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Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, United States

In drug development, early assessments of pharmacokinetic and toxic properties are

important stepping stones to avoid costly and unnecessary failures. Considerable

progress has recently been made in the development of computer-based (in silico)

models to estimate such properties. Nonetheless, such models can be further improved

in terms of their ability to make predictions more rapidly, easily, and with greater

reliability. To address this issue, we have used our vNN method to develop 15

absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction models.

These models quickly assess some of the most important properties of potential

drug candidates, including their cytotoxicity, mutagenicity, cardiotoxicity, drug-drug

interactions, microsomal stability, and likelihood of causing drug-induced liver injury. Here

we summarize the ability of each of these models to predict such properties and discuss

their overall performance. All of these ADMET models are publically available on our

website (https://vnnadmet.bhsai.org/), which also offers the capability of using the vNN

method to customize and build new models.

Keywords: ADME, toxicology, QSAR, machine learning, applicability domain, online web platform, open access

INTRODUCTION

Drug discovery is a risky, lengthy, and resource-intensive process with high attrition rates. In
recent years, the development of assays and computer-based (in silico) models to assess absorption,
distribution, metabolism, and excretion (ADME) properties has greatly reduced the attrition rate
(Waring et al., 2015). The ability to predict these properties quickly and reliably facilitates the
exclusion of compounds with potential ADME issues, and thereby helps investigators prioritize
which compounds to synthesize and evaluate. However, toxicity remains a hurdle, with an attrition
rate of 40% among new compounds identified in the drug discovery phase (Waring et al., 2015).
This necessitates careful selection of compounds during drug development to avoid late-stage
attrition. As such, there is an urgent need for in silico methods that make fast, easy, and reliable
predictions of ADME and toxicity (ADMET) properties, which has resulted in several online tools
and web-platforms for ADMET predictions (Walker et al., 2010; Sushko et al., 2011; Cheng et al.,
2012; Maunz et al., 2013; Manganaro et al., 2016; Daina et al., 2017).

Here we provide an overview of our versatile variable nearest neighbor (vNN) method
(Liu et al., 2012) and the 15 models we constructed using this method to predict
the ADMET properties of potential target compounds. The vNN method has several
advantages over existing in silico methods. First, it calculates the similarity distance between
molecules in terms of their structure, and uses a distance threshold to define a domain of
applicability (i.e., all nearest neighbors that meet a minimum similarity threshold constraint).
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This applicability domain, while limiting vNN-based models
to making predictions only for molecules that are similar
to the reference molecules, ensures that the predictions they
generate are reliable. Second, vNN-based models can be built
within minutes and require no re-training when new assay
information becomes available—an important feature when
keeping quantitative structure—activity relationship (QSAR)
models up-to-date to maintain their performance levels. Finally,
as we show throughout this work, the performance characteristics
of our vNN-based models are comparable, and often superior, to
those of other more elaborate model constructs.

We have developed a publically available vNN website
(https://vnnadmet.bhsai.org/). This website provides users with
ADMET prediction models that we have developed, as well as a
platform for using their own experimental data to update these
models or build new ones from scratch. Although we use the vNN
method here for predicting ADMET properties, the vNN website
can be used to build a variety of classification or regression
models.

MATERIALS AND METHODS

The vNN Method
The k-nearest neighbor (k-NN) method is widely used to
develop QSAR models (Zheng and Tropsha, 2000). This method
rests on the premise that compounds with similar structures
have similar activities. The simplest form of the k-NN method
takes the average property values of the k nearest neighbors
as the predicted value. However, because structurally similar
compounds tend to show similar biological activity, it is
reasonable to weight the contributions of neighbors so that closer
neighbors contribute more to the predicted value. One notable
feature of the k-NN method is that it always gives a prediction
for a compound, based on a constant number, k, of nearest
neighbors nomatter how structurally dissimilar they are from the
compound. An alternative approach is to use a predetermined
similarity criterion. We developed the aforementioned vNN
method, which uses all nearest neighbors that meet a structural
similarity criterion to define the model’s applicability domain
(Liu et al., 2012, 2015; Liu and Wallqvist, 2014). When no
nearest neighbor meets the criterion, the vNN method makes no
prediction.

One of the most widely used measures of the similarity
distance between two small molecules is the Tanimoto distance,
d, which is defined as:

d = 1−
n(P ∩ Q)

n (P) + n (Q) − n(P ∩ Q)
, (1)

where n(P ∩ Q) is the number of features common to molecules
p and q, and n(P) and n(Q) are the total numbers of features
for molecules p and q, respectively. The features used to
calculate molecular similarity are often based on atom type
(connectivity and chemical properties), such as element, charge,
donor, acceptor, and aromatic, but they can also be based on

Abbreviations: Pgp, permeability glycoprotein; MDR, multidrug resistance.

holistic molecular properties, such as molecular weight and
partition coefficient (LogP). The predicted biological activity y
is then given by a weighted average across structurally similar
neighbors:

y =

∑ν
i= 1 yie

−(
di
h
)
2

∑ν
i= 1 e

−(
di
h
)
2
, di ≤ d0 (2)

where di denotes the Tanimoto distance between a query
molecule for which a prediction is made and a molecule i of
the training set; yi is the experimentally measured activity of
molecule i; h is a smoothing factor, which dampens the distance
penalty; d0 is a Tanimoto-distance threshold, beyond which two
molecules are no longer considered to be sufficiently similar to
be included in the average; and v denotes the total number of
molecules in the training set that satisfy the condition di ≤ d0.
The values of h and d0 are determined from cross-validation
studies.

To identify structurally similar compounds, we used Accelrys
extended-connectivity fingerprints with a diameter of four
chemical bonds (ECFP4) (Rogers and Hahn, 2010). For the vNN
website, we chose ECFP4 fingerprints, which have previously
been reported to show satisfactory overall performance in
retrieving the active compounds of diverse datasets (Hert et al.,
2004; Duan et al., 2010; Schyman et al., 2016). We emphasize that
h and d0 are unique, and need to be optimized for each set of
fingerprints and training set.

Model Validation
We used the 10-fold cross-validation (CV) procedure to validate
the model and determine the values of h and d0. We randomly
divided the data into 10 sets, 9 of which we used to develop
the model and the 10th to validate the model. We repeated this
process 10 times, leaving each set of molecules out once. In
the next section, we report averages of the 10-fold CV as the
performance measures.

Performance Measures
We used the following metrics to assess the quality of the
classification models:

sensitivity =
TP

TP + FN
(3)

specificity =
TN

FP + TN
(4)

accuracy =
TP + TN

TP + TN + FP + FN
(5)

kappa =
accuracy − Pr (e)

1 − Pr (e)
(6)

where TP, TN, FP, and FN denote the numbers of true
positives, true negatives, false positives, and false negatives,
respectively. The metric kappa assesses the quality of binary
classifiers (Dunn and Everitt, 1995). Pr(e) is an estimate
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FIGURE 1 | The vNN-ADMET main page. From this page, users can run ADMET models or build their own models.

of the probability of a correct prediction by chance. It is
calculated as:

Pr (e) =
(TP + FN) (TP + FP) + (FP + TN)(TN + FN)

(TP + FN + FP + TN)2

(7)
The sensitivity measures a model’s ability to correctly detect
true positives, whereas the specificity measures its ability to
detect true negatives. Kappa compares the probability of correct
predictions to the probability of correct predictions by chance.
Its value ranges from +1 (perfect agreement between model
prediction and experiment) to−1 (complete disagreement), with
0 indicating no agreement beyond that expected by chance.

The performance measure for regression models is given by
the Pearson’s correlation coefficient (Adler and Parmryd, 2010):

R =

∑n
i= 1 (xi − x̄)(yi − ȳ)

√

∑n
i= 1 (xi − x̄)2

√

∑n
i= 1 (yi − ȳ)2

(8)

where n is the sample size, xi and yi are samples, and x and y are
sample means. The correlation coefficient provides a measure of
the interrelatedness of numeric properties. Its value ranges from
−1 (highly anticorrelated) to +1 (highly correlated), and is 0
when uncorrelated.

We also calculated the coverage, which we define as the
proportion of test molecules with at least one nearest neighbor
that meets the similarity criterion. For all other molecules that
do not meet the criterion, we do not make any predictions. In
this case, the coverage is a measure of the size of the applicability
domain of a prediction model.

RESULTS

The vNN Platform
The main purpose of the vNN-based platform is to provide
users with a tool to make ADMET predictions and a user-
friendly environment to build new models. Hence, the platform
offers users two main capabilities that are accessible from the
main webpage (https://vnnadmet.bhsai.org/) (Figure 1): (1) to
run prebuilt ADMETmodels and (2) to build and run customized
models.

To use prebuilt ADMET models, users need only provide one
ormore querymolecules as the input (Figure 2). They can do this
either by drawing the molecule, entering the molecular SMILES
string (Weininger, 1988) directly on the website, or uploading
a text file (csv or txt format) with query molecules in SMILES
format. The text file should contain column headers labeled as
NAME and SMILES. Once users upload the query molecules,
they can submit the job. The application will then automatically
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FIGURE 2 | Submit ADMET predictions. On the Run ADMET Models page (top) users can upload a list of query compounds in SMILES format (lower left) or

manually enter compounds by using the draw structure feature (lower right).

run all ADMET prediction models. The output will be displayed
once all predictions are completed and a temporary link to the
result page will be sent to the user’s e-mail address. The results
can be downloaded as a table to the user’s computer (Figure 3).
By default, the user will see the ADMET results for our models,
which use a restricted applicability domain. However, there is an
option to include the results for the remaining compounds, using
our unrestricted applicability domain models. The time required
to run 100 query compounds is ∼5min on the server. However,
this may vary depending on the size of themolecules and whether
or not the job has been queued.

Users can build their own models by either selecting Build
Classification Model or Build Regression Model on the main
webpage (Figure 1). On the Build Classification Model page
(Figure 4), users are asked to upload a list of molecules in
SMILES format and the property of interest, with column headers
labeled as NAME, SMILES, and PROPERTY. The value of the

property should be set to 1 or 0 for classification models and
real numbers for regression models. The vNN platform will then
automatically run 10-fold CV by varying the Tanimoto distance
(d) from 0.1 to 1.0 in increments of 0.1, and the smoothing factor
(h) from 0.1 to 1.0 at each value of d. Once the calculations
are completed, a temporary link to the result page will be sent
to the user’s e-mail address. The results will be displayed on an
interactive webpage where users can select the values for d and
h (Equation 2), depending on the optimal performance measures
and coverage (Figure 4). The time required to build a model with
a dataset of 1,000 compounds is∼10min.

Users can then select the Run Custom Model option to predict
the activity of new test molecules (Figure 5), using the previously
selected values for the Tanimoto Distance and Smoothing Factor,
and add the same molecules as those used to train the model
in the Upload Compounds with Property data field. They then
need to add the new query molecule(s) in SMILES format in the
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FIGURE 3 | The ADMET predictions result page. The 15 ADMET predictions for each query molecule are presented on a separate row. Predictions based on models

using a restricted applicability domain are shown in solid colors and those based on models using an unrestricted applicability domain are shown in striped colors.

Users can download the results from the website into a single file.

Upload Query Compounds field. The result will be displayed on a
new webpage, and a temporary link to that page will also be sent
to the user’s e-mail address (Figure 5).

Available ADMET Predictions
The available ADMET prediction models, including their
performance measures for the restricted applicability domain
model, are summarized in Table 1. The performance measures
for the models using an unrestricted applicability domain are
presented in Table S1 in the Supplementary Material and on
our website (https://vnnadmet.bhsai.org/). The 15 models cover
a diverse set of ADMET endpoints. We will briefly describe these
models and their performance measures, as well as the sources
from which we retrieved the data. All datasets are available in
SMILES format on the vNN web server or in Structure Data
Format (SDF) in the Supplementary Material (Datasheet 1).

Some of the models have already been published (Liu et al., 2012,
2015; Liu and Wallqvist, 2014; Schyman et al., 2016). We also
present several new models here for the first time.

Blood-Brain Barrier
The blood-brain barrier (BBB) is a highly selective barrier that
separates the circulating blood from the central nervous system
(CNS) (Abbott et al., 2006). It allows the passage of water
molecules and water-soluble lipid molecules, as well as the
selective transport of glucose and amino acids. The benefit of
predicting BBB-permeable compounds is two-fold: (1) to identify
toxicants that could harm the brain, and (2) to design drug
molecules that can pass the BBB and reach their target in the CNS.

We developed a vNN-based BBB model, using 353
compounds whose BBB permeability values (log BB) were
obtained from the literature (Muehlbacher et al., 2011; Naef,
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FIGURE 4 | Build a classification model. On the Build Classification Model page (top), users can upload their training data and/or draw structures. On the Build

Classification Model Results page (bottom), users can interactively select/deselect different smoothing factors for comparison. The graph shows accuracy of

performance on the 10-fold cross validation test at different Tanimoto distances, where smoothing factors 0.2 and 1.0 are highlighted in green and blue, respectively

(strikethrough smoothing factors indicate deselected values). The coverage is shown in gray. The red circle indicates the “best” model performance based on

accuracy and coverage, where the black arrows show the corresponding Tanimoto-distance threshold (d0 = 0.7) and smoothing factor (h = 0.2). Although the

accuracy is reduced to 88 from 90% at d0 = 0.6, the number of compounds predicted increases from 60 to 75%, which may be worth the loss in accuracy.
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FIGURE 5 | Run a customized model. The first step to run a customized model is to upload the training dataset, as well as the selected Tanimoto distance and

smoothing factor from Figure 4. The second step is to upload query compounds. The results can be downloaded from the Run Custom Model Results page (bottom).
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TABLE 1 | Performance measures of vNN models in 10-fold cross validation, using a restricted applicability domain.

Model Dataa d0
b hc Accuracy Sensitivity Specificity Kappa Rd Coverage

DILI 1,427 0.60 0.50 0.71 0.70 0.73 0.42 0.66

Cytotox (hep2g) 6,097 0.40 0.20 0.84 0.88 0.76 0.64 0.89

HLM 3,219 0.40 0.20 0.81 0.72 0.87 0.59 0.91

CYP 1A2 7,558 0.50 0.20 0.90 0.70 0.95 0.66 0.75

CYP 2C9 8,072 0.50 0.20 0.91 0.55 0.96 0.54 0.76

CYP 2C19 8,155 0.50 0.20 0.87 0.64 0.93 0.58 0.76

CYP 3A4 10,373 0.50 0.20 0.88 0.76 0.92 0.68 0.78

CYP 2D6 7,805 0.50 0.20 0.89 0.61 0.94 0.57 0.75

BBB 353 0.60 0.20 0.90 0.94 0.86 0.80 0.61

Pgp Substrate 822 0.60 0.20 0.79 0.80 0.79 0.58 0.66

Pgp Inhibitor 2,304 0.50 0.20 0.85 0.91 0.73 0.66 0.76

hERG 685 0.70 0.70 0.84 0.84 0.83 0.68 0.80

MMP 6,261 0.50 0.40 0.89 0.64 0.94 0.61 0.69

AMES 6,512 0.50 0.40 0.82 0.86 0.75 0.62 0.79

MRTDe 1,184 0.60 0.20 0.79 0.69

aNumber of compounds in the dataset; bTanimoto-distance threshold value; cSmoothing factor; dPearson’s correlation coefficient; eRegression model.

2015). We classified compounds with log BB values of <−0.3
and >+0.3 as BBB non-permeable and permeable, respectively.
To calculate performance measures, we classified BBB permeable
and BBB non-permeable compounds as positives and negatives,
respectively.

The model predicted whether or not a given compound would
pass the BBB, but only for compounds within the applicability
domain defined by the training set. The performance measures
in Table 1 were calculated from 10-fold CV. The model showed
a high overall accuracy of 90% and a kappa value of 0.80, with a
coverage of 61%. The size of the dataset limited the applicability
domain of the model. However, if new data become available,
they can easily be added to the model to increase the applicability
domain.

The model performed on par with the best of the BBB models
published thus far. Most of the latter models, which used small
datasets, are global models applied to any molecule. However, all
models have a finite applicability domain (Cherkasov et al., 2014).
Indeed, modeling BBB permeability is complicated because
there are different possible routes across the barrier, via passive
diffusion or protein transport, and no model singlehandedly
accounts for all factors associated with this property. Our
vNN model only makes predictions for compounds that are
structurally similar enough to the test set molecules to ensure that
they have the same type of transport mechanism. Thus, our vNN
method accounts for multiple transport routes.

MMP Disruption (Mitochondrial Toxicity)
Given the fundamental role of mitochondria in cellular energetics
and oxidative stress, mitochondrial dysfunction has been
implicated in cancer, diabetes, neurodegenerative disorders,
and cardiovascular diseases (Pieczenik and Neustadt, 2007).
Many pharmaceuticals and environmental toxicants cause
mitochondrial dysfunction (Meyer et al., 2013). Therefore, the
ability to predict the impact of chemicals on mitochondrial

function would be useful. However, predicting mitochondrial
toxicants is complicated because mitochondrial dysfunction can
result from impairing any of the following: (1) the electron
transport chain (ETC), (2) the mitochondrial transport pathway,
(3) fatty acid oxidation, (4) the citric acid cycle, (5) mtDNA
replication, (6) and mitochondrial protein synthesis.

There are several common experimental techniques to
measure mitochondrial function. We used the largest dataset of
chemical-induced changes in mitochondrial membrane potential
(MMP), based on the assumption that a compound that causes
mitochondrial dysfunction is also likely to reduce the MMP.
We developed a vNN-based MMP prediction model, using
6,261 compounds collected from a previous study that screened
a library of 10,000 compounds (∼8,300 unique chemicals) at
15 concentrations, each in triplicate, to measure changes in
the MMP in HepG2 cells (Attene-Ramos et al., 2015). The
study found that 913 compounds decreased the MMP, whereas
5,395 compounds had no effect. We classified compounds that
decreased the MMP as positives and those that did not affect the
MMP as negatives.

Our MMP model predicted whether a given compound had
the potential to affect the MMP and thereby cause mitochondrial
dysfunction. It made predictions for compounds that were well
represented in the applicability domain, but not for any other
compound. The model showed a high overall accuracy of 89%
and a kappa value of 0.61, with a coverage of 69% (Table 1).

Cytotoxicity (HepG2)
Cytotoxicity is the degree to which a chemical causes damage to
cells. Cytotoxicity assays are widely used to screen compounds
for unwanted cell damage, and to identify compounds that could
be used, for example, to kill cancer cells. As such, the ability to
identify cytotoxic compounds is highly desirable.

We developed a cytotoxicity prediction model, using a
training dataset of in vitro toxicity against HepG2 cells for
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TABLE 2 | Performance measures of vNN DILI models compared with deep

learning.

NCTRa NCTRa Greena Xua Combineda

10-fold CV Test Test Test 10-fold CV

Accuracy (%) 87 (81) 75 (70) 61 (65) 60 (62) 85 (85)b

Sensitivity (%) 65 (70) 64 (80) 51 (75) 52 (62) 83 (84)b

Specificity (%) 95 (88) 86 (60) 75 (46) 70 (62) 88 (85)b

Coverage (%) 40 50 46 41 67

No of Compounds 190 185 320 236 475

aValues in parentheses are the deep learning results from Xu et al. (2015).
bValues averaged over 60 runs of 10-fold CV.

6,097 structurally diverse compounds, which we collected from
Chemical European Biology Laboratory (ChEMBL) (Bento et al.,
2014). In developing our model, we considered compounds with
an IC50 of 10µM or less in the in vitro assay as cytotoxic.
We classified cytotoxic compounds as positives and non-toxic
compounds as negatives.

The cytotoxicity model performed well, with an overall
accuracy of 84% and a kappa value of 0.64 (Table 1). Because
compounds in the dataset achieved only sparse coverage of
the chemical space, the model only predicted compounds that
were well represented in the dataset. It did not give predictions
for other compounds, and thereby avoided misleading results.
When using 10-fold CV, the model reliably predicted 89% of the
compounds in our dataset.

Drug-Induced Liver Injury
Over the last 50 years, drug-induced liver injury (DILI) has been
the most commonly cited reason for drug withdrawals from
the market (Assis and Navarro, 2009). As a result, current drug
development efforts are devoted to identifying and eliminating
potential DILI compounds. Therefore, a model that predicts at
an early stage whether a compound causes liver injury would
be highly desirable. However, the mechanisms of DILI are
complicated and diverse, making toxicology studies difficult.
For example, compounds that cause DILI in humans do not
necessarily induce clear liver injury in animal studies.

We collected DILI data from four sources used by Xu et al.
(2015): (1) the U.S. FDA’s National Center for Toxicological
Research (NCTR dataset) (Chen M. et al., 2011), as well as the
datasets of (2) Greene (Greene et al., 2010), (3) Xu (Xu et al.,
2008), and (4) Liew (Liew et al., 2011). In the first three datasets,
which included pharmaceuticals, we classified a compound as
causing DILI if it was associated with a high risk of DILI and not
if there was no such risk. We excluded low-risk DILI compounds.
In the Liew dataset, which contained both pharmaceuticals
and non-pharmaceuticals, we classified a compound as causing
DILI if it was associated with any adverse liver effect. DILI-
associated compounds were classified as positives and non-DILI
compounds as negatives.

The performance measures of the vNN model, using 10-
fold CV of the entire dataset excluding duplicated compounds,
showed an overall accuracy of 71% and a coverage of 66%
(Table 1). We also used the same datasets and compared our

models with some previously published deep learning models
(Xu et al., 2015; Table 2). Considering the complexity and
computational time investment involved in training these deep
learning models, our vNNmodels performed relatively well; they
performed on-par with the deep learning models, albeit with a
coverage ranging from 40 to 65%.

Cytochrome P450 Inhibition (Drug-Drug Interaction)
Cytochrome P450 enzymes (CYPs) constitute a superfamily of
proteins that play an important role in the metabolism and
detoxification of xenobiotics (Brown et al., 2008). A drug should
not be rapidly metabolized by CYPs if it is to maintain an
effective concentration. In addition, it should not inhibit drug-
metabolizing CYPs, because such an effect could elevate the
concentration of a co-administered drug and potentially lead
to drug overdose—an effect known as a drug-drug interaction
(Murray, 2006). In drug development, in vitro assays are
routinely used to assess interactions between drug candidates
and CYPs. However, there is a need for in silico models that
assess potential interactions with CYPs in the early stages of drug
development.

We collected data for five main drug-metabolizing CYPs:
1A2, 2D6, 2C9, 2C19, and 3A4. We retrieved CYP inhibitors
from ChEMBL (Bento et al., 2014) and classified them as
inhibitors if the IC50 was below 10µM. We removed from the
dataset any duplicates or compounds tested multiple times with
contradicting results, in which the reported IC50 values were
below and above the 10µM threshold value. For all CYPs, we
classified inhibitors and non-inhibitors as positives and negatives,
respectively.

The performance measures for the five CYP models are
presented in Table 1. All models achieved high accuracy (87–
91%) and kappa values (0.54–0.68) while maintaining high
coverage (75–78%).

hERG Blockers
The human ether-à-go-go-related gene (hERG) codes for
a potassium ion channel involved in the normal cardiac
repolarization activity of the heart (Sanguinetti and Tristani-
Firouzi, 2006). Drug-induced blockade of hERG function can
cause long QT syndrome, which may result in arrhythmia and
death (De Ponti et al., 2001). For this reason, hERG liability is
one of the toxicology screens that drug candidates must pass
during early pre-clinical studies. Therefore, in silico models that
identify hERG blockers in the early stages of drug design are of
considerable interest.

We retrieved 282 known hERG blockers from the literature
and classified compounds with an IC50 cutoff value of 10µM or
less as blockers (Wang et al., 2012). We also collected a set of
404 compounds with IC50 values >10µM from ChEMBL (Bento
et al., 2014) and classified them as non-blockers (Czodrowski,
2013).We classified hERG blockers and non-blockers as positives
and negatives, respectively.

The hERG model performed with an overall accuracy of
84%, well-balanced sensitivity and specificity values (84 and
83%, respectively), and a kappa value of 0.68 (Table 1). The
model reliably predicted 80% of the compounds in our dataset
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when using 10-fold CV. However, the coverage of chemical
space by the non-hERG blockers in the dataset was sparse, and
only compounds well represented in the dataset were predicted
with confidence. Because the model did not give predictions for
other compounds, it avoided misleading results. Therefore, users
should use this model to flag potential hERG blockers rather than
to identify non-hERG blockers.

Pgp Substrates and Inhibitors
P-glycoprotein (Pgp) is an essential cell membrane protein that
extracts many foreign substances from the cell (Ambudkar et al.,
2003). As such, it is a critical determinant of the pharmacokinetic
properties of drugs. Cancer cells often overexpress Pgp, which
increases the efflux of chemotherapeutic agents from the cell
and prevents treatment by reducing the effective intracellular
concentrations of such agents—a phenomenon known as
multidrug resistance (Borst and Elferink, 2002). For this reason,
identifying compounds that can either be transported out of the
cell by Pgp (substrates) or impair Pgp function (inhibitors) is of
great interest. Therefore, using the vNN method, we developed
models to predict both Pgp substrates and Pgp inhibitors.

The Pgp substrate dataset was collected by Hou and co-
workers (Li et al., 2014). This dataset included measurements
for 422 substrates and 400 non-substrates. To generate a large
Pgp inhibitor dataset, we combined two datasets (Broccatelli
et al., 2011; Chen L. et al., 2011), and removed duplicates
to form a combined dataset consisting of a training set of
1,319 inhibitors and 937 non-inhibitors. We classified the Pgp
inhibitors (substrates) and non-inhibitors (non-substrates) as
positives and negatives, respectively.

The vNNmodels for identifying Pgp substrates and inhibitors
gave accurate and reliable results, showing overall accuracies
of 79 and 85%, respectively, when using 10-fold CV, with
corresponding kappa values of 0.58 and 0.66. These models
reliably predicted 65 and 76% of the compounds in their
datasets to be Pgp substrates and inhibitors, respectively. The
performance characteristics of these models were comparable, or
at times superior, to those of other model constructs (Schyman
et al., 2016).

Chemical Mutagenicity (AMES Test)
Mutagens are chemicals that cause abnormal genetic mutations
leading to cancer. A common way to assess a chemical’s
mutagenicity is the Ames test (Ames et al., 1973). This test has
become the standard for assessing the safety of chemicals and
drugs, and has been used to test thousands of molecules. We
examined whether the vNNmethod could effectively use existing
data to predict mutagenicity.

We retrieved an Ames mutagenicity dataset consisting of
6,512 compounds, of which 3,503 were Ames-positive (Hansen
et al., 2009), and developed a vNNAmes mutagenicity prediction
model. The model performed well, with an overall accuracy of
82%; sensitivity and specificity values of 86 and 75%, respectively;
and a high kappa value of 0.62 (Table 1). The model also reliably
predicted 79% of the compounds in the Ames dataset when
using 10-fold CV. Further details of the model and its prediction
performance can be found elsewhere (Liu and Wallqvist, 2014).

Maximum Recommended Therapeutic Dose
A basic principle of toxicology is that “the dose makes the
poison.” For most drugs, the therapeutic dose is limited by
toxicity, and the maximum recommended therapeutic dose
(MRTD) is an estimated upper daily dose that is safe (Contrera
et al., 2004). Investigators carry out toxicological experiments on
animals to determine the toxic effects of a drug and the initial
dose for human clinical trials. Unfortunately, there is a lack of
correlation between animal and human toxicity data. Therefore,
we investigated whether the vNN method could predict the
MRTD values of new compounds based on known humanMRTD
data. If so, the values could be used to estimate the starting dose
in phase I clinical trials, while significantly reducing the number
of animals used in preliminary toxicology studies.

We obtained a dataset of MRTD values publically disclosed
by the FDA, mostly of single-day oral doses for an average adult
with a body weight of 60 kg, for 1,220 compounds (most of which
are small organic drugs). For modeling purposes we converted
the MRTD unit from mg/kg-body weight/day to mol/kg-body
weight/day via the molecular weight of the compound. However,
the predicted values on the website are reported in mg/day
based upon an average adult weighing 60 kg. We excluded
organometallics, high-molecular weight polymers (>5,000 Da),
nonorganic chemicals, mixtures of chemicals, and very small
molecules (<100 Da). We used an external test set of 160
compounds, which was collected by the FDA for validation. The
total dataset for our model contained 1,184 compounds (Liu
et al., 2012).

The MRTD model reliably predicted 69% of the FDA MRTD
dataset, with a Pearson’s correlation coefficient (R) of 0.79
between the predicted and measured log(MRTD) values, and
a mean deviation (mDev) of 0.56 log units, using 40-fold CV
(Liu et al., 2012). For comparison, we used two popular QSAR
regression methods—the partial least square (PLS) and support
vector machine (SVM) methods—to develop two global models
to fit the training dataset. We evaluated the model performance,
using 40-fold CV of the training set. The best PLSmodel achieved
an R-value of 0.50 and an mDev of 0.79. The results for the SVM
model were at best comparable to those of the best PLS model,
with an R-value of 0.53 and an mDev of 0.63. For further details
of the model, we refer the reader to our previous paper (Liu et al.,
2012).

Human Liver Microsomal Stability
The human liver is the most important organ for drug
metabolism. For a drug to achieve effective therapeutic
concentrations in the body, it cannot be metabolized too rapidly
by the liver. Otherwise, it would need to be administered
at high doses, which are associated with high toxicity. To
identify and exclude rapidly metabolized compounds (Di et al.,
2003), pharmaceutical companies commonly use the human
liver microsomal (HLM) stability assay. This has led to the
accumulation of a substantial body of HLM stability data in
publicly accessible databases.

However, our knowledge of how enzymes in the HLM assay
metabolize drugs remains fragmentary. Therefore, we examined
whether the vNN method could effectively predict drugs that are
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TABLE 3 | Tox21 assays with PubChem assay identification number.

Assay ID Assay PubChem

AID

AhR Aryl hydrocarbon receptor 743122

Aromatase Aromatase 743139

AR Androgen receptor 743040

AR-LBD Androgen receptor LBD 743053

ER Estrogen receptor alpha 743079

ER-LBD Estrogen receptor alpha LBD 743077

PPAR-g Peroxisome proliferator-activated receptor gamma 743140

ARE Nuclear factor antioxidant responsive element 743219

ATAD5 ATAD5 720516

HSE Heat shock factor response element 743228

MMP Mitochondrial membrane potential 720637

p53 p53 720552

rapidly metabolized by the liver. We retrieved HLM data from
the ChEMBL database (Bento et al., 2014), manually curated the
data, and classified compounds as stable or unstable based on the
reported half-life [T1/2> 30min was considered stable, and T1/2
< 30min unstable (Liu et al., 2015)]. The final dataset contained
3,219 compounds. Of these, we classified 2,047 as stable and 1,166
as unstable.

The HLM model performed with an overall accuracy of 81%;
sensitivity and specificity values of 71 and 87%, respectively; and
a high kappa value of 0.60 (Table 1). The HLM model reliably
predicted 91% of the compounds in the HLM dataset when using
10-fold CV. We refer the reader to our original paper for further
details of the model and its prediction performance (Liu et al.,
2015).

Implementation Aspects
The vNN-ADMET web-application is hosted on an Apache
Tomcat Web server that is accessible via a secure service over
Hypertext Transfer Protocol Secure (https). We developed the
application on the basis of a three-tiered architecture, composed
of a backend database, controller, and presentation tiers. The
first tier consists of a PostgreSQL 9.5.7 database that stores user
account information, uploaded files, constructed models, and
model predictions. The second (controller) tier provides access to
the prediction engine and implements the functionality required
to create and manage multiple predictions. We implemented
this tier, using Pipeline Pilot protocols hosted on a local
Pipeline Pilot server. The third (presentation) tier provides for
visualization of the results, with plotting capabilities for multiple
predictions. The controller and presentation tiers were developed
using Java Platform, Enterprise Edition 7, Spring Framework
4.2.2, JavaServer Faces 2.2, PrimeFaces 6.0, and BootsFaces
1.0.2. The graphical user interface in the presentation tier uses
Web standards supported by modern Web browsers, including
Microsoft Edge 38, Chrome version 58, and Firefox version 53,
without any need for plugins.

To use the system, the user must register for an account at
https://vnnadmet.bhsai.org/. Once logged in, the user can build
custom models, and run pre-built ADMET and custom models.

The data corresponding to a user (login credentials, compounds,
models, results, etc.) are not shared with any other user within
or outside the system. The uploaded compounds, constructed
models, and model predictions are purged from the system every
2 weeks.

DISCUSSION

We have presented a web-based vNN prediction platform, with
which a user can build and test models as well as predict the
ADMET properties of a compound by using our existing tools.

All vNN models performed well with accuracies of >71% (see
Table 1 for further details). On average, themodels predicted 75%
of the compounds in their datasets, using 10-fold CV.

Achieving fair comparisons between a new model and a
competing model is always difficult because such comparisons
require the same training data, validation data, and performance
measures. An important advantage of our platform is that it offers
an opportunity for developers to compare their methods with our
vNN method, using their training and validation data.

For demonstrative purposes, we quantitatively compared our
vNN method with the winning method of the Tox21 challenge
(Huang et al., 2016). This challenge was issued in 2014 by the
U.S. Toxicology in the twenty-first Century (Tox21) program,
which aims to improve toxicity prediction methods. The Tox 21
consortium solicitedmodels that could best predict the toxicity of
10,000 compounds it had tested in 12 different assays (Table 3).
It used a final evaluation dataset that was concealed to determine
the winners.

Table 4 shows the area under the curve for the receiver
operating characteristic (AUC-ROC) of the 18 leading research
teams with their best-performing model for each of the 12 assays.
To compare our models with those in Table 4, we set d to
1.0 so that we could predict all compounds. The vNN method
performed reasonably well in predicting most of the Tox21
assays. We note that the grand challenge winner used data from
PubChem (Wang et al., 2009) and ChEMBL (Bento et al., 2014),
in addition to the Tox21 data, which makes it impossible for us
to directly compare our results with their results.

The MMP data we used for our mitochondrial dysfunction
model were the same as those used in the Tox21 challenge
(Attene-Ramos et al., 2015; Huang et al., 2016). Our MMPmodel
was the seventh best performing model, with an AUC-ROC value
of 0.882 (with h = 0.3 and d = 1.0). This was comparable to the
values of more elaborate and computationally time-consuming
methods, such as deep learning (Table 4).

Some QSAR methods do not use an applicability domain to
determine whether their predictions are reliable. This could lead
to the misperception that a model can predict the activity of any
molecule. The applicability domain is vital to the vNN method.
The user of our platform can adjust it by varying the Tanimoto
distance threshold value. Although this could be set to 1 so
that the model predicts the activity of any molecule, no model
is likely to have an unlimited applicability domain (Liu et al.,
2015).

A more reasonable approach to improve a vNN-based model
is to increase the applicability domain by adding more reference
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TABLE 4 | AUC-ROCs of vNN models and the best 18 models on the final evaluation test of the Tox21 Challenge.

Team AhR AR AR-LBD ARE Aromatase ATAD5 ER ER-LBD HSE MMP p53 PPARg

GrandWinner 0.928 0.807 0.879 0.840 0.834 0.793 0.810 0.814 0.865 0.942 0.862 0.861

AMAZIZ 0.913 0.770 0.846 0.805 0.819 0.828 0.806 0.806 0.842 0.95 0.843 0.830

dmlab 0.781 0.828 0.819 0.768 0.838 0.800 0.766 0.772 0.855 0.946 0.880 0.831

T 0.913 0.676 0.848 0.801 0.825 0.814 0.784 0.805 0.811 0.937 0.847 0.822

Microsomes 0.901 – – 0.804 – 0.812 0.785 0.827 – – 0.826 0.717

FilipsPL 0.893 0.736 0.743 0.758 0.776 – 0.771 – 0.766 0.928 0.815 –

Charite 0.896 0.688 0.789 0.739 0.781 0.751 0.707 0.798 0.852 0.880 0.834 0.7

RCC 0.872 0.763 0.747 0.761 0.792 0.673 0.781 0.762 0.755 0.920 0.795 0.637

Frozenarm 0.865 0.744 0.722 0.700 0.740 0.726 0.745 0.790 0.752 0.859 0.803 0.803

ToxFit 0.862 0.744 0.757 0.697 0.738 0.729 0.729 0.752 0.689 0.862 0.803 0.791

CGL 0.866 0.742 0.566 0.747 0.749 0.737 0.759 0.727 0.775 0.880 0.817 0.738

SuperToX 0.854 – 0.560 0.711 0.742 – – – – 0.862 0.732 –

Kibutz 0.865 0.750 0.694 0.708 0.729 0.737 0.757 0.779 0.587 0.838 0.787 0.666

MML 0.871 0.693 0.660 0.701 0.709 0.749 0.750 0.710 0.647 0.854 0.815 0.645

NCI 0.812 0.628 0.592 0.783 0.698 0.714 0.483 0.703 0.858 0.851 0.747 0.736

VIF 0.827 0.797 0.610 0.636 0.671 0.656 0.732 0.735 0.723 0.796 0.648 0.666

Toxic Avg 0.715 0.721 0.611 0.633 0.671 0.593 0.646 0.640 0.465 0.732 0.614 0.682

Swamidass 0.353 0.571 0.748 0.372 0.274 0.391 0.680 0.738 0.711 0.828 0.661 0.585

vNN 0.883 0.716 0.626 0.727 0.786 0.699 0.738 0.770 0.793 0.882 0.808 0.690

vNN rank 7 12 13 11 6 13 12 9 7 7 10 11

The vNN parameters were set to h = 0.3 and d0 = 1.0. Gray cells indicate models showing performance inferior to the vNN models.

compounds. A good test of the power of a model to generate
prospective predictions is time-split validation, which divides the
data into “old” and “new” data and uses the former to train
the model and the latter “new” data for validation (Sheridan,
2013; Liu et al., 2015). We have previously shown in a time-split
validation that, whereas the accuracy of a vNN model is roughly
maintained, the number of “new” compounds that it can predict
is significantly reduced. However, by simply adding a few “new”
compounds, the coverage increases significantly (Liu et al., 2015).

The lack of training data poses an important limitation to
the vNN approach. When a dataset is too small, there is a high
probability that a target molecule will have no qualified near
neighbors in the dataset, and hence a high-quality prediction
cannot be made. However, the lack of training data is a limitation
for all machine learning methods. The difference is that most
such methods build a model no matter how small the training
dataset, and will always make a prediction for any input molecule
without considering the reliability of the predicted result. In our
view, it is better not to give a prediction at all if it is unreliable.
This also alerts users to use alternative methods, including
experimental measurements, to derive a reliable answer. As more
experimental data become available over time, the performance
of the vNN method will improve without retraining. This
is in contrast to most other machine learning methods,
which cannot take advantage of new data without retraining
a model.

This finding is especially significant for drug discovery labs
because the chemical space is restricted by the target candidates
they are investigating. For example, when exploring a new drug
target, it is crucial to continuously update the model with new
data to ensure that the applicability domain is relevant for the

new target. In a vNN-based model, this can be done easily
by adding the SMILES strings of the new compounds to the
reference dataset. For this reason, we believe that our web-
based vNN platform has the potential to greatly accelerate the
development of drugs.
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