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Abstract
We have shown previously that vocal tract normalization (VTN)
results in a linear transformation in the cepstral domain. In this
paper we show that Mel-frequency warping can equally well be
integrated into the framework of VTN as linear transformation
on the cepstrum. We show examples of transformation matri-
ces to obtain VTN warped Mel-frequency cepstral coefficients
(VTN-MFCC) as linear transformation of the original MFCC
and discuss the effect of Mel-frequency warping on the Jaco-
bian determinant of the transformation matrix. Finally we show
that there is a strong interdependence of VTN and Maximum
Likelihood Linear Regression (MLLR) for the case of Gaussian
emission probabilities.

1. Introduction
Vocal tract normalization (VTN) tries to compensate for the
effect of speaker specific vocal tract lengths by warping the
frequency axis of the power spectrum of the speech signal
[1, 2, 3, 4]. The frequency axis is scaled by a warping func-
tion

gα : [0, π] → [0, π] (1)

ω → ω̃ = gα(ω)

and the warped spectrum is defined as

|{X(ω)}| =
����X̃(gα(ω))

	���
where the warping functiongα is assumed to be invertible,
i.e. strictly monotonic and continuous. The frequencyω = π
corresponds to the Nyquist frequency and the domain and
co-domain are chosen to conserve bandwidth and information
contained in the original spectrum.

We have shown in [5, 6] that in the framework of cepstral
signal analysis VTN amounts to a linear transformation in the
cepstral space for any arbitrary invertible warping function with
domain and co-domain as given in Eq. (1). In that work we
exemplary derived analytical solutions for the transformation
matrices of piece-wise linear, quadratic, and bilinear warping
functions.

The warped cepstral coefficients̃cn(α), n = 1 . . . N can
be obtained by a linear transformation of the original cepstral
coefficientsck, k = 1 . . . K with a transformation matrixA(α)
of dimensionN ×K:
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Ank(α) =
2sk

π
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dω̃ cos(ω̃n) cos(g(−1)
α (ω̃)k) (2)
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sk =

(
1
2
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In the case of continuous spectra, there may be no upper
limit for N andK. We have assumed that the original spectrum
can be represented by a finite number of cepstral coefficients,
for instance if it has been cepstrally smoothed already. In prac-
tice, however, we work with discrete spectra. Hence,N andK
will be finite and equal to the number of spectral lines of the
discrete Fourier spectrum. This number can be further reduced
for cepstral smoothing.

In the following we will show that VTN warped Mel-
frequency cepstral coefficients (VTN-MFCC) can also be ob-
tained by a linear transformation of either the original plain
cepstral coefficients or the original MFCC for arbitrary invert-
ible warping functions. We will exemplary discuss transforma-
tion matrices obtained for a piece-wise linear warping function.
Finally we will discuss a consequence of VTN being a linear
transformation of the MFCC, namely a strong interdependence
of VTN and Maximum Likelihood Linear Regression (MLLR).
This interdependence can explain previous experimental results
that improvements obtained by VTN and subsequent MLLR
were not additive [7].

2. Integration of Mel Frequency Scale
Mel frequency warping is applied during signal analysis to ad-
just the spectral resolution to the human ear [8]:

fmel = 2595 · lg
�

1 +
f

700Hz

�
.

There are two possible ways to include Mel frequency warping
into the framework of VTN as linear transformation:

A.) to express the VTN-MFCC as a linear function of the
original, unwarped plain cepstral coefficients (CC)

or

B.) to express the VTN-MFCC as a linear function of the
MFCC.

In the following we will calculate the MFCC directly on the
power spectrum as described in [9] rather than using a filter-
bank.



2.1. From Plain CC to VTN-MFCC

We have shown in [5, 6] that a frequency warping of the spec-
trum with an arbitrary invertible function results in a linear
transformation of the cepstral coefficients. Mel frequency warp-
ing can be considered as one special case of such a frequency
warping and thus results in a linear transformation as well.
Therefore the combination of VTN and subsequent Mel warp-
ing still amount to a linear transformation in the cepstral do-
main. VTN is typically applied before Mel scale warping; hence
the combination of both warping steps becomes

gmel(gα(ω)) : ω → ω̃mel = B · lg
�

1 +
gα(ω) · fs

2π · 700Hz

�
(3)

wheregα(ω) denotes the VTN warping function as before,fs

denotes the sampling frequency, andB is defined as

B =
π

lg
�
1 + fs

2·700Hz

�
to meet the requirementgmel(π) = π. Inserting Eq. (3) into
Eq. (2) leads to

Ank(α) =

2sk

π

πZ
0

dω̃mel cos(ω̃meln) cos
�
g(−1)

α

�
g
(−1)
mel (ω̃mel)

�
k
�

(4)

Thus we can express the cepstral coefficients of the VTN-Mel-
warped spectrum as linear transformation of the original, un-
warped cepstral coefficients.

2.2. From MFCC to VTN-MFCC

We will see in Section 4 that VTN is equivalent to a param-
eterized constrained MLLR transformation. MLLR is a lin-
ear transformation of model parameters (means and variances)
which were typically been estimated from MFCC feature vec-
tors. Thus more interesting and of practical relevance is to ex-
press the VTN-Mel-warped cepstral coefficients as a function
of the MFCC (i.e. without VTN) instead of the plain cepstral
coefficients. The difficulty in the present case is that VTN is
typically appliedbeforeMel warping. We start with the defini-
tion of the VTN-Mel-warped cepstral coefficientsc̃mel

n (α)

c̃mel
n (α) =

sk

π

πZ
0

dω̃mel ln
���X̂(ω̃mel)

��� cos(ω̃meln) . (5)

VTN is usually applied to original, i.e. non-Mel-scaled, spec-
trum (ω̃mel denotes the VTN-Mel-warped frequency)

ω̃mel = gmel ◦ gα(ω)

and the warped spectrum is given as���nX̂(ω̃mel)
o��� = ���nX

�
g(−1)

α

�
g
(−1)
mel (ω̃mel)

��o��� = ���nX(ω)
o��� .

We now expand the spectrum as function of the Mel-warped
frequencyωmel in terms of unnormalized (i.e. not VTN-warped)
cepstral coefficientscmel

k

ln |X(ω)|2 = ln
���X̂(ωmel)

���2 = 2

KX
k=0

cmel
k cos(ωmelk) . (6)

As before, inserting Eq. (6) into Eq. (4) results in

c̃mel
n (α) =

KX
k=0

cmel
k

2sk

π

πZ
0

dω̃mel cos(ωmelk) · cos(ω̃meln)

We now need to express the unnormalized Mel-scale frequency
ωmel as function of the VTN-warped Mel-scale frequencyω̃mel:

ωmel = gmel(ω) = gmel ◦ g(−1)
α ◦ g

(−1)
mel (ω̃mel) .

Finally, we obtain

c̃mel
n (α) =

KX
k=0

Amel
nk(α) cmel

k

with

Amel
nk(α) =

2sk

π

πZ
0

dω̃mel cos(ω̃meln) cos(gmel◦g(−1)
α ◦g

(−1)
mel (ω̃mel) k) .

(7)

Hence, the cepstral coefficients̃cmel
n (α) of the VTN-warped

Mel-scale spectrum can be computed by a linear transforma-
tion of the unnormalized cepstral coefficientscmel

k (without VTN
warping). Because of the non-linear transformation the integral
in Eq. (7) may hardly be solved analytically. Nevertheless, the
transformation matrix can be calculated numerically.

We have calculated the transformation matrix numerically
for a piece-wise linear warping function (dashed line in Fig. 1)

ω → ω̃ = gα(ω) =

8><>:
αω : ω ≤ ω0

αω0 +
π − αω0

π − ω0
(ω − ω0) : ω > ω0

(8)
We choose the inflexion pointω0, where the slope of the warp-
ing function changes, as follows:

ω0 =

8<: 7
8
π α ≤ 1

7
8·απ α > 1

The resulting warping functiongeff := gmel◦g
(−1)
α ◦g

(−1)
mel reads

geff(ω̃mel) := gmel ◦ g(−1)
α ◦ g

(−1)
mel (ω̃mel) =8>>><>>>:

B·log[1+ 1
α (10ω̃mel/B−1)] : ωmel ≤ gmel(ω0)

B·log
h
1 + fsω̃0

2·700Hz

�
1
α
−π−α−1ω̃0

π−ω̃0

�
+

π−α−1ω̃0
π−ω̃0

(10ω̃mel/B−1)
i : ωmel > gmel(ω0)

(9)

and is shown in Fig. 1 (straight line). If we expand the effective
warping functiongeff(ω̃mel) for ωmel ≤ gmel(ω0) in a Taylor se-
ries aboutα = 1 (for ωmel ≥ gmel(ω0) the expansion is similar)

geff(ω̃mel) = ω̃mel−B
1− 10−ω̃mel/B

ln(10)
(α− 1) +O �(α− 1)2

�
we see that the linear term dominates the expansion because the

term 1−10−ω̃mel/B

ln(10)
is small for0 ≤ ω̃mel ≤ π. Thus,geff(ω̃mel)
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Figure 1: Effective warping functiongmel ◦ gα ◦ g
(−1)
mel as func-

tion of the Mel frequencyωmel (straight) in comparison to the
warping functiongα for plain CC as function of the original
frequencyωorig (dashed) forα = 0.9 andα = 1.1

can be approximated by a linear function with an appropriate
choice of an effective warping factorαeff.

The cepstral coefficients̃cmel
n (α) obtained by a linear trans-

formation of MFCC with the matrix defined by Eq. (7) are iden-
tical to those calculated by explicitly warping the spectrum dur-
ing signal analysis as presented in [9].

Transformation matrices for MFCC using piece-wise lin-
ear warping with warping factors (α = 0.9 andα = 1.1) are
shown in Fig. 2 and 3. These matrices were calculated by solv-
ing Eq. (7) numerically without approximations.

Figure 2: Matrix for piecewise linear warping function,α =
0.9, Mel scale

Figure 3: Matrix for piecewise linear warping function,α =
1.1, Mel scale

In order to study the effect of the Mel-frequency warping
on the transformation matrix, we will compare these matrices
with those calculated analytically for computing VTN-CC as
linear transformation of the plain CC (Fig. 4 and 5). We observe
that the matrices for the Mel scale are more diagonally domi-
nant than those for the original scale. Comparing the resulting
warping functionω̃mel = gmel ◦ gα ◦ g

(−1)
mel (ωmel) (straight line

in Fig. 1) as function of the Mel frequency with the warping
functiongα for plain CC (dashed line in Fig. 1) as function of
the original frequency, we see thatgmel ◦ gα ◦ g

(−1)
mel is much

closer to identity thangα. Therefore the transformation matrix
for MFCC is more diagonally dominant than those obtained for
plain cepstral coefficients. The general structure of the warp-
ing matrices as well as possible approximations are discussed
in more detail in [6], also for bilinear and quadratic warping
functions.

Figure 4: Matrix for piecewise linear warping function,α =
0.9, no Mel scale

Figure 5: Matrix for piecewise linear warping function,α =
1.1, no Mel scale

3. Discussion of Jacobian Determinant
To estimate the unknown warping factorα, we proceed as fol-
lows: For each speakerr we are given labeled training data
(Xr, Wr) whereXr denote the sequence of acoustic data and
Wr the sequence of spoken words. In recognition, a preliminary
hypothesis of the unknown word sequenceWr can be obtained
by a first recognition pass. Typically, we apply a maximum
likelihood estimation ofα

α̂r =argmax
α

p(Xr|Wr; θ, α) (10)

=argmax
α

�
p0(fα(Xr)|Wr; θ0) ·

����dfα(Xr)

dXr

����� (11)

In VTN the speaker normalization is usually not performed as a
transformation of the acoustic vectors but by warping the power
spectrum during signal analysis instead. Hence, the Jacobian
determinant can hardly be calculated. In virtually all experi-
mental studies the second term in Eq. (11), the Jacobian deter-
minant, is neglected. Whether this is a good approximation or
not will depend very much on how much the Jacobian determi-
nant depends onα. Therefore it is good to study the second
term as function ofα. Expressing VTN as a matrix transforma-
tion of the acoustic vector (x → Ax) now enables us study the
Jacobian determinant|detA| of the transformation.

A plot showing the dependency of the Jacobian determi-
nant on the warping factorα has been computed numerically
for piece-wise linear warping (Fig. 6). The dependence of the



Jacobian determinant onα is weaker for MFCC (dashed line in
Fig. 6) because the effective warping functiongmel ◦ gα ◦ g

(−1)
mel

is much closer to identity thangα for CC (cf. Fig. 1)
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Figure 6: Plot of− log | detA| for piece-wise linear warping of
16 cepstral coefficients as function ofα. Straight line: original
frequency scale, dashed line: Mel frequency scale

4. Interdependence of VTN and MLLR
Most of today’s automatic speech recognition systems make
use of Hidden Markov Models (HMM) with Gaussian emission
probability distributions

N (x|µ,Σ) =
1p

det(2πΣ)
exp

�
−1

2
(x− µ)T Σ−1(x− µ)

�
.

with state dependent parametersµ andΣ. If the acoustic fea-
ture vector (essentially the cepstral coefficients)x is normalized
with the VTN matrixA, the Gaussian distribution changes to

x →y = Ax :

N (x|µ,Σ) →N (y|µ,Σ)

= N (x|A−1 µ,A−1 ΣA−1T
)

= N (x|µ̂, Σ̂)

with
µ̂ = A−1 µ and Σ̂ = A−1 ΣA−1T

. (12)

Thus, a linear transformation of the observation vectorx is
equivalent to a linear transformation of the mean vectorµ and
an appropriate transformation of the covariance matrixΣ.

The transformations in Eq. (12) describe a special case
of MLLR which is calledconstrained MLLR [10, 11] (con-
strained refers to the use of the same matrixA for the transfor-
mation of the mean and variance).

In [7], Uebel and Woodland have found experimentally that
improvements obtained by constrained MLLR and VTN were
not additive. As we have shown, VTN may be viewed as a
special case of constrained MLLR adaptation with an restriction
to only one adjustable parameter (the warping parameter) which
determines the matrix elements. The experiments were based
on a MF-PLP signal analysis. The difference between MFCC
and MF-PLP is mainly caused by different types of smoothing.
This difference is not expected to effect the equivalence of VTN
and linear transformations. Hence, the experiments support the
analytic result that VTN is a special case of constrained MLLR.

5. Conclusion
We have shown in this work that VTN warped Mel-frequency
cepstral coefficients (VTN-MFCC) can also be obtained by a
linear transformation of either the original plain cepstral co-
efficients or the original MFCC for arbitrary invertible warp-
ing functions. The numerical values of VTN-MFCC computed
with the presented approach were identical to those obtained
by explicitly warping the spectrum during signal analysis. Ex-
pressing VTN as matrix transformation of MFCC allows us to
compute the Jacobian determinant of the transformation, which
has typically been neglected so far. Finally, we have shown
that for the case of Gaussian emission probabilities VTN and
MLLR are strongly interdependent, which can explain previous
experimental results that improvements obtained by VTN and
subsequent constrained MLLR were not additive.
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