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ABSTRACT

This paper investigates the use of Deep Bidirectional Long
Short-Term Memory based Recurrent Neural Networks (DBLSTM-
RNNs) for voice conversion. Temporal correlations across speech
frames are not directly modeled in frame-based methods using
conventional Deep Neural Networks (DNNs), which results in a
limited quality of the converted speech. To improve the naturalness
and continuity of the speech output in voice conversion, we propose
a sequence-based conversion method using DBLSTM-RNNs to
model not only the frame-wised relationship between the source
and the target voice, but also the long-range context-dependencies
in the acoustic trajectory. Experiments show that DBLSTM-RNNs
outperform DNNs where Mean Opinion Scores are 3.2 and 2.3
respectively. Also, DBLSTM-RNNs without dynamic features have
better performance than DNNs with dynamic features.

Index Terms— voice conversion, bidirectional long short-term
memory, recurrent neural networks, dynamic features

1. INTRODUCTION

Voice Conversion (VC) is a technique that aims to modify the speech
of a source speaker to make it sound like that of a target speaker. The
most obvious application for VC is Text-to-Speech (TTS) synthesis,
for creating new and personalized voices. Other potential applica-
tions include security-related usage (e.g. hiding the identity of the
speaker), vocal restoration in case of pathology, speech-to-speech
translation, movie dubbing, as well as games and other entertain-
ment applications [1].

Many techniques have been developed for VC. We can divide
these techniques into two categories: rule-based approaches and sta-
tistical approaches. The rule-based voice conversion is achieved by
modifying the acoustic information of the speech signal according to
specific rules [2, 3]. Although this method can keep most of detailed
information, it is not stable since different speakers need different
rules. On the other hand, statistical approaches to VC estimate a
mapping function between the spectral features of the source and
target speech. Popular techniques include Gaussian Mixture Mod-
els (GMMs) and Deep Neural Networks (DNNs) [4, 5]. Stylianou
et al. [6] proposed a GMM-based mapping method to convert the
source speaker spectral envelops by a continuous parametric func-
tion. Toda et al. [7] improved GMM-based method through using
dynamic features and global variance. Desai et al. [8] proposed a
voice conversion method using Artificial Neural Networks. Chen et
al. [9, 10] proposed a spectral modelling and conversion method us-
ing RBM. Nakashika et al. [11] used DNNs to achieve VC in a high
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order eigenspace. Nakashika et al. [12] also proposed a sequence
modelling method using Recurrent Temporal Restricted Boltzmann
Machines, which is a kind of Recurrent Neural Networks (RNNs).

The existing approaches have two main problems. First, GMMs
and DNNs frame-based methods treat speech frames as independen-
t input features and do not capture the temporal dependencies of
speech sequences. Second, standard RNNs are able to capture the
temporal information among speech frames, but they have limited
capabilities in modelling context. Furthermore, standard RNNs can
only make use of the previous context and not the future context.
They also have limited storage to deal with long sequence because
of the problem of vanishing and exploding gradients [13], hence they
have difficulty in learning long-range context-dependencies.

To overcome these two problems, an alternative RNNs archi-
tecture, Bidirectional Long Short-Term Memory (BLSTM) [14, 15],
is proposed for voice conversion in this paper. In previous work,
BLSTM outperforms standard RNNs on numerous tasks involving
sequence modelling, such as context-free and context-sensitive lan-
guages learning [16], large-vocabulary speech recognition [17, 18],
feature enhancement [19], TTS synthesis [20], etc. Bidirectional
recurrent connections can make full use of the context information
in both forward and backward directions elegantly. The LSTM net-
work architecture including memory blocks and peephole connec-
tions makes it possible to store information in linear memory cells
over a longer period of time and to learn the optimal amount of
contextual information for the task.

The organization of this paper is as follows: the RNNs and
BLSTM architectures are described in Section 2. The baseline DNN-
based system and the voice conversion system using BLSTM are
respectively provided in Section 3 and Section 4. To evaluate the
performance of our approach, objective and subjective experiments
were conducted, and the results and analysis are presented in Section
5. Finally, Section 6 gives a summary and conclusion of this work.

2. NETWORK ARCHITECTURES

For a standard RNNs, given an input sequence & = (1, - ,27),
the hidden vector h = (h1,--- , hr) and the output vector y =
(y1,- -+ ,yr) can be computed from ¢ = 1 to T according to the
following iterative equations:
hy = H(Wanze + Whnhi—1 + br) (n
ye = Whyhe + by ()

where H is the activation function of hidden layer, W is the weight
matrix (e.g., Wy, is the input-hidden weight matrix), and b is the
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bias vectors (e.g., by, is the hidden bias vectors).
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Fig. 1. Bidirectional RNNs Fig. 2. A Memory Block

To make full use of the context of speech sequences in both
preceding and succeeding directions, Bidirectional RNNs (BRNN5s)
were proposed [21]. As shown in Fig. 1, BRNNs compute the for-

ward sequence h and the backward sequence h by iterating the for-
ward layer from ¢t = T to 1 and the backward layer from ¢ = 1 to
T'. The iterating functions are as follows:

=HW -z + Wmﬁm +b:) )
=Wy he+ Wy hitb, 5)

Furthermore, in the standard RNNs, H is usually a sigmoid or
hyperbolic tangent function, which leads to the limitation of the
inability to learn long-range context-dependencies. However, it is
reported that the an LSTM network that contains memory blocks
can solve this problem. An LSTM network consists of recurrently
connected blocks, known as memory blocks. The structure of a
single LSTM memory block is illustrated in Fig. 2. Every memory
block contains self-connected memory cells and three adaptive and
multiplicative gate units i.e. input, output, and forget gates which
can respectively provide write, read, reset operations for the cells.
Among them, forget gates are shown to be essential for problems in-
volving continual or very long input strings [22]. H is implemented
according to the following equations:

it = 0(Waize + Whihe—1 + Weice—1 + bi) ©)
ft =0(Wasxi + Whyphi—1 + Weice—1 + by) @)
¢t = frei—1 + istanh(Waexy + Whchi—1 + be) (©))
0t = 0(Waott + Whohi—1 + Weoct + bo) (C)]
ht = ortanh(cy) (10)

where i, f, o, c refer to the input gate, forget gate, output gate and the
element of cells C respectively. o is the logistic sigmoid function.

Combining the advantages of BRNNs and LSTM, Bidirection-
al LSTM based RNNs were designed [14], which can make the
best of long-range context in both forward and backward directions.
Further, motivated the success of deep network architectures, Deep
BLSTM-RNNS are considered to build up high level representation
of input features. Similar to the structure of DNNs and Deep RNNs
[23], Deep BLSTM can be created by stacking multiple BLSTM
hidden layers. In this paper, we implement DBLSTM-RNNSs system
to achieve voice conversion.
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3. BASELINE: CONVENTIONAL DNN BASED APPROACH

A system using conventional DNNs is developed as the baseline
approach [11]. The DNN based architecture consists of two Deep
Belief Networks and a concatenating NN, as shown in Fig. 3. In this
approach, the speech parameters are extracted by the STRAIGHT
analysis [24], including Mel-cepstral coefficients (MCEPs), funda-
mental frequency (Fp) and an aperiodic component. MCEPs are de-
rived from spectral envelop. The aperiodic component is defined as
the ratio between the lower and upper smoothed spectral envelopes
in the frequency domain. The DNN model is trained by the back-
propagation algorithm using parallel MCEPs features of the source
and target speech. In the conversion stage, MCEPs features of the
source are converted by the trained model frame by frame. Specif-
ically, the DNN based approach is a frame-based method and does
not consider the context-dependencies of acoustic sequence.

Fig. 3. The conventional DNN based approach.

A DNN based approach with dynamic features is also developed
for comparison. Static features and dynamic features are used in the
observation vector in this approach. Dynamic features consists of
first-order and second-order time derivatives of speech parameters,
hence this approach has the ability of modelling several successive
frames and can smooth the converted spectral trajectory.

4. PROPOSED: DBLSTM-RNN BASED APPROACH

4.1. Basic Framework
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Fig. 4. The DBLSTM-RNN based voice conversion architecture.



We propose a new voice conversion approach using DBLSTM-
RNNs. Fig. 4 shows the overall framework of the proposed system.
In this system, the three feature streams including the MCEPs, log
Fp and the aperiodic component, are converted separately. MCEPs
(except for the energy feature) are converted by the DBLSTM-RNN
model. Log Fy is converted by equalizing the mean and the standard
deviation of the source and target speech, which is a widely used
method in VC area. The aperiodic component is directly copied to
synthesize the converted speech, since previous research shows that
converting aperiodic component does not make statistically signifi-
cant difference on the synthesized speech [25]. The system regards
the whole utterance as input, which makes it possible to access the
long-range context in both forward and backward directions.

4.2. Training Stage

Back-propagation (BP) is now the most widely used training tool
in the field of artificial neural networks. But conventional back-
propagation [26] is only suitable for the feed-forward networks.
For RNNs, Rumelhart and Werbos et al. [27, 28] extended the con-
ventional BP algorithm to back-propagation through time (BPTT),
which can be used for sequential models.

In short, BPTT begins by unfolding an RNN into a standard
feed-forward network through time steps. As shown in Fig. 5, an
RNN containing one recurrent layer f and one feed-forward layer
g can be unfolded as & instances of f and one instance of g. In
the above example, the network has been unfolded to a feed-forward
network with the depth of k = 3. In real training, the k can be set
to a fixed number (typically 20) or the length of the entire sequence.
After unfolding, the training proceeds in a manner similar to training
a feed-forward neural network with back-propagation algorithm, ex-
cept that each epoch must run through the observations in sequential
order. That is, for RNNs training, the weight gradients are computed
for one sentence at a time.
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Fig. 5. Unfolding RNNs through time.

4.3. Conversion Stage

In the conversion stage, the input of the proposed system is one
whole sentence of the source speech. Parameters, including Fo,
aperiodicity and MCEDPs, are extracted by STRAIGHT method. M-
CEPs are normalized before conversion, and then all the three feature
streams are converted by previously described methods in section 4.1
respectively. Next, the STRAIGHT vocoder is used to synthesize
the speech waveform from the converted Fp, aperiodicity, and the
de-normalized MCEPs.

For the approaches using dynamic features, one step is added
before waveform synthesis. Maximum Likelihood Parameters Gen-
eration (MLPG) [29] is conducted to generate smooth speech param-
eter sequence. The de-normalized converted MCEPs is used as the
mean of the MLPG input probability density function (pdf), while
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the global variance of the whole training data is used as the variance
of the MLPG input pdf.

5. EXPERIMENTS

5.1. Experimental Setup

In our voice conversion experiments, the data we use is the CMU
ARCTIC corpus [30]. We select a male speaker (AWB) as the
source, and a female speaker (SLT) as the target. The acoustic
signals are sampled at 16kHz with mono channel, windowed by
25-ms. The frame shift is Sms. To get the parallel utterances,
the dynamic time warping (DTW) algorithm is used to align the
features sequences of the source and target speaker. 49-dimensional
Mel-cepstral features are used in DNN-based and DBLSTM-based
approaches, while a total number of 147 dimensions covering static
features, delta and delta-delta features are used in experiments with
dynamic features. In the experiments, the number of training data is
349,852 frames (593 sentences, about 42 mins), while the number
of validation data is 69,173 frames (119 sentences, about 9 mins).
Four systems are implemented for comparison:

o DNN: DNN based system [11], the baseline approach.
o DNN-DYN: DNN based system with dynamic features.
o DBLSTM: Proposed system using DBLSTM-RNNs.

e DBLSTM-DYN: Voice conversion system using DBLSTM-
RNNs approach with dynamic features.

In the DBLSTM approach, the number of units in each layer
is [49 128 256 256 128 49] respectively, where each bidirection-
al LSTM hidden layer contains one forward LSTM layer and one
backward LSTM layer. The training samples are normalized to zero
mean and unit variance for each dimension before training. We train
the networks using the BPTT with a learning rate of 1.0 x 10~°
and a momentum of 0.9. We use a C++ CUDA-enabled machine
learning library named RECURRENT [31] to train the DBLSTM
model. The training procedure is carried on one Tesla K20 GPU
and it takes about 48 hours. The BLSTM-DYN approach differ from
DBLSTM approach is that the number of units in input layer and
output layer is 147, and MLPG is conducted before synthesis.

For the DNN approach, the number of units in each layer is
the same as that of DNN-based approach. The networks are pre-
trained using stochastic gradient descent with a mini-batch size of
128 training samples. In the training stage, 800 epoches are executed
using the BP algorithm with a learning rate of 0.1. Under the same
hardware configuration with the DBLSTM approach, it takes about
4 hours.

5.2. Objective Evaluation

One common objective evaluation method in VC [7, 8, 12] and
speech synthesis [32, 33, 34] area is to compute the spectral
distortion between the generated speech and the target speech. In
VC area, Mel-cepstral Distortion (MCD) is the Euclidean distance
between the MCEPs of converted speech and that of target speech.
To evaluate the performance of the proposed system objectively, We
use the MCD to measure how close the converted speech is to the
target speech. MCD is defined as follows:

N
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where cg and ¢5°"?¢"**? denote the d-th coefficient of the target and
converted Mel-cepstrum respectively. [V is the dimension of Mel-
cepstrum (except the energy feature).

The MCD evaluation is concluded on systems trained on training
sets of different sizes. As shown in Fig. 6, our proposed approach
outperforms the DNN method (baseline method) both with and with-
out dynamic features. We can also see that dynamic features reduce
the mel-cepstrum distortion of the DNN approach, but they do not
have obvious effect on the DBLSTM method. A possible reason may
be that the DBLSTM model has made full use of the long-range
context information of acoustic sequences, and does not need the
dynamic features.
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Fig. 6. Mel-cepstral distortion for each method. The smaller MCD
value is, the closer the converted spectra is to the target spectra.

5.3. Subjective Evaluation

We conduct the Mean Opinion Score (MOS) test on the naturalness
of the converted speech and the ABX preference test on the sim-
ilarity. We use 16 utterances as the test set. The 16 utterances
are converted by the four systems (DNN, DNN-DYN, DBLSTM
and DBLSTM-DYN) respectively. 25 listeners are asked to rate
16 utterances from each system, hence generating 400 ratings per
system.

In the MOS test, listeners are asked to compare the four utter-
ances of each set' with the target speech, and select how natural
the converted speech sounded using a 5-point scale (5: excellent, 4:
good, 3: fair, 2: poor, 1:bad).

4
H 95% Confidence Intervals
32 32
_I_ —

MOS Score

23
2 B
1
DNN D

2.7
NN-
DYN

DBLSTM DBLSTM-
DYN

Fig. 7. MOS test results with the 95% Confidence Intervals.

'The converted speech samples can be found at http://www.se.
cuhk.edu.hk/~1fsun/icassp2015
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The MOS results in Fig. 7 show that listeners consider that the
naturalness of outputs from DBLSTM and DBLSTM-DYN systems
to be better than the DNN and DNN-DYN systems. The speech con-
verted by the DBLSTM and DBLSTM-DYN systems sounds more
clear with less background noise. The results also suggest that dy-
namic features can improve the continuity of converted speech in
DNN approach, but do not have obvious enhancements for DBLST-
M approach. The speech converted by the DNN system has glitches
between the phonemes, while for the other three systems the con-
verted speech sounds coherent and smooth.

In the ABX preference test, listeners are asked to choose which
sample (A or B converted by two different systems) sounds more
similar to X, which is the original target speaker’s utterance. The
samples A and B are shuffled to avoid preferential bias. We conduct
four sets of comparative experiments: DNN with DBLSTM, DNN
with DNN-DYN, DNN-DYN with DBLSTM, and DBLSTM with
DBLSTM-DYN. For all the experiments, listens have three choices:
A, B or no preference (N/P) when they cannot distinguish between
the two. We use p-values to determine the significance of the results.
The smaller the p-value, the larger the significance.

From the first two bars in Fig. 8, we see that the DBLSTM
achieves significantly better preferences over the DNN and DNN-
DYN approach. The third bar in Fig. 8 shows that the DNN-DYN ap-
proach is preferred over the DNN approach. The fourth bar suggests
that the DBLSTM and DBLSTM-DYN methods have the similar
levels of performance.

DBLSTM N/P N
70% 23% 7%
DBLSTM N/P DNN-DYN
53% 15% 32%
DNN-DYN N/P DNN
44% 41% 15%
| DBLSTM-DYN | N/P | DBLSTM |
34% 39% 27%

Fig. 8. ABX preference test results. The p-values of the four pairs
are 3.9 x 10724, 3.0 x 1072, 2.4 x 10~* and 0.24 respectively.

6. CONCLUSIONS

‘We have proposed a new voice conversion approach using DBLSTM-
RNNs, which can model both the frame-wised relationship between
the source and the target speech and the long-range context-
dependencies of acoustic sequences. From both objective and
subjective evaluation metrics, experimental results show that, our
proposed method of DBLSTM-RNNSs can improve the naturalness
and continuity of the converted speech significantly, increasing
the MOSs from 2.3 to 3.2. Our future work includes exploring
the advantages of BLSTM in modelling spectral and Fj features
simultaneously.
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