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Abstract

We show that vocal tract normalization (VTN) frequency warp-
ing results in a linear transformation in the cepstral domain. For
the special case of a piece-wise linear warping function, the
transformation matrix is analytically calculated. This approach
enables us to compute the Jacobian determinant of the trans-
formation matrix, which allows the normalization of the proba-
bility distributions used in speaker-normalization for automatic
speech recognition.

1. Introduction
Vocal tract normalization (VTN) tries to compensate for the ef-
fect of speaker dependent vocal tract lengths by warping the
frequency axis of the power spectrum [2, 5, 3, 9, 10]:

gα : [0, π] → [0, π] (1)

ω → ω̃ = gα(ω)

The warping functiongα is assumed to be invertible, i.e. strictly
monotonic and continuous (see Figure 1).
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Figure 1: Example of VTN warping functions̃ωα for different
values ofα.

The relationship between VTN frequency warping and lin-
ear transformations in the cepstral domain has been studied be-
fore [1, p.199],[4]. However, these investigations were based
on special assumptions:

• The VTN frequency warping is restricted to a bilinear
transformation [1, p.119],[4].

• The cepstral representation is based on an all-pass or
LPC model [4].

In contrast, we will show that there is a general equivalence
of VTN frequency warping and a linear transformation of the
cepstral vector, independent of these assumptions. A related re-
sult has been reported in [6] in the context of spectral distortion
measures.

The remainder of the paper is organized as follows: In the
second paragraph we show that VTN amounts to a linear trans-
formation of the acoustic vector. The transformation matrices
for the cases of linear and piece-wise linear warping are analyti-
cally derived in the third paragraph, followed by some examples
obtained by warping a given spectrum with our approach. Then
we discuss the implications for the normalization of probabil-
ity distributions when transforming the random variables. The
paper is summarized in section 6.

2. Cepstral Representation of VTN
Frequency Warping

We consider cepstral coefficientsck defined by:
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1
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whereω may either denote the true physical or the Mel fre-
quency scale. Note that the conventional definition ofc0 differs
by a factor of 2.
Then−th cepstral coefficient of the warped spectrum is

c̃n(α) =
1

π

πZ
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dω̃ lg |X(eig
(−1)
α (ω̃))|2 · cos(ω̃n) .

In order to obtain the value of the warped power spectrum for a
given frequency, we access the unwarped spectrum at the fre-
quency determined by the inverse warping function. This is
necessary as in practice only the discrete unwarped spectrum
is given. Explicit spectral interpolation for warping is avoided
this way.

Now we expand the spectrumlg
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Fourier series:
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whereck denotes thek-th cepstral coefficient of the unwarped



spectrum. Interchanging integration and summation yields:

c̃n(α) =
2

π

πZ
0

cos(ω̃n)

KX
k=0

ck cos(g(−1)
α (ω̃)k) dω̃

=

KX
k=0

ck
2

π

πZ
0

cos(ω̃n) cos(g(−1)
α (ω̃)k) dω̃

=

KX
k=0

Ank(α) ck (3)

with

Ank(α) =
2
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Thus, the vector of warped cepstral coefficients is a linear trans-
formation of the original cepstral coefficients with a transfor-
mation matrixA(α) of dimensionN ×K. In the case of con-
tinuous spectra there may be no upper limit forN andK. In
practice, however, we work with discrete spectra. Hence,N
andK will be finite, but not necessarily have the same value.
Choosing a smaller value ofN results in a smoothing of the
power spectrum and eliminates the pitch.

3. Analytic Calculation of the
Transformation Matrix

3.1. Linear Warping Function

In order to apply a piece-wise linear warping, we first compute
the solution for a strictly linear warping function:

gα : ω → ω̃ = α · ω
g(−1)

α : ω̃ → ω = α−1 · ω̃
The entriesAnk(α) of the transformation matrix can be com-
puted by elementary integration. Forα 6= 1 we obtain:
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Forα = 1 this simplifies to

Ank(1) =

(
2 : n = k = 0

δnk : else

because of the orthonormality of the cosine function. Note that
the value forn = k = 0 results from our special definition of
the zeroth cepstral coefficientc0.

3.2. Piece-wise Linear Warping Function

To meet the requirement of invertibility, we now consider a
piece-wise linear warping function [10, 11] with two parame-
ters(α, ω0) as shown in Figure 2:

g(α,ω0) : ω → ω̃ =

8><>:
αω : ω ≤ ω0

αω0 +
π − αω0

π − ω0
(ω − ω0) : ω > ω0

We choose the inflexion pointω0 where the slope of the warping
function changes as follows:
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Hence,g(α,ω0) depends solely onα.
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Figure 2: Piece-wise linear warping functions for different val-
ues ofα

The transformation matrixAnk(α) is computed similar to the
linear case:

Ank(α, ω̃0) =
2

π
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with ω̃0 = α · ω0.

Noting that the solution forα = 1 remains the same as
in the linear case, we obtain forα 6= 1:
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(4)

This matrix can now be used for VTN alternatively to explicit
warping the discrete-frequency power spectrum or the inte-
grated approach described in [5].

3.3. General Warping Functions

We would like to stress again that VTN can always be written
as a linear transformation in the cepstral domain independent
of the functional form of the invertible warping function (see
eqn. (3)). The analytic calculation of the transformation matrix
for a non–linear warping function, however, is not as straight-
forward as in the piece-wise linear case presented above.



4. Examples
In this section we will show some examples of spectra obtained
by applying the linear transformation to the cepstral vectors. A
sample spectrum (Figure 3,α = 1.0) with N = 512 spectral
lines was transformed intoK = 512 cepstral coefficients by a
discrete cosine transform (DCT):
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4
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Then the cepstral vector has been transformed into a piece-wise
linearly warped (4) cepstral vector of 512 coefficients for warp-
ing factorsα = 0.8 andα = 1.2, respectively. Afterwards,
the inverse DCT has been applied to the warped cepstral vec-
tor in order to obtain a warped spectrum. This last transfor-
mation has been carried out for demonstration only; in practice
the warped cepstral vector is used for further processing. A
comparison of the warped cepstral coefficients obtained by the
method presented here with those computed from the spectrum
as described in [5] reveals no differences.
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Figure 3: Example of warped spectra with warping factorsα =
0.8 andα = 1.2 .

As an additional example we show the effect of cepstral
smoothing in Figures 4 and 5. Again, the spectrum shown in
Figure 3 has been transformed into 512 cepstral coefficents and
has now been smoothed by transforming back with only the
first 16 cepstral coefficients (α = 1 in Figs. 4, 5). The warped
spectra have been obtained by calculating 512 cepstral coeffi-
cients, transforming them with (4) into 512 warped cepstral co-
efficients, and subsequent smoothing by transforming back with
only the first 16 warped cepstral coefficients. It should be noted
that this time we can exactly reproduce the warping obtained
from [5] only if we first compute all 512 cepstral coefficients,
warp them using (4), and smooth at this point using only the
first 16 of the obtained cepstral coefficients. If we first smooth

by calculating only the first 16 cepstral coefficients and warp
hereafter using a16×16 matrix, we obtain slightly different re-
sults. The difference between both methods is shown in Figure
6.
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Figure 4: Example of a smoothed spectrum; the cepstrum was
warped with a512 × 512 matrix (α = 0.8) and subsequently
reduced to 16 coefficients.
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Figure 5: Example of a smoothed spectrum; the cepstrum was
warped with a512 × 512 matrix (α = 1.2) and subsequently
reduced to 16 coefficients.
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Figure 6: Effect of different order of warping and smoothing



5. Speaker Normalization
In speakernormalization the acoustic observation vector is
modified, whereas speakeradaptationmodifies the acoustic
model parameters. This will cause the probability distribution
to be not properly normalized anymore. To re-normalize the
transformed distributions, the Jacobian of the transformation
must be taken into account [4, 7].

In VTN the speaker normalization is usually not performed
as a transformation of the acoustic vectors but by warping the
power spectrum during signal analysis instead. Hence, the Ja-
cobian can hardly be calculated. The warping factorα is usu-
ally determined by a maximum likelihood criterion. If the cor-
rect normalization is neglected, systematic errors in estimating
α may occur.

Expressing VTN as a matrix transformation of the acoustic
vector (x → Ax) enables us to take the Jacobian into account:

N (x|µ, Σ) → N (Ax|µ, Σ)

= N (x|A−1 µ,A−1T
ΣA−1)

=
1√

det 2πA−1T ΣA−1
exp{. . . }

=
| detA|√
det 2πΣ

exp{. . . }

where in the last stepA is assumed to be square. The practical
influence of the Jacobian is subject of current research. A quali-
tative plot showing the dependency of the Jacobian determinant
on the warping factor alpha has been computed numerically for
piece-wise linear warping (Figure 3).

The dependency of| detA(α)| on α can be used for a re-
fined estimation ofα in speaker normalization.
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Figure 7: Plot of− log det |A(α)| for piece-wise linear warp-
ing as function ofα. The scaling of the ordinate is intentionally
left out as it depends on the number of cepstral coefficients.

6. Conclusion
We have shown that vocal tract normalization can be expressed
as a linear transformation of the cepstral vector for arbitrary in-
vertible warping functions. For the case of piece-wise linear
warping we derived an analytic solution for the transformation
matrix. This allows us to re-normalize the probability distribu-
tion with the Jacobian of the transformation.
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