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Voice Conversion Based on Maximum-Likelihood
Estimation of Spectral Parameter Trajectory
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Abstract—In this paper, we describe a novel spectral conversion
method for voice conversion (VC). A Gaussian mixture model
(GMM) of the joint probability density of source and target
features is employed for performing spectral conversion between
speakers. The conventional method converts spectral parameters
frame by frame based on the minimum mean square error.
Although it is reasonably effective, the deterioration of speech
quality is caused by some problems: 1) appropriate spectral
movements are not always caused by the frame-based conversion
process, and 2) the converted spectra are excessively smoothed
by statistical modeling. In order to address those problems, we
propose a conversion method based on the maximum-likelihood
estimation of a spectral parameter trajectory. Not only static
but also dynamic feature statistics are used for realizing the
appropriate converted spectrum sequence. Moreover, the over-
smoothing effect is alleviated by considering a global variance
feature of the converted spectra. Experimental results indicate
that the performance of VC can be dramatically improved by the
proposed method in view of both speech quality and conversion
accuracy for speaker individuality.

Index Terms—Dynamic feature, global variance, Gaussian mix-
ture model (GMM), maximum-likelihood estimation (MLE), voice
conversion (VC).

I. INTRODUCTION

V
OICE conversion (VC) is a potential technique for flexibly

synthesizing various types of speech. This technique can

modify nonlinguistic information such as voice characteristics

while keeping linguistic information unchanged. A statistical

feature mapping process is often employed in VC. A mapping

function is trained in advance using a small amount of training

data consisting of utterance pairs of source and target voices.

The resulting mapping function allows the conversion of any

sample of the source into that of the target without any linguistic

features such as phoneme transcription. A typical VC applica-

tion is speaker conversion [1], in which the voice of a certain

speaker (source speaker) is converted to sound like that of an-

other speaker (target speaker). Because no linguistic features are

used, this conversion framework can straightforwardly be ex-

tended to cross-language speaker conversion [2], [3] to realize

target speakers’ voices in various languages by applying the
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mapping function trained in a certain language into the conver-

sion process in another language. There are many other VC ap-

plications such as conversion from narrow-band speech to wide-

band speech for telecommunication [4], [5], modeling of speech

production [6], [7], acoustic-to-articulatory inversion mapping

[8], [9], body-transmitted speech enhancement [10]–[12], and a

speaking aid [13], [14]. In this paper, we describe spectral con-

version algorithms for speaker conversion, which can also be

applied to various other applications.

Many statistical approaches to VC have been studied since

the late 1980s [15]. Abe et al. [1] proposed a codebook mapping

method based on hard clustering and discrete mapping. The con-

verted feature vector at frame is determined by quantizing

the source feature vector to the nearest centroid vector of the

source codebook and substituting it with a corresponding cen-

troid vector of the mapping codebook as follows:

(1)

The large quantization error due to hard clustering is effec-

tively reduced by adopting fuzzy vector quantization (VQ) [16]

that realizes soft clustering. Continuous weights for indi-

vidual clusters are determined at each frame according to the

source feature vector. The converted feature vector is defined as

a weighted sum of the centroid vectors of the mapping code-

book as follows:

(2)

where is the number of centroid vectors. Moreover, more

variable representations of the converted feature vector are

achieved by modeling a difference vector between the source

and target feature vectors [17] as follows:

(3)

In this method, a very strong correlation between those two

vectors is assumed. In order to directly model the correlation

between them, Valbret et al. [18] proposed a conversion method

using linear multivariate regression (LMR), i.e., continuous

mapping based on hard clustering, as follows:

(4)

where and are regression parameters. There are many

methods other than those mentioned above, e.g., conversion

methods based on speaker interpolation [19] and neural net-

works [20]. As the most popular method, Stylianou et al.

[21] proposed a conversion method with a Gaussian mixture
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model (GMM) that realizes continuous mapping based on soft

clustering as follows:

(5)

This mapping method is reasonably effective. However, the

performance of the conversion is still insufficient. The con-

verted speech quality is deteriorated by some factors, e.g.,

spectral movement with inappropriate dynamic characteristics

caused by the frame-by-frame conversion process and excessive

smoothing of converted spectra [22], [23].

We propose spectral conversion based on the maximum-like-

lihood estimation (MLE) of a spectral parameter trajectory. In

order to realize appropriate spectral movements, we consider

the feature correlation between frames by applying a parameter

generation algorithm with dynamic features [24]–[26], which

works very well in hidden Markov model (HMM)-based speech

synthesis [27], [28], to the GMM-based mapping. This idea

makes it possible to estimate an appropriate spectrum sequence

in view of not only static but also dynamic characteristics. Fur-

thermore, in order to address the oversmoothing problem of the

converted spectra, we consider the global variance (GV) of the

converted spectra over a time sequence as a novel features-cap-

turing characteristic of the parameter trajectory. This idea effec-

tively models missing information in the conventional frame-

works of statistical conversion. Results of objective and sub-

jective evaluations demonstrate that the proposed method suc-

cessfully causes dramatic improvements in both the converted

speech quality and the conversion accuracy for speaker indi-

viduality. We present further details of the conversion method,

more discussions, and more evaluations than described in our

previous work [23].

The paper is organized as follows. In Section II, we describe

the conventional GMM-based mapping method. In Section III,

we describe the proposed conversion method considering

dynamic features and the GV. In Section IV, experimental

evaluations are presented. Finally, we summarize this paper in

Section V.

II. CONVENTIONAL GMM-BASED MAPPING

A. Probability Density Function

Let and be -dimensional source and target feature

vectors at frame , respectively. The joint probability density of

the source and target feature vectors is modeled by a GMM as

follows:

(6)

where is a joint vector . The notation denotes

transposition of the vector. The mixture component index is .

The total number of mixture components is . The weight of

the th mixture component is . The normal distribution with

and is denoted as . A parameter set of the GMM

is , which consists of weights, mean vectors, and the co-

variance matrices for individual mixture components. The mean

vector and the covariance matrix of the th mixture

component are written as

(7)

where and are the mean vector of the th mixture

component for the source and that for the target, respectively.

The matrices and are the covariance matrix of the

th mixture component for the source and that for the target,

respectively. The matrices and are the cross-co-

variance matrices of the th mixture component for the source

and the target, respectively. These covariance matrices, ,

, , and , are diagonal in this study.

The GMM is trained with the EM algorithm using the

joint vectors, which are automatically aligned by dynamic

time warping (DTW), in a training set. This training method

provides estimates of the model parameters robustly compared

with the least-squares estimation [21], particularly when the

amount of training data is small [29].

B. Mapping Function

The conditional probability density of , given , is also

represented as a GMM as follows:

(8)

where

(9)

(10)

The mean vector and the covariance matrix of the

th conditional probability distribution are written as

(11)

(12)

In the conventional method [21], [29], the conversion is per-

formed on the basis of the minimum mean-square error (mmse)

as follows:

(13)

where means the expectation and is the converted target

feature vector. Note that this mapping function has the same

form as in (5) with ,



2224 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 8, NOVEMBER 2007

Fig. 1. Mapping functions on the joint feature space. The contour lines show
normalized frequency distribution of training data samples.

, and . In each mixture com-

ponent, the conditional target mean vector for the given source

feature vector is calculated by a simple linear conversion based

on the correlation between the source and target feature vectors,

as shown in (11). The converted feature vector is defined as the

weighted sum of the conditional mean vectors, where the poste-

rior probabilities, in (9), of the source vector belonging to each

one of the mixture components are used as weights.

Fig. 1 shows some mapping functions on a joint space of

one-dimensional source and target features: that in the codebook

mapping method (“VQ”) shown by (1), that in the fuzzy VQ

mapping method using the difference vector (“Fuzzy VQ using

difference vector”) shown by (3), and that in the GMM-based

mapping method (“GMM”) shown by (13). The number of cen-

troids or the number of Gaussian mixture components is set to 2.

We also show values of the conditional expectation cal-

culated directly from the training samples. The mapping func-

tion in the codebook mapping method is discontinuous because

of hard clustering. The mapping function to which the fuzzy

VQ and the difference vector are applied nearly approximates

the conditional expectation. However, its accuracy is not high

enough. Compared with those, the GMM-based mapping func-

tion is much closer to the conditional expectation because of the

direct modeling of the correlation between the source and target

features. Furthermore, it allows soft clustering based on the pos-

terior probabilities of the GMM that can represent the proba-

bility distribution of features more accurately than the VQ-based

algorithms by modeling the covariance. Therefore, the GMM-

based mapping function has a reasonably high conversion accu-

racy.

C. Problems

Although the GMM-based mapping function works well,

there still remain some problems to be solved. This paper

is focused on two main problems, i.e., the time-independent

mapping and the oversmoothing effect.

Fig. 2 shows an example of the parameter trajectory converted

using the GMM-based mapping function and the natural target

Fig. 2. Example of converted and natural target parameter trajectories. Dif-
ferent local patterns are observed in ellipses. Note that phoneme duration of the
converted speech is different from that of the target.

Fig. 3. Example of converted and natural target spectra.

trajectory. Although these two trajectories seem similar, they

sometimes have different local patterns. Such differences are

often observed because the correlation of the target feature vec-

tors between frames is ignored in the conventional mapping. In

order to realize the appropriate converted spectrum sequence, it

is necessary to consider the dynamic features of the parameter

trajectory.

Fig. 3 shows an example of the converted and natural target

spectra. We can see that the converted spectrum is excessively

smoothed compared with the natural one. The statistical mod-

eling often removes the details of spectral structures. This

smoothing undoubtedly causes error reduction of the spectral

conversion. However, it also causes quality degradation of

the converted speech because the removed structures are still

necessary for synthesizing high-quality speech.

III. PROPOSED SPECTRAL CONVERSION

Instead of the conventional frame-based conversion process,

we propose the trajectory-based conversion process written as

(14)
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where is a mapping function. The vectors and are time

sequences of the source and target feature vectors, respectively,

and are written as

(15)

(16)

The proposed framework simultaneously converts feature vec-

tors in all frames over a time sequence.

In the following, we emphasize the proposed framework by

introducing two main ideas: 1) the conversion considering the

feature correlation between frames and 2) the conversion con-

sidering the GV.

A. Conversion Considering Dynamic Features

We use -dimensional source and target feature vectors

and consisting of

-dimensional static and dynamic features at frame .1 Their

time sequences are respectively written as

(17)

(18)

The GMM of the joint probability density is

trained in advance using joint vectors by

straightforwardly adopting the conventional training framework

[29].

1) Likelihood Function: We perform the spectral conversion

based on maximizing the following likelihood function:

(19)

where is a mixture compo-

nent sequence. The conditional probability density at each frame

is modeled as a GMM. At frame , the th mixture component

weight and the th conditional probability dis-

tribution are given by

(20)

(21)

where

(22)

1We may also use delta-delta features.

Fig. 4. Relationship between a sequence of the static feature vectors yyy and

that of the static and dynamic feature vectors YYY under L = L = 1,

w (�1) = �0:5, w (0) = 0, and w (1) = 0:5 in (28).

(23)

Note that the conditional mean vector is represented as a linear

conversion from the source feature vector, as described in the

previous section.

2) MLE of Parameter Trajectory: A time sequence of the

converted feature vectors is determined as follows:

(24)

In the same manner as the parameter generation algorithm from

an HMM [24], [25], this determination is performed under the

explicit relationship between a sequence of the static feature

vectors and that of the static and dynamic feature vectors

represented as the following linear conversion (see also Fig. 4):

(25)

where is the -by- matrix written as

(26)

(27)

-
-

-
-

(28)

where , and . In this paper, we

describe two solutions for (24).

EM algorithm: As described in [26], we iteratively maxi-

mize the following auxiliary function with respect to

(29)
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The converted vector sequence maximizing the auxiliary func-

tion is given by

(30)

where

(31)

(32)

(33)

(34)

(35)

The derivation of (30) is given in Appendix I. As an initial pa-

rameter sequence, the converted vector sequence determined

under the following approximation with the suboptimum mix-

ture sequence is effective.

Approximation with suboptimum mixture sequence: The

likelihood function in (19) is approximated with a single mix-

ture component sequence as follows:

(36)

First, the suboptimum mixture component sequence is deter-

mined by

(37)

Then the approximated log-scaled likelihood function is written

as

(38)

The converted static feature vector sequence that maximizes

under the constraint of (25) is given by

(39)

where

(40)

(41)

Fig. 5. Graphical representation of relationship between individual variables
in conversion process. The frame-based conversion process shown on the left
is changed into the trajectory-based one shown on the right by imposing the
constraint of (25).

We omit the derivation of (39) because it is very similar to that

of (30). The approximated solution effectively reduces the com-

putational cost. Our preliminary experiment demonstrated that

there were no large differences in the conversion accuracy be-

tween the approximated solution and the EM algorithm. There-

fore, we adopt the approximated solution.

Fig. 5 shows a graphical representation of the relationship be-

tween individual variables in the conversion process. If we de-

termine a time sequence of the converted static and dynamic fea-

ture vectors that maximizes the likelihood function of (38),

the determination process at each frame is independent of that

at the other frames, as shown in the left diagram in Fig. 5. In

contrast, the proposed method yields a time sequence of only

the converted static feature vectors that maximizes the like-

lihood function under the condition of (25). As shown in (39),

the -by- covariance matrix is converted into

a -by- covariance matrix , which is

generally full because is a band matrix. It effec-

tively models interframe correlations of the target feature vec-

tors. Consequently, the source feature vectors at all frames af-

fects the determination of the converted feature vector at each

frame, as shown in the right diagram in Fig. 5.2

3) Relationship With Conventional Mapping Method by (13):

If dynamic features are not considered in the proposed conver-

sion (i.e., is set to the identity matrix and the GMM

of the joint probability density is used on only static features

), the converted vector at frame is given by

(42)

The conversion process at each frame is independent of that at

other frames [7]. Because the proposed conversion is based not

on mmse but MLE, not only the mean vectors but also the

covariance matrices of the conditional probability distri-

butions affect the determination process. Those covariance ma-

trices are used as weights in the weighted sum of the conditional

mean vectors, as shown in (42). Namely, they are regarded as

a kind of confidence measure for the conditional mean vectors

from individual mixture components.

2Note that the resulting converted feature vector sequence is the same as the
mean vector sequence of a trajectory model [30] derived from the conditional
probability density distributions for both static and dynamic features by im-
posing an explicit relationship between those features.
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Fig. 6. Example of trajectories converted by the conventional mapping method
(13) and by our proposed method (39). Intense black areas show high conditional
probability densities.

Furthermore, we assume the conditions that 1) individual

mixture components have the same conditional covariance

matrix which 2) has sufficiently large values to make

the posterior probabilities for individual

mixture components equal each other. Namely, the influence

of the conditional covariance matrices is disregarded. In such a

case, the posterior probability is written as

(43)

Then, is given by

(44)

Note that the converted vector is identical to that obtained by the

conventional mmse-based mapping shown by (13). Therefore,

the conventional mapping is regarded as an approximation of

the proposed conversion method.

4) Effectiveness: Fig. 6 shows an example of the trajecto-

ries converted by the conventional mapping3 and the proposed

method on a time sequence of the conditional probability den-

sity functions. Note that each trajectory on the dynamic fea-

ture is derived from that on the static feature. Inappropriate dy-

namic characteristics are observed at some parts on the trajec-

tory converted by the conventional method. On the other hand,

3In order to consider the dynamic feature also in the conventional map-
ping method [21], [29], the converted feature vector was calculated as
ŷyy = E[yyy jXXX ] on the basis of the GMM ��� . Our experimental result
demonstrated the conversion accuracy was almost the same as that when not
considering the dynamic feature.

the proposed method yields a converted trajectory with both ap-

propriate static and appropriate dynamic characteristics. We can

see an interesting example in the figure: there are some inconsis-

tencies between a sequence of the conditional probability den-

sities for the static feature and that for the dynamic feature at

around 0.7 to 0.8 s. Conditional mean values for the static fea-

ture rapidly change but those for the dynamic feature remain at

around zero. It is impossible to generate a converted trajectory

with both static and dynamic features close to their respective

conditional mean values. This situation arises particularly when

using a context-independent conversion model such as a GMM.

In such a case, our proposed method generates the converted

trajectory based on more reliable conditional probability densi-

ties, of which the likelihoods are larger than the others, while

keeping the likelihood reduction of the others to a minimum.

In the above case, dynamic features of the resulting trajectory

are close to conditional mean values, but its static features are

not very close to conditional mean values. It is interesting that

the resulting local pattern is similar to the target one shown in

Fig. 2. This process is regarded to be a kind of smoothing of the

conventional trajectory based on statistics of both static and dy-

namic features.4

B. Conversion Considering GV

The GVs of parameter trajectories reconstructed in the con-

ventional statistical modeling framework often differ signifi-

cantly from the observed GVs of the target ones. In this section,

we show how to model the variance more accurately by incor-

porating it directly into the objective function.

1) Global Variance: The GV of the target static feature vec-

tors over a time sequence is written as

(45)

(46)

(47)

where is the th component of the target static feature

vector at frame . We calculate the GV utterance by utterance.

Fig. 7 shows time sequences of the third Mel-cepstral coef-

ficients extracted from the natural target speech and from the

converted speech. It can be observed that the GV of the con-

verted Mel-cepstra is smaller than that of the target ones. The

proposed trajectory-based conversion with MLE makes the gen-

erated trajectory close to the mean vector sequence of the con-

ditional probability density functions. The conventional frame-

based conversion with mmse shown by (13) essentially does this

as well. The GV reduction is often observed because each mix-

ture component is trained with multiple inventories from dif-

ferent contexts. Removed variance features are regarded to be

noise in the statistical modeling of acoustic probability density.

2) Likelihood Function: We define a new likelihood function

consisting of two probability density functions for a sequence of

4This process can also be regarded as Kalman filtering [31].
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Fig. 7. Natural target and converted Mel-cepstrum sequences. Square root of
GV of each sequence is shown by bidirectional arrows. Note that phoneme du-
ration of the converted speech is different from that of the target.

the target static and dynamic feature vectors and for the GV of

the target static feature vectors as follows:

(48)

where is modeled by a single Gaussian with the

mean vector and the covariance matrix as follows:

(49)

The Gaussian distribution and the GMM are indepen-

dently trained using the training data.5 The constant denotes

the weight for controlling the balance between the two likeli-

hoods. We set as the ratio of the number of dimensions be-

tween vectors and , i.e., .

3) MLE of Parameter Trajectory: A time sequence of the

converted feature vectors is determined as follows:

(50)

Note that the proposed likelihood is a function of . Namely,

the proposed conversion process is performed under both the

constraint of (25) and another constraint on the GV of the gen-

erated trajectory. The likelihood might be viewed

as a penalty term for the reduction of the GV. We can determine

in similar ways to those described previously.

EM algorithm: We iteratively maximize the following aux-

iliary function with respect to

(51)

5We may also employ the conditional probability density of the GV given
some features, such as the GV of the source feature vectors vvv(xxx) or the GV
of the converted vectors vvv(ŷyy) determined by (39). Our preliminary experiment
demonstrated that there was little performance difference between the proba-
bility density estimated from the target training data and the conditional proba-
bility densities.

At each M-step, we iteratively update the converted parameter

trajectory as follows:

- - - (52)

where is the step-size parameter. When employing the

steepest descent algorithm using the first derivative,6 -

is written as

(53)

(54)

(55)

where vector is the th column vector of .

The derivations of (53)–(55) are given in Appendix II.

Approximation with suboptimum mixture sequence: The

computational cost is effectively reduced by approximating (48)

with the suboptimum mixture component sequence. The ap-

proximated log-scaled likelihood function is given by

(56)

We iteratively update the converted parameter trajectory using

the first derivative given by

(57)

We omit the derivation of (57) because it is very similar to

that of (53). Our preliminary experiment demonstrated that

the above approximated solution did not cause any significant

quality degradation compared with the EM algorithm. There-

fore, we adopt the approximated solution.

There are mainly two settings of the initial trajectory - .

One is to use the trajectory calculated by (39). The other is to

use the trajectory linearly converted from as follows:

(58)

The trajectory maximizes the GMM likelihood

, while maximizes the GV likelihood

. In our preliminary experiment, we found that

usually has a larger value of the proposed likelihood than in

the described setting of weight .

4) Effectiveness: Fig. 8 shows an example of the converted

trajectories with/without the GV. By considering the GV, at a

certain dimension, the trajectory movements are greatly empha-

sized, but at another dimension, they remain almost the same.

The degree of emphasis varies between individual dimensions

and frames, and it is automatically determined according to the

6We may employ the Newton–Raphson method using both the first and the
second derivatives [32].
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Fig. 8. Example of generated parameter trajectories with/without GV.

proposed likelihood. This process may be regarded as statistical

postfiltering.

Using more mixture components for modeling the probability

density also alleviates the oversmoothing effect. However, it

also causes another problem of overtraining due to an increase

in the number of model parameters, which often causes perfor-

mance degradations for data samples not included in the training

data. One of the advantages of considering the GV is that the

number of parameters is kept almost equal to that when not

considering the GV. In addition, since the proposed framework

is based on the statistical process, it retains many advantages

of the GMM-based mapping method, such as allowing model

training or adaptation [33], [34] in a manner supported mathe-

matically. Although it increases the computation cost because of

employing the gradient method, the process is still sufficiently

fast, as described in [35].

IV. EXPERIMENTAL EVALUATIONS

A. Experimental Conditions

We conducted three kinds of experimental evaluations.

First, in order to demonstrate the effectiveness of considering

dynamic features, we compared the proposed trajectory-based

conversion method not considering the GV shown by (39)

with the conventional frame-based mapping method [21], [29]

shown by (13). Second, in order to demonstrate the effective-

ness of considering the GV in the proposed conversion method,

we compared the method in which both dynamic features

and the GV are considered with the method in which only

dynamic features are considered, and spectral enhancement

by postfiltering (PF), which is one of the most popular and

effective enhancement techniques, was adopted instead of

considering the GV. Finally, we conducted an evaluation of the

total performance of the proposed VC system.

In the first and second experimental evaluations, we per-

formed male-to-female and female-to-male VCs using the

MOCHA database [36] consisting of 460 sentences for each of

one male and one female speaker.7 We selected 50 sentences

at random as an evaluation set. We selected six training sets

7We use only the MOCHA speech data that include both speech and articu-
latory data.

consisting of 10, 25, 50, 100, 200, and 400 sentences each

from the remaining 410 sentences so that the diphone coverage

of each set for all 460 sentences was maximized.8 In order to

measure only the performance of the spectral conversion, we

synthesized the converted speech using the natural prosodic

features automatically extracted from the target speech as

follows: a time alignment for modifying the duration was

performed with DTW, and then, at each frame, and total

power of the converted linear spectrum were substituted with

the aligned target values.

In the third experimental evaluation, we used speech data of

four speakers from the CMU ARCTIC database [37], two male

English speakers (bdl and rms) and two female English speakers

(clb and slt), to evaluate the proposed VC system for a greater

variety of speaker pairs. VC was performed for 12 speaker pairs.

In each pair, 50 sentence pairs were used for training and the

other 24 sentences were used for the test. The proposed spec-

tral conversion considering the GV was employed. As for the

prosodic features, only was converted as follows:

(59)

where and are a log-scaled of the source speaker and

the converted one at frame . Parameters and are the

mean and standard deviation of log-scaled calculated from

the training data of the source speaker and and are

those of log-scaled of the target speaker.

We used the Mel-cepstrum as a spectral feature. The first

through 24th Mel-cepstral coefficients were extracted from

16-kHz sampling speech data. The STRAIGHT analysis and

synthesis method [38] were employed for spectral extraction

and speech synthesis, respectively.

B. Effectiveness of Considering Dynamic Features

1) Objective Evaluations: The Mel-cepstral distortion be-

tween the target and converted Mel-cepstra in the evaluation set

given by the following equation was used as the objective eval-

uation measure:

Mel CD [dB] (60)

where and are the th coefficients of the target and

converted Mel-cepstra, respectively.

Fig. 9 shows Mel-cepstral distortions in the evaluation set as a

function of the number of training sentences. For each size of the

training sets, we optimized the number of mixture components

so that the Mel-cepstral distortion was minimized. Our proposed

method (39) significantly outperforms the conventional method

(13). This is because the proposed method realizes an appro-

priate parameter trajectory by considering the interframe corre-

lation that is ignored in the conventional method.

The optimum number of mixture components reasonably in-

creases as the size of the training set increases because a larger

amount of training data allows the training of a more complex

8The resulting diphone coverage of each training set was 62.4, 81.7, 91.4,
97.0, 99.4, 99.8, and 99.8%.
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Fig. 9. Mel-cepstral distortion as a function of the number of training sen-
tences. The distortion before the conversion is 7.30 [dB]. The numbers within
parentheses indicate the optimum number of mixture components. Note that the
GV is not considered in the proposed method.

conversion model. It is observed that the optimum number of

mixture components in the proposed method tends to be larger

than that in the conventional method. This is because a larger

number of mixture components are needed to model the joint

probability density of not only static but also dynamic features.

2) Subjective Evaluations: We conducted preference tests

concerning speech quality and speaker individuality. In the test

of speech quality, samples of speech converted by the conven-

tional method (13) and by the proposed method (39) for each

test sentence were presented to listeners in random order. Lis-

teners were asked which sample sounded more natural. As the

test of speaker individuality, an XAB test was conducted. The

analysis–synthesized target speech was presented as X, and the

speech converted by the conventional method and that converted

by the proposed method were presented to listeners in random

order as A and B. Note that both A and B are speech converted

from the source speaker into the target speaker X. In each XAB

set, speech samples of the same sentence were presented. Lis-

teners were asked to choose which of A or B sounded more

similar to X in terms of speaker individuality. The number of

training sentences was 50. The number of mixtures was set to

the optimum value shown in Fig. 9 for each conversion method.

We used 25 sentences in the evaluation set. The number of lis-

teners was ten.

Fig. 10 shows the results of the preference tests. It is observed

that the proposed method yields converted speech with signifi-

cantly better speech quality and a more similar personality to the

target speaker compared with the conventional method. These

results are consistent with the previous objective evaluation.

From the above results, it is demonstrated that the proposed

trajectory-based conversion method significantly outperforms

the conventional frame-based one [21], [29] in view of both ob-

jective and subjective measures even if the GV is not considered

in the conversion process.

C. Effectiveness of Considering GV

1) Objective Evaluations: We conducted objective evalua-

tions of the converted trajectories in terms of their GV charac-

teristics and the GMM and GV likelihoods. We varied the coef-

ficient of the postfilter for the Mel-cepstrum [39] from 0.0 to

Fig. 10. Results of preference tests of speech quality and speaker individuality.
Note that the GV is not considered in the proposed method.

Fig. 11. GVs of several Mel-cepstrum sequences. These values show GV
means over all converted voices.

0.8, in which the converted spectra are increasingly emphasized

as increases. The number of training sentences was set to 50.

The number of mixture components was set to 128.

Fig. 11 shows GVs of several Mel-cepstrum sequences: the

converted Mel-cepstrum with the PF, that with the GV, and the

natural Mel-cepstra of the target speech. It can be seen that the

GV of the converted Mel-cepstra is evidently small when not

considering the GV and not employing the postfilter (PF,

). Postfiltering actually emphasizes the Mel-cep-

stral coefficients at a constant rate, except for the first coefficient

[39]. Although it makes the GV large, GV characteristics of the

emphasized Mel-cepstra are obviously different from those of

the target. On the other hand, the method in which the GV is

considered realizes the converted Mel-cepstra of which the GV

is almost equal to the target GV.

Fig. 12 shows the logarithmic GMM likelihood

normalized by the number of frames. It is

reasonable that the largest GMM likelihood is obtained when

employing neither the GV nor the postfilter , and it

decreases when applying the postfilter or when considering

the GV. An interesting point is that the GMM likelihood

for the natural target trajectory is smaller than those for the

converted trajectories. This implies that we do not necessarily

estimate the converted trajectory that maximizes only the
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Fig. 12. Log-scaled GMM and GV likelihoods on Mel-cepstrum sequences as
a function of postfilter coefficient �. The GMM likelihoods are normalized by
the number of frames.

GMM likelihood, though it seems reasonable to at least keep

the likelihood larger than that for the natural target trajectory.

Fig. 12 also shows the logarithmic GV likelihood

. The GV likelihoods are very small when

not considering the GV, because of the GV reduction shown

in Fig. 11. Although they are recovered by postfiltering, the

resulting likelihoods are still much smaller than that for the

natural target. On the other hand, the method in which the GV

is considered allows the converted trajectory for which the GV

likelihood is sufficiently large.

Consequently, the conversion method with the GV makes

both GMM and GV likelihoods exceed those for the target.

These results demonstrate that the conversion method with the

GV realizes more similar converted trajectories to the target one

in view of satisfying a greater variety of characteristics than

when not considering the GV or employing the postfilter.

2) Subjective Evaluations: We conducted an opinion test on

speech quality and an XAB test on speaker individuality. In

the opinion test, the opinion score was set to a five-point scale

(5: excellent, 4: good, 3: fair, 2: poor, 1: bad). The voices con-

verted by the conversion method with the GV and those with the

PF when varying the coefficient were evaluated by each lis-

tener. In order to demonstrate speech quality under the assump-

tion that spectral and prosodic features were converted perfectly,

the analysis-synthesized target speech samples were also eval-

uated. More than ten samples, including both the analysis-syn-

thesized target speech and each kind of converted speech, were

presented to listeners before starting the test to make their scores

more consistent. In the XAB test, the analysis-synthesized target

speech was presented as X, and the GV-based and PF-based

converted voices from the source into the target were presented

in random order as A and B. Speech samples of the same sen-

tence were presented as an XAB set. The postfilter coefficient

was varied again. Listeners were asked to choose which of A

or B sounded more similar to X in terms of speaker individu-

ality. We used 25 sentences in the evaluation set. The number

of listeners was ten. The other experimental conditions were the

same as described for the previous objective evaluation.

Fig. 13 shows the results of the opinion test. The converted

speech quality is obviously improved when the GV is consid-

Fig. 13. Results of opinion test on speech quality. “Target” shows the result for
analysis-synthesized target speech. Note that the method shown as “� = 0” of
“with PF” is identical to that shown as “Proposed (39)” in Fig. 10.

Fig. 14. Results of XAB test on speaker individuality. Note that the method
shown as “� = 0” of “with PF” is identical to that shown as “Proposed (39)”
in Fig. 10.

ered. Although the spectral enhancement by postfiltering also

results in quality improvements, the improved quality is infe-

rior to that attained by considering the GV. Because the pro-

posed algorithm varies the emphasis rate according to the con-

ditional probability density at each of the frames and dimen-

sions, a more reasonable enhancement is achieved compared

with postfiltering. It is interesting that the trend of MOS in the

change is similar to that of the GV likelihoods. This result im-

plies that the GV is an important cue to speech quality.

Fig. 14 shows the results of the XAB test. It is observed that

the conversion method in which the GV is considered gener-

ates converted voices that have a much more similar personality

to the target speaker compared with the PF-based conversion

method. As described in the previous evaluations, the postfilter

does not realize proper GV values. Thus, the improvements are

caused by realizing the converted trajectory with the proper GV.

It is possible that the GV feature itself contributes to the speaker

individuality.

As a reference, an example of spectrum sequences of the

target and converted voices is shown in Fig. 15. We can see that

spectral peaks become much sharper when the GV is consid-

ered. Note that increasing the GV usually causes an increase

in Mel-cepstral distortion between the converted trajectory and
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Fig. 15. Example of spectrum sequences of (a) natural target speech, (b) speech converted by the proposed method without GV, and (c) speech converted by the
proposed method with GV, for the sentence fragment “farmers grow oats.”

Fig. 16. Result of ABX test on speaker individuality. “Target” shows the result
for analysis-synthesized target speech. “Converted” shows the result for con-
verted speech by the proposed trajectory-based conversion method considering
both dynamic features and the GV, which is identical to the method shown as
“with GV” in Figs. 13 and 14.

the target one, e.g., 3.75 dB without the GV and 4.11 dB with

the GV in Fig. 15. It is possible that the process of simply in-

creasing the GV causes the quality degradation of the converted

speech because it does not always make the converted sequence

close to the natural one. The proposed algorithm increases the

GV considering the GV likelihood while also considering the

GMM likelihood to alleviate the quality degradation due to ex-

cessive increase of the GV. This process successfully results in

dramatic improvements in view of both speech quality and the

conversion accuracy for speaker individuality.

D. Total Performance Evaluation

We conducted an ABX test. Natural speech of the source

speaker and that of the target speaker were presented to listeners

in random order as A and B. Then, the converted speech was

presented as X. In each ABX set, the same sentence was used

for A and B, and a different one was used for X to prevent lis-

teners from evaluating only a specific prosodic pattern of each

utterance. Listeners were asked to judge whether utterance X

sounded closer to utterance A or B in terms of speaker individ-

uality. In order to show the performance of perfect spectral and

prosodic voice conversion, the analysis-synthesized speech of

the target speaker was also evaluated as X. The number of mix-

ture components was set to 128. The number of listeners was

ten.

Fig. 16 shows a result of the ABX test. The proposed VC

system obviously is very effective.9 It is not surprising that al-

most all the errors occurred in the within-gender conversion. It

is noteworthy that the performance of the proposed VC system

is comparable to that of the perfect VC system when it should be

inferior to the perfect one because the proposed VC system does

not carefully convert prosodic patterns. The performance differ-

ence between those two might be observed in another speaker

pair whose prosodic characteristics are very different from each

other. It might also be observed in a more challenging test such

as a speaker recognizability test rather than the ABX text.

V. CONCLUSION

We proposed a spectral conversion method for VC based on

maximum-likelihood estimation of a parameter trajectory. It

was shown that the conventional frame-based mapping method

based on the minimum mean square error [21], [29] is regarded

as an approximation of the proposed conversion method. We

emphasized the proposed framework by introducing two main

ideas: 1) the conversion considering the feature correlation

between frames for realizing appropriate spectral local pat-

terns and 2) the conversion considering the global variance

for alleviating the oversmoothing effect. Experimental results

demonstrated that the proposed ideas can dramatically improve

the conversion performance in view of both speech quality and

the conversion accuracy for speaker individuality.

It is indispensable to continue to make progress in the conver-

sion method to make VC practically applicable. It is worthwhile

to convert the source features, such as residual signals [40]–[42]

as well as spectral features. Prosodic conversion, such as

conversion [43] and duration conversion, is also important to

9Some samples are available at http://spalab.naist.jp/~tomoki/IEEE/MLVC/
index.html.
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more accurately realize speaker personality. Moreover, it is de-

sired to realize a more flexible training framework of the conver-

sion model accepting nonparallel data [33], [41], [44]. It seems

effective to apply model adaptation techniques developed in a

speech recognition area to VC for realizing a novel VC frame-

work [33], [34], [45].

APPENDIX I

DERIVATION OF (30)

The auxiliary function of (29) is written as

(61)

where , , , , and

are given by (31)–(35), respectively. The constant is indepen-

dent of . By setting the first derivative of the auxiliary function

with respect to given by

(62)

to zero, that maximizes the auxiliary function is determined

as follows:

(63)

APPENDIX II

DERIVATIONS OF (53)–(55)

The auxiliary function of (51) is written as

(64)

where

(65)

(66)

The constants and are independent of . The derivative of

with respect to is given by (62). The derivative of with

respect to is given by

(67)

(68)

(69)

(70)

(71)

where vector is the th column vector of .

Consequently, the derivative of the auxiliary function with re-

spect to is written as

(72)

(73)

(74)
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