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Abstract: We analyze the N = 2 superconformal field theories that arise when a pair
of D3-branes probe an F-theory singularity from the perspective of the associated vertex
operator algebra. We identify these vertex operator algebras for all cases; we find that
they have a completely uniform description, parameterized by the dual Coxeter number
of the corresponding global symmetry group. We further present free field realizations
for these algebras in the style of recent work by three of the authors. These realizations
transparently reflect the algebraic structure of the Higgs branches of these theories. We
find fourth-order linear modular differential equations for the vacuum characters/Schur
indices of these theories, which are again uniform across the full family of theories and
parameterized by the dual Coxeter number. We comment briefly on expectations for the
still higher-rank cases.
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1. Introduction and Summary

Four-dimensional N = 2 superconformal field theories (SCFTs) showcase a remark-
ably rich diversity. Some admit Lagrangian descriptions, but many more are (conformal
gaugings of) isolated, strongly coupled theories. A typical theory of class S is of the
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latter type [1,2], as are all models of Argyres–Douglas kind.1 A useful characteristic
by which one may organize this menagerie of theories is their rank, i.e., the complex
dimension of their Coulomb branch of vacua. A series of incrementally refined papers
culminated in a conjectured classification and characterization of all rank-one theories
[7–10] (see also [11]). For higher ranks, a similar feat has not yet been achieved, though
for partial progress see [12,13].

An interesting family of higher-rank theories are the rank-n F-theory SCFTs, i.e., the
low-energyworldvolume theories of stacks ofnD3-branes probingF-theory singularities
[14–18]. The possible choices of singularity follows the Kodaira classification, with
the resulting interacting theories being labeled H0, H1, H2, D4, E6, E7, or E8. Their
flavor symmetries include as simple factors the corresponding simple Lie groups (with
Hi → Ai , and H0 corresponding to the trivial Lie group), and, for n > 1, also a
factor of SU (2). What’s more, these theories have the beautiful property that their
Higgs branches are the moduli spaces of n centered g-instantons in R

4, which is why
they are sometimes referred to as rank-n instanton SCFTs.2 In addition, despite their
uniformdescription inF-theory, for eachn this family of theories contains representatives
of all three above-mentioned categories: one is Lagrangian (D4), three admit class S
descriptions (E6, E7, E8), and the remaining three are of Argyres–Douglas type. The
rank-two series of instanton SCFTs is the subject of interest in this paper.

A substantially more intricate invariant of four-dimensional N = 2 SCFTs than
their Coulomb branch is their associated vertex operator algebra (VOA), which arises by
performing a cohomological truncation of the operator product algebra of local operators
[19].3 The VOA repackages an infinite amount of protected conformal data and as such
provides an indispensable jumping-off point for a full analysis of the SCFT. The chiral
algebras V(1)

g associated with the rank-one g-instanton SCFTs have been identified in
[19–22]. They admit a uniform description as ĝ affine current algebras at level k2d =
−h∨−6

6 , where h∨ denotes the dual Coxeter number of the Lie algebra g.4 From the VOA
viewpoint, there is no obstruction—and in fact it appears quite natural—to include two
additional Lie algebras, g2 and f4, to the previously listed seven, thus completing the so-
called Deligne–Cvitanović series of exceptional Lie algebras [23,24]. Their inclusion is
suggested by the observation that the resulting series of nine current algebras are uniquely
singled out as those whose levels and Virasoro central charges simultaneously saturate
three independent (four-dimensional) unitarity bounds [19,22]. While their higher-rank
cousins are not known to be singled out in such fashion, we find that the higher-rank
VOAs still behave in a remarkably uniform fashion.

To understand the VOAs V(2)
g associated with the rank-two g-instanton SCFTs, we

pursue two different strategies. The first one is to set up and solve the bootstrap problem
for these chiral algebras. The sine qua non of this approach is a proposal for the list
of strong generators of V(2)

g . Our Ansatz will be the minimal one compatible with gen-
eral four-dimensional principles, consisting of only generators descending from Higgs
branch chiral ring generators; these were shown to necessarily give rise to strong genera-
tors in [19]. Concretely, we set out to construct vertex operator algebras that are strongly

1 While these theories do not admit a manifestlyN = 2 supersymmetric Lagrangian description, a variety
of them have been argued to be the endpoints of LagrangianN = 1 renormalization group flows [3–5], or to
lie on theN = 1 conformal manifolds of Lagrangian theories [6].

2 Here Lie(G) = g, with G the flavor symmetry factor just mentioned.
3 We use the terms vertex operator algebra and chiral algebra interchangeably.
4 The H0 F-theory SCFT is a special case. It has no flavor symmetry and its chiral algebra is the (2, 5)

VirasoroVOA.Nevertheless, formany purposes it fitswithin the rank-one series upon formally setting h∨ = 6
5 .
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generated by affine su(2) and g currents and a conformal weight h = 3
2 generator

transforming in the representation ( 12 ,Adj) of su(2) × g.5 We find that the associativity
constraints can be solved uniquely and that the resultingOPE coefficients have a uniform
expression in terms of h∨. As an aside, we note that the “exotic” SCFT dubbed TX in
[25] can be recognized here as being exactly the rank-two a2 instanton SCFT.

In principle there is no obstruction to pursuing this approach to construct the VOAs
V(n)
g for n � 3, and we expect that they will all admit similarly uniform descriptions.

However, the list of strong generators grows with n because, on the one hand, gener-
ators descending from the Higgs branch chiral ring proliferate and, on the other hand,
additional generators not related to Higgs branch chiral ring operators will make an
appearance, rendering the bootstrap problem more involved. At the end of this paper
we make a conjecture for the complete list of strong generators for V(n)

g on the basis
of a detailed analysis of the Schur limit of the superconformal index; we have not yet
attempted to construct the corresponding VOAs.

Our second, complementary strategy is to realize these same vertex operator algebras
using free fields, as proposed in [26]. The low-energy degrees of freedom in a generic
Higgs branch vacuum of a rank-two g-instanton SCFT consist of 2(2h∨ − 1) free half-
hypermultiplets. Consequently, according to [26], we should anticipate the existence
of (and could attempt to construct) a free field realization in terms of as many chiral
bosons. However, we find a more economical approach by considering an intermediate,
non-generic (but more symmetric) locus on the Higgs branch. Specifically, we consider
the locus of the Higgs branch that preserves the full G-symmetry. A dense, open subset
of this locus is isomorphic to T ∗(C∗), where the residual interacting degrees of freedom
at any point on this locus comprise two copies of the rank-one g-instanton SCFT. From
this analysis we are led to a uniform free field construction in terms of two copies of
the rank-one g-instanton VOA V(1)

g accompanied by two chiral bosons. The success
of this construction rests upon an exceptionally fine-tuned conspiracy of the various
ingredients.6 For example, non-trivial null relations for the twocopies ofV(1)

g are required
in order for the subspace of the free field state space that is strongly generated by the
free field realized generators of V(2)

g to be closed under the OPE. In a similar vein, these
free field realizations are apparently simple (as modules over themselves), precisely
because the two copies of V(1)

g are already taken to be their simple quotients. Note that

one could opt to realize each of the two copies of the vertex operator algebras V(1)
g in

terms of 2(h∨ − 1) chiral bosons using the construction of [26], and in doing so arrive
at a construction of V(2)

g in terms of the expected 2(2h∨ − 1) chiral bosons. The abstract
algebras encoded in the free field realizations turn out to be identical to the results of
the more direct, but technically more involved, chiral algebra bootstrap approach of the
previous paragraph—all roads lead to Rome.

An important entry of the VOA/SCFT dictionary states that the vacuum character of
a vertex operator algebra associated to a four-dimensional superconformal field theory

5 The cases H0 and H2 behave slightly differently. The rank-two H0 chiral algebra is generated by an
affine su(2) current algebra and an additional generator transforming as an su(2) doublet and of conformal
weight 5

2 . For H2, on the other hand, we must include an independent Virasoro stress tensor, as the Sugawara
construction fails to provide one due to the criticality of both affine current algebras.

6 The simplest instance is the numerological fact that the affine level of the ĝ current subalgebra of V(2)
g

equals twice the level of the ĝ subalgebra of V(1)
g . This equality guarantees that the ĝ current subalgebra of

V(2)
g , realized as the diagonal sum of the ĝ current algebras of the two copies of V(1)

g , has the correct level.
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equals the Schur limit of the superconformal index of that theory [27]. Furthermore, it
was conjectured in [22] (as a corollary of the conjecture that the Higgs branch agrees
with the associated variety of the associated VOA) that this quantity will always satisfy
a finite-order linear modular differential equation. The uniform behavior of the rank-n
instanton SCFTs, evidenced in their F-theory description and, at least for n = 1, 2, in
their explicitly constructed associated chiral algebras, naturally extends to the modular
differential operator annihilating the vacuum character. For n = 1, this was found to be
of second-order with the one free coefficient a quadratic function of the dual Coxeter
number [22]. Here for n = 2 we find similarly uniform (twisted) modular differential
operators of fourth order. On the basis of evidence coming from the d4 case, we further
conjecture that for n = 3 there exist seventh-order twistedmodular differential operators,
and more generally that for each n there exist uniform modular differential operators
annihilating the vacuum characters of the VOAs V(n)

g .
The plan of the paper is as follows. In Sect. 2 we review various known facts about

the rank-n instanton SCFTs. In Sect. 3 we present explicit vertex operator algebras
V(2)
g associated with the rank-two F-theory SCFTs as obtained from the chiral algebra

bootstrap approach. In Sect. 4, we construct these same VOAs using geometric free
field realizations. Section 5 is devoted to the fourth-order modular differential operators
annihilating the vacuum characters of V(2)

g . In Sect. 6 we briefly discuss the future
challenge of developing a more general story for the theories with n � 3. We include
a variety of useful facts and properties of the Deligne–Cvitanović series of exceptional
Lie algebras in “Appendix A”.

2. Higher Rank F-Theory SCFTs

The rank-n F-theory SCFTs describe the low-energy dynamics of a stack of n D3-
branes probing a singular fiber of an elliptic K3 surface in F-theory on which the dilaton
is constant. There are seven such possible singular fibers, and they are typically de-
noted by H0, H1, H2, D4, E6, E7 and E8. The flavor symmetry algebra of the resultant
superconformal field theory includes as a simple factor the corresponding Lie algebra
a0, a1, a2, d4, e6, e7, e8, where a0 represents the trivial Lie algebra. For n > 1, there
is an additional su(2) factor in the flavor symmetry. A salient feature of these theories
is that their Higgs branches of vacua coincide with the moduli spaces of n centered
g-instantons. (In [19] it was observed that, from the perspective of the SCFT/VOA cor-
respondence, there is no obstruction to the existence of a theory with flavor symmetry
g2 or f4 with Higgs branch operators satisfying the relations defining the corresponding
one-instanton moduli space. We will see that for the purposes of this paper, the cases g2
and f4 continue to be well-behaved.7) Altogether, the rank-one theories with the prop-
erty that their Higgs branches are one-instanton moduli spaces are labeled by an algebra
belonging to the Deligne–Cvitanović series of exceptional Lie algebras [23,24]:

a0, a1, a2, g2, d4, f4, e6, e7, e8 . (2.1)

In this paper, we aim to study the higher-rank generalizations of these SCFTs, mainly
from the viewpoint of the associated vertex operator algebra introduced in [19].

7 It is still unclear if these VOAs arise in connection with actual physical SCFTs. Some arguments against
in the case of f4 were presented in [28].
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Table 1. The Deligne–Cvitanović series of simple Lie algebras, the data of the associated (rank-one) VOAs
and the data of their (putative) parent four-dimensional SCFTs

g h∨ k2d c2d h1 a4d r

g(h∨) h∨ − h∨+6
6 −2 − 2h∨ − h∨

6
5+3h∨
24

h∨+6
6

a0
6
5 − 6

5 − 22
5 − 1

5
43
120

6
5

a1 2 − 4
3 −6 − 1

3
11
24

4
3

a2 3 − 3
2 −8 − 1

2
7
12

3
2

g2 4 − 5
3 −10 − 2

3
17
24

5
3

�

d4 6 −2 −14 −1 23
24 2

f4 9 − 5
2 −20 − 3

2
4
3

5
2

�

e6 12 −3 −26 −2 41
24 3

e7 18 −4 −38 −3 59
24 4

e8 30 −6 −62 −5 95
24 6

The a0 entry is a formal member of the list and corresponds to the VOA of the (2, 5) Virasoro minimal model,
whose four-dimensional parent is the (A1, A2)Argyres–Douglas SCFT.As the four-dimensional interpretation
of the g2 and f4 cases is still unclear, the values of a4d and r for these entries are formal/conjectural. In
particular even if these theories exist, the values of r may be different if implicit assumptions about their
Coulomb branches do not hold

2.1. Moduli spaces and central charges. We will begin by recording some useful infor-
mation about these theories, with an emphasis on the rank-two case.

Coulomb branch. The Coulomb branch chiral ring of a rank-n F-theory SCFT is freely
generated by n operators. The U (1)r charges r j , j = 1, . . . , n of these generators are
integer multiples of the charge of the rank-one generator. In other words

r j = j r, with r = h∨ + 6

6
, (2.2)

where h∨ denotes the dual Coxeter number of the Lie algebra in question; see Table 1
for the relevant values.

In the F-theoretic description, the Coulomb branch corresponds to vacua where the
D3-branes are moved away from the singular fiber of an elliptically fibered K3 surface.

Higgs branch. The Higgs branch of the rank-n theory of type g( �= a0) is quite a bit
more intricate, and can be identified with ˜M(n)

g , the centered n-instanton moduli space
of g-instantons on R

4. This is a hyperkähler manifold with quaternionic dimension

dimH
˜M(n)

g = nh∨ − 1 . (2.3)

This dimension formula can be understood intuitively by considering a configuration
of n widely separated one-instanton configurations, each of which has an uncentered
moduli space of dimension dimHM(1)

g = h∨, and removing the overall center of mass
position.

As algebraic varieties, the one-instanton moduli spaces of the Deligne–Cvitanović
series of simple Lie algebras have an economical description. Their coordinate rings are
generated by adjoint-valued moment maps μg subject to the Joseph relations [29]. To
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present these relations, we first note that one of the defining properties of the Deligne
series is the appearance of precisely three real irreducible representations in the decom-
position of the symmetric tensor product of two adjoint representations.8 Following the
notations of [30], we have

sym2Adj = 1 ⊕ Y∗
2 ⊕ Y2 . (2.4)

Here 1 denotes the singlet representation, while Yk denotes the representation with
Dynkin labels k times those of the adjoint representation.9 Note also that a1 is slightly
degenerate from this point of view, in that the representation Y∗

2 is absent. We refer the
reader to “Appendix A” for additional information about these representations. With this
notation established, the Joseph relations state that

μ2
g

∣

∣

1 = 0, and μ2
g

∣

∣

Y∗
2

= 0 . (2.5)

In the rank two theories, the Higgs branch chiral ring has as generators the moment
maps μsu(2) and μg, which transform in the (1, 1) and (0,Adj) representations of
su(2)× g, respectively, along with an additional multiplet of generators ω with SU (2)R
charge R = 3/2 that transforms in the ( 12 ,Adj). This collection of generators can, for
example, be read off from the two-instanton Hilbert series as computed in [31–34]. The
Hilbert series also encodes their relations up to numerical coefficients. Decoding that
information allows us to write the relations defining the two-instanton moduli space
uniformly for all algebras of the Deligne–Cvitanović series as follows:

at R = 2 : μ2
su(2)

∣

∣

(0,1) = 1

4
μ2
g

∣

∣

(0,1), (2.6)

at R = 5/2 : μg ω
∣

∣

( 12 ,1) = 0, (2.7)

μg ω
∣

∣

( 12 ,Y∗
2)

= 0, (2.8)

μg ω
∣

∣

( 12 ,Adj) = 4μsu(2) ω
∣

∣

( 12 ,Adj), (2.9)

at R = 3 : ω2
∣

∣

(1,1) = −μsu(2) μ2
g

∣

∣

(1,1), (2.10)

ω2
∣

∣

(1,Y∗
2)

= −μsu(2) μ2
g

∣

∣

(1,Y∗
2)

, (2.11)

μ3
g

∣

∣

(0,Adj) = b1 ω2
∣

∣

(0,Adj), (2.12)

μ3
g

∣

∣

(0,X2)
= b2 ω2

∣

∣

(0,X2)
, (2.13)

μ3
g

∣

∣

(0,Y∗
3)

= 0, (2.14)

where b1 and b2 are constants that we have not endeavored to fix, though they can be
determined straightforwardly using our free-field realizations.10,11 Indeed, these realiza-
tions offer an efficient way to determine the full complement of Higgs branch relations

8 More precisely, the representations are irreducible under g � Out(g), where Out(g) is the group of outer
automorphisms of g.

9 The ∗ defines an involution on the space of representations appearing in various tensor products of the
adjoint representation. It has nothing to do with complex conjugation.
10 The normalization of the moment map operators can be understood as in [35], and more generally the

normalizations used here match the ones used in the free-field realization of the vertex operator algebras V(2)
g

presented below in Sect. 4. The relation (2.9) is simply obtained by taking the Poisson bracket of (2.6) with
ω. The numerical constant of proportionality in (2.10) can be taken to define the normalization of ω.
11 More explicitly, (2.9) reads i f ABC μB

gωC
α = 4 (μsu(2))αβ ωA

γ εβγ .
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more generally. Here we have made use of the uniform representation content of the
decomposition of sym3Adj,

sym3Adj = Adj + X2 + A + Y3 + Y∗
3 . (2.15)

Again, see “Appendix A” for representation-theoretic details.
For still higher-rank theories, the Higgs branch chiral ring generators have been

conjectured to have the following quantum numbers [34]
(

�
2 ,Adj

)

R = �+2
2

, � = 0, 1, . . . , n − 1, (2.16)
(m+1

2 , 1
)

R = m+1
2

, m = 1, 2, . . . , n − 1 . (2.17)

The symmetry properties of the chiral ring relations can also in principle be extracted
from the Hilbert series computed in [34].

The rank-n theories of type a0 are exceptional in that they possess only su(2) flavor
symmetry. The Higgs branches for these theories coincides with the Higgs branches of
N = 4 SYMwith gauge algebra su(n), namely (C2)n−1/Sn . See, e.g., [36] for additional
discussion of these Higgs branches. As opposed to N = 4 SYM, where at a generic
point on the Higgs branch the spectrum consists of free vector multiplets, in the case of
the rank-n a0 SCFTs, n copies of the rank-one theory survive. The latter has a trivial
Higgs branch.

Central charges. Central charges of higher-rank F-theory SCFTs were first computed
in [37] using holographic methods. For the rank-n theory of type g, the a and c Weyl
anomaly coefficients and the su(2) and g flavor central charges were computed to take
the following values:

a4d = 1

24
(−1 + 6n2 + n(2 + n)h∨), (2.18)

c4d = 1

24
(−2 + 6n2 + n(3 + n)h∨), (2.19)

ksu(2)
4d = 1

6
(n − 1)(6 + n(6 + h∨)), (2.20)

kg4d = n

3
(6 + h∨) . (2.21)

Let us pause to make a few observations about these results. First of all, for g �= a0
these theories have no residual massless degrees of freedom in generic Higgs branch
vacua aside from the hypermultiplets that parameterize the Higgs branch. As a result,
the quaternionic dimension of the Higgs branch MH is recovered from the difference
of the a and c Weyl anomaly coefficients according to the relation

dimHMH = −24(a4d − c4d) = nh∨ − 1, (2.22)

which agrees with the dimension reported in (2.3). Alternatively, in the a0 theory, we
have

− 24(a(n)
4d − c(n)

4d ) = 6n − 5

5
= dimHMH − 24n

(

a(1)
4d − c(1)

4d

)

, (2.23)

which follows fromanomalymatching given that the theory on theHiggs branch includes
n copies of the rank-one a0 SCFT.
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Table 2. Data for the rank-two Deligne–Cvitanović VOAs and their parent four-dimensional SCFTs. As for
rank one, the four-dimensional interpretation of the g2 and f4 cases is unresolved

g h∨ kg2d ksu(2)
2d c2d h̃min a4d r1

g(h∨) h∨ − h∨+6
3 − h∨+9

6 −11 − 5h∨ − 9+9h∨
24

23+8h∨
24

h∨+6
6

a0
6
5 – − 17

10 −17 − 33
40

163
120

6
5

a1 2 − 8
3 − 11

6 −21 − 9
8

13
8

4
3

a2 3 −3 −2 −26 − 3
2

47
24

3
2

g2 4 − 10
3 − 13

6 −31 − 15
8

55
24

5
3

�

d4 6 −4 − 5
2 −41 − 21

8
71
24 2

f4 9 −5 −3 −56 − 15
4

95
24

5
2

�

e6 12 −6 − 7
2 −71 − 39

8
119
24 3

e7 18 −8 − 9
2 −101 − 57

8
167
24 4

e8 30 −12 − 13
2 −161 − 93

8
263
24 6

Additionally, one can verify that the Shapere-Tachikawa relation between Weyl
anomaly coefficients and Coulomb branch data holds [38]. Indeed, using the charges
in (2.2), one checks

2a4d − c4d = 1

4

n
∑

j=1

(2r j − 1) = n

24
(h∨ + (6 + h∨)n) . (2.24)

The previous two relations for a4d and c4d could in principle have been used to find these
anomaly coefficients directly from Higgs and Coulomb branch data. Also note that for
n = 1 the flavor central charge of the su(2) symmetry algebra is zero, which indicates its
absence for rank-one theories. Finally, it is of note that the flavor central charges of the
g currents is linear in n. In Tables 1 and 2 we display these and other pieces of discrete
numerical data for the rank-one and rank-two theories. We give the data in terms of the
rescaled quantum numbers that are directly related to properties of the vertex algebras
associated to the four-dimensional SCFTs,

k2d = −1

2
k4d , c2d = −12c . (2.25)

The former gives the level of the respective affine current subalgebras of the associated
VOA, which arise as an enhancement of the four-dimensional flavor symmetries, and
the latter is the VOA’s Virasoro central charge.

In light of the various unitarity bounds derived in [19,22,35,39], one should observe
one additional fact about the rank-two theories.12 For those theories, the sum of the
Sugawara central charges of the su(2) and g current algebras matches the total central
charge,

for rank-2 theories: c2d = csu(2)
Sug + cgSug = ksu(2)

2d dim su(2)

ksu(2)
2d + h∨

su(2)

+
kg2d dim g

kg2d + h∨
g

. (2.26)

12 The saturation of unitarity bounds of rank-one F-theory SCFTs has already been analyzed in great detail
in the aforementioned papers.
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In the four-dimensional physics of the rank-two theories, this equality is reflected in the
Higgs branch relation (2.6).13 In the associated VOA, this implies the absence of an
independent stress energy tensor as a strong VOA generator. Instead, this role is taken
over by the total Sugawara stress tensor.

An exceptional cases arises for g = a2, where both the su(2) and su(3) current
algebras are at their respective critical levels, i.e., k2d = −h∨. Consequently for this
VOA the Sugawara construction fails to furnish a normalizable stress tensor for both
factors, and a separate stress tensor will be a strong generator of the associated VOA.
The Higgs branch relation (2.6) in this case follows from a second unitarity argument
from [35].

2.2. ClassS realizations. The higher-rank theories that are not ofArgyres–Douglas type
can be realized within class S using only regular punctures [40–42]. What’s more, the
higher-rank d4 theories admit conventional Lagrangian descriptions. In this subsection,
we briefly recall these realizations.

Denoting by T [g, Cg,s, {	i }] the class S theory obtained by (partially) twisted com-
pactification of the (2, 0) theory of type g on a Riemann surface Cg,s of genus g with
s punctures, with choices 	i : su(2) ↪→ g of embeddings of su(2) into g for each
puncture, the rank-n theories of type d4, e6, e7, e8 are realized as

rank-nd4 theory ←→ T [a2n−1, C0,4, {[n2], [n2], [n2], [n2]}],
rank-ne6 theory ←→ T [a3n−1, C0,3, {[n3], [n3], [n3]}],
rank-ne7 theory ←→ T [a4n−1, C0,3, {[n4], [n4], [(2n)2]}],
rank-ne8 theory ←→ T [a6n−1, C0,3, {[n6], [(2n)3], [(3n)2]}],

(2.27)

where the embeddings	i are represented by a partition of the rank of the relevant a-type
algebra plus one.14 In the “good-bad-ugly” trichotomy introduced in [31], these theories
are all “bad”, which in particular means that the prescription of [27] to compute their
superconformal indices diverges.15 In [31] a proposalwas put forward for “ugly” theories
(i.e., theories containing decoupled free hypermultiplets) whose interacting sectors are
again precisely these higher-rank theories. Concretely,

rank-nd4 ⊕ 1 free HM ←→ T [a2n−1, C0,4, {[n2], [n2], [n2], [n, n − 1, 1]}],
rank-ne6 ⊕ 1 free HM ←→ T [a3n−1, C0,3, {[n3], [n3], [n2, n − 1, 1]}],
rank-ne7 ⊕ 1 free HM ←→ T [a4n−1, C0,3, {[n4], [n3, n − 1, 1], [(2n)2]}],
rank-ne8 ⊕ 1 free HM ←→ T [a6n−1, C0,3, {[n5, n − 1, 1], [(2n)3], [(3n)2]}] .

(2.28)

Finally, we note that the rank-n d4 theories admit Lagrangian descriptions as usp(2n)

gauge theories with four hypermultiplets transforming in the fundamental representation
of usp(2n) and one hypermultiplet in the antisymmetric representation [44].

13 This Higgs branch chiral ring relation is actually a necessary consequence of the Sugawara value of the
central charge [35].
14 Exponents always denote repeated entries in the partition.
15 This prescription was derived in [43] by demanding that the superconformal index be (generalized) S-

duality invariant. However, “bad” theories do not participate in the S-duality web, as they do not admit any
exactly marginal gaugings.
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3. Explicit VOA Constructions

We now turn to the main task of this paper, which is to construct explicitly the rank-two
associated VOAs V(2)

g . For those cases which are not Argyres–Douglas type, one has
in principle algorithmic constructions coming from the relevant class S or Lagrangian
descriptions of these theories. In particular, the class S theories given in (2.27) can be
used to give a definition of the associated variety in terms of a BRST reduction of several
equivariant affine W-algebras as described in [45], while the Lagrangian realization of
the d4 theories give a BRST description as described in [19]. However, both of these
approaches present severe technical challenges in the computation of the relevant BRST
cohomologies.

Our strategy instead is to make a motivated Ansatz for the set of strong generators of
the VOA and demand that they indeed generate a consistent, nontrivial chiral algebra.
In practice, we write down the most general expressions, compatible with the global
symmetries for the singular terms in the operator product expansions of strong generators
in terms of a number of undetermined, numerical coefficients, and impose that the Jacobi
identities hold true. The resulting, typically quadratic, equations for the coefficients
admit a solution if the Ansatz for the generators correctly describes a (sub)algebra of the
sought-after VOA.16 Such a strategy has been pursued in the context of chiral algebras
associated with four-dimensional N = 2 SCFTs in [20,46], and has been successfully
applied in various instances since.17

It was proven in [19] that the generators of the Higgs branch chiral ring of a four-
dimensional N = 2 SCFT necessarily give rise to a (not necessarily strict) subset of
the strong generators of the associated VOA.18 For all rank-two VOAs barring H0 and
H2, we will therefore make the minimal Ansatz that these constitute the full set of
strong generators.19 As reviewed in Sect. 2, the Higgs branch chiral ring of these rank-
two theories is generated by moment map operators (μsu(2))(αβ) and μA

g , transforming
in the adjoint representation of su(2) and g respectively, and an additional generator
ωA

α transforming in the ( 12 ,Adj) representation of su(2) × g. Here we have traded the
adjoint index of su(2)with a symmetrized pair of fundamental indices. A standard entry
of the SCFT/VOA correspondence states that the moment map operators give rise to
affine currents in the associated VOA. Their levels were given as a function of the dual
Coxeter number in the previous section:

ksu(2)
2d = −h∨ + 9

6
, kg2d = −h∨ + 6

3
. (3.1)

See also Table 2. Table 3 summarizes our notations and the quantum numbers for the
strong VOA generators that we are postulating. We have exploited the equality between

16 Note that the Jacobi identities are not necessarily zero on the nose, but should hold only up to null fields.
A convenient strategy to impose the correct non-null constraints is to set to zero all two-point functions of the
right-hand side of the Jacobi identities with a basis of fields of the appropriate quantum numbers.
17 In our computations we have utilized the Mathematica package developed in [47].
18 In fact, a more general statement is that generators of the Hall-Littlewood chiral ring descend to strong

generators of the associated VOA. For the theories under consideration, however, the Hall-Littlewood chiral
ring and Higgs branch chiral ring coincide.
19 One could contemplate the presence of additional generators of non-Higgs branch type. However, any

such additional generators will be strongly constrained by the fact that the stress tensor takes Sugawara form,
and therefore the dimensions of any additional affine Kac-Moody primary will be determined by its su(2)× g
representation. Indeed, one can show on this account that for g �= d4, any additional strong generators will
not appear in the OPEs of the strong generators of Higgs branch type. In other words, we are guaranteed to
find a consistent subalgebra.



VOAs and Rank-Two Instanton SCFTs 2563

Table 3. Generators of the rank-two vertex operator algebras. H2 additionally possesses an independent stress
tensor T , while for H0 g is trivial and the weight 3/2 generator is replaced by a weight 5/2 doublet generator
wα

O χ [O] hO su(2) × g representation

(μsu(2))(αβ) j(αβ) 1 (1, 0)

μA
g J A 1 (0,Adj)

ωA
α W A

α
3
2 ( 12 ,Adj)

the conformal weight of strong generators associated to Higgs branch chiral ring gener-
ators and the SU (2)R charge of those Higgs branch chiral ring operators.

Some special consideration is necessary for the H0 and H2 theories. For H2, the VOA
stress tensor canno longer be furnishedby theSugawara construction due to the criticality
of the current algebra levels, which obstructs the construction of a normalizable stress
tensor. Consequently, an additional, independent Virasoro stress tensor will have to be
included as a strong generator of V(2)

a2 . On the other hand, for H0 the VOA associated
to Higgs branch generators is just the affine Kac-Moody VOA V− 17

10
(sl(2)), but there

is the possibility that this algebra should be extended by additional (non-Higgs) strong
generators.

Indeed, one can see that such extra strong generators must be included on the basis
of consistency under Higgsing. If we consider a Higgs branch vacuum of the four-
dimensional SCFT where the su(2) moment map operator acquires a nilpotent vacuum
expectation value, then there should be two copies of the rank-one H0 theory remaining
at low energies. At the level of the VOA, this Higgsing can be accomplished by quantum
Drinfel’d-Sokolov (DS) reduction [20]. However, if the rank-two VOA is generated
only by affine currents, then DS reduction will give a single copy of the Virasoro VOA
Vir3,10 with central charge c = − 44

5 . We thus must extend the affine current algebra.

From ksu(2)
2d + 2 = 3

10 , we learn that the affine level is admissible, as p′ = 3 and p = 10
are coprime and p′ > 1. An admissible current algebra can only be extended by AKM
primaries of spins 1

2 , 1, . . . ,
p′−2
2 , see [48]. Hence our only option is an extension by a

spin 1
2 AKM primary. The dimension of this primary follows from the standard formula

h = j ( j + 1)/(ksu(2)
2d + 2) and gives h = 5

2 . Thus we are led to introduce an extra su(2)
doublet of strong generators of weight 5

2 , which in four dimensions should arise from a

Schur operator in a Ĉ1/2,(0,0) multiplet.
It remains to describe the singular OPEs of our strong generators. The su(2) × g

affine current algebras take a standard form,20

jαβ(z) jγ δ(w) ∼ ksu(2)
2d εδ(αεβ)γ

(z − w)2
+

2ε(α(γ jβ)δ)(w)

z − w
, (3.2)

J A(z) J B(w) ∼ kg2d κ AB

(z − w)2
+

i f ABC J C (w)

z − w
, (3.3)

while jαβ andJ have regular OPEs with one another. Parentheses around indices denote

symmetrization with weight one and ksu(2)
2d and kg2d are given in Table 3. The transfor-

20 Our conventions for the epsilon tensor are ε12 = −ε21 = −ε12 = ε21 = 1.
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mation properties of the additionalW A
α generator under the global su(2) × g symmetry

completely determine its operator product expansion with the currents,

jαβ(z) W A
γ (w) ∼ ε(α|γ | W A

β)(w)

z − w
, J A(z) W B

α (w) ∼ i f ABC WC
α (w)

z − w
. (3.4)

For the H2 theory, the independent stress tensor has self-OPE and OPE with the other
generators taking their canonical form. For H0, we omit the g affine currents. The OPE
of the su(2) currents withwα is analogous to the first expression in (3.4). Our remaining
(and primary) task is to find the self-OPE of W (or w). We will separately consider
H0, which possesses certain special features, and present all other instances in one fell
swoop.

3.1. H0 theory and an su(2) extension. To complete the description of the rank-two H0
VOAwe need the self-OPE of the additional generatorwα . The most general expression
compatible with su(2) covariance takes the form

wα(z) wβ(w) ∼ c1 εαβ

(z − w)5
+

c2 jαβ(w)

(z − w)4
+

c3 ∂ jαβ(w) + c4 εαβ ( j j)(w)

(z − w)3

+
1

(z − w)2

(

c5 ∂2 jαβ(w) + c6 εαβ( j∂ j)(w)

+ c7 ( j(α|γ |∂ jβ)δ)(w) εγ δ + c8 (( j j) jαβ)(w)
)

+
1

z − w

(

c9 ∂3 jαβ(w) + c10 εαβ (∂ j∂ j)(w) + c11 εαβ ( j∂2 j)(w)

+ c12 ( j(α|γ |∂2 jβ)δ)(w) εγ δ + c13 (( j j)∂ jαβ)(w)

+ c14 ( j(α|γ | jβ)δ∂ jζη)(w) εγ ζ εδη + c15 εαβ (( j j)( j j))(w)
)

. (3.5)

We have adopted the short-hand notation (VV ), for any operator V transforming in
the triplet of su(2), to denote the contraction (VV ) = Vγ δ Vζη εγ ζ εδη. Here and
throughout this section, composite operators are defined by nested normal ordering:
X1X2 . . . Xn−1Xn := (X1(X2(. . . (Xn−1Xn) . . .))).Normal orderingbrackets takeprece-
dence over brackets introduced to delineate group theory contractions.

Jacobi identities uniquely determine the coefficients ci up to a choice of normalization
for the generatorwα , which we fix by choosing c1 = 1. The resulting structure constants
are then as follows:

c1 = 1, c2 = 10

17
, c3 = 5

17
, c4 = 25

51
, c5 = −545

561
,

c6 = 25

51
, c7 = −1150

561
, c8 = 250

561
, c9 = − 35

132
, c10 = 175

748
,

c11 = 50

561
, c12 = −325

561
, c13 = 250

561
, c14 = 250

561
, c15 = 625

3366
. (3.6)

It may be worth noting that the Jacobi identities can be satisfied (up to null states, and
with different values for the coefficients ci ) for two additional su(2) levels other than
ksu(2)
2d = − 17

10 , namely ksu(2)
2d = − 5

2 and ksu(2)
2d = − 7

4 .



VOAs and Rank-Two Instanton SCFTs 2565

3.2. A universal expression for rank-two VOAs V(2)
g . In terms of the universal decom-

position of the symmetric product of two adjoint representations given in (2.4), we can
construct a general expression for the self-OPE ofW for the rank-two VOAs other than
H0 as follows,

W A
α (z) W B

β (w) ∼ c1 εαβ κ AB

(z − w)3
+
ic2 εαβ f ABC J C (w) + c3 κ AB jαβ(w)

(z − w)2

+
1

z − w

(

ic4 εαβ f ABC ∂J C (w) + c5 κ AB ∂ jαβ(w)

+ c6 κ AB εαβ ( j j)(w) + i c7 f
AB
C ( jαβJ C )(w)

+ εαβ

(

c8Y
(AB)
2 (w) + c9 1

(AB)(w) + c10 Y
∗(AB)
2 (w)

)

)

+
εαβ κ AB

( − 1
4 + (h∨ − 3)b

)

z − w

(

T (w) − κCD(J CJ D)(w)

2(kg2d + h∨)
+

( j j)(w)

2(ksu(2)
2d + 2)

)

.

(3.7)

The short-hand notation ( j j) continues to denote the contraction ( j j) = jγ δ jζη εγ ζ εδη,

and furthermorewe have introduced the notations1(AB),Y(AB)
2 , andY∗(AB)

2 to represent
the projections of the product of two (adjoint) currents J onto the respective represen-

tations, i.e., 1(AB) = (P1)ABCD J CJ D = κ ABκCDJ CJ D

dimAdj , and similarly for Y(AB)
2 , and

Y
∗(AB)
2 . We provide the precise expressions for the relevant projection operators in “Ap-

pendixA”. Up to a choice of normalization of the generatorW , whichwe set by choosing
c1 = 1, the coefficients ci are uniquely fixed in terms of the dual Coxeter number h∨ as

c1 = 1, c2 = − 3

6 + h∨ , c3 = 6

9 + h∨ , c4 = − 3

2(6 + h∨)
, c5 = 3

9 + h∨ ,

c6 = − 3

4(h∨ − 3)
+

3

4(h∨ + 9)
, c7 = − 18

(6 + h∨)(9 + h∨)
, c8 = − 9

(6 + h∨)(9 + h∨)
,

c9
dimAdj

= − 3

16(h∨ − 3)
+

3(2 + 5h∨)

16(1 + h∨)(−6 + 5h∨)
, c10 = 3

6 + h∨ . (3.8)

Note that in (3.7) we included a stress tensor T . As explained above, for g �= a2, i.e.,
h∨ �= 3, it is actually given by the Sugawara construction, and so the last line represents
a null operator that can be added with arbitrary coefficient (controlled by the parameter
b). In the limit of h∨ → 3, however, T is truly an independent strong generator. We can
see from (3.8) that this limit can in fact be taken smoothly as the poles in h∨ − 3 are
cancelled. In this limit, the arbitrary coefficient b appears in front of a null operator of
the H2 VOA. In (3.8) we have divided c9 by the dimension of adjoint representation of g
to directly reflect the coefficient of κCDJ CJ D . This is a helpful way of writing things
in view of taking the limit for h∨ → 3.

The rank-two VOA associated to H1 can be recovered by specializing to h∨ = 2
and omitting the operator Y∗(AB)

2 on the right hand side of (3.7) – the corresponding
projector vanishes identically for su(2). Incidentally, the H2 theory has already been
studied in detail in the literature from the perspective of the associated VOA in [25],
though it was not identified as being the rank-two instanton SCFT in that paper, but rather
was recovered in the strong coupling limit of a conformal gauging of Argyres–Douglas
SCFTs and given the moniker TX .
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4. Free Field Realizations

Before pursuing any extensive analysis of the VOAs V(2)
g constructed in the previous

section, it is worth investigating whether these algebras admit free field realizations in
the style of [26]. Such a realization has the potential to simplify the analysis of singular
vectors in the vacuum module, as well as providing a canonical proposal for the four-
dimensional R-filtration of these VOAs [22].

According to the template introduced in that paper, we expect a realization in terms of
dimCMH = 2(2h∨−1) chiral bosons associated to a lattice of signature (2h∨−1, 2h∨−
1),whose latticemomenta are restricted to an isotropic sublattice; the construction should
also reflect the algebraic structure of the Higgs branch/associated variety.

4.1. Realizations for g �= a0 from intermediate Higgsing. It turns out that a more effi-
cient approach will be to develop an intermediate construction associated not with the
generic locus of the Higgs branch, but with the singular stratum where the g symmetry
is unbroken. (For the special case of the H0 theory, this is indeed the generic locus.)
The idea is that we can use lattice bosons to model the geometry of the singular locus,
but the “free field realization” should be further decorated with the VOAs associated to
the residual degrees of freedom on that locus. In the present case, the residual theory
on the singular locus in question is two copies of the rank-one SCFT, so our free field
realizations will include two copies of the rank-one VOA V(1)

g as basic building blocks.
Given the free-field constructions of the rank-one VOAs in [26], our final result could
then be further expressed as an honest free field realization in terms of only chiral lattice
bosons and symplectic bosons.

4.1.1. Big open sets in the two-instanton moduli spaces On the locus ofMH where the
g symmetry is unbroken, the moment map μg and all the chiral ring generators charged
under g, namely ωA

α , vanish,

〈μA
g 〉 = 〈ωA

α 〉 = 0 . (4.1)

This locus is then parameterized by the su(2)momentmap,μsu(2), subject to the relation
(2.6), which implies that

μ2
su(2)

∣

∣

(0,1) = 0 . (4.2)

In other words, the singular locus in question is a copy of Omin(sl(2)) ∼= C
2/Z2 embed-

ded in the two-instanton moduli space.21 As in [26], we consider an open subset of this
locus where (μsu(2))++ �= 0, which as a Poisson variety can be identified with T ∗(C∗)
where (μsu(2))++ is the C

∗-valued coordinate and (μsu(2))+− is the cotangent fiber.
From each point in this open subset sprouts the product of two copies of the one-

instanton moduli space, which reflects the Higgs branch for the residual IR effective
theory.22 We then can construct a dense open subset of the full two-instanton moduli

21 This singular locus can be thought of as parameterizing F-theory configurations where the two D3-branes
explore the nonperturbative seven-brane worldvolume as point-like small instantons.
22 The embedding of these one-instanton subspaces is simplified by the fact that the two-instanton mod-

uli space, as a hyperkähler manifold, enjoys an SU (2)R × G × SU (2) isometry group, and at each point
on the locus discussed here, this symmetry is broken spontaneously to SU (2)R̄ × G where SU (2)R̄

∼=
diag (SU (2)R × SU (2)). Thus the IR R-symmetry can be identified in the UV, which ensures that the one-
instanton moduli spaces are genuinely embedded into the two-instanton moduli space rather than only appear-
ing in a scaling region near the singular locus.
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space that has the formof afibrationof those twocopies of the one-instantonmoduli space
over T ∗(C∗). This fibration reflects the indistinguishability of the two one-instanton
factors, so we have an open set

U =
(

˜M(1)
g × ˜M(1)

g × T ∗(C∗)
)

/

Z2, (4.3)

where ˜M(1)
g denotes the reduced one instanton moduli space and Z2 acts by negation

on the C
∗ and by exchanging the two one-instanton factors.

In this patch we can express the generators of the two-instanton coordinate ring in
terms of the coordinate ring C[U]. We introduce coordinates (with slightly unconven-

tional names) (e
1
2 ,h) for T ∗(C∗) with their canonical symplectic form {h,e

1
2 } = e

1
2 ,

along with two copies JA1 , JA2 of the generators of C[ ˜M(1)
g ] satisfying the Joseph rela-

tions (2.5). The Z2 quotient now acts according to (h,e
1
2 , J1, J2) �→ (h,−e

1
2 , J2, J1).

The moment maps of the two-instanton moduli space are now given by

(μsu(2))++ = e, (μsu(2))+− = 1
2 h, (μsu(2))−− = ( − S� + 1

4h
2)e−1,

μA
g = JA1 + JA2 , (4.4)

where S� = 1
4κABJA1 J

B
2 . The additional chiral ring generators can be expressed as

ωA
+ = (

JA1 − JA2
)

e
1
2 , ωA− =

(

− 1
2 i f

A
BC JB1 JC2 + 1

2h
(

JA1 − JA2
))

e− 1
2 . (4.5)

In this realization the full complement of Higgs chiral ring relations are solved automat-
ically given that the Ji satisfy the Joseph relations.

4.1.2. Affine uplift Our free field realization will be an “affine uplift” of this realization
of C[M(2)

g ] in terms of C[U]. In particular, we will realize the VOA V(2)
g as a vertex

operator subalgebra,

V(2)
g ⊂ V(1)

g ⊗ V(1)
g ⊗ � 1

2
, (4.6)

where V(1)
g = V− 1

6 h
∨−1(g) is the associated VOA of the corresponding rank-one SCFT

and the VOA � 1
2
can be expressed in terms of two chiral bosons δ(z), ϕ(z) with OPEs

δ(z)δ(w) ∼ 〈δ, δ〉 log(z − w), ϕ(z)ϕ(w) ∼ 〈ϕ, ϕ〉 log(z − w), δ(z)ϕ(w) ∼ 0,

(4.7)

where 〈δ, δ〉 = −〈ϕ, ϕ〉. It is the algebra that includes exponential vertex operators
whose lattice momenta are restricted to an isotropic subspace of the full momentum
lattice, namely

� 1
2

:=
∞

⊕

�=−∞

(

V∂ϕ ⊗ V∂δ

)

e
�
2 (δ+ϕ) . (4.8)

Equation (4.6) should be compared to its geometric counterpart (4.3). Once we identify
eδ(z)+ϕ(z) as the VOA avatar of theC

∗-valued e, the generators of V(2)
g with non-negative

weight under the Cartan of su(2) can be immediately written down as
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j++(z) = 1 ⊗ eδ(z)+ϕ(z), (4.9)

j+−(z) = 1 ⊗ ksu(2)
2d
2 ∂ϕ(z), (4.10)

W A
+ (z) =

(

J A
1 − J A

2

)

⊗ e
1
2 (δ(z)+ϕ(z)), (4.11)

J A(z) =
(

J A
1 + J A

2

)

⊗ 1 . (4.12)

Here we have fixed the chiral bosons to be normalized according to 〈δ, δ〉 = − ksu(2)
2d
2 ,

and J A
1 , J A

2 denote the generators of the two copies of V(1)
g in (4.6). One can straight-

forwardly check that the OPEs of these operators correctly reproduce the OPEs given
in (3.2)–(3.4), (3.7). Notice that these expressions in an obvious sense an affinization of
(4.4), (4.5). To find the remaining generators, it is convenient to first realize, following
[26], j−−(z) as

j−−(z) =
(

−S� ⊗ 1 + 1 ⊗
(

(
ksu(2)
2d
2 ∂δ)2 − ksu(2)

2d (ksu(2)
2d +1)
2 ∂2δ

))

(

1 ⊗ e−(δ+ϕ)
)

.

(4.13)

The OPEs of the su(2) current algebra are then correctly reproduced if and only if
the self-OPE of S� is as follows: at non-critical level ksu(2)

2d �= −2 the combination

T � = S�/(ksu(2)
2d + 2) must satisfy the Virasoro OPE with central charge c� = 1 −

6(ksu(2)
2d + 1)2/(ksu(2)

2d + 2), while at the critical level, ksu(2)
2d = −2, S�, has regular self-

OPE. In addition, the requirement that j−− commute with the g currents J A implies
that S� should do so as well. Within V(1)

g ⊗ V(1)
g there is essentially a unique candidate

that can play the role of S�. It is proportional to the stress tensor for the diagonal coset
CFT:

S� = (ksu(2)
2d + 2)

(

T Sug
1 + T Sug

2 − T Sug
12

)

, (4.14)

where T Sug
1 , T Sug

2 , T Sug
12 are Sugawara stress tensors built using J A

1 , J A
2 , and J A

1 +J A
2 ,

respectively.23 Notice that in our setup k1 = k2 = k12/2 = kg2d/2. For the a2 entry, the
definition (4.14) looks problematic since k12 + h∨ = −3 + 3 = 0. However, in this case
we also have ksu(2)

2d + 2 = −2 + 2 = 0 resulting in S� having contribution only from the

(unnormalized) T Sug
12 term.

Having constructed j−−(z), we can easily deduce a proposal for the currentsW A−(z)
by considering the OPE of j−−(z)withW A

+ (z). We will need to additionally require that
a second-order pole is absent, and then the first-order pole will precisely be the desired
W A−(z). One finds

23 The Sugawara stress tensor of a current algebra generated by J at level k is given by

T Sug = 1

2(k + h∨)
κABJ AJ B , (4.15)

where h∨ is the dual Coxeter number associated finite-dimensional, simple Lie algebra.
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W A−(z) =
(

− U A(z) ⊗ 1 − (J A
1 − J A

2 ) ⊗ ksu(2)
2d
2 ∂δ(z)

)(

1 ⊗ e− 1
2 (δ(z)+ϕ(z))

)

,

(4.16)

where U A is defined by the following OPE,

S�(z) (J A
1 − J A

2 )(w) ∼ h�

(z − w)2
(J A

1 − J A
2 )(w) +

1

(z − w)
U A(w) . (4.17)

Direct computation then yields

U A = K
2 i f ABC J B

1 J C
2 + h� ∂(J A

1 − J A
2 ), h� = kg

(

ksu(2)
2d +2
kg+h∨

)

, (4.18)

where K = − 4(2+ksu(2)
2d )

kg+h∨ . The second-order pole in the j−− × W A
+ OPE vanishes if

1
2 (k

su(2)
2d + 1

2 ) + h� = 0, which can be confirmed to hold for all cases from Table 2. For
these levels, we also find that K = 1.

At this point all the generators have been constructed and we need to verify that their
OPEs close on the algebra that they generate under iterated normally ordered products
and derivatives.24 For this it turns out to be crucial that the levels take the values given in
Table 2 and that the currents J1 and J2 satisfy the quadratic relations that characterize
V(1)
g . In particular, the last condition is required for the su(2) singlet channel of the

W × W OPE to be free of new operators. With all of these conditions satisfied, the
OPEs for these free field constructions are identical to the ones give in Sect. 3.

4.1.3. Higgs branch relations revisited and the R-filtration from free fields. The VOAs
we have constructed here exhibit a subtle behavior, previously discussed in [22] and
observed in examples in [25,26], which is that there are Higgs branch relations in the
four-dimensional SCFTs that do not have corresponding null vectors in the associated
VOA. This phenomenon is closely connected with the nuances of the R-filtration on
associated VOAs, which has been discussed in detail in [22].

In [26] a proposal for the R-filtration of a VOA in terms of the corresponding geo-
metric free field realization was put forward. Adopting said proposal, we can study the
Higgs branch chiral ring relations collected in (2.6)–(2.14) and check that even when
they are not realized as null states in the VOA, they are realized at the level of the
associated-graded with respect to the R-filtration.

We find that in particular, the Higgs branch relations (2.6) and (2.7) do not corre-
sponds to null operators in the VOA. The first of these is familiar from many previous
investigations, where any time the stress tensor is identified as the Sugawara stress tensor
for an affine Kac-Moody (sub-)algebra, there is a “hidden” Higgs branch relation. On
the other hand, the relation (2.7) doesn’t appear to be connected to any equally universal
phenomenon.

24 It was noted in Sect. 3 that in the a2 case there is an additional strong generator identified with the stress
tensor. This can be realized as the sum of chiral boson stress tensors and Sugawara stress tensors for the
one-instanton factors. Alternatively, this stress tensor appears automatically in the W × W OPE—the VOA
is still generated by the affine currents and theW currents, though not strongly.
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Written in terms of their free field expressions, these composite operators that are
supposed to vanish as elements of the Higgs chiral ring take the form25

T Sug
su(2) + T Sug

g = Tδ + Tϕ + T Sug
1 + T Sug

2 , (4.19)

κAB J A W B
+ = 5h∨+6

3 (T Sug
1 + T Sug

2 )e
1
2 (δ+ϕ), (4.20)

where in the second equation we have only given the su(2) highest weight state for
simplicity, and the contribution of the chiral bosons to the stress tensor are defined as

Tδ + Tϕ = 1
2

(

υ+υ− − ∂υ−
)

+
ksu(2)
2d
2 ∂υ+, υ+ = ∂ (δ + ϕ) , υ− = − k

2 ∂ (δ − ϕ) .

(4.21)

While the right hand sides of (4.19) and (4.20) are not null in the VOA, they reside in
subspaces of lower-than-expected weight with respect to the R-filtration. To be precise,
the right-hand sides of (4.19) and (4.20) have weights R = 1 and R = 3/2, respectively,
which is one less than the sum of weights of the constituents on the left hand sides.26 In
the associated graded, this leads to the expected Higgs branch relations, while the states
on the right-hand side will act as new generators of the resultant commutative algebra.
This reinforces the difficulty of constructing the R-filtration in an ad hoc fashion based
on the assignment of R-weights to strong generators and correcting on the basis of null
states, though in simple cases such a strategy does seem to meet with success [49].

4.2. H0 theory from Virasoro building blocks. The free field realization for the rank-two
H0 VOA is analogous to the ones presented above, with except that now the building
blocks associated to the IR SCFT consist of two copies of the irreducible Virasoro vertex
algebra with central charge c = −22/5, which will we denote Vir(2,5).27 This VOA is
C2-cofinite, which reflects the fact the Higgs branch of the IR SCFT is a point, so this
is a generalized free field realization where we allow C2-cofinite VOAs as elementary
building blocks, as proposed in [26]. For this example theC

2/Z2 subspace where we are
studying the low energy effective theory is in fact the generic locus of the Higgs branch.
All said, we will therefore be finding an inclusion,

V(2)
a0

⊂ V(1)
a0

⊗ V(1)
a0

⊗ � 1
2
, V(1)

a0
≡ Vir(2,5) . (4.22)

We recall that the rank-two H0 VOA is an su(2) current algebra at the admissible level
−17/10 extended by a AKM primary wα(z) of spin j = 1

2 and conformal weight
h = 5/2. The free field realization for the current algebra takes the same form as above
(see (4.9), (4.10), (4.13)) with

S� = (ksu(2)
2d + 2) T � , T � = T1 + T2, (4.23)

25 For future investigations of higher-rank cases, it may be relevant that the quantum numbers of these
relations coincide precisely with those of the additional strong generators of the rank-three VOAs that are not
Higgs chiral ring generators.
26 We recall that the R-weights of the chiral bosons are given by R[υ+] = 0, R[υ−] = 1, R[eδ+ϕ ] = 1,
R[∂] = 0, so that R[Tδ + Tϕ ] = 1. The remaining assignments come from the R-filtration of the IR VOA,

which in this case is V(1)
g ⊗ V(1)

g , so that R[T Sug
1 ] = R[T Sug

2 ] = 1 [26].
27 The notation originates from the fact that this is the VOA underlying the non-unitary (2, 5) minimal

model.
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where T1 and T2 generate the two copies of Vir(2,5). As in the previous examples, the
OPE of the su(2) current algebra is correctly reproduced only if T � satisfies the Virasoro
OPE with central charge c� = 1 − 6(ksu(2)

2d + 1)2/(ksu(2)
2d + 2). This is indeed the case

with c� = −2 × 22
5 and ksu(2)

2d = −17/10. A moment’s inspection shows that there is
a unique candidate AKM primary with the quantum numbers of w+(z) in (4.22). Up to
normalization, it is given by

w+(z) = (T1 − T2) ⊗ e
1
2 (δ+ϕ)

. (4.24)

We can now use the lowering operator j−−(z) to construct the lowest-weight state

w−(z) =
(

− 3
10∂(T1 − T2) ⊗ 1 − (T1 − T2) ⊗ ksu(2)

2d
2 ∂δ

)(

1 ⊗ e− 1
2 (δ+ϕ)

)

,

(4.25)

where the second-order pole cancels precisely fir the relevant values of the level and
central charges. With these generators in place one can verify that, up to normalization,
the wα × wβ OPE takes the form given in (3.5), (3.6).28

5. Rank-Two Modular Equations

As quasi-Lisse VOAs, the vacuum characters of the two-instanton VOAs V(2)
g will nec-

essarily be solutions of finite-order linear modular differential equations [50]. For their
rank-one cousins, these differential equations can be expressed in a uniform way as a
second-order modular differential operator whose free coefficient is a function of the
dual Coxeter number,29

D1-inst
(2) χ1-inst,g

0 (q) :=
(

D(2)
q − 5(h∨ + 1)(h∨ − 1)E4(q)

)

χ1-inst,g
0 (q) = 0, (5.2)

where D(n)
q = ∂(2n−2) ◦ · · · ◦ ∂(2) ◦ ∂(0) denotes the iterated Serre derivative of modular

weight 2n, with

∂(k) f (q) := (q∂q + kE2(τ )) f (q) . (5.3)

One perspective on the uniformity of these differential equations is that these affine
current VOAs can be expressed in universal terms, with the nontrivial null states in
the vacuum Verma module reflecting the Joseph relations, which as we saw earlier can
be described universally within the DC series as the vanishing of the singlet and Y∗

2
representations in the symmetric square of the adjoint. It follows that the null state that
leads by recursion to themodular differential equation (5.2) should take a universal form.

From this, one might suspect that the rank-two VOAs should, by virtue of their uni-
versal form, admit a uniform modular differential equation for their vacuum characters.

28 The precise normalization (4.24) corresponds to c1 = 17
10 × 22

5 in (3.5).
29 In this section, we use Eisenstein series normalized according to

E2k (τ ) := − B2k
(2k)! +

2

(2k − 1)!
∑

n�1

n2k−1qn

1 − qn
, (5.1)

where B2k is the 2k’th Bernoulli number.
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Indeed, one can determine the leading terms in the vacuum characters directly from the
descriptions in Sect. 3, and these admit the uniform expression30

χ2-inst,g
0 (q) = q

11+5h∨
24 PE

[

1

1 − q

(

[

(1, 1) + (0,Adj)
]

q + ( 12 ,Adj) q
3
2

− [

( 12 ,Adj) + ( 12 ,Y
∗
2)

]

q
5
2

− [

(1, 1) + (1,Y∗
2) + (0,Adj) + (0,X2) + (0,Y∗

3)
]

q3

+ ( 12 ,Y
∗
2) q

7
2 + . . .

)

]

, (5.4)

where we have utilized the plethystic exponential PE[ f (xi )] := exp(
∑∞

n=1
1
n f (xni )). In

(5.4) we have indicated the full representation content under su(2)× g of each term, but
as we are presently interested in the unflavored characters, these expressions should be
interpreted as shorthand notation for the dimensions of the indicated finite-dimensional
representations. The first several terms of the plethystic exponent manifestly encode
the generators and null relations of the vertex operator algebra, while the latter reflect
the Higgs branch relations (2.6)–(2.14), except for the relation transforming as (0, 1) at
order q2, and the relation transforming as ( 12 , 1) at order q

5
2 . Per the previous discussion,

these Higgs branch relations do not correspond to null relations of the VOA at the same
conformal weight, but rather they can be recovered in the associated graded with respect
to the R-filtration.

With some additional effort, we can identify the following one-parameter family of
fourth-order twisted modular differential equations,31

D2−inst
(4) = D(4)

q + 2−h∨
12 �0,1D

(3)
q −

(

25+3h∨+8h∨2

288 �0,2 + 1−9h∨−4h∨2

288 �1,1

)

D(2)
q

+
(

138+41h∨−36h∨2+h∨3

6912 �0,3 − 38+15h∨+20h∨2−5h∨3

2304 �1,2

)

D(1)
q

+ (11+5h∨)(11−3h∨−11h∨2+3h∨3
)

331776 �0,4 +
(11+5h∨)(11−51h∨+25h∨2+9h∨3

)
82944 �1,3

− 167−662h∨+120h∨2+270h∨3+65h∨4

110592 �2,2,

(5.5)

which annihilate the vacuum characters of the rank-two instanton SCFTs.32 Here �r,s
is shorthand notation for the combination of Jacobi theta functions

�r,s(τ ) := θ2(τ )4rθ3(τ )4s + θ2(τ )4sθ3(τ )4r , r � s, (5.6)

and the space of modular forms for the congruence subgroup �0(2) is spanned by
functions of this type: M2k(�

0(2)) = span{�r,s(τ ) | r + s = k}. See, for example, the
appendix of [22] for more details.

30 A version of this uniform result has also appeared recently in [51].
31 The term twisted here refers to the fact that the coefficients in the differential operator can be expressed in

terms of twisted Eisenstein series [52]. Alternatively, these aremodular with respect to the conjugacy subgroup
�0(2) ⊂ PSL(2, Z).
32 One immediately observes a pattern in this differential equation, where the coefficients of an n’th order

derivative is a polynomial of degree 4 − n in h∨, a pattern which obviously also holds in the rank-one case.
Perhaps this pattern will persist at higher rank.
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From (5.5) we can derive the general expression for the “scaling dimensions” of the
solutions to the S-conjugate modular equation, giving

h̃ =
{−9−9h∨

24 , −9−5h∨
24 , −9−h∨

24 , 15−9h∨
24

}

, (5.7)

which we can use to predict/confirm the a4d Weyl anomaly coefficient using equation
from which using equations (3.19) from [22],

a4d = h̃min

2
− 5c2d

48
= 23 + 8h∨

24
. (5.8)

Indeed, this matches the expression (2.18) for n = 2.

6. Outlook for Higher Ranks

Wehave seen here that the remarkable uniformity of the associatedVOAs of the rank-one
F-theory SCFTs continues at rank two,which has allowed us to come to gripswith the full
set of these VOAs quite efficiently. Aside from their intrinsic interest as a diverse family
of SCFTs, our analysis here gives one hope that the generalization of this analysis to
arbitrary rankmay be tractable. To this end, we remark on several observations regarding
these higher rank SCFTs and their associated VOAs.

Indices and modular differential equations for χ3−inst
0 . Though we have not estab-

lished general results for the three-instanton (or higher) theories, we can extract prelim-
inary results for the d4 theories (which admit Lagrangian descriptions) which should
generalize to the rest of the series due to their uniformity. In particular, by explicit com-
putation we have determined the Schur index of the rank-three d4 theory to high orders
in the q-expansion

χ
3−inst d4
0 (q)

= q
80
24 (1 + 31 q + 60 q

3
2 + 612 q2 + 1920 q

5
2 + 10568 q3 + 36968 q

7
2 + 157850 q4

+ 548848 q
9
2 + 2036655 q5 + 6798456 q

11
2 + 22993464 q6 + 73082784 q

13
2

+ 230675048 q7 + 698674512 q
15
2 + 2086032438 q8 + 6042338032 q

17
2

+ 17215132099 q9 + 47883383840 q
19
2 + 130994173808 q10 + . . .) .

(6.1)

One can then verify that this index is annihilated by the following seventh-order modular
differential operator,

D3−inst d4
(7) = D(7)

q +
41

120
�0,1D

(6)
q +

1

1440

(−7126 �0,2 + 1817 �1,1
)

D(5)
q

+
1

5760

(−25608 �0,3 + 15881 �1,2
)

D(4)
q

+
1

69120

(−37904 �0,4 + 999440 �1,3 − 743075 �2,2
)

D(3)
q

+
1

165888

(

3648 �0,5 + 2960696 �1,4 − 2686227 �2,3
)

D(2)
q

+
1

5971968

(−41344 �0,6 + 22870560 �1,5 + 34778766 �2,4 − 58003657 �3,3
)

D(1)
q

+
1

71663616

(

77824 �0,7 − 15147776 �1,6 − 575712384 �2,5 + 573293501 �3,4
)

.

(6.2)
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This operator implies that the smallest “scaling dimension” among the solutions to the S-
conjugate modular differential equation is given by h̃min = − 19

4 , which in turn predicts
an a4d Weyl anomaly coefficient as

a4d = h̃min

2
− 5c2d

48
= 143

24
, (6.3)

which indeed agrees with (2.18) for n = 3 and h∨ = 6.
On this basis, we conjecture that the (unflavored) Schur indices of all rank-three F-

theory SCFTs will satisfy a twisted seventh-order modular differential equation whose
coefficients are polynomials in the dual Coxeter number. Identifying this universal dif-
ferential equation might be an interesting starting point for efforts to better understand
the rank-three VOAs.

Strong generators for higher rank VOAs V(n)
g . Studying the plethystic logarithm of

(6.1) and its still higher-rank versions leads to a proposal for the set of strong generators
of the associated VOAs beyond the Higgs branch generators listed in (2.16) and (2.17).
In particular, it appears that the higher rank VOAs should be equipped with additional
generators with quantum numbers

(

�
2 , 1

)

h= �
2 +2

, � = 0, 1, . . . , n − 3 . (6.4)

When n � 3 this list includes the stress tensor, which is compatible with the failure
of the Sugawara relation between Virasoro central charge and current algebra levels at
higher rank. Uniformity within the DC series suggests that this set of strong generators
should shared among the higher-rank VOAs for all g. Indeed, it is tempting to speculate
that this is the full list of strong generators of the VOAs V(n)

g . We hope to put these
suggestions to the test in future work.
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A Some Properties of the Deligne–Cvitanović Exceptional Lie Algebras

A.1 Decomposition of second tensor power of adjoint representation. The Lie algebras
of the Deligne series share the property that precisely five real representations appear
in the decomposition of the tensor product of two copies of the adjoint representations,
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Table 4. Dynkin labels of representations in ⊗2Adj. The outer automorphism Z2 of a2 acts by flipping the
two a2 Dynkin labels, while the S3 outer automorphism of d4 acts by permuting the first, third, and fourth d4
Dynkin labels

R a1 a2 g2 d4 f4 e6 e7 e8

Adj [2] [11] [01] [0100] [1000] [010000] [1000000] [00000001]
Y2 [4] [22] [02] [0200] [2000] [020000] [2000000] [00000002]
Y∗
2 – [11] [20] S3 · [0002] [0002] [100001] [0000010] [10000000]

X2 – Z2 · [03] [30] [1011] [0100] [000100] [0010000] [00000010]

three of which occur in the symmetric product and the other two in the antisymmetric
product. Following the notations of [30], as in the main text, we have

sym2Adj = 1 + Y2 + Y∗
2 , ∧2Adj = Adj + X2 . (A.1)

Note that su(2) is a degenerate case as the representationsX2 andY∗
2 are absent (or, more

formally, they are identified with the zero-dimensional representation). The dimensions
of the various representations entering in (A.1) can be expressed uniformly as rational
functions of the dual coxeter number h∨, or, more conveniently, in terms of the parameter
μ = 6

h∨ ,

dimY2 = −90
(μ + 4)(μ − 5)

μ2(μ + 1)(2μ + 1)
, dimY∗

2 = −90
(μ − 3)(μ + 6)

μ(μ + 1)2(2μ + 1)
, (A.2)

dimAdj = −2
(μ − 5)(μ + 6)

μ(μ + 1)
, dimX2 = 5

(μ − 5)(μ + 6)(μ − 3)(μ + 4)

μ2(μ + 1)2
.

(A.3)

Note that for su(2), for which h∨ = 2 and thus μ = 3, the dimensions of X2 and Y∗
2 are

indeed zero. For reference, in Table 4, we give the Dynkin labels of the representations
Adj,Y2,Y∗

2, and X2 for the full DC series.

A.2 Projection operators. To explicitly construct the rank-two VOAs, we have used
behind the scenes the projection operators for each of the representations occurring in
sym2Adj. Happily, these have been constructed in the literature [30], and we reproduce
them here, albeit using slightly different normalization conventions,33

(P1)
BA
CD = 1

dimAdj
κCD κ AB, (A.4)

(PY∗
2
)BA
CD = μ

4(1+2μ)

(

2(δADδBC +δAC δBD)+ f ABE f ECD+2 f
AE
D f BEC

)

− (6+μ)κCD κ AB

(1+2μ) dimAdj
,

(A.5)

(PY2)
BA
CD = 1

2
(δADδBC + δAC δBD) − (P1)

BA
CD − (PY∗

2
)BA
CD . (A.6)

33 Wenormalize theKilling formby setting the length squared of the longest root to two. In these conventions,

we have in particular that f ABC f EB′C ′
κBB′ κCC ′ = 2h∨ κ AE .



2576 C. Beem, C. Meneghelli, W. Peelaers, L. Rastelli

Table 5. Dynkin labels of irreducible representations appearing in ⊗3Adj. The outer automorphism Z2 of a2
acts by flipping the two Dynkin labels, the S3 outer automorphism of d4 acts by permuting the first, third and
fourth Dynkin labels, and the Z2 outer automorphism of e6 acts by simultaneously flipping the first and sixth,
and the third and fifth Dynkin labels

R a1 a2 g2 d4 f4 e6 e7 e8

A – [22] [21] S3 · [0102] [1002] [110001] [1000010] [10000001]
Y3 [6] [33] [03] [0300] [3000] [030000] [3000000] [00000003]
Y∗
3 – [00] [10] 2[0100] [0010] [100001] [0000002] –

C – Z2 · [14] [31] [1111] [1100] [010100] [1010000] [00000011]
C∗ −[2] – [11] 2[1011] [0011] Z2 · [000011] [0100001] [01000000]
X3 −[4] – [40] S3 · [0022] [0020] [001010] [0001000] [00000100]

Though we don’t need them in our analysis, we also include the projectors onto the
representations in the antisymmetric product for completeness,

(PAdj)
BA
CD = − μ

12
f ABE f ECD, (A.7)

(PX2)
BA
CD = 1

2
(δADδBC − δAC δBD) − (PAdj)

BA
CD . (A.8)

These projectors are idempotent and orthogonal, and their traces equal the dimension of
the corresponding representation,

(Pi )
BA
CD (Pj )

CD
FE = δi j (Pi )

BA
FE , (Pi )

AB
AB = dimRi , for i = 1, 2, . . . , 5, (A.9)

where Ri , i = 1, . . . , 5 denote the five representations 1,Y2,Y∗
2,Adj,X2.

For the case of su(2), the structure constants and Killing form can be chosen to take
the explicit form f ABC = √

2εABC and κ AB = δAB . It is then straightforward to verify
that (Psu(2)

Y∗
2

)BA
CD ≡ 0 and (Psu(2)

X2
)BA
CD ≡ 0, as expected. For su(3), the representationY∗

2
is another copy of the adjoint representation. Its reappearance in the symmetric product
is tied to the existence of the cubic Casimir d ABC . One may verify that an alternative
expression for the projector onto Y∗

2 is as

(Psu(3)
Y∗
2

)BA
CD = 3

10
d ABEdECD . (A.10)

A.3 Decomposition of third tensor power of adjoint representation. We collect here
some data on the representations appearing in the third tensor power of the adjoint
representation, see [53] formore details.Wewill use square brackets to denote plethysms,
e.g., [(2)]Adj = sym2Adj and [(1, 1)]Adj = ∧2Adj. Then one finds

[(3)]Adj = Adj + X2 + A + Y3 + Y∗
3, (A.11)

[(2, 1]Adj = 2Adj + X2 + Y2 + Y∗
2 + A + C + C∗, (A.12)

[(1, 1, 1)]Adj = 1 + X2 + Y2 + Y∗
2 + X3 . (A.13)
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The dimensions of the new representations appearing here can again bewritten uniformly
in terms of h∨ or μ = 6

h∨ as

dimA = −27
(μ + 4)(μ + 5)(μ + 6)(μ − 5)(μ − 4)(μ − 3)

μ2(3μ + 1)(3μ + 2)(μ + 1)2
, (A.14)

dimY3 = −10
(μ + 4)(μ + 5)(μ + 6)(5μ + 6)(μ − 5)

μ3(3μ + 1)(2μ + 1)(μ + 1)2
, (A.15)

dimC = 640
(μ + 3)(μ + 5)(μ − 5)(μ − 3)

μ3(μ + 1)(2μ + 1)(3μ + 2)
, (A.16)

dimX3 = −10
(μ + 3)(μ + 5)(μ + 6)(μ − 5)(μ − 4)(μ − 2)

μ3(μ + 1)3
. (A.17)

The dimensions of starred representations are obtained from their unstarred counterparts
by the replacement ruleμ → −μ−1.We presentDynkin labels for these representations
of the various DC algebras in Table 5.
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