the maximum Z, i.e., h⋆, q⋆ ←
argmaxh∈H,q∈Q Z(h, q), and place VNF q⋆ in host h⋆. We
fix this decision and repeat the procedure till all VNFs are
placed (i.e., we perform exactly |Q| iterations).

We now present two example runs of MaxZ, for two
scenarios with different inter-host latencies.

Example 2. Consider a simple case with two hosts H =
{h1, h2} with the same CPU capacity κh = 5 requests/s,
two VNFs Q = {q1, q2}, and only one request class k
with λk = 1 requests/s. Requests need to subsequently
traverse q1 and q2. The inter-host latency δ(h1, h2) is
set to 5ms, while DQoS = 50ms. Then, intuitively, the
optimal solution is to deploy one VNF per host.
We solve the problem in Sec. 6.1.1. After the first it-
eration, we obtain Ã = [0.5 0.5

0.5 0.5], ψ = [0.5 0.5
0.5 0.5], and

Z = [1.5 1.5
1.5 1.5]

2. In such a case, using a tie-breaking rule,
we place VNF q1 at host h1. In the second iteration, we

have Ã = [1 0.38
0 0.62], ψ = [0.8 0.19

0 0.61], and Z = [2 1.38
0 1.62].

We ignore the entries pertaining to VNF q1 that has
been already placed and, since Z(h2, q2) > Z(h1, q2),
we deploy VNF q2 at host h2, which corresponds to the
intuition that, given the small value of δ, VNFs should
be spread across the hosts.

Example 3. Let us now consider the same scenario as in Ex-
ample 2, but assume a much longer latency δ(h1, h2) =
100ms. The best solution will now be to place both VNFs
at the same host.
After the first iteration, we obtain Ã = [0.7 0.7

0.3 0.3], ψ =
[0.5 0.5
0.3 0.3], and Z = [1.7 1.7

1.3 1.3]. Again using a tie-breaking
rule, we place VNF q1 at host h1. In the second iteration,
we have Ã = [1 0.7

0 0.2], ψ = [0.6 0.4
0 0.2], and Z = [2 1.8

0 1.2].
We again ignore the entries in the first column and,
since Z(h1, q2) > Z(h2, q2), we place VNF q2 at host h1,
making optimal decisions.

6.2 CPU allocation

Once the MaxZ heuristic introduced in Sec. 6.1 provides
us with deployment decisions, we need to decide the CPU
allocation, i.e., the values of the µ(q) variables in the original
problem described in Sec. 5. This can be achieved simply
by solving the problem in (10) but keeping the deployment
decision fixed, i.e., replacing the A(h, q) variables with

2. In all matrices, rows correspond to hosts and columns to VNFs.

7

parameters whose values come from the MaxZ heuristic.
Indeed, we can prove the following property.

Property 2. If the deployment decisions are fixed, then the
problem of optimizing (10) subject to (1)–(9) is convex.

Proof: Several constraints of the original problem
only involve A(h, q) variables, and thus simply become
conditions on the input parameters: this is the case of (2),
(3), and (9). Also, constraints (1) and (4) are linear in the
variables µ(q). With regard to the objective function, (8) is
now linear with respect to µ(q), while (5) is convex, even if
it does not look so prima facie. Indeed, its second derivative
is d

d2µ(q)
1

µ(q)−λ(q) = 2
(µ(q)−Λ(q))3

, which is positive for

any µ(q) > Λ(q). That condition is required for system
stability; therefore, we can conclude that constraint (5) is
convex over the all region of interest. Finally, the objective
function in (10) is in min-max form, which preserves con-
vexity.

Property 2 guarantees that we can make our CPU allo-
cation decisions, i.e., decide on the µ(q) values, in polyno-
mial time. We can further enhance the solution efficiency
by reducing the optimization problem to the resolution of
a system of equations, through the Karush-Kuhn-Tucker
(KKT) conditions.

6.2.1 KKT conditions

In several nonlinear problems, including convex ones, op-
timal solutions are guaranteed to have certain properties,
known as KKT conditions [33]. This greatly simplifies and
speeds up the search for the optimum, as such a search can
be restricted to solutions satisfying the KKT conditions.

The KKT conditions are:

1) stationarity;
2) primal feasibility;
3) dual feasibility;
4) complementary slackness.

Stating them requires associating (i) re-writing the objective
and constraints in normal form, and (ii) associating a KKT
multiplier with each of the constraints.

Therefore, we introduce an auxiliary variable ρ repre-
senting the maximum Dk

D
QoS
k

ratio, and imposing that for each

service class k ∈ K:

ρ ≥
Dk

DQoS
k

=
1

DQoS
k





∑

q∈Q

γk(q)

µ(q) − Λ(q)
+

∑

q,r∈Q

γk(q)P(r|q, k)
∑

h1,h2∈H

A(h1, q)A(h2, r)δ(h1, h2)



 .(17)

At this point, the objective is simply to minimize ρ.
We also need to re-write constraints (1), (4) and (17) in

normal form, and associate to them the multipliers Mq, Mh

and Mk respectively. The resulting Lagrangian function is:

L = ρ+
∑

q∈Q

MqXq +
∑

h∈H

MhYh +
∑

k∈K

MkWk, (18)

where:
Xq = −µ(q) + Λ(q);

Yh =
∑

q∈Q

A(h, q)µ(q) − κh;

Wk =
∑

q∈Q

γk(q)

DQoS
k

1

µ(q)− Λ(q)
+

∑

q,r∈Q

γk(q)P(r|q, k)
∑

h1,h2∈H

A(h1, q)A(h2, r)
δ(h1, h2)

DQoS
k

− ρ.

Stationarity, the first KKT condition, requires
that ∇rρµ(q)L = 0, which translates into the following
equations:

∂

∂ρ
L = 0 ⇐⇒ 1−

∑

k∈K

Mk = 0. (19)

Furthermore, for each q ∈ Q, we have:

∂

∂µ(q)
L = 0 ⇐⇒ −Mq +

∑

h∈H

MhA(h, q)+ (20)

−
∑

k∈K

Mkγk(q)

DQoS
k

1

(µ(q)− Λ(q))
2 = 0

The primal feasibility condition requires that all con-
straints are met. The third one, dual feasibility, is only rel-
evant for problems that contain equality constraints, which
is not our case.

Finally, complementary slackness requires that either
the inequality constraints are active, or the corresponding
multipliers are zero, i.e.,

MqXq = 0, ∀q ∈ Q, (21)

MhYh = 0, ∀h ∈ H, (22)

MkWk = 0, ∀k ∈ K . (23)

Based on (21)–(23), the multipliers assume the following
meaning:

• Mq is zero for all stable queues, i.e., the queues
fulfilling the condition µ(q) > Λ(q);

• Mh is zero for all non-strained hosts, i.e., hosts used
for less than their CPU capacity κh;

• Mk is zero for all non-critical classes, i.e., classes for
which the Dk

D
QoS
k

ratio is strictly lower than ρ.

We can now determine the global computational com-
plexity of our approach, including the VNF placement
through the MaxZ heuristic and the CPU allocation by
optimizing (10).

Property 3. Our solution strategy, including the MaxZ VNF
placement heuristic in Sec. 6.1 and the CPU allocation
strategy in Sec. 6.2 has polynomial computational com-
plexity.

Proof: Running the MaxZ heuristic requires solving
exactly |Q| convex problems, and the complexity of doing
so is cubic in the number of variables, which in turn is
linear in |H| and |Q|. It follows that the total complexity
of MaxZ is O

(

|Q|(|Q||H|)3
)

= O(max
{

|Q|4, |H|3
}

). MaxZ
also dominates the total computational complexity, because
deciding the CPU allocation as described in Sec. 6.2, requires
only solving a system of equations, which has [32] cubic
complexity in the number |Q| of variables.

8

PSfrag replacements

λ2

λ1

q

h

Fig. 3. A simple system where two classes of clients traverse the same
queue. Host h will always be strained; additionally, depending on the
values of Dmax

k
, either one or both the classes will be critical.

7 SPECIAL CASE: FULL-LOAD CONDITIONS

In this section, we seek to further reduce the complexity of
the CPU allocation problem. Let us start from the Lagrange
multipliers derived earlier, and recall that we require stabil-
ity, i.e., Λ(q) < µ(q), hence Mq = 0 for all queues q ∈ Q.

Given the above and (20), we can write that, for each
queue q ∈ Q deployed at host h,

Mh =
∑

k∈K

Mk

γk(q)

Dmax
k

1

(µ(q)− Λ(q))
2 . (24)

Recalling the meaning of the multipliers, we can state
the following lemma and properties.

Lemma 1. If CPU assignment decisions are made optimizing
the objective (10), then there exists at least one critical
class, i.e., for which equality holds in (17).

Proof: Constraint (17) must be active for at least
one k ∈ K, otherwise, the selected value of r would not
be optimal.

Property 4. All hosts traversed by service requests of critical
classes are strained.

Proof: Let k be a critical class (hence, Mk > 0), q be
a host serving it, and H(q) the host q is deployed at. From
(24), it follows:

MH(q) ≥Mk

γk(q)

Dmax
k

1

(µ(q) − Λ(q))
2 .

The quantity at the second member is positive (Mk > 0
because class k is strained, and γk(q) > 0 because by
hypothesis clients of class k are served at q). This implies
that MH(q) > 0, and therefore, by (22), that host h is
strained.

Property 5. VNFs deployed at a strained host serve at least
one critical class each.

Proof: Let us consider a queue q, By hypothesis, its
host H(q) is strained, i.e., MH(q) > 0. From (24), it follows:

∑

k∈K

Mk

γk(q)

Dmax
k

1

(µ(q)− Λ(q))
2 > 0,

which can only be if there is at least one class k that is
critical (hence Mk > 0) and whose clients are served by q
(hence γk(q) > 0).

In summary, we are guaranteed that there is at least one
critical class, and that all the hosts it traverses are strained,
and that each of the VNFs deployed on the strained hosts
(not only the ones serving requests of the original critical

A

B

C

fw

dpi

game

xcode

coll.
det.

billing

video

c.det.

game

Fig. 4. The graph G generated for the system depicted in Fig. 2.
Left, center and right edges correspond to hosts, VNFs and classes
respectively. Green edges are created according to rule (ii), blue edges
according to rule (iii), and yellow edges according to rule (iv).

class) serve at least one critical class. This can lead to a
cascade effect, as shown in Example 4.

Example 4. Consider the case in Fig. 2. By Lemma 1, at least
one class is critical; let us assume that such a class is
collision detection. From Property 4, all hosts traversed
by collision detection requests, i.e., hosts h and l, are
strained. Since host l is strained, from Property 5 it
follows that each of its VNFs serves at least one critical
class. Since the transcoder queue only serves the video
class, the video class is critical. Similarly, since the game
server only serves the game class, that class is critical
as well. Finally, both video and game classes traverse
host m; therefore, by Property 4, that host is critical as
well.

The cascade effect shown in Example 4 might lead us
to conjecture that all classes are critical and all hosts are
strained. However, this is not true in general. A simple
counterexample is represented in Fig. 3, where two classes
share the same queue. By Lemma 1, one of the two classes
will be critical, and, hence, by Property 4, host h will be
strained. Property 5 tells us what we already know, i.e.,
that one of the two classes will be critical, but it does not
imply that both will be. Indeed, that depends on the values
of Dmax

k : if Dmax
k1

= Dmax
k2

, then both classes are critical;
otherwise, the class with the lowest Dmax

k value will be
critical and the other will not.

However, we can state a sufficient condition for all classes
to be critical (and, hence, all hosts to be strained), regardless
the Dmax

k values. It is based on (i) building a graph G
representing the hosts, VNFs and classes in our system (as
shown in Fig. 4), and (ii) verifying a simple property over it.

Theorem 2. Let G = (V , E) be a directed graph where:
(i) there is a vertex for every host, queue, and class,
i.e., V = H ∪Q ∪ K;
(ii) for every host h and queue q s.t. A(h, q) = 1, add

9

PSfrag replacements

h

h

q
q

k1

k2

Fig. 5. The graph G generated for the system in Fig. 3, which is not
strongly connected (it is impossible to reach k1 from k2).

to E a pair of edges (q, h) and (h, q);
(iii) for every queue q and class k s.t. γk(h) > 0, add to E
an edge (k, q);
(iv) for every queue q and class k s.t. γk(h) > 0 and k is
the only class using q, i.e., γj = 0, ∀j 6= k, add to E an
edge (q, k).
If graph G is strongly connected, then all classes in K are
critical and all hosts in H are strained.

Proof: Lemma 1 guarantees us that there is at least one
critical class k⋆; let us then start walking through the graph
from the corresponding edge and mark all vertices we can
reach as critical (if corresponding to classes) or strained (if
corresponding to hosts). Through edges added according
to rule (ii) and (iii), we will be able to reach all hosts
traversed by clients of the critical class, and those hosts will
be strained as per Property 4. Edges outgoing from the host
vertices, created according to rule (ii), will make us reach
all queues deployed at these hosts. By Property 5, each of
these queues serves at least one critical class. If this class is
unique, i.e., if we have an edge created according to rule
(iv), then those classes are critical as well, and we can repeat
the process.

The strong connectivity property implies that we can
reach all vertices (including all classes and all hosts) from
any vertex of G, including the one critical class whose
existence is guaranteed by Lemma 1.

Fig. 4 presents the graph G resulting from the system in
Fig. 2, which is strongly connected. Fig. 5 presents the graph
for the system in Fig. 3, which is not strongly connected
and, thus, it does not meet the sufficient condition stated in
Theorem 2. Recall that, because that condition is sufficient
but not necessary, k1 and k2 could still be both critical,
depending on their Dmax

k values.
In scenarios like the one in Example 4, where all classes

are critical and all hosts are strained, we have:

∑

q∈Q

γk(q)

DQoS
k

1

µ(q)− Λ(q)
+

+
∑

h1,h2∈H

∑

q,r∈Q

A(h1, q)A(h2, r)γk(q)P(r|q, k)
δ(h1, h2)

DQoS
k

= ρ

∀k ∈ K,

∑

q∈Q

A(h, q)µ(q) = κh, ∀h ∈ H.

The above equations can be combined with the KKT condi-
tions stated in Sec. 6.2.1, thus forcing Yh = 0 ∀h ∈ H and
Wk = 0 ∀k ∈ K. This greatly simplifies and speeds up the
process of finding the optimal CPU allocation values µ(q).

8 MULTIPLE VNF INSTANCES

So far, we presented our system model and solution strategy
in the case where exactly one instance of each VNF has to be
deployed. This is not true in general; some VNFs may need
to be replicated owing to their complexity and/or load.

If the number Nq of instances of VNF q to be deployed
is known, then we can replace VNF q in the VNF graph
with Nq replicas thereof, labeled q1, q2, . . . qNq , each with
the same incoming and outgoing edges. With regard to the
Λ(q) requests/s that have to be processed by any instance
of VNF q, they are split among the instances. If f(q, i) is
the fraction of requests for VNF q that is processed by

instance qi (and thus
∑Nq
i=1 f(q, i) = 1), then instance qi

gets requests at a rate f(q, i)Λ(q). It is important to stress
that once the f(q, i) splitting fractions are known, then
the resulting problem can be solved with the approach
described in Sec. 6.

Establishing the f(q, i) values is a complex problem;
indeed, straightforward solutions like uniformly splitting
flows (i.e., f(q, i) = 1

Nq
), are in general suboptimal. We

therefore resort to a pattern search [34] iterative approach.
Without loss of generality, we describe our approach in

the simple case Nq = 2. In this case, the splitting values
are f(q, 1) = f and f(q, 2) = 1−f . Given an initial guess f0,
an initial step ∆ and a minimum step ǫ < ∆, we proceed as
follows:

1) we initialize the splitting factor f to the initial
guess f0;

2) using the procedure detailed in Sec. 6, we compute
the objective value (10) for the splitting values f ,
f +∆, and f −∆;

3) if the best result (i.e., the lowest value of (10)) is
obtained for splitting value f +∆ or f −∆, then we
replace f with that value and loop to step 2;

4) otherwise, we reduce ∆ by half;
5) if now ∆ is lower than ǫ, the algorithm terminates;
6) otherwise, we loop to step 2.

The intuition of the pattern-search procedure is similar,
in principle, to gradient-search methods. If we find that
using f +∆ or f −∆ instead of f produces a lower delay,
then we replace the current value of f with the new one;
otherwise, we try new f -values closer to the current one.
When we are satisfied that there are no better f -values
further than ǫ from the current one, the search ends.

Notice that in step 2 of our procedure we run the
decision-making procedure described in Sec. 6; this implies
that, once we find the best value of f , we also know the best
VNF placement and CPU allocation decisions.

From the viewpoint of complexity, the multi-instance
case requires running the procedure detailed in Sec. 6 for
as many times as there are values of f to try. Since at every
iteration we half the step ∆, the number of such values is at
most

⌈

log2
∆0

ǫ

⌉

, ∆0 being the initial step. Such a logarithmic
term does not impact the order of the global complexity,
which remains polynomial as proven in Property 3.

9 NUMERICAL RESULTS

After describing the reference topology and benchmark al-
ternatives in Sec. 9.1, this section reports the performance of

10

VNF 1 VNF 2 VNF 3 VNF 4

VNF 1 VNF 2 VNF 4

VNF 3

1 1 1 1 1

1 1(b)

(a)
VNF 5 VNF 6

1 1

VNF 5

VNF 6

1

1

1
1

1
1

VNF 1 VNF 2 VNF 4

VNF 3
1 1(c)

VNF 5

VNF 6

1

1

1

1

1

1

1
1

Simple Chain

Lightly Meshed

Heavily Meshed

Fig. 6. The VNF graphs used in our performance evaluation, reflecting
real-world service implementations.

MaxZ as a function of the inter-host latency and arrival rates
(Sec. 9.2). Next, the effects of multi-class and multi-instance
scenarios (Sec. 9.3) and larger-scale topologies (Sec. 9.4) are
presented. Finally, in Sec. 9.5, we generalize our results and
study the number of solutions that are examined by MaxZ
and its counterparts, as well as the associated running times.

9.1 Reference scenario

We consider a reference topology with three hosts having
CPU capacity κh = 10 requests/ms each. As in Example 1,
hosts are connected to each other through physical links
having latency that varies between 50ms and 400ms. For
simplicity, we disregard the link capacity, i.e., we assume
computation to be the bottleneck in our scenario, as it is
commonly the case in single-tenant scenarios. Through-
out our performance evaluation, we benchmark the MaxZ
placement heuristic in Sec. 6.1 against the following alterna-
tives:

• global optimum, found through brute-force search of
all possible deployments;

• greedy, where the number of used hosts is minimized,
i.e., VNFs are concentrated as much as possible;

• affinity-based [24], trying to place at the same host
VNFs with high transition probability between them.

After the VNF placement decisions are made, we compute
the optimal CPU allocation, i.e., the optimal µ(q) values, as
explained in Sec. 6.2. It is important to remark that the CPU
allocation strategy is the same for all placement strategies.

We first focus on a single request class k, fix the arrival
rate to λk = 1 requests/ms, and compare the three VNF
graphs depicted in Fig. 6, ranging from a simple chain to a
complex meshed topology. Notice how in graphs (b) and (c)
requests can branch and merge, i.e., the number of requests
outgoing from a VNF does not match the number of incom-
ing ones. This is the case with several real-world functions;
in particular, the light and heavy mesh topologies are akin
to vEPC implementations where user- and control-plane
entities are joint [29] and split [26], [27], i.e., implemented,
respectively, by the same VNF or by separate ones.

9.2 Effect of physical link latency and arrival rate

Fig. 7 shows the average service delay as a function of
the physical link latency for the VNF graphs presented in
Fig. 6. We can observe that the performance of Greedy is
always the same regardless of such latency, as all VNFs
are deployed at the same host. On the other hand, the
performance of Affinity-based is quite good for low values
of the physical links latency, but then quickly degrades,
due to the fact that the affinity-based heuristic disregards

link latency. As far as MaxZ is concerned, it exhibits an
excellent performance: it consistently yields a substantially
lower service delay compared to Greedy and Affinity-based,
and is always very close to the optimum.

Fig. 8 focuses on the heavy mesh topology, and breaks
down the service delay yielded by MaxZ into its computa-
tion and traversing latency components. Processing latency
only depends upon the VNF placement, while traversing
latency depends upon both the VNF placement (which
determines how many inter-host links are traversed) and
the per-link latency. When such latency is low, MaxZ tends
to spread the VNFs across all available hosts, in order to
assign more CPU. As the physical link latency increases,
the placement becomes more and more concentrated (thus
resulting in lower µ(q) values and higher processing times),
until, when the link latency is very high, all VNFs are placed
at the same host and there is no traversing latency at all.

Fig. 7 and Fig. 8 clearly illustrate the importance of flex-
ible CPU allocation. If we only accounted for the minimum
CPU required by VNFs, as in [22], [24], we could place all
of them in the same host, as the Greedy strategy does. This
would result, as we can see from the far right in Fig. 8, in
high processing times and two unused hosts.

We now fix the physical link latency to 50ms,
and change the arrival rate λ between 0.1 requests/ms
and 2 requests/ms; Fig. 9 summarizes the service delay
yielded by the placement strategies we have studied. A
first observation concerns the Greedy strategy: since all
VNFs are placed in the same host, as λ increases, VNFs
receive an amount of CPU that is barely above the minimum
limit Λ(q). This, as per (5), results in processing times that
grow very large. The difference between the other place-
ment strategies tends to become less significant; intuitively,
this is because processing times dominate the total delay,
and thus spreading the VNFs as much as possible is always
a sensible solution. MaxZ still consistently outperforms
Affinity-based, and performs very close to the optimum.

9.3 Multiple class and VNF instances

In Fig. 10, we move to a multi-class scenario where |K| = 3
service classes share the same VNF graph. The three classes
have limit delays DQoS of 10ms, 45ms, and 2 s, respec-
tively corresponding to safety applications (e.g., collision
detection), real-time applications (e.g., gaming), and delay-
tolerant applications (e.g., video streaming). Fig. 10 shows
that all placement strategies result in delays that are roughly
proportional to the limit ones. Also, the relative performance
of the placement strategies remains unmodified – MaxZ
outperforms Affinity-based and is close to the optimum,
while Greedy yields much higher delay. Notice that, for very
high values of physical link latency, it is impossible to meet
all QoS constraints, i.e., Dk

D
QoS
k

> 1 for at least one class k.

In these cases, MaxZ limits the damage by keeping the Dk
D

QoS
k

ratios as low as possible.
It is also interesting to notice in Fig. 10(center) that the

service delay yielded by MaxZ is actually lower than the
optimum. However, this does not mean that MaxZ outper-
forms the optimum; indeed, due to the min-max structure of
our objective (10), the objective value is determined by the
class with the highest Dk

D
QoS

k

ratio. For low-to-medium link

11

50 100 150 200 250 300 350 400

Physical link delay [ms]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k
Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Physical link delay [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Physical link delay [ms]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 7. Normalized service delay as a function of the physical link latency, for the chain (left), light mesh (center), heavy mesh (right) VNF graphs.
Note that the y-axis scale varies across the plots.

50 100 150 200 250 300 350 400

Physical link delay [ms]

0

250

500

750

1000

1250

1500

1750

A
v
e
ra

g
e

la
te

n
c
y
D

k
[m

s
]

Processing

Traversing

Fig. 8. Breakdown of the total service delay as a function of the physical
link latency, for the heavy mesh topology and the MaxZ deployment
strategy.

latency, such class is the low-delay one, with a normalized
service delay (shown in Fig. 10(left)) around 0.9. Thus,
MaxZ and the optimum strategy obtain the same objective
value.

In Fig. 11, we drop the assumption that there is only
one instance of each VNF; specifically, for VNF4 and VNF6

we allow two instances each. By comparing Fig. 11 to
Fig. 7, we can immediately notice that allowing multiple
VNF instances substantially decreases the total delay. More
interestingly, we can observe that MaxZ always outperforms
its alternatives, and is very close to the optimum, except for
some cases when the topology is very complex.

9.4 Larger-scale scenarios

We now move to larger-scale, more complex scenarios,
where:

• the VNF graph is the extreme mesh depicted in Fig. 12
and inspired to real-world VNF graphs [35];

• there can be up to two copies of each VNF;
• each host is connected through physical links with

either 4 or 6 other hosts chosen in such a way that
any pair of hosts is connected through one virtual
link.

The fact that the physical topology is not strongly connected
implies that the latency of virtual links between hosts de-
pends on many physical links they are made of.

Fig. 13, obtained when each host is connected to four
others, shows that the relative performance of the solution
strategies does not change, with MaxZ still outperforming

its alternatives. By comparing Fig. 13 with Fig. 7(right),
we can observe much higher service delays, often ex-
ceeding DQoS

k . This further highlights how MaxZ can pro-
vide near-optimal performance in all conditions, including
sparsely-connected topologies where wrong placement de-
cisions can result in very high network delays.

Moving to Fig. 14, obtained when each host is connected
to six others, we can observe a slightly better performance
for all strategies, due to shorter network delays. MaxZ is
still able to clearly outperform all the alternatives, due
to its ability to account for both network latencies and
computation times.

9.5 Generalization: examined solutions and running

times

In the following, we seek to generalize the results shown
above and study the number of solutions (i.e., values
given to the A(h, q) variables) that our benchmark ap-
proaches examine while searching for the best one. Re-
call that, as shown in Property 3, MaxZ has a complexity
of O(max

{

|Q|4, |H|3
}

).
Brute-force. We use brute-force to seek for the globally-

optimal solution. There are |Q| number of VNFs to be placed
in |Q| hosts. Thus, in total there are |H||Q| possible number
of VNF-host placements. For each of the VNF-host place-
ment, we obtain the optimal resource allocation for each
VNF at each host by solving a convex optimization problem.
Convex problems have cubic complexity in the number of
variables, and each problem has |Q| + 1 variables, corre-
sponding one µ(q) each VNF and a variable corresponding
to r. The problem complexity in this case is O((|Q| + 1)3).
Thus, the overall computational complexity of global opti-
mization utilizing brute-force is O(|H||Q|(|Q|+ 1)3).

Greedy scheme. In the greedy scheme, firstly the VNFs
are placed on the hosts such that the number of hosts
utilized is minimized. Thereafter, optimal resources are al-
located by solving the convex optimization problem. The
VNFs are first sorted in the decreasing order of their load
which has the computational complexity of O(|Q| log(|Q|)).
They are then allocated to |H| hosts, iteratively. The greedy
placement algorithm has a complexity of O(|Q| log(|Q|) +
|H|). As seen before, the computational complexity of re-
source allocation algorithm is O((|Q| + 1)3). Thus, the
overall computational complexity of greedy algorithm is
O(|Q| log(|Q|) + |H| + (|Q| + 1)3), which is equivalent to
O(|H|+ (|Q|+ 1)3).

12

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Arrival rate λk [requests/ms]

10
−2

10
−1

10
0

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 9. Normalized service delay (log scale) as a function of arrival rate λ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs.

2 4 6 8 10 12 14 16 18 20

Physical link delay [ms]

0

1

2

3

4

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

2 4 6 8 10 12 14 16 18 20

Physical link delay [ms]

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

2 4 6 8 10 12 14 16 18 20

Physical link delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 10. Multi-class scenario, heavy mesh graph: normalized service delay vs. arrival rate λ for the low-delay (left), medium-delay (center), high-
delay (right) service classes. Note that the y-axis scale varies across the plots.

50 100 150 200 250 300 350 400

Physical link delay [ms]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Physical link delay [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

50 100 150 200 250 300 350 400

Physical link delay [ms]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
rm

a
liz

e
d

d
e
la

y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Optimum

Fig. 11. Multi-instance scenario: normalized service delay vs. the physical link latency for the chain (left), light mesh (center), heavy mesh (right)
VNF graphs. Note that the y-axis scale varies across the plots.

VNF 1
VNF 3

VNF 4

VNF 5

VNF 6

VNF 7

VNF 8

VNF 9 VNF 10

VNF 2

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1
1

1
1

1

1
1

Fig. 12. Extreme mesh VNF graph.

50 100 150 200 250 300 350 400 450 500

Physical link delay [ms]

0

1

2

3

4

5

6

7

8

N
o
rm

a
liz

e
d

la
te

n
c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Fig. 13. Extreme mesh VNF graph, 20-host topology with connectivity
degree 4: normalized service delay vs. physical link latency.

50 100 150 200 250 300 350 400 450 500

Physical link delay [ms]

0

1

2

3

4

5

6

7

8

N
o
rm

a
liz

e
d

la
te

n
c
y
D

k
/D

Q
o
S

k

Affinity

Greedy

MaxZ

Fig. 14. Extreme mesh VNF graph, 20-host topology with connectivity
degree 6: normalized service delay vs. physical link latency δ.

Affinity-based scheme. In the affinity-based scheme,
firstly the VNFs are placed on the hosts such that the VNFs
having high transition probability between them are placed
on the same host. Thereafter, optimal resources are allocated
by solving the convex optimization problem. There are |Q|
number of VNFs to be placed in |H| hosts. The affinity
based VNF-host placement algorithm has a complexity of

13

TABLE 2
Execution time (in seconds) for different schemes

Scenario Aff. Greedy MaxZ Brute

Base scenario (chain graph) 0.32 0.34 4.22 238.83
Base scenario (light mesh
graph)

0.32 0.29 4.31 238.26

Base scenario (heavy mesh
graph)

0.35 0.34 4.53 246.18

Base scenario (multiple
classes)

0.61 0.62 10.14 415.05

Large scenario, 4-degree
connectivity (extreme mesh
graph, two instances per
VNF)

0.62 0.50 23.36

Large scenario, 6-degree
connectivity (extreme mesh
graph, two instances per
VNF)

0.62 0.50 21.34

O(|Q||H|). As seen before, the computational complexity
of resource allocation algorithm is O((|Q| + 1)3). Thus,
the overall computational complexity of this scheme is
O(|H||Q|+ (|Q|+ 1)3).

Execution times. All the above computations refer to
the order of magnitude of the worst-case computational
complexity. However, it is also interesting to assess how
such complexity translates into actual execution times. To
this end, Tab. 2 reports the execution times of MaxZ and
its counterparts for different topologies and VNF graphs,
measured on a server equipped with a Xeon E5-2600 pro-
cessor and 48 GByte of RAM. We can clearly observe that,
while MaxZ takes longer than the affinity-based and greedy
heuristics to run, their execution times are comparable in
the base scenario. Furthermore, MaxZ runs over two orders
of magnitude faster than the brute-force procedure. It is also
interesting to notice that the execution times in the large
scenario are still limited, while the brute-force procedure is
utterly unable to tackle that case.

10 CONCLUSION

We targeted the problem of orchestration in 5G networks,
that requires to make decisions about VNF placement, CPU
assignment, and traffic routing. We presented a queuing-
based model accounting for all the main features of 5G
networks, including (i) arbitrarily complex service graphs;
(ii) flexible allocation of CPU power to VNFs sharing the
same host, and its impact on processing time; (iii) the
possibility of having multiple instances of the same VNF.

Based on our model, we presented a methodology
to make the requirement decisions jointly and effectively,
based on two pillars: a VNF placement heuristics called
MaxZ, and a convex formulation of the CPU allocation
problem given placement decisions. We also showed, based
on KKT conditions, that the CPU allocation problem is
further simplified in full-load conditions, where all hosts
are completely utilized. We evaluated our methodology
against multiple VNF graphs and physical topologies of
varying complexity, and found the performance of MaxZ to
consistently exceed that of state-of-the-art alternatives, and
closely match the optimum. Future research directions in-
clude multi-tenant scenarios, where multiple verticals share

the same infrastructure. Furthermore, future work will aim
at optimizing the number of instances to be deployed for
each VNF, and designing a low-complexity heuristic for it,
and will investigate other KPIs than service delay.

ACKNOWLEDGMENT

This work is supported by the European Commission
through the H2020 projects 5G-TRANSFORMER (Project ID
761536) and 5G-EVE (Project ID 815074).

REFERENCES

[1] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint VNF
Placement and CPU Allocation in 5G,” in IEEE INFOCOM, 2018.

[2] 3GPP. (2014) Specification: 37.868; RAN Improvements
for Machine-type Communications. [Online]. Available:
http://www.3gpp.org/ftp//Specs/archive/37 series/37.868/

[3] Amazon. AWS Greengrass. https://aws.amazon.com/greengrass/.
[4] ETSI. (2017) Network Functions Virtualisa-

tion (NFV); Management and Orchestration.
http://www.etsi.org/deliver/etsi gs/NFV-MAN/001 099/001/01.01.01 60/gs NFV-MAN001v010101p.pdf.

[5] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Net-
work slicing in 5g: Survey and challenges,” IEEE Communications
Magazine, 2017.

[6] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C.
Leung, “Network slicing based 5g and future mobile networks:
mobility, resource management, and challenges,” IEEE Communi-
cations Magazine, 2017.

[7] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Scian-
calepore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega et al.,
“Network slicing to enable scalability and flexibility in 5g mobile
networks,” IEEE Communications magazine, 2017.

[8] K. Samdanis, S. Wright, A. Banchs, A. Capone, M. Ulema, and
K. Obana, “5g network slicing–part 2: Algorithms and practice,”
IEEE Communications Magazine, 2017.

[9] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis,
M. Qi, L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorith-
mic aspects of network slicing,” IEEE Communications Magazine,
2017.

[10] X. Li, J. Mangues-Bafalluy, I. Pascual, G. Landi, F. Moscatelli,
K. Antevski, C. J. Bernardos, L. Valcarenghi, B. Martini, C. F. Chi-
asserini et al., “Service orchestration and federation for verticals,”
in IEEE WCNC Workshops, 2018.

[11] M. A. S. Santos, A. Ranjbar, G. Biczók, B. Martini, and F. Paolucci,
“Security requirements for multi-operator virtualized network
and service orchestration for 5g,” in Guide to Security in SDN and
NFV. Springer, 2017.

[12] A. Hirwe and K. Kataoka, “LightChain: A lightweight optimiza-
tion of VNF placement for service chaining in NFV,” in IEEE
NetSoft, 2016.

[13] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” in IEEE INFOCOM, 2016.

[14] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core net-
work virtualization: A model for combined virtual core network
function placement and topology optimization,” in IEEE NetSoft,
2015.

[15] F. Ben Jemaa, G. Pujolle, and M. Pariente, “Analytical Models for
QoS-driven VNF Placement and Provisioning in Wireless Carrier
Cloud,” in ACM MSWiM, 2016.

[16] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in IEEE CloudNet,
2015.

[17] A. Marotta and A. Kassler, “A Power Efficient and Robust Virtual
Network Functions Placement Problem,” in IEEE ITC, 2016.

[18] N. E. Khoury, S. Ayoubi, and C. Assi, “Energy-Aware Placement
and Scheduling of Network Traffic Flows with Deadlines on
Virtual Network Functions,” in IEEE CloudNet, 2016.

[19] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm
for the placement of service function chains,” IEEE Transactions on
Network and Service Management, 2016.

[20] L. Gu, S. Tao, D. Zeng, and H. Jin, “Communication cost efficient
virtualized network function placement for big data processing,”
in IEEE INFOCOM Workshops, 2016.

14

http://www.3gpp.org/ftp//Specs/archive/37_series/37.868/
https://aws.amazon.com/greengrass/
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

[21] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun, and Y. Han, “VNF-FG
design and VNF placement for 5G mobile networks,” Science China
Information Sciences, 2017.

[22] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015.

[23] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5G,” in IEEE
NetSoft, 2015.

[24] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A.
Chan, “Optimal virtual network function placement in multi-
cloud service function chaining architecture,” Computer Commu-
nications, 2017.

[25] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core net-
work virtualization: A model for combined virtual core network
function placement and topology optimization,” in IEEE NetSoft,
2015.

[26] G. Hasegawa and M. Murata, “Joint Bearer Aggregation and
Control-Data Plane Separation in LTE EPC for Increasing M2M
Communication Capacity,” in IEEE GLOBECOM, 2015.

[27] A. Ksentini, M. Bagaa, and T. Taleb, “On Using SDN in 5G: The
Controller Placement Problem,” in IEEE Globecom, 2016.

[28] D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras,
“Network function placement on virtualized cellular cores,” in
COMSNETS, 2017.

[29] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and Dimensioning
of a Virtualized MME for 5G Mobile Networks,” IEEE Transactions
on Vehicular Technology, 2017.

[30] Intel. Power Management States: P-
States, C-States, and Package C-States.
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states.

[31] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algo-
rithms for the generalized assignment problem,” European journal
of operational research, 1992.

[32] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst,
Templates for the solution of linear systems: building blocks for iterative
methods. Siam, 1994, vol. 43.

[33] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in
Berkeley Symposium on Mathematical Statistics and Probability, 1951.

[34] R. M. Lewis and V. Torczon, “Pattern search methods for linearly
constrained minimization,” SIAM Journal on Optimization, 2000.

[35] C. Casetti, C. F. Chiasserini, N. Molner, J. Martin-Perez, T. Deiss,
C.-T. Phan, F. Messaoudi, G. Landi, and J. B. Baranzano, “Arbi-
tration among vertical services,” in IEEE PIMRC 5G Cell-Less Nets
Workshop, 2018.

15

https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states

