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Abstract

This paper presents a voice conversion technique using Deep

Belief Nets (DBNs) to build high-order eigen spaces of the

source/target speakers, where it is easier to convert the source

speech to the target speech than in the traditional cepstrum

space. DBNs have a deep architecture that automatically dis-

covers abstractions to maximally express the original input fea-

tures. If we train the DBNs using only the speech of an indi-

vidual speaker, it can be considered that there is less phonologi-

cal information and relatively more speaker individuality in the

output features at the highest layer. Training the DBNs for a

source speaker and a target speaker, we can then connect and

convert the speaker individuality abstractions using Neural Net-

works (NNs). The converted abstraction of the source speaker

is then brought back to the cepstrum space using an inverse pro-

cess of the DBNs of the target speaker. We conducted speaker-

voice conversion experiments and confirmed the efficacy of our

method with respect to subjective and objective criteria, com-

paring it with the conventional Gaussian Mixture Model-based

method.

Index Terms: voice conversion, deep learning, deep belief nets

1. Introduction

Voice conversion (VC) is a technique for changing specific in-

formation in the speech of a source speaker to that of a target

speaker, while retaining the other information in the utterance

such as its linguistic information. The VC techniques have been

applied to various tasks, such as speech enhancement [1], emo-

tion conversion [2], speaking assistance [3], and other applica-

tions [4, 5]. Most of the related works in voice conversion focus

on the conversion of spectrum features, and we conform to that.

Many statistical approaches to VC have been studied so

far [6, 7]. Among these approaches, the GMM-based mapping

method [8] is widely used, and a number of improvements have

been proposed. Toda et al. [9] introduced dynamic features and

the global variance (GV) of the converted spectra over a time

sequence. Helnder et al. [10] proposed transforms based on

Partial Least Squares (PLS) in order to prevent the over-fitting

problem of standard multivariate regression. There have also

been approaches that does not require parallel data by using a

GMM adaptation technique [11], eigen-voice GMM [13, 14] or

probabilistic integration model [12]. Other approaches based on

statistical approaches has been proposed; Jian et al. [15] used

canonical correlation analysis for the VC, and Takashima et al.

[16] proposed a VC technique using exemplar-based NMF.

However, most of the conventional works, including GMM-

based approaches, relied on “shallow” voice conversion, in

which a source speech was converted in the original feature

space directly or in the shallow architecture with a few hidden

layers. To capture the characteristics of the speech more pre-

cisely, it is necessary to have more hidden layers in the stack.

An important method has been proposed by Desai et al. [17]

based on Neural Networks (NNs). The NN-based approach has

another advantage in addition to having multiple hidden layers.

In the GMM-based approaches, the conversion is achieved so as

to maximize the conditional probability calculated from a joint

probability of source speech and target speech, which is trained

beforehand. On the other hand, NN-based approaches directly

train the conditional probability which converts the feature vec-

tor of a source speaker to that of a target speaker. It is often re-

ported that such a discriminative approach performs better than

a generative approach, such as GMM, in speech recognition and

synthesis as well as in VC [18, 19]. Furthermore, the shape of

the vocal tract is generally non-linear and compatible with NNs,

whose conversion function is also non-linear. For these reasons,

NN-based approaches achieve relatively high performance [17].

Meanwhile, Hinton et el. introduced an effective training

algorithm of Deep Belief Nets (DBNs) in 2006 [20], and the use

of DBNs rapidly spread in the field of signal processing with

great success. DBNs and related models have been used, for

example, for hand-written character recognition [21], 3-D ob-

ject recognition [22], machine transliteration [23], and speech

recognition tasks [24]. DBNs are probabilistic generative mod-

els that are composed of multiple layers of stochastic latent vari-

ables, and have a greedy layer-wise unsupervised learning algo-

rithm. Since DBNs stack self-discovering extractors of abstrac-

tions (called Restricted Boltzmann Machines; RBMs) in a deep

architecture, they can capture the fundamental bases to express

the input vector at the highest layer.

In this paper, we propose a voice conversion technique us-

ing a combination of speaker-dependent DBNs and concatenat-

ing NNs. In our approach, we first train two exclusive DBNs

for source and target speakers to obtain the deep networks that

capture abstractions for each speech. Since the training data

for the source speaker DBNs, for instance, include various

phonemes of the speaker, the DBNs try to capture the abstrac-

tions to maximally express the training data that have abundant

speaker individuality information and less phonological infor-

mation. Therefore, we can expect that it is easier to convert the

feature vectors in these speaker-individuality-emphasized high-

order spaces than the original cepstrum space. At this point, we

employ NNs to connect the highest layers of the DBNs. The

input source signal is converted through the trained NNs in the

high-order space, and brought back to the cepstrum space using

the inverse process (reconstruction) of the target DBNs.

This paper presents the following: in Section 2, we explain

our proposed voice conversion method. We show our setup and
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Figure 1: Our proposed voice conversion architecture, com-

bined with two different DBNs and concatenating NNs. A

source feature vector x is fed to DBNx, NNxy , and DBNy

in order, and then converted to a target vector y. This figure

shows an example of architectures with two hidden layers in

the DBNs and with one hidden layer in the NNs. σ indicates a

standard sigmoid function, i.e. σ(x) = 1./(1 + exp(−x)).

experimental results in Section 3, and Section 4 is our conclu-

sion.

2. Methodology

2.1. Voice conversion using DBNs and NNs

Fig. 1 shows a flow of our proposed method, where an input

vector (cepstrum) of the source speaker is converted to that of

a target speaker in the high-order space by using DBNs and

NNs. We prepare different DBNs for source speech and tar-

get speech (DBNs and DBNt, respectively) so as to capture

the speaker-individuality information. All the DBNs are trained

using the corresponding speaker’s training data. As shown in

Fig. 1, DBNs stack multiple layers (L layers) and share the

weights bottom-up and top-down1. Given weight parameter ma-

trices W
(l)
s and W

(l)
t (l = 1, 2, . . . , L) for DBNs and DBNt,

respectively, bottom-up conversion functions ζs(z) and ζt(z)
can be represented by:

ζi(z) = (ζ
(1)
i ◦ ζ

(2)
i ◦ · · · ◦ ζ

(L)
i )(z) (1)

=

L
K

l=1

ζ
(l)
i (z) (2)

ζ
(l)
i (z) = σ(W

(l)
i z), i ∈ {s, t} (3)

where
JL

l=1 denotes composition of L functions. For instance,
J2

l=1 ζ
(l)
s (z) = σ(W

(2)
s σ(W

(1)
s z)).

Similarly, given a high-order feature vector at the highest

layer, a top-down conversion function ζ−1
i (z) that brings it

1Technically, each stack is not a bidirectional model except for the
highest layer; however, the architecture is approximately regarded as
being a bidirectional model in this paper.

back to the original (cepstrum) space is given by:

ζ
−1
i (z) =

L
K

l=1

σ(W
(L−l+1)
i

T
z). (4)

In our approach, the compact-represented input vector cal-

culated by Eq. (1) is converted into the high-order target space

using (I + 1) layers perceptron NNst (in Fig. 1). Once the

weight parameters W
(l)
st (l = 1, 2, . . . , I) of NNst are esti-

mated beforehand, an input vector can be converted to:

ηst(z) =

I
K

l=1

σ(W
(i)
st z) (5)

Summarizing the above, a conversion function of our

method from a source speech x to a target speech y is given

by:

y = ζ
−1
t (ηst(ζs(x))) (6)

=

2L+I
K

l=1

σ(W (l)
x) (7)

where W (l) denotes an element of a set of weight parameters

W , where

W = {W (l)}2L+1
l=1 (8)

= {W (1)
s , · · · , W (L)

s , W
(1)
st , · · · , (9)

W
(I)
st , W

(L)
t

T
, · · · , W

(1)
t

T
}. (10)

As Eq. (7) indicates, our conversion method is based on the

composite function of multiple different non-linear functions.

On the other hand, a conventional GMM-based approach with

M Gaussian mixtures converts the source features x as

y =

M
X

m=1

P (m|x)E(y)
m (11)

P (m|x) =
wmN (x; µ

(x)
m ,Σ

(xx)
m

PM

m=1 wmN (x; µ
(x)
m ,Σ

(xx)
m

(12)

E
(y)
m = µ

(y)
m + Σ

(yx)
m Σ

(xx)−1
m (x − µ

(x)
m ) (13)

showing it to be an additive model of non-linear functions.

Therefore, it is expected that our compositive model has a richer

expression than the conventional GMM-based method.

2.2. Training the networks

DBNs have an architecture that stacks multiple Restricted

Boltzmann Machines (RBMs) which compose a visible layer

and a hidden layer. In the training, parameters of DBNs

are determined layer-by-layer: from the lowest layer of the

RBM to the highest. For each RBM, there are no connections

among visible units or hidden units, but bidirectional connec-

tions between visible units and hidden units. In the literature

of RBMs, the joint probability p(v, h) of binary-valued visible

units v = [v1, · · · , vI ]
T , vi ∈ {0, 1} and binary-valued hidden

units h = [h1, · · · , hJ ]T , hj ∈ {0, 1} is defined as:

p(v, h) =
1

Z
exp(−E(v, h)) (14)

E(v, h) = −b
T
v − c

T
h − v

T
W h (15)

Z =
X

v,h

exp(−E(v, h)) (16)
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where, W ∈ R
I×J , b ∈ R

I×1, and c ∈ R
J×1 are the weight-

parameter matrix between visible units and hidden units, a bias

vector of visible units, and a bias vector of hidden units, respec-

tively.

Since there are no connections between visible units or be-

tween hidden units, the conditional probabilities p(h|v) and

p(v|h) form simple equations as follows:

p(hj = 1|v) = σ(cj + v
T
W:j) (17)

p(vi = 1|h) = σ(bi + h
T
W

T
i: ) (18)

where W:j and Wi: denote the j-th column vector and the i-th

row vector, respectively. Eqs. (17) and (18) show that each layer

has a non-linear activation of sigmoid function, in accord with

Fig. 1 and Eqs. (3) and (4).

For parameter estimation, the log likelihood of visible units

is used as an evaluation function. Differentiating partially with

respect to each parameter, we obtain:

∂ log p(v)

∂wij

= 〈vihj〉data − 〈vihj〉model (19)

∂ log p(v)

∂bi

= 〈vi〉data − 〈vi〉model (20)

∂ log p(v)

∂cj

= 〈hj〉data − 〈hj〉model (21)

where, 〈·〉data and 〈·〉model indicate expectations of input data

and the inner model, respectively. However, it is generally hard

to compute the second term. Typically, expectation of the re-

constructed data 〈·〉recon computed by Eqs. (17) and (18) is

alternatively used [20]. Using Eqs. (19), (20) and (21), each

parameter can be updated by stochastic gradient descent.

In the training of DBNs, the hidden units of the current

stack are regarded as visible units in the next layer. In other

words, the hidden units computed as a conditional probability

p(h|v) in Eq. (17) are fed to the following RBMs, and trained

in the similar way. This procedure is repeated layer-by-layer

until the highest layer is reached.

After training two DBNs for source and target speakers,

we train a converting-in-high-order-space NNst using paral-

lel speeches {xn, yn}
N
n=1 of source/target speakers. Weight

parameters of NNst are estimated so as to minimize the error

between the output ηst(ζs(xn)) and the target vector ζt(yn).

Finally, each parameter of the whole networks (DBNs, DBNt

and NNst) is fine-tuned by back-propagation using the raw par-

allel data.

2.3. Pre-processing

The above-mentioned DBNs (or RBMs) as shown in Eqs. (15)

and (18) are modeled under the assumption that each visible

unit is binary. Therefore, real-valued data, such as cepstrum

features, do not suit the training of DBNs. There is an approach

that supports a real-valued input by modeling in which each vis-

ible unit is sampled from a Gaussian distribution [20]; however,

we took another approach based on soft-binarization. The input

vectors (both for the source speaker and the target speaker) are

first normalized to have zero mean and unit variance for each

dimension, and then binarized using an element-wise sigmoid

function σα(x) as:

x ← σα(x) = 1./(1 + exp(−αx)) (22)

where, α (= 2, in this paper) indicates a gain parameter.
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Figure 2: Normalized spectrum distortion calculated from con-

verted speech using each method (left), and preference score to

see auditory measure (right).

3. Experiments

3.1. Setup

We conducted voice conversion experiments using the ATR

Japanese speech database [25], comparing our method with the

conventional GMM-based approach. From this database, we

selected and used a male speaker (MMY) for the source, and a

female speaker (FTK) for the target.

For the training and validation set, we resampled the acous-

tic signals to 8 kHz from their original 20 kHz, extracted

STRAIGHT parameters, and used D cepstrum coefficients

(D = 40 except for the energy features, in this paper) com-

puted from the STRAIGHT parameters. The parallel data of

the source/target speakers processed by Dynamic Programming

were created from 216 word speeches in the dataset, and used

for the training of DBNs and NNs (and GMM for the conven-

tional method). Note that the parallel data was prepared for

NNs (and GMM), and two DBNs were trained independently.

The number of the training data (frames) was 189,992 (about

63 min.). We let the learning rate and the number of epochs

in the gradient decent-based training of DBNs be 0.05 and 50,

respectively. We tested two different architectures of DBNs

for reference: (DBN1) L=1,I=1, and deeper (DBN2) L=2,I=1.

The numbers of each node from input x to output y in Fig. 1

were [40 80 80 40] for DBN1, and [40 120 30 30 120 40] for

DBN2. For the conventional method, we used a GMM with 64

mixtures and a diagonal covariance matrix. For the validation,

15 sentences (about 52 sec.) were arbitrarily selected from the

database.

We converted only spectrum features using DBNs (or

GMM), and pitches using a traditional linear conversion with

mean and standard deviation. Energy features (0-order cep-

strum coefficients) of the source signal were used for the target

signal synthesis without change.

3.2. Results and discussion

Fig. 2 summarizes the experimental results, showing the com-

parison of our method with the conventional GMM method with

respect to objective and subjective metrics. For the objective

metric, we used normalized spectrum distortion (NSD), calcu-

lated by:

NSD =

s

‖SY − ŜX‖2

‖SY − SX‖2
(23)

where, SX , SY , and ŜX denote STRAIGHT spectra (a ma-

trix of spectra by time sequence) of the source speaker, spec-

tra of the target speaker, and the converted spectra using each
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Table 1: Smoothness of spectra in time axis (×10−2).

DBN2 GMM Target

7.80881 10.3204 6.05998

method. The smaller the value of NSD is, the closer the con-

verted spectra is to the target spectra. As shown in Fig. 2 (left

side), our approach (DBN1 and DBN2) outperformed the con-

ventional GMM-based method. When we compare within our

methods, the deeper architecture (DBN2) achieved better per-

formance than the shallower architecture (DBN1). The reason

for the improvement can be considered to the result of the fact

that our deep conversion system (DBN2) could capture and con-

vert the abstractions of speaker individualities better than other

methods.

We also carried out preference tests related to the natural-

ness of the converted speech. For the evaluation, a paired com-

parison test was carried out, where each subject (in total there

were 9 subjects) listened to pairs of speech converted by the

two methods (DBN2 and GMM)2 and selected which sample

sounded more natural. The results of the preference tests are

shown in the right-hand portion of Fig. 2. As shown in the fig-

ure, our approach performed much better than the conventional

method in the subjective criteria, compared with the case of the

objective evaluation. This might be because DBNs produced

auditory superior converted speech compared to that produced

by GMM. In order to examine this, we compared the methods

with their smoothness as shown in Table 1, calculated by the

norm of the spectral gradient in the time axis. The smaller the

value of the smoothness is, the smoother the converted spectrum

is. As shown in Table 1, the converted spectra using our ap-

proach is smoother than that of GMM, being close to the target

spectra. The spectra converted by GMM are somewhat jagged,

and hence it negatively affected the auditory evaluation.

4. Conclusion

In this paper, we presented a voice conversion technique us-

ing Deep Belief Nets (DBNs) for generation of the high-order

eigen space of the speaker, where it captures the abstractions

of speaker individuality. Our experimental results showed the

efficacy of the proposed method, in comparison to a conven-

tional GMM-based approach. Future work will include the use

of Deep Boltzmann Machines (which have a deep bidirectional

model), instead of DBNs, to improve the synthesis accuracy.
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