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Abstract—In this paper we address the problem of virtual
network reconfiguration. In our previous work on virtual net-
work embedding strategies, we found that most virtual network
rejections were caused by bottlenecked substrate links while

peak resource use is equal to 18%. These observations lead
us to propose a new greedy Virtual Network Reconfiguration
algorithm, VNR. The main aim of our proposal is to ’tidy up’
substrate network in order to minimise the number of overloaded
substrate links, while also reducing the cost of reconfiguration.
We compare our proposal with the related reconfiguration
strategy VNA-Periodic, both of them are incorporated in the
best existing embedding strategies VNE-AC and VNE-Greedy
in terms of rejection rate. The results obtained show that VNR
outperforms VNA-Periodic. Indeed, our research shows that
the performances of VNR do not depend on the virtual network
embedding strategy. Moreover, VNR minimises the rejection rate
of virtual network requests by at least ≃ 83% while the cost of
reconfiguration is lower than with VNA-Periodic.

Keywords: Network virtualization, Embedding problem,

Reconfiguration.
I. INTRODUCTION

In the last few years, network virtualization has attracted a

great deal of interest from industry and research communities

as a means for designing the future Internet architecture. In

fact, Network virtualization offers a promising way to share a

physical network among many simultaneous, independent and

isolated virtual networks [1], [2]. Each Virtual Network (VN )

allocates resources in the Substrate Network (SN ) such as

processing power, memory and bandwidth. The network vir-

tualization paradigm is confronted with many challenges [3],

such as security, interoperability, resource scheduling, etc.

In this research paper, we will examine the problem of

resource allocation in SN s. The main objective is to maximise

the VN provider’s revenue by finding a judicious assignment

of a VN request in the SN . It is worth noting that each virtual

node is hosted in only one substrate node. Furthermore, each

virtual link is embedded into one substrate path. Indeed, in

our previous work [4], we proposed an embedding strategy,

denoted by VNE-AC. It is based on Max-Min Ant System

metaheuristic and outperforms all the related strategies found

in existing literature [5]–[8]. However, in spite of the efficiency

of the proposed algorithm, we observed two drawbacks in

the results obtained. The first one is the underuse of the

SN ’s resources. In this regard, we noticed that the average

rate of bandwidth use is low (i.e. ≃ 15%). We can there-

fore conclude that the SN ’s profitability can be improved.

The second drawback is bottlenecking in the substrate links.

Therefore, in most cases, rejected VN requests are caused

by a bandwidth shortfall. It is worth noting that, over time,

the SN ’s resources become fragmented due to the arrival and

departure of new and already hosted VN s respectively. These

observations have motivated us to explore the reconfiguration

of VN s mapped in the SN so as to overcome the problem of

resource fragmentation. In other words, we aim to ’tidy up’ the

SN in order to minimise the rate of overloaded substrate links.

The rejection rate of VN requests will in turn be minimised.

In this paper we will propose a new hybrid (i.e. reactive and

proactive) Virtual Network Reconfiguration algorithm, denoted

by VNR. The proposed approach is reactive so it is carried

out only when an embedding strategy cannot assign a VN
request in the SN . Moreover, VNR is a proactive approach

in that it operates only with the SN and its hosted VN s in

order to minimise the rejection rate of future VN requests.

Note that VNR is not interrelated with any mapping algorithm

and operates only with the SN and its hosted VN s. A virtual

node with its attached hanging virtual links form a star moving

candidate, denoted by ℵi. Since migration is costly in terms

of service interruption period, VNR does not migrate a whole

VN topology but only a minimum set of {ℵi} hosted in

the SN . The main idea behind our proposal is to relocate,

using migration, star moving candidates {ℵi} in the aim of

minimising the number of congested substrate links. To do

so, VNR first of all sorts, in decreasing order, star moving

candidates {ℵi} of all VN s deployed in the SN . Candidates

are sorted based on a predefined metric, κi, quantifying the

suitability for migration of each ℵi. Then, VNR selects only

the first successful migrating ℵi in the sorted selection, among

the Nmax highest (i.e. in terms of κi) star moving candidates

{ℵ1,ℵ2, · · · ,ℵNmax
}. If VNR does not succeed the migration,

the embedding strategy rejects the VN request. Otherwise, the

embedding strategy tries to map the VN request again. If it

fails once more, the process is repeated from the sorting stage,

at the most Nmig iterations.

We incorporated our reconfiguration scheme, VNR, with the

best embedding strategies, in term of rejection rate, found in

existing literature i) VNE-Greedy [6] and ii) VNE-AC [4].

Based on extensive simulations, we found that VNR signif-

icantly decreases the rejection rate of VN requests. More-

over, we compared VNR with the reconfiguration algorithm

VNA-Periodic [5]. The results obtained show that our

proposal outperforms VNA-Periodic.

The remainder of this paper is organised as follows. In

the next Section we will summarise the related approaches to

solving the VN reconfiguration problem. In Section III we will

outline the main reasons that motivated this research. Then, we

will formulate the VN reconfiguration problem in Section IV,

before describing our VN reconfiguration algorithm, VNR,

and providing a performance evaluation in Section V and

Section VI respectively. Finally, Section VII will conclude this



paper.

II. RELATED WORK

VN reconfiguration is a challenging problem that has only

been tackled by a handful research papers. To the best of our

knowledge, only the following VN reconfiguration algorithms

can be found in existing literature.

In [5], the authors propose the VN reconfiguration algo-

rithm VNA-Periodic. It is a periodic scheme and is mainly

composed of two stages. The first stage involves marking a

set of VN s hosted in the SN that make use of at least

one overloaded physical node or link. Then, in the second

stage, VNA-Periodic uses the corresponding embedding

strategy to relocate the marked VN s. The authors claim that

the cost of reconfiguration is reduced because only a subset

of already mapped VN s is marked. However, we noticed that

the cost of VNA-Periodic reconfiguration is high since it is

periodically triggered and reassigns the whole VN topology.

However, a judicious approach should migrate only virtual

nodes and links deployed in excessively loaded substrate nodes

and links. Moreover, VNA-Periodic does not move the

marked VN s by itself. It ’sub-contracts’ the work to the initial

embedding strategy.

In [6], the authors restrain the reconfiguration problem. In

fact, migration is allowed to the virtual links and prohibited to

the virtual nodes. To do so, first the reconfiguration algorithm

periodically detects the over-loaded substrate links. Then, it

finds new substrate paths or updates the split ratio of virtual

links that are in transit within overloaded substrate links. Note

that the authors base their proposal on traffic path splitting.

Moreover, the authors do not take advantage of migrating

traffic sources and sinks (i.e. virtual nodes) to minimise

bottlenecking in the SN .

In [9], the authors propose an autonomic and distributed

reconfiguration algorithm. It is run locally within all substrate

nodes. The main idea is to shorten the physical path embed-

ding a virtual link that overloads at least one substrate link

according to its incoming/outgoing traffic. To do this, either

the source or the destination of traffic (i.e. virtual node) is

moved in order to shunt the overloaded substrate link. The

reconfiguration algorithm is divided into five stages. First,

each substrate node monitors and analyses the presence of

overloading traffic. Then, it exchanges monitoring information

with its neighbours. Next, each substrate node analyses the

received information and decides whether to migrate one of

its hosted virtual nodes or to receive a virtual node from its

neighbours. After that, a receiving substrate node allocates the

resources required to host the moving node. Finally, the virtual

node is moved and hence the path length is reduced. The main

criticism of this approach is that the migration of nodes is

triggered without considering the notion of access and core

routers. Besides, contracting a path may require a great deal

of moving until the path’s length becomes equal to one hop.

Moreover, the migration frequency of routers depends on the

traffic load, which is actually unstable and correlated to the

running applications.

In [10], the authors propose a reactive reconfiguration

scheme that is executed only when the defined embedding

strategy rejects the VN request. To achieve this, the proposed

algorithm first detects the unmapped virtual nodes and links
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Fig. 1. VNE-AC: Average resources use

causing the VN request rejection. Then, candidate substrate

nodes, Ci, for each unmapped virtual node, ni, are selected.

Next, in order to map ni, the algorithm tries to migrate one of

the virtual nodes mapped in Ci to one node among the potential

candidate nodes. The algorithm also detects the bottlenecked

substrate links causing the embedding to be blocked. Then,

the strategy tries to re-assign one of the virtual links transiting

over the overloaded substrate link. To do so, the authors make

use the maximum flow algorithm when setting the residual

bandwidth of the bottlenecked link to zero. Note that the

authors assume that candidate substrate nodes are predefined

for each virtual node, which is not realistic. In fact, many

embedding strategies do not return this information, such

as [4]–[6]. Moreover, the reconfiguration strategy re-assigns

virtual links without taking advantage of moving the source

and destination (i.e. virtual node). Besides, the maximum flow

algorithm does not minimise the path length and consequently

bandwidth allocation is not optimised.

In this paper we will propose a new virtual network recon-

figuration, VNR. Unlike [5], we do not relocate the whole VN
topology but only a star in the aim of minimising the cost

of reconfiguration. Moreover, our proposal is reactive and is

not periodically executed as in [5], [6], [9]. Besides, it can be

considered as a proactive approach since it also ’tidies up’ the

SN in order avoid future VN rejection. Unlike [5], [10], VNR
is not interrelated with the embedding strategy and does not

need any details about the VN request rejected (e.g. unmapped

virtual nodes, etc). Finally, our proposal is not based on path

splitting as in [6] and takes into account the access and core

routers, unlike [9].

III. MOTIVATION FOR VN RECONFIGURATION

In our previous work [4], we proposed the embedding

strategy called VNE-AC which is based on Max-Min Ant

System metaheuristic. The rejection rate of VN requests

obtained with VNE-AC is equal to 4.56± 0.40%. It is worth

noting that the latter result is the lowest obtained result

compared with related strategies and it is calculated according

to the benchmark scenario assumed in [5]–[8]. We analysed

the extensive simulation traces and determined the reasons

for VN rejection. In fact, ≃ 99% of rejections were caused

by a bandwidth shortage (i.e. substrate links). The remaining,



≃ 1% was due to a lack of processing power or memory (i.e.

substrate nodes).

We calculated the average resource use as illustrated in

Fig. 1 and noticed that during simulations, the peak average

bandwidth use in the SN is equal to 18%. Thus, we concluded

that SN use is not optimised since ≃ 99% of VN rejec-

tions are caused by bandwidth deficiency while, at the most,

only 18% of bandwidth is exploited in the SN . Moreover,

we concluded that many substrate links are overloaded (i.e.

bottlenecked).

These findings motivated us to explore the reconfiguration

of VN s already hosted in the SN . Thanks to migration

techniques, moving virtual nodes [11] and paths [12] becomes

easily feasible. Thus, our aim is to propose a new reconfigura-

tion algorithm to balance the load within the SN . As a result,

the VN rejection rate will be minimised.

IV. FORMULATION OF VN RECONFIGURATION PROBLEM

We can model the SN as an undirected graph, denoted

by Gs(N s, Es), where N s and Es are the sets of physical

nodes and their connected links respectively. Each physical

node, ns
i ∈ N

s, is characterised by its i) residual processing

power (Cns

i
), ii) residual memory (Mns

i
) and iii) type: access

or core (Xns

i
). Note that if Xns

i
= 1, then ns

i is an access node.

Otherwise, Xns

i
= 0. Likewise, each physical link, es

x ∈ E
s, is

typified by its available residual bandwidth, denoted by Bes
x
.

Similarly, a VN request can be modelled as an undirected

graph, denoted by Gv(N v, Ev), where N v and Ev are the sets

of virtual nodes and their virtual links respectively. Within a

VN request, each virtual node, nv
i ∈ N

v , is associated with

the i) required processing power (Cnv

i
), ii) required memory

(Mnv

i
), and iii) its type (Xnv

i
). Moreover, each virtual link,

ev
x ∈ E

v , requests Bev
x

in terms of bandwidth.

As stated in Section III, the main aim is to decrease the

number of congested substrate links since substrate nodes do

not affect the rejection of VN requests. Let ζ denote the set

of α-congested substrate links. Formally,

ζ = {es
x ∈ E

s : Bes
x
≤ (1− α)Bmax

es
x

} (1)

where Bmax
es

x

is the bandwidth capacity of es
x and 0 ≤ α ≤ 1.

In fact, our first objective is to reconfigure the Accepted

VN Requests, AR, within the SN in the aim of minimising

the number of α-congested links. Formally,

minimiseAR (|ζ|) (2)

Our second objective is to minimise the cost of recon-

figuration. Let φ denote the migration cost, based on the

reconfiguration cost proposed in [5], then we can define φ
as the weighted sum of migrated virtual nodes φn and links

φe (i.e. φ = aφn + bφe). Formally,

minimiseAR (aφn + bφe) (3)

where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1 are the weights of φn and

φe respectively. Note that a + b must be equal to 1.

In addition, a virtual node, nv, can move to a substrate

node, ns, only if both nodes are of the same type (i.e. access

or core). Besides, a substrate node cannot embed two virtual

nodes belonging to the same VN .

Algorithm 1: Embedding scheme of VN x

while VN queue Q is not empty do1

VN x ← Q.pop2

stop1 ← false3

i← 14

while ( (stop1 = false) and (i ≤ Nmig) ) do5

Call the embedding strategy to assign VN x6

if (Successful mapping) then7

stop1 ← true8

else9

Call VNR10

if (Successful reconfiguration) then11

i← i + 112

else13

stop1 ← true14

The problem outlined above is a multi-objective optimisa-

tion problem with conflictual objectives. It is a combinatorial

optimisation problem that is known as NP-hard [13]. In spite

of the similarities between our problem and the MPLS routing

problem, none of the MPLS-related strategies [14] can be used.

Indeed, the MPLS problem can be formulated as a Multi-

Commodity Flow problem [15] since a source/destination of

traffic cannot be migrated. However, in our case, we have

more flexibility and the possibility of reducing bottlenecking

in the SN by migrating sources/destinations of traffic and/or

reassigning virtual links. Hereafter, we will describe our new

Virtual Network Reconfiguration algorithm, VNR.

V. PROPOSAL: VNR ALGORITHM

In this section we will describe our VN hybrid reconfigu-

ration algorithm, VNR. Our proposal is a reactive scheme, in

that it is executed when the VN embedding strategy rejects a

VN x request. Moreover, VNR is not interrelated with any VN
embedding strategy. Indeed, VNR is a proactive approach in

that it operates only with the SN and its hosted VN s in order

to minimise the rejection rate of future VN requests. In other

words, our proposal ’tidies up’ the SN further to physical

resource fragmentation due to the arrival and departure of new

and already hosted VN s respectively.

As explained in Section III, the main problem is overloaded

substrate links. In this respect, we propose to migrate in each

iteration one star moving candidate, denoted by ℵi. Note that

ℵi is formed by one virtual node and its attached hanging

virtual links. The main idea behind star topology moving is

to reassign virtual links while migrating the central virtual

node. In other words, we can see the migration as an elastic

movement in which a moving virtual node nv is fastened with

its attached virtual links that can be considered like elastics.

Indeed, in most cases, the moving virtual node can land in any

substrate node since all VN rejections are caused by a lack of

bandwidth, as explained in Section III. Thus, our challenge is

to find the best hosting substrate node to reduce the number

of α-congested links. In doing so, we will not re-embed all

the VN topology but only the canonical star topology ℵi.

Consequently, we will reduce the service interruption period



Algorithm 2: VNR

Generate the set of star moving candidates ℵ in the SN1

for j=1 to |ℵ| do2

Calculate κj for ℵj3

Sort out decreasingly {ℵj} according to {κj}4

stop2 ← false5

j ← 16

while (stop2 = false) & (j ≤ Nmax) do7

Migrate (ℵj)8

if (Successful migration) then9

stop2 ← true10

else11

j ← j + 112

of VN s.

When a VN request is rejected, VNR begins by sorting out

the star moving candidates {ℵi}, in decreasing order, of all

VN s mapped in the SN . They are sorted according to κi a

criterion which quantifies the ℵi’s suitability for migration. To

this end, κi is defined according to i) the number, Ai, of α-

congested links in the paths embedding ℵi’s virtual links and

ii) its residual lifetime, Ti. Formally,

κi = Ai × Ti (4)

Note that we favour star moving candidates that will expire as

late as possible and which whose virtual links pass through the

greatest number of α-congested links. In fact, reconfiguring a

{ℵi} that is soon set to leave the SN is not judicious. For

this reason, κi is proportional to the residual lifetime Ti.

Initially, VNR selects only the first successful migrating

ℵi, according to the sorting order, among the Nmax highest

ranking star moving candidates {ℵ1,ℵ2, · · · ,ℵNmax
}. If VNR

does not succeed the migration, the embedding strategy rejects

the VN request. Otherwise, the embedding strategy tries to

map the VN request again. If it fails once more, the process

is repeated from the sorting stage, at the most Nmig iterations.

The VNR strategy is summarised in Algorithms 1 and 2.

To reconfigure ℵi, our proposal proceeds as follows. First,

VNR generates a new substrate network, denoted by ŜN . It is

similar to SN in terms of i) topology and ii) residual resources

but without substrate links with residual bandwidth lower than

the minimum bandwidth required by ℵi’s virtual links. Next,

VNR verifies whether ŜN contains a connected component in-

cluding all the substrate nodes hosting the one-hop neighbours

of ℵi’s star-centre virtual node. If the connected component

does not exist, it is impossible to migrate ℵi because at least

one ℵi’s virtual link cannot be mapped. Otherwise, VNR selects

substrate node ns within the connected component, in the aim

of migrating ℵi’s virtual node to ns and its attached virtual

links thus minimising ̺ns

ℵi
. It is equal to:

̺ns

ℵi
=

Average bandwidth of substrate paths hosting ℵi

Ai + 1
(5)

Note that the reassignment of ℵi’s virtual links is based on

a shortest path algorithm using our proposed path definition

metric in [4]. The star moving candidate ℵi migration method

is summarised in Algorithm 3.

Algorithm 3: Migration of ℵi

ŜN ← SN /{es
x : Bes

x
< minBev

x
∈ℵi

(
Bev

x

)
}1

N̂v ← {set of 1-hop virtual neighbours of ℵi’s central2

virtual node}
N̂s ← {set of susbsrate nodes hosting virtual nodes N̂v }3

CC ← connected components of ŜN4

if
(
∃ CCx ∈ CC/N̂s ⊆ CCx

)
then5

if ∄ ns ∈ CCx / migration of ℵi’s virtual node to ns6

and its attached virtual links succeeds then

Failed migration7

else8

Select the best substrate node ns ∈ CCx:9

migration of ℵi’s virtual node to ns and its

attached virtual links minimises ̺ns

ℵi

Successful reconfiguration10

else11

Failed migration12

VI. PERFORMANCE EVALUATION

In this section, we will study the efficiency of our proposal,

VNR. To achieve this, we will first describe our discrete event

VN embedding simulator. Then, we will define several metrics

in the aim of showing the advantages of VNR compared to

the proactive reconfiguration algorithm VNA-Periodic [5].

Note that we cannot compare our proposal with the recon-

figuration algorithms proposed in [6], [9], [10] since the

assumptions and constraints are different. In [6] the authors

assume a path splitting approach, while in [9] the type of

router (i.e. access and core) is not taken into consideration

and in [10] the algorithm requires as inputs the virtual nodes

and links that the embedding algorithm failed to assign (see

Section II).

Our reconfiguration scheme VNR and VNA-Periodic will

be incorporated with the best embedding strategies found in

existing literature i) ii) VNE-AC [4] and ii) VNE-Greedy [6].

Finally, we will build on the outputs of the above simulations

to assess our proposal and comment the results obtained.

A. Simulation Environment

We implemented a discrete event VN embedding simulator.

In this respect, the GT-ITM tool is used to generate random

SN and VN topologies. The arrival of VN requests is

modelled by a Poisson Process with rate λA and VN lifetime

is modelled by exponential distribution with mean µL.

As stated in [4], [6], [10], we make use the following

benchmark scenario. The SN size is set to 100 and, in this

case, the ratio of access and core nodes is fixed at 20% and

80%, respectively. Furthermore, the VN size is set according

to a discrete uniform distribution, using the values given in

[2, 10]. Since virtual access nodes are defined by customers,

we can assume that each virtual node could be access or core

with a probability of 0.5. It is worth noting that in both cases

(VN and SN ), each pair of nodes is randomly connected

with a probability of 0.5. The arrival rate, λA, and the average

lifetime, µL, of VN s are fixed to 4 requests per 100 time unit



TABLE I
REJECTION RATE OF VN REQUESTS - Q (%)

Strategy VNE-AC VNE-Greedy
Without reconfiguration 4.56 ± 0.40 12.95

VNA-Periodic 4.31 ± 0.38 11.55

VNR 0.37 ± 0.098 2.2

and 1000 time units respectively. We calibrate the capacity of

substrate nodes and links (i.e. Cns

i
, Mns

i
, and Bes

x
) according

to a continuous uniform distribution, taking the values in

[50, 100]. Similarly, the required virtual resources (i.e. Cnv

i
,

Mnv

i
, and Bev

x
) are set according to a continuous uniform

distribution, using the values given in [10, 20]. The number

of VN requests are set to 2000, and, based on extensive

simulations, Nmig and Nmax are set to 5% and 10% of

currently mapped virtual nodes respectively.

We set the parameters of VNE-AC and VNA-Periodic
as calibrated in [5] and [4] respectively. Note also that each

performance value of pseudo-random strategies is equal to the

average of 30 simulations. Moreover, simulation results are

always presented with confidence intervals corresponding to a

confidence level of 99.70%. Only minute confidence intervals

are not shown in the following figures.

B. Performance Metrics

In this section, we will define the performance metrics used

to assess our proposal.

1) Q: is the final rejection rate of VN requests.

2) φ: is the cost of migration as defined in equation 3,

φ = (aφn + bφe). We set a = b = 1

2
.

3) U(t): measures the average use rate of resources (i.e.

processing power, memory, bandwidth) in the SN substrate

links at time t. For example, the average bandwidth use rate

can be expressed as:

U(t) =
1

|Es|
×
∑

ex
s
∈Es

(
Bex

s

Bmax
ex

s

)
(6)

In the following section, we will present the results of our

simulations and summarise the key observations.

C. Evaluation Results

Table I shows a comparison of the rejection rate of

VN requests obtained by the embedding strategies VNE-AC
and VNE-Greedy when the reconfiguration algorithms (i.e.

VNA-Periodic and VNR) are incorporated. We can first

of all see that our reconfiguration algorithm VNR and

VNA-Periodic decrease the rejection rate of VN requests

whatever the embedding strategy used (i.e. VNE-AC and

VNE-Greedy). This means that reconfiguration algorithms

enhance the acceptance of VN s in the SN . Moreover, the

results show that our proposal, VNR, significantly reduces the

rejection rate with both mapping strategies and more so than

VNA-Periodic. In fact, as illustrated in Table II, our VNR
strategy reduces the rejection rate by at least 83% . This is

consistently better than VNA-Periodic since VNR is at least

10 times more effective in terms of reducing VN rejection

rate.

An important factor to consider when evaluating the ef-

fectiveness of a reconfiguration-strategy is the incurred cost

of migrating virtual nodes and links. In fact, in spite of the

TABLE II
DECREASE OF REJECTION RATE (%)

Strategy VNE-AC VNE-Greedy
VNA-Periodic 5.48 10.81

VNR 91.88 83.01
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(a) VNR
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VNE-AC + VNA-Periodic

VNE-Greedy
VNE-Greedy + VNA-Periodic

(b) VNA-Periodic

Fig. 2. Robustness of VN reconfiguration algorithms

TABLE III
COST OF MIGRATION - φ

Strategy VNE-AC VNE-Greedy
VNA-Periodic 2598.13 ± 134.74 3625

VNR 500.67 ± 35.83 1866

flexibility that virtualization offers in terms of moving virtual

nodes and links, the service disruption caused by migrations

can have a negative impact on running applications (e.g.

video streaming, VoIP, etc.). Indeed, in [16] we evaluated the

average migration delay in testbed platform to 2ms, which

can disturb real-time applications. By triggering reconfigura-

tion only when needed, VNR significantly reduces the cost

of reconfiguration. As illustrated in Table III, our proposal

considerably reduces the cost of migration. In fact, the results

show that VNR reduces the cost between 2 and 5 times more

than VNA-Periodic. We can therefore conclude that our

proposal outperforms VNA-Periodic in terms of rejection

rate and cost of migration.

Fig. 2 evaluates the robustness of VNR and

VNA-Periodic when the arrival rate of VN requests,

λ, increases while their average lifetime is fixed. It is clear
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to see that our proposal significantly reduces the rejection

rate with both VN embedding strategies (i.e. VNE-AC and

VNE-Greedy) while the arrival rate of VN s grows. For

example, with VNE-AC and λ equal to 8, 16 and 32, VNR
reduces the rejection rate by 69.81%, 33.69% and 16.17%
respectively. Note that the rejection rate improvement stills

high while the arrival rate grows exponentially. Moreover,

with high values of λ, the SN is saturated. On the other

hand, VNA-Periodic does not resist to the VN request

flow. For example with VNE-AC and λ is equal to 8 and

32, VNA-Periodic reduces the rejection rate by 3.41%
and 0.8% respectively. Besides, our tests showed that when

λ = 16, VNA-Periodic slightly increases the rejection

rate.

Fig. 3 shows the impact of the value of α-congested

substrate links on the rejection rate of VN s. We can see

that when α is high (e.g. 90%), the rejection rate increases.

This can be explained by the fact that VNR only deals with

bottlenecked substrate links. Hence, VNR cannot easily ’tidy

up’ the SN since it acts late. However, with small α values

VNR prevents the overloading of substrate links by moving the

virtual links mapped to bottlenecked substrate links. Based on

extensive simulations, we can see that good performances are

achieved with a small value of α.

Fig. 4 illustrates the impact of maximal number of iterations,

Nmig , on VNR’s performance. Note that Fig. 4 depicts the

rate of accepted VN requests that needed to be reconfigured

in the SN to be mapped. This is carried out according to

the maximum number of reconfigurations allowed per VN
request (i.e. Nmig). The results show that most (i.e. ≃ 50%) of

the embedded VN requests require only one reconfiguration.

Moreover, the arrival rate of VN requests has no impact on

these results.

VII. CONCLUSION

Our research studied the problem of virtual network recon-

figuration. The main objective was to reduce the rejection

of virtual networks. To do so, we proposed a new greedy

reconfiguration algorithm, VNR whose main aim is to reassign

canonical star virtual topologies hosted in the overloaded

substrate nodes and links. We incorporated our proposal with

the best existing embedding strategies (i.e. VNE-AC and

VNE-Greedy) and compared it with the related virtual net-

work reconfiguration algorithm VNA-Periodic. The results
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Fig. 4. VNE-AC + VNR: Impact of Nmig

obtained show that VNR minimises the virtual network rejec-

tion rate at least by ≃ 83% while the cost of reconfiguration

is also lower (five times lower than VNA-Periodic).
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